Large-Scale Laboratory Testing of Geosynthetics in Roadway Applications

Second Task Report: Testing Setup and Planning

Prepared by Steve Perkins Department of Civil Engineering & Western Transportation Institute College of Engineering Montana State University – Bozeman

Prepared for the MONTANA DEPARTMENT OF TRANSPORTATION in cooperation with the U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

January, 2019

Disclaimer Statement

This document is disseminated under the sponsorship of the Montana Department of Transportation (MDT) and the United States Department of Transportation (USDOT) in the interest of information exchange. The State of Montana and the United States assume no liability for the use or misuse of its contents.

The contents of this document reflect the views of the authors, who are solely responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the views or official policies of MDT or the USDOT.

The State of Montana and the United States do not endorse products of manufacturers.

This document does not constitute a standard, specification, policy or regulation.

Alternative Format Statement

MDT attempts to provide accommodations for any known disability that may interfere with a person participating in any service, program, or activity of the Department. Alternative accessible formats of this information will be provided upon request. For further information, call 406/444.7693, TTY 800/335.7592, or Montana Relay at 711.

Table of Contents

1	Intr	oduction	1
2	Pav	ement Materials	1
	2.1	Hot-Mix Asphalt	1
	2.2	Base Course Aggregate	6
	2.3	Subgrade Soil	6
	2.4	Geotextiles	11
3	Ref	erences	12
4	App	pendix A: Material Testing Data Sheets	13

List of Tables

Table 2-1: Volumetric data for 3 MT HMA mixes	1
Table 2-2: Volumetric data MT HMA mixes compacted at NCAT	2
Table 2-3: Volumetric data SC HMA mixes compacted at NCAT	4
Table 2-4: Wide-width tension and grab tension properties for Geotex 801 and RS280i	
Geotextiles	12

List of Figures

Figure 2-1: Dynamic complex modulus versus load frequency at a test temperative	ature of 4°C
for 3 MT mixes and 2 SC mixes.	2
Figure 2-2: Dynamic complex modulus versus load frequency at a test temperative state of the second state	ature of 20°C
for 3 MT mixes and 2 SC mixes.	
Figure 2-3: Dynamic complex modulus versus load frequency at a test temperative state of the second se	ature of 40°C
for 3 MT mixes and 2 SC mixes.	
Figure 2-4: Subgrade soil water content versus CBR and undrained shear stre	ength from
laboratory CBR tests	7
Figure 2-5: Subgrade soil water content versus CBR and undrained shear stre	ength from
box frame tests	
Figure 2-6: Subgrade soil water content versus CBR and undrained shear stre	ength for all
tests performed	9
Figure 2-7: Subgrade undrained shear strength versus CBR from box frame a	and lab CBR
tests.	

1 Introduction

This task report describes activities related to Task 2 of the project proposal. Task 2 involves the acquisition of and material tests on the subgrade soil, the base course aggregate, the hot-mix asphalt (HMA) and the two geotextiles. At the time this report was submitted, certain tests on HMA materials were on-going or scheduled to be completed. As such, this report has been submitted in draft form. The final draft will be submitted once the HMA test data is available.

2 Pavement Materials

2.1 Hot-Mix Asphalt

In this project, test sections constructed in South Carolina (SC) will be paved with HMA locally produced. MDT is interested in test sections using materials that are either identical to or have similar performance characteristics of typical materials used in Montana. To have confidence that the SC HMA performs similarly to typical Montana mixes and to account for any differences that may exist, testing of both MT and SC mixes was performed.

Three MT HMA mixes from different state DOT districts were selected. Three projects from Ashland, Bozeman and Great Falls were selected. Volumetric data was obtained from MDT from gyratory compaction tests for these mixes and is summarized in Table 2-1.

Mix Name	Ashland	Bridger Canyon	Great Falls
Binder PG grade	64-28	64-28	64-28
Asphalt Content (%)	5.09	5.30	5.36
Rice Specific Gravity (G _{mm})	2.46	2.44	2.42
Bulk Specific Gravity (G _{mb})	2.36	2.39	2.35
Air Voids (%)	3.99	2.46	3.00
VMA	13.7	13.8	13.8
VFA	71	82	79

Table 2-1: Volumetric data for 3 MT HMA mixes

Bulk material was sent to NCAT where dynamic modulus testing was performed. Bulk material was re-heated and compacted to a target air voids content of 7 + 0.5 %. Three samples for each mix were prepared and tested. Table 2-2 provides volumetric data for the specimens compacted at NCAT for dynamic modulus testing. Dynamic modulus testing uses 3 to 4 frequencies of loading and three test temperatures. The complex modulus (E*) is determined for each combination of load frequency and temperature. Figure 2-1, Figure 2-2 and Figure 2-3 show values of E* from these tests.

Mix ID	Sample	Air Voids, %	Pb	G _{mm}	G _{mb}	VMA	VFA
Ashland	1	7.3	5.1	2.455	2.276	16.7	56.2
Ashland	2	7.4	5.1	2.455	2.273	16.8	55.8
Ashland	3	7.1	5.1	2.455	2.281	16.5	56.9
Bridger Canyon	1	7.2	5.3	2.440	2.264	17.7	59.4
Bridger Canyon	2	7.4	5.3	2.440	2.259	17.9	58.7
Bridger Canyon	3	7.5	5.3	2.440	2.257	18.0	58.4
Great Falls	1	6.7	5.4	2.420	2.258	17.1	60.8
Great Falls	2	6.5	5.4	2.420	2.263	16.9	61.5
Great Falls	3	7.4	5.4	2.420	2.241	17.7	58.2

Table 2-2: Volumetric data MT HMA mixes compacted at NCAT

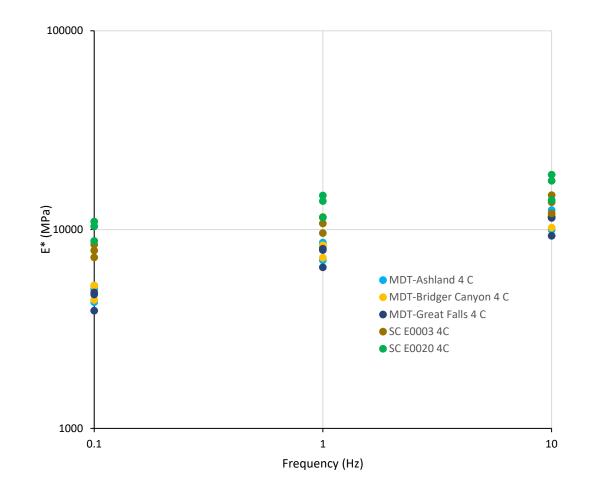


Figure 2-1: Dynamic complex modulus versus load frequency at a test temperature of 4°C for 3 MT mixes and 2 SC mixes.

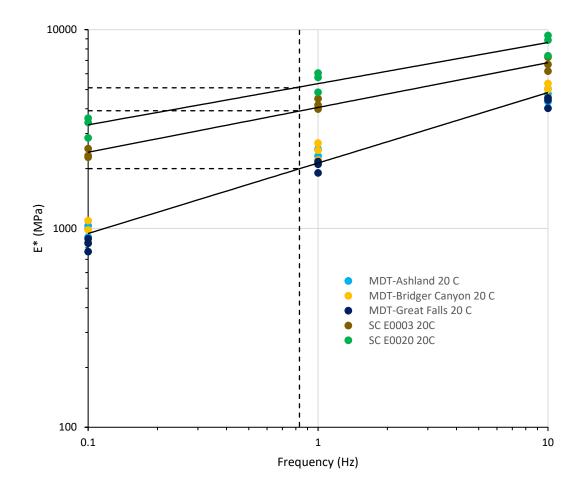


Figure 2-2: Dynamic complex modulus versus load frequency at a test temperature of 20°C for 3 MT mixes and 2 SC mixes.

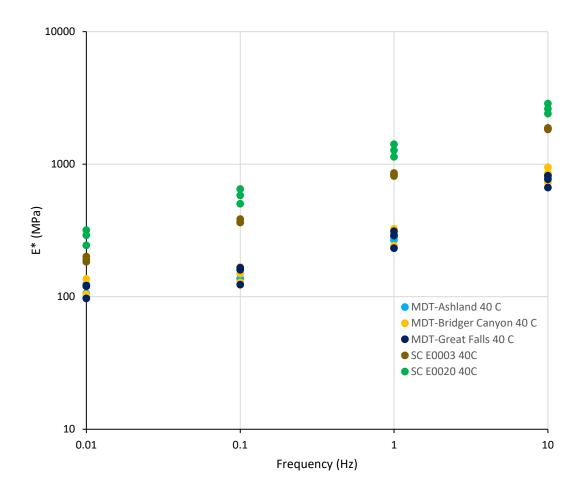


Figure 2-3: Dynamic complex modulus versus load frequency at a test temperature of 40°C for 3 MT mixes and 2 SC mixes.

Three HMA mixes were identified as potential sources in SC. All mixes used an asphalt binder with a PG 64-22 grade. Bulk material for two mixes were sent to NCAT for dynamic modulus testing. Volumetric data for gyratory compaction samples for these two mixes is given in Table 2-3. Values of E* are shown on Figure 2-1, Figure 2-2 and Figure 2-3.

Mix ID	Sample	Air Voids, %	Pb	G _{mm}	G _{mb}	VMA	VFA
E0003	1	7.0	6.1	2.462	2.290	19.2	63.5
E0003	2	7.0	6.1	2.462	2.290	19.2	63.5
E0003	3	7.3	6.1	2.462	2.282	19.4	62.4
E0020	1	6.8	5.1	2.474	2.306	17.8	61.7
E0020	2	6.8	5.1	2.474	2.306	17.8	61.7
E0020	3	6.5	5.1	2.474	2.313	17.5	62.9

Table 2-3: Volumetric data SC HMA mixes compacted at NCAT

Six gyratory compaction pucks for each SC mix were prepared and sent to MDT for Hamburg testing. MDT has performed Hamburg tests on mix E0020 and it passed with little rutting. MDT plans to test the other two SC mixes once the Hamburg testing equipment is functional.

The data in Figure 2-1, Figure 2-2 and Figure 2-3 shows the two SC mixes to be more stiff than the MT mixes. Of interest is a comparison of E* values close to the test conditions in the accelerated test facility. This facility should operate close to room temperature, hence the data in Figure 2-2 is pertinent. It is generally agreed that a vehicle speed of 60 mph corresponds to a load frequency of 10 Hz. The accelerated test facility operates at a wheel speed of approximately 5 mph, corresponding to a load frequency of 0.83 Hz. A best fit line of E* values for all MT mixes and tests is shown in Figure 2-2. A best fit line through the test data for each SC mix is also shown in Figure 2-2. At a load frequency of 0.83 Hz, the best fit values of E* are 2000, 3910 and 5100 MPa for all MT mixes, SC E0003 and SC E0020, respectively.

Use of one of the two SC mixes requires the originally proposed test section thickness of 3.6 inch of HMA and 14.3 inch of base aggregate to be reduced to account for the greater HMA stiffness. The 1992 AASHTO Pavement Design Guide and structural thickness design equations together with input from the MDT Pavement Design Manual were used to analyze new pavement thickness using the two SC HMA mixes. The originally proposed cross section was analyzed using the AASHTO pavement design equation to calculate the number of ESAL's carried by the pavement. The following inputs were used in the equation: Reliability = 85 %, Standard Deviation = 0.45, Initial Serviceability = 4.2, Terminal Serviceability = 2.5, Subgrade Resilient Modulus = 4590 psi (corresponding to a CBR of 2.5), HMA Layer Coefficient = 0.41, and Base Aggregate Layer Coefficient = 0.14. The correlation chart for estimating resilient modulus of HMA surface course by Van Til et al. (1972) was used to estimate resilient modulus for a layer coefficient of 0.41. This value was multiplied by the ratio of the E* values reported above for the two SC mixes as compared to the MT mix to estimate resilient modulus values for the two SC mixes. These values were then used in the correlation chart to estimate layer coefficient. Values of 0.54 and 0.57 were estimated for SC E0003 and SC E0020 mixes, respectively. These values were then used in the AASHTO pavement design equation with the HMA thickness set at 3 inch to estimate the base layer thickness to yield the same number of ESAL's as the original cross section. Values of base thickness of 13.3 and 12.6 were obtained for SC E0003 and SC E0020 mixes, respectively.

MDT would prefer to use the less stiff SC HMA mix (E0003), however Hamburg tests are currently available only for the E0020 mix. The top of the subgrade in the test sections will be completed soon (by February 1, 2019). The elevation for the top of the subgrade has been chosen to produce a top of base course level with the top of the test pit walls when the SC E0020 mix is used (i.e. a base thickness of 12.6 inch). Should Hamburg tests on E0003 become available before the top of the base is reached, and the results pass, an additional 0.7 inch of base aggregate will be added to the test section and the SC E0003 mix will be used.

2.2 Base Course Aggregate

A base course aggregate meeting MDT specifications for a Type 7A was selected from the Brewer Pit near Forsyth, MT. Previous tests by MDT resulted in a specific gravity of coarse aggregate of 2.631 and a specific gravity of fine aggregate of 2.653. MDT performed the following tests on the source aggregate and reported the following:

LA Abrasion: 18 % loss

Micro-Deval: 5.5 % loss

R-Value: 73

TRI performed the following tests on the base aggregate material and reported the following:

Fines: Non-Plastic

USCS Soil Classification: SP

AASHTO Soil Classification: A-1-a

California Bearing Ratio (CBR): 100 at 95 % Modified Proctor Maximum Dry Density

Modified Proctor Maximum Dry Density: 21.5 kN/m³

Modified Proctor Optimum Moisture Content: 7.7 %

Fractured Face (one or more) Percentage: 65 %

Data sheets for the above tests and a grain size distribution curve are given in Appendix A.

2.3 Subgrade Soil

MDT performed an R-value test and reported a value of 23.5 at an exudation pressure of 2.07 MPa (300 psi).

TRI performed the following tests on the subgrade material and reported the following:

Liquid Limit: 40 %

Plastic Limit: 25 %

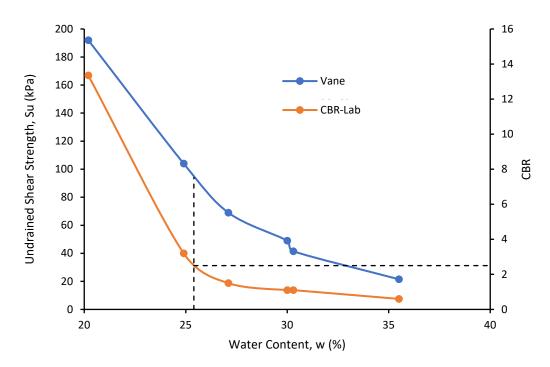
Plasticity Index: 15 %

Percent Passing # 200 Sieve: 75.5 %

USCS Soil Classification: CL

AASHTO Soil Classification: A-6

Standard Proctor Maximum Dry Density: 15.9 kN/m³


Standard Proctor Optimum Moisture Content: 18.6 %

Modified Proctor Maximum Dry Density: 17.4 kN/m³

Modified Proctor Optimum Moisture Content: 17.0 %

Data sheets for the above tests and a grain size distribution curve are given in Appendix A.

TRI performed a series of tests to establish a relationship between subgrade water content, subgrade CBR and undrained shear strength as measured with a hand-held vane shear device. Standard laboratory CBR tests were performed on the subgrade prepared to various water contents. These tests were performed as unsoaked tests. Vane shear tests were performed for each sample prepared. Figure 2-4 shows the variation of CBR and undrained shear strength with water content of the samples prepared. This data shows that the subgrade should be prepared to a water content of 25.4 % to reach the target subgrade CBR of 2.5. An undrained shear strength from the hand-held vane would be expected to yield a value of 94 kPa at this water content.

Figure 2-4: Subgrade soil water content versus CBR and undrained shear strength from laboratory CBR tests.

Additional tests were performed by TRI to verify the subgrade water content, subgrade CBR and undrained shear strength relationships shown in Figure 2-4 for compaction conditions more similar to those that will occur in the test pit facility. These tests consisted of preparing four batches of subgrade soil mixed to four different values of water content. Each batch was placed in a plastic-lined wooden frame measuring 99 cm x 99 cm x 14 cm and compacted with a jumping jack compactor. A plastic-lined wooden lid was then placed over the frame. The frame was then flipped over and the wooden bottom removed to expose the smooth side of the clay sample. Field CBR tests were performed on the specimens at times from compaction of 6 hours, 6 days and 41 days. At each time, three CBR tests were performed on each of the four soil

batches. Six vane shear tests were performed around each CBR location. A large water content sample was taken within each CBR and vane shear test area.

Figure 2-5 shows water content versus CBR and undrained shear strength for the tests performed. Trend lines are plotted through the data for the 6 day and 41 day tests. For a given water content, the CBR results show more variability than the vane shear tests. CBR and undrained shear strength increase with time from compaction. This data suggests that if a subgrade CBR of 2.5 is desired at the time of initiation of traffic loading and if this time is 41 days, then the subgrade should be prepared at a water content of 27.2 % and where an undrained shear strength of 60 kPa would be expected at the time of compaction.

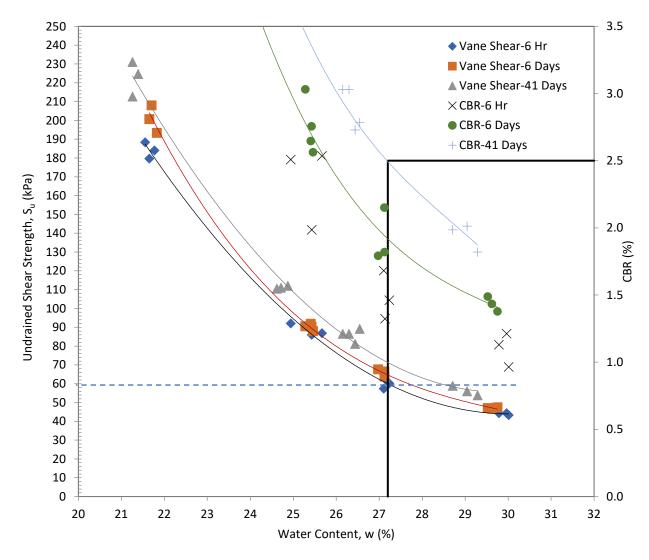


Figure 2-5: Subgrade soil water content versus CBR and undrained shear strength from box frame tests.

TRI recently completed stationary plate load tests using a rectangular test tank containing the same subgrade discussed above and prepared to a water content ranging from 26.8 to 28.1 %.

Hand-held vane tests were performed as the subgrade was placed. The subgrade was covered with 300 mm of compacted gravel and 50 mm of HMA. Approximately 50 days after completion of subgrade placement, the test section was exhumed and additional vane shear and water content tests were made in the top of the subgrade. In contrast to the results shown in Figure 2-5, undrained shear strength did not increase over this elapsed time and in fact decreased by approximately 5 kPa. Figure 2-6 shows data presented in both Figure 2-4 and Figure 2-5 along with the additional data points from the test tank measurements described above. The post test measurement produces the lowest value of undrained shear strength for the "test tank" values plotted.

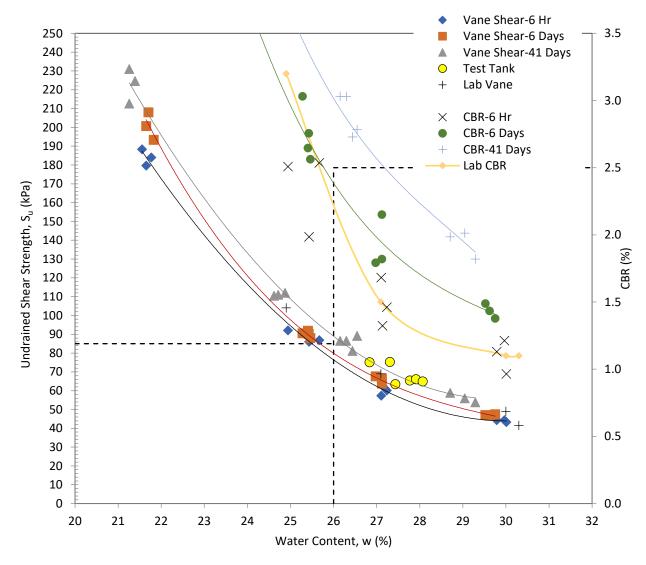


Figure 2-6: Subgrade soil water content versus CBR and undrained shear strength for all tests performed.

Several observations are made from Figure 2-6. While the box frame tests tend to show a trend of increasing undrained shear strength with time following compaction, the lab CBR tests and

the measurements made in the test tank do not appear to support this finding. The three sets of data appear to represent a data scatter band representing variability of the measurements made. The box frame tests show a significant increase in CBR with time following compaction. There is some doubt regarding whether this is due to clay thixotropy or is more due to drying of the clay surface where the CBR tests were performed.

Conflicting data from the tests described above led to a pragmatic approach to selecting a subgrade water content target value for compaction in the test facility in order to minimize the risk of having a subgrade that is too weak to represent typical conditions experienced by MDT and having a subgrade that is too strong such that sufficient rutting is not achieved and a clear distinction between test sections becomes difficult to make. The approach best suited to minimize these risks is believed to choose a subgrade water content target of 26 %. As shown on Figure 2-6, this is expected to produce an undrained shear strength from hand-held vane tests of 85 kPa and a subgrade CBR of as low as 2.0 immediately following compaction. Should clay thixotropy occur, the subgrade CBR may increase to a value of 3.0 over the interval of time needed to complete the test sections and begin trafficking. This approach is supported by data shown in Figure 2-7 where undrained shear strength from hand-held vane tests is plotted against subgrade CBR for the box frame tests and the lab CBR tests. A target water content of 26 % yielding a clay with an undrained shear strength of 85 kPa appears to strike a balance between the competing risks of having a subgrade that is too weak versus one that is too strong.

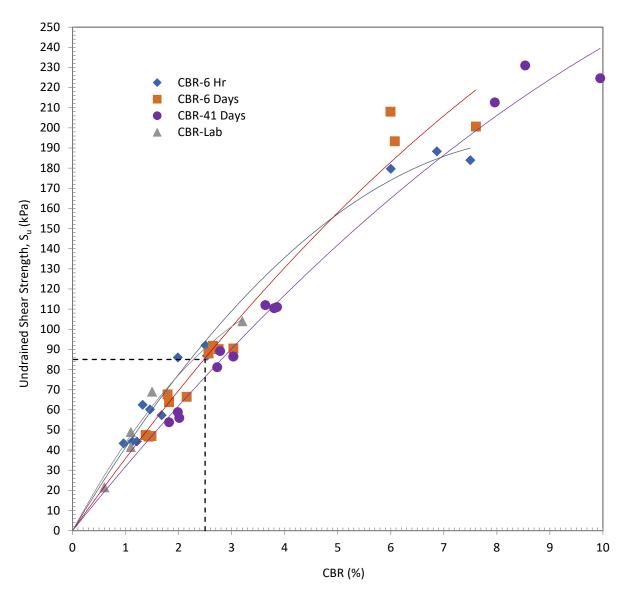


Figure 2-7: Subgrade undrained shear strength versus CBR from box frame and lab CBR tests.

Data collected during compaction of the subgrade in the test facility will be processed real-time to reevaluate the approach described above and changes will be made accordingly.

2.4 Geotextiles

Propex Geotex 801 and Mirafi RS280i are the two geotextiles being used in this project. Geotex 801 is a nonwoven geotextile while RS280i is a woven product. Wide width tension tests (ASTM D4595) were performed on both materials. Grab strength tests (ASTM D4632) were performed on the Geotex 801 product. Results from these tests are summarized in Table 2-4. Test data sheets for these tests are contained in Appendix A.

Test	Property	Geotex 801	RS280i
Grab	Tensile strength, MD (kN)	0.97	NP
Tensile	Tensile strength, XMD (kN)	0.99	NP
	Ultimate strength, MD (kN/m)	14.8	65.8
	Ultimate strength, XMD (kN/m)	18.1	50.5
Wide	Strength at 2 % strain, MD (kN/m)	0.52	13.9
Wide- Width	Strength at 2 % strain, XMD (kN/m)	0.43	15.5
Tension	Strength at 5 % strain, MD (kN/m)	1.25	31.0
Tension	Strength at 5 % strain, XMD (kN/m)	1.00	32.0
	Strength at 10 % strain, MD (kN/m)	2.35	58.8
	Strength at 10 % strain, XMD (kN/m)	2.01	49.2

Table 2-4: Wide-width tension and grab tension properties for Geotex 801 and RS280i Geotextiles

NP: Test Not Performed

3 References

AASHTO (1993). *AASHTO Guide for Design of Pavement Structures*. American Association of State Highway and Transportation Officials, Washington, DC.

ASTM D4595. *Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method*, American Society of Testing and Materials, West Conshohocken, PA, USA.

ASTM D4632. *Standard Test Method for Grab Breaking Load and Elongation of Geotextiles*, American Society of Testing and Materials, West Conshohocken, PA, USA

Montana Department of Transportation (2016). Pavement Design Manual, Helena, Montana.

Van Til, C.J., McCullough, B.F., Vallerga, B.A., and Hicks, R.G. (1972). *Evaluation of AASHO Interim Guides for Design of Pavement Structures*, NCHRP 128, Highway Research Board, Washington, D.C.

4 Appendix A: Material Testing Data Sheets

Project:	TRI Environmental, Inc
Date:	11/19/2018
Sample ID:	Dynamic Modulus

Project Notes

Specimens for testing were compacted at NCAT from re-heated plant-produced mix provided by the client Three specimens for each mix were prepared and tested in accordance with AASHTO R83-17 to a target of 7.0 +/- 0.5 percent air voids

Volumetric properties (Gmm, AC%, Gsb) required to calculate the specimen VMA and VFA were provided by the client

- Testing was performed in accordance with AASHTO T378-17 with the testing conditions recommended in AASHTO R84-17

 - Dynamic Modulus Testing Temperatures were 4, 20, and 40°C Specimens were tested at 10, 1, and 0.1 Hz loading frequencies at all temperatures
 - The 0.01 Hz loading frequency was only used at the high temperature
 - Analysis was performed using the Mastersolver.exe program

Dynamic Modulus testing provides a characterization of the stiffness and visco-elastic properties of the mixture across a wide range of temperatures and loading conditions

Results Summary

A summary of the specimens volumetrics is provided in Table 1 The individual specimen results for the individual mixes are provided in Tables 2, 3, and 4 The mastercurve coefficients are provided in Table 4 while the mastercurve plots are shown in Figure 1

Visual inspection of the mastercurves showed the three test mixtures to have very similar Dynamic Modulus results

Table 1: Individual Specimen Volumetrics

		Sample Air						
Mix ID	Sample ID	Voids, %	QC Gsb	QC Pb	Gmm	Gmb	VMA	VFA
Test 20 (Ashland)	5	7.3	2.592	5.1	2.455	2.276	16.7	56.2
Test 20 (Ashland)	6	7.4	2.592	5.1	2.455	2.273	16.8	55.8
Test 20 (Ashland)	7	7.1	2.592	5.1	2.455	2.281	16.5	56.9
Bridger Canyon	4	7.2	2.607	5.3	2.440	2.264	17.7	59.4
Bridger Canyon	5	7.4	2.607	5.3	2.440	2.259	17.9	58.7
Bridger Canyon	6	7.5	2.607	5.3	2.440	2.257	18.0	58.4
Great Falls	9	6.7	2.577	5.4	2.420	2.258	17.1	60.8
Great Falls	10	6.5	2.577	5.4	2.420	2.263	16.9	61.5
Great Falls	11	7.4	2.577	5.4	2.420	2.241	17.7	58.2

Table 2: Individual Specimen Data - Test 20 (Ashland)

Conditio	Conditions		Specimen 1		Specimen 2		nen 3
			Phase		Phase		Phase
Temperature	Frequency	E*	Angle	E*	Angle	E*	Angle
°C	Hz	Ksi	deg	Ksi	deg	Ksi	deg
4	0.1	729.7	23.4	625.8	24.7	758.8	24.2
4	1	1,180.5	17.0	1,016.3	18.2	1,248.8	17.8
4	10	1,670.7	12.1	1,447.3	13.1	1,821.7	12.7
20	0.1	131.4	34.9	123.9	34.2	149.7	33.7
20	1	335.5	32.3	308.5	32.0	364.8	31.6
20	10	689.7	25.9	629.6	26.2	732.2	25.7
40	0.01	14.5	12.7	15.4	9.1	18.0	10.3
40	0.1	20.0	21.9	19.8	19.3	23.2	19.7
40	1	41.1	32.2	38.9	29.8	43.2	29.9
40	10	120.3	36.7	114.7	34.9	120.1	35.0

Table 3: Individual Specimen Data - Bridger Canvon

Condition	Conditions		en 1	Specimen 2		Specimen 3	
			Phase		Phase		Phase
Temperature	Frequency	E*	Angle	E*	Angle	E*	Angle
°C	Hz	Ksi	deg	Ksi	deg	Ksi	deg
4	0.1	759.3	24.0	755.6	23.2	642.7	24.4
4	1	1,211.2	17.2	1,207.9	16.8	1,047.9	17.8
4	10	1,684.2	12.0	1,711.6	12.0	1,485.9	12.8
20	0.1	159.0	33.4	142.4	33.7	123.8	34.2
20	1	390.6	30.8	359.3	31.1	320.7	31.9
20	10	777.8	24.9	726.1	25.1	661.1	25.9
40	0.01	19.8	10.7	17.4	10.8	15.1	10.1
40	0.1	24.3	20.5	21.7	20.8	18.6	20.1
40	1	47.2	31.2	42.8	30.9	35.3	31.8
40	10	137.5	35.5	124.2	35.5	105.5	36.7

Table 4: Individual Specimen Data - Great Falls

Condition	Conditions		en 1	Specim	Specimen 2		Specimen 3	
			Phase		Phase		Phase	
Temperature	Frequency	E*	Angle	E*	Angle	E*	Angle	
°C	Hz	Ksi	deg	Ksi	deg	Ksi	deg	
4	0.1	701.0	24.2	684.1	24.1	567.2	26.2	
4	1	1,163.1	18.0	1,144.9	18.2	937.7	19.6	
4	10	1,676.5	13.0	1,661.1	13.3	1,351.5	14.0	
20	0.1	122.2	32.0	129.0	32.8	110.9	33.2	
20	1	305.0	31.3	315.0	31.7	276.2	32.6	
20	10	642.8	26.5	658.3	26.5	583.5	27.3	
40	0.01	17.6	14.1	17.4	15.9	14.1	15.3	
40	0.1	23.2	20.6	24.0	23.1	17.9	23.6	
40	1	42.0	29.0	45.3	30.8	33.7	32.5	
40	10	111.7	34.1	118.9	35.3	96.8	36.7	

Table 5: Mastercurve Coefficients

Mix ID	Max E* (Ksi)	Min E* (Ksi)	Beta	Gamma	EA	R^2	Se/S
Test 20 (Ashland)	3,187.9	6.51	-0.524	-0.579	195,848	0.993	0.0
Bridger Canyon	3,141.9	7.22	-0.528	-0.590	196,118	0.989	0.0
Great Falls	3,181.4	7.28	-0.426	-0.578	194,600	0.994	0.0
10,000							
(is) si							
Dynamic Modulus (ksi)							
10							
1 1.00E-06	1.00E-04	1.00E-02	1.00E+0		E+02 1.	00E+04	
1.002 00		Reduced	Frequence	-y (nz)			

Figure 1: E* Mastercurve Comparison

Project:	TRI Environmetal, Inc
Date:	12/14/2018
Sample ID:	Dynamic Modulus

Project Notes

Specimens for testing were compacted at NCAT from re-heated plant-produced mix provided by the client

- Three specimens for each mix were prepared and tested in accordance with AASHTO R83-17 to a target of 7.0 +/- 0.5 percent air voids Volumetric properties (Gmm, AC%, Gsb) required to calculate the specimen VMA and VFA were provided by the client
- Testing was performed in accordance with AASHTO T378-17 with the testing conditions recommended in AASHTO R84-17
 - Dynamic Modulus Testing Temperatures were 4, 20, and 40°C
 - Specimens were tested at 10, 1, and 0.1 Hz loading frequencies at all temperatures
 - The 0.01 Hz loading frequency was only used at the high temperature
 - Analysis was performed using the Mastersolver.exe program
- Dynamic Modulus testing provides a characterization of the stiffness and visco-elastic properties of the mixture across a wide range of temperatures and loading conditions

Results Summary

A summary of the specimens volumetrics is provided in Table 1

The individual specimen results for the individual mixes are provided in Tables 2 and 3

The mastercurve coefficients are provided in Table 3 while the mastercurve plots are shown in Figure 1

Visual inspection of the mastercurves showed the E0020 mixture to be stiffer than the E0003 mixture across the full range of temperatures and frequencies

Table 1: Individual Specimen Volumetrics

		Sample Air						
Mix ID	Sample ID	Voids, %	QC Gsb	QC Pb	Gmm	Gmb	VMA	VFA
E0003	2	7.0	2.660	6.1	2.462	2.290	19.2	63.5
E0003	3	7.0	2.660	6.1	2.462	2.290	19.2	63.5
E0003	4	7.3	2.660	6.1	2.462	2.282	19.4	62.4
E0020	3	6.8	2.660	5.1	2.474	2.306	17.8	61.7
E0020	4	6.8	2.660	5.1	2.474	2.306	17.8	61.7
E0020	5	6.5	2.660	5.1	2.474	2.313	17.5	62.9

Table 2: Individual Specimen Data - Mix E0003

Conditi	Conditions		Specimen 1		Specimen 2		Specimen 3	
			Phase		Phase		Phase	
Temperature	Frequency	E*	Angle	E*	Angle	E*	Angle	
°C	Hz	Ksi	deg	Ksi	deg	Ksi	deg	
4	0.1	1,139.4	15.1	1,052.0	14.5	1,219.2	15.0	
4	1	1,556.8	11.7	1,394.8	11.3	1,676.3	11.7	
4	10	1,991.7	9.2	1,752.3	9.2	2,163.7	9.2	
20	0.1	337.5	28.2	331.0	27.7	365.8	27.7	
20	1	606.4	23.2	579.0	22.8	652.5	22.8	
20	10	969.4	18.2	897.9	17.8	1,054.9	17.9	
40	0.01	26.6	22.6	27.7	22.6	29.2	22.4	
40	0.1	52.7	29.2	52.8	28.3	55.9	28.6	
40	1	120.4	31.8	118.3	30.9	124.4	31.4	
40	10	269.9	30.8	265.3	30.4	273.1	30.5	

Table 3: Individual Specimen Data - Mix E0020

Condit	ions	Specim	ien 1	Specim	Specimen 2		nen 3
			Phase		Phase		Phase
Temperature	Frequency	E*	Angle	E*	Angle	E*	Angle
°C	Hz	Ksi	deg	Ksi	deg	Ksi	deg
4	0.1	1,272.1	13.3	1,592.1	14.2	1,505.5	13.6
4	1	1,667.2	10.3	2,155.0	11.0	2,020.7	10.6
4	10	2,043.4	8.3	2,741.1	8.6	2,555.1	8.4
20	0.1	414.4	26.5	520.3	26.1	495.4	25.7
20	1	703.1	21.4	877.6	21.3	834.5	20.8
20	10	1,071.5	16.7	1,356.0	17.0	1,285.2	16.4
40	0.01	35.5	23.8	46.2	23.7	42.2	24.8
40	0.1	73.1	29.1	94.4	28.6	84.4	29.4
40	1	164.9	30.6	205.2	29.8	184.8	30.5
40	10	349.8	28.8	416.0	28.0	380.1	28.6

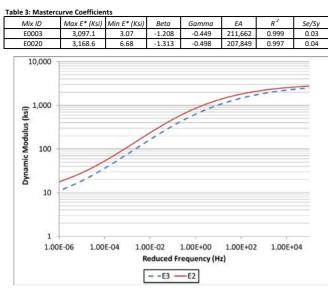


Figure 1: E* Mastercurve Comparison

Form No: TR-C136-1 Revision No. 2 Revision Date: 7/27/17

SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES

ASTM C 136, C 117

	S&ME, Inc Greenville	48 Brookfield	Oaks Dr., Suite	F Greenville, SC 2	9607
Project #:	1426-16-063 Phase 900			Report Date:	8/07/18
Project Name:	TRI/Environmental - Gene	eral Laboratory T	esting	Test Date(s):	8/03 - 8/07/18
Client Name:	TRI/Environmental				
Client Address:	P.O. Box 9192 Greenville	, SC 29604			
Location: N	Iontana 7A	Log #:	77g	Sample Date:	July 2018

Tare No.	145	Tare Wt.	0.000	Mass of S	ample after Wash	n + Tare Wt.	11.339
otal Sample	Dry Wt. + Tare \	Vt.	11.763				11.339
otal Sample	Dry Weight		11.763	Mass pass	sing #200		0.424
Check for 0.3%	6 Mass correspo	ndence	0.02%	% Passing	#200 (C117)		3.6%
Siev	ve Size	Retained	Increment	% Retained	Cum	nulative	SPECS
		Weight	Mass	Between	Total	Sample	
	mm.	Cumulative	individual	Sieves	% Retained	% Passing	
2.0"	50.00	0.000	0.0	0.0%	0.0%	100.0%	
1.5"	37.50	0.000	0.0	0.0%	0.0%	100.0%	
1.0"	25.00	0.000	0.0	0.0%	0.0%	100.0%	
3/4"	19.00	0.000	0.0	0.0%	0.0%	100.0%	
3/8"	9.50	2.902	2.9	24.7%	24.7%	75.3%	
#4	4.75	5.598	2.7	22.9%	47.6%	52.4%	
#10	2.00	7.066	1.5	12.5%	60.1%	39.9%	
#40	0.425	8.299	1.2	10.5%	70.6%	29.4%	
#200	0.075	11.226	2.9	24.9%	95.4%	4.6%	
Pan	< 0.075	11.337	Sum =	95.4%	% Pass	ing #200 (C136) =	4.6%
	Maxim	um Particle Size	19.00 r	nm			

Notes / Deviations / References:

ASTM C 117, C 136, C 702

Sieves selected from Tables 701-8 & 701-9 - Montana DOT Section 701 - Crushed Base Course Type "A" & Type "B".

Bran Vaugha

Brian Vaughan, P.E. Technical Responsibility

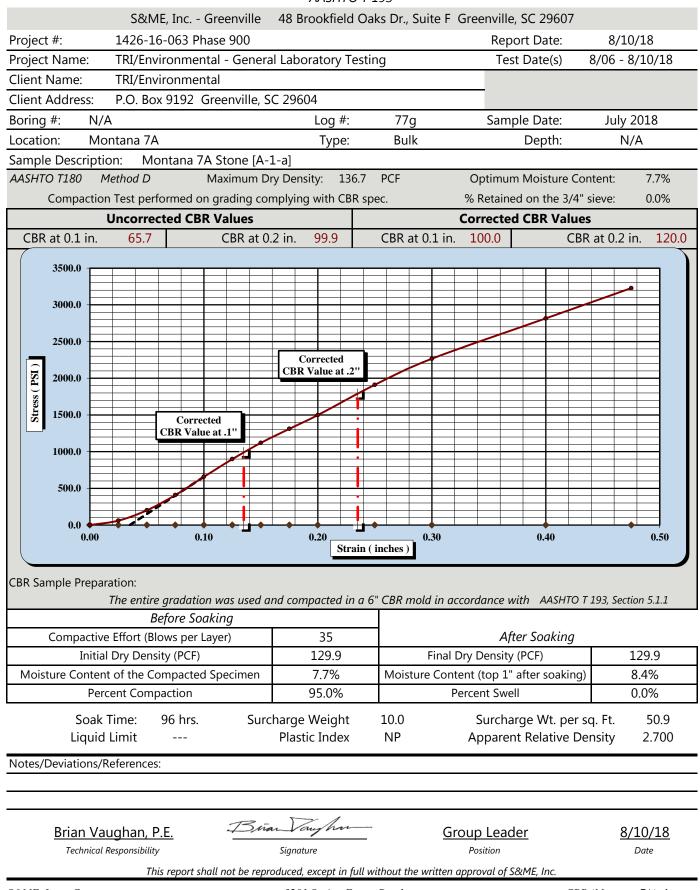
Signature

Group Leader Position <u>8/07/18</u> Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

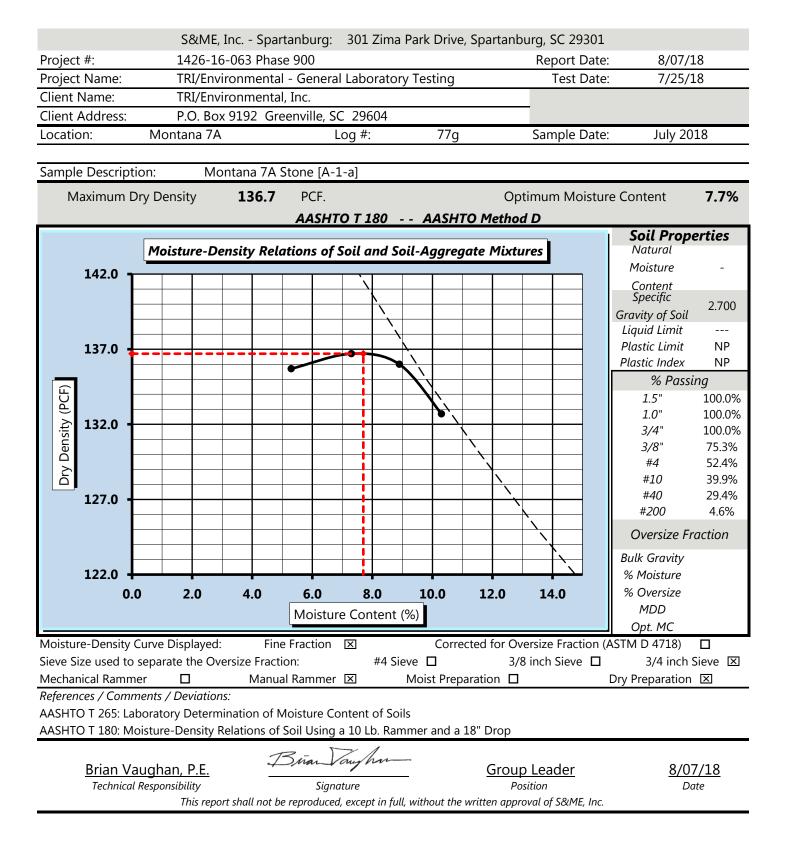
3201 Spring Forest Road Raleigh, NC.. 27616 Sieve Analysis (Montana 7A).xlsx Page 1 of 1 Form No. TR-D4318-T89-90 Revision No. 1 Revision Date: 7/26/17

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX


		ASTN	1 D 4318		AASHTO 1	r 89 🗵 🛛	AASHTO	T 90 🗵			
		S&ME, I	nc Gre	enville	48 Brookf	ield Oaks Dr., S	Suite F	Greenville, S	C 29607		
Project #	#:	1426-16-0	63 Phas	e 900				Report	Date:	8/07/	18
Project I		TRI/Enviro	nmenta	l - Gene	ral Laborato	ry Testing		Test D		8/07/	
Client N		TRI/Enviro				<u> </u>			(-)	-, - ,	-
Client A		P.O. Box 9		,	SC 29604			_			
Location		ntana 7A	192 010		Log #:	77g		Sample Date	·	July 2018	2
Location	1. 1010				LOG ".	,,,g			·• ·	uly 2010	<u> </u>
Sample	Descriptio	on: N	/ontana	7A Sto	ne [A-1-a]						
	Specificati		S&ME IL		Cal Date:	Type and Sp	ecificatio	n S	&ME ID #	Cal	Date:
Balance			1394	2	8/18/2017	Grooving to			23119		5/2017
LL Appar	_		2315	3	2/1/2018						
Oven			1397	3	10/7/2017						
Pan	#					Liquid Limit				Plastic Lim	it
		-	Tare #:								
А	Tare Weig	ght									
В	Wet Soil	Weight + A									
С	Dry Soil V	Veight + A									
D	Water We	eight (B-C)									
E	Dry Soil V	Veight (C-A)									
F	-	re (D/E)*100							-		
N	# OF DRO								Moisture Cu	ontents det	ermined by
LL	_	= F * FACTO	R							ASHTO T 2	-
Ave.		Average							_		
7100.		Menuge							One Point L	iquid Lim	nit
4	40.0			1				N	Factor	N	Factor
								20	0.974	26	1.005
	35.0							21	0.979	27	1.009
, iten								22	0.985	28	1.014
Con								23	0.99	29	1.018
ure Content	30.0							24 25	0.995 1.000	30	1.022
% Moist								25	NP, Non-Pl	astic	X
W									Liquid L		
8 2											
	25.0								•		NP
	25.0								Plastic L	imit f	
2	25.0								Plastic L Plastic Ir	imit I Idex I	NP
2		15	20	25 30) 35 40	# of Drops	100		Plastic L Plastic Ir Group Syn	imit I idex I ibol A-	NP -1-a
2	20.0	15	20	25 30) 35 40	# of Drops	100		Plastic L Plastic Ir Group Syn Multipoint N	imit Idex I Ibol A- Iethod	NP
	20.0							J	Plastic L Plastic Ir Group Syn Multipoint M One-point M	imit Idex I Ibol A- Iethod	NP -1-a
Wet Pro	20.0 10	Dry	20 Preparat		1				Plastic L Plastic Ir Group Syn Multipoint M One-point M	imit Idex I Ibol A- Iethod	NP -1-a
Wet Pro	20.0 10							J	Plastic L Plastic Ir Group Syn Multipoint M One-point M	imit Idex I Ibol A- Iethod	NP -1-a
Wet Pro	20.0 10	Dry						J	Plastic L Plastic Ir Group Syn Multipoint M One-point M	imit Idex I Ibol A- Iethod	NP -1-a
Wet Pro	20.0 10 Peparation Deviations /	Dry Creferences:	Preparat	ion 🗸			%	J	Plastic L Plastic Ir Group Syn Multipoint N One-point N 200 Sieve:	imit Idex Ibol A- Iethod	NP -1-a -1-a 4.6%
Wet Pro Notes / D AASHTO	20.0 10 reparation Deviations / T90: Detern	Dry References: mining the Pl	Preparat astic Lim	ion 🗸] Air Driec		% I AAS	Passing the #2	Plastic L Plastic Ir Group Syn Multipoint N One-point N 200 Sieve:	imit Index I	NP -1-a -1-a 4.6% mit of Soils
Wet Pro Notes / D AASHTO	20.0 10 eparation Deviations / T90: Detern Benjamin	Dry References: mining the Pl J. Kovalesk	Preparat astic Lim	ion 🗸	Air Dried	ils	% F AASI <i>man Vo</i>	Passing the #2 HTO T89: Dete	Plastic L Plastic Ir Group Syn Multipoint N One-point N 200 Sieve:	imit Index Inbol Aethod Iethod Liquid Lin 8/0	NP -1-a -1-a 4.6% mit of Soils 7/18
Wet Pro Notes / D AASHTO	20.0 10 eparation Deviations / T90: Detern Benjamin	Dry References: mining the Pl J. Kovalesk	Preparat astic Lim	ion 🗸	Air Dried	ils	% F AASi <i>man Va</i> echnical Res	Passing the #2 HTO T89: Deter The former sponsibility	Plastic L Plastic Ir Group Sym Multipoint M One-point M 200 Sieve:	imit Index Inbol Aethod Iethod Liquid Lin 8/0	NP -1-a -1-a 4.6% mit of Soils

3201 Spring Forest Road Raleigh, NC. 27616

CBR (CALIFORNIA BEARING RATIO) OF LABORATORY COMPACTED SOIL



AASHTO T 193

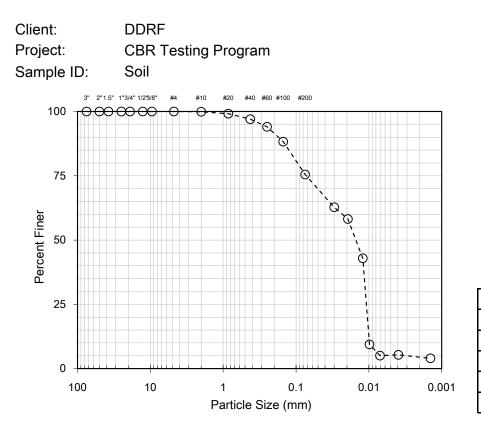
S&ME, Inc. - Corporate

3201 Spring Forest Road Raleigh, NC. 27616 CBR (Montana 7A).xlsx Page 1 of 1 Form No. TR-D698-2 Revision No. : 1 Revision Date: 07/25/17

Percentage of Fractured Particles in Coarse Aggregate ASTM D5821 TRI/Environmental - General Laboratory Testing S&ME Project No. 1426-16-063 Phase 900

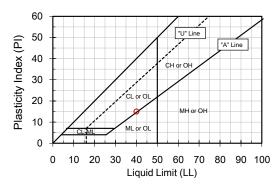
Sample ID	Total Sample Mass (grams)	Mass of Aggregate Particles with One or More Fractured Faces (grams)	Mass of Aggregate Particles with No Fractured Faces (grams)	Fractured Face %
Montana 7A Stone	1576.21	1029.90	546.31	65%

P = [F/(F+N)] X 100


P = Percentage of particles with the specified number of fractured faces (≥ 1 for this project)

 $F = Mass of fractured particles with at least the specified number of fractured faces (\geq 1 for this project)$

N = Mass of particles in the non-fractured category not meeting the fractured particle criteria


Particle Size, Atterberg Limit, and USCS Analyses for Soils

Mechanical Sieve							
(ASTM D422)							
Sieve De	Percent Passing						
-	mm						
3 in.	76.2	100.0					
2 in.	50.8	100.0					
1.5 in.	38.1	100.0					
1 in.	25.4	100.0					
3/4 in.	19.0	100.0					
1/2 in.	12.7	100.0					
3/8 in.	9.51	100.0					
No. 4	4.76	100.0					
No. 10	2.00	99.9					
No. 20	0.841	99.2					
No. 40	0.420	97.0					
No. 60	0.250	94.0					
No. 100	0.149	88.3					
No. 200	0.074	75.5					

Hydrometer Analysis						
(ASTM D422)						
Particle Size	Percent Passing					
mm	9					
0.0299	62.77					
0.0194	58.18					
0.0121	42.91					
0.0098	9.42					
0.0070	5.04					
0.0039	5.35					
0.0014	4.01					

Log-Linear Interpolation						
Particle Size	Percent Passing					
mm	, areaning					
0.005	5.2					
0.002	4.5					

TRI Log #:

36943.2

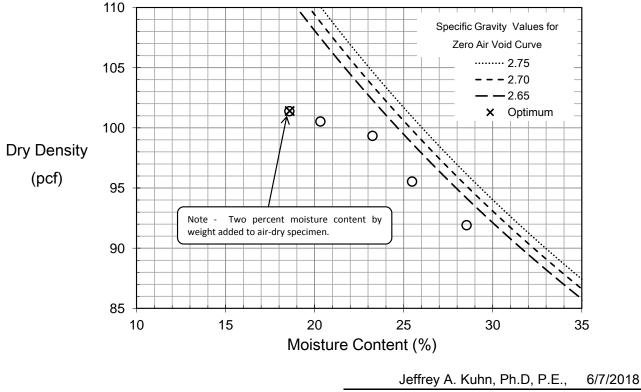
Atterberg Limits									
(ASTM D4318, Method A : Multipoint, Air Dried)									
Liquid Limit	40								
Plastic Limit	25								
Plastic Index	15								
(NL = No Liquid Limit, NP = No Plastic Limit)									

D _X (mn	n), Log-Lir	near Inte	rpolation						
10	30	50	60						
0.01	0.01	0.02	0.02						
Cu	Cc								
2.34	0.55								
	USCS Cla	ssificatio	on (ASTM D2487)						
Lean clay with sand (CL)									
	Moisture C	Content (%	%) (ASTM D2216)						
		14.	2						
	Organic C	ontent (%	6) (ASTM D2974)						
		0.9	9						
	Carbonate	Content ((%) (ASTM D4373)						
	<1 (Below	Method	Detection Limit)						
pH ASTM D4972 (method A)									
	(H ₂ O)		(CaCl ₂)						
	4.90		4.10						
Jeffrey	A. Kuhn	, Ph.D.,	P.E., 6/7/2018						

Analysis & Quality Review/Date

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.



Laboratory Compaction Characteristics of Soil Using Standard Effort (ASTM D698)

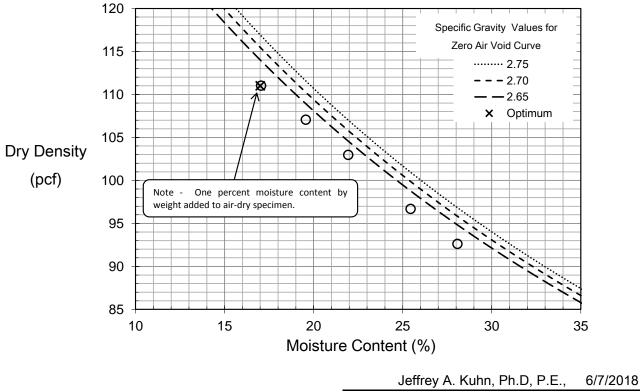
Client:	DDRF	TRI Log #:	36943.2
Project: Sample ID:	CBR Testing Program Soil		

Compaction Effort	-	Standard
Method	-	A
Rammer Type	-	Automatic
Maximum Dry Density	pcf	101.4
Optimum Water Content	%	18.6

Oversize Particle / "Rock" Correction (ASTM D4718)										
Oversized Particles	%									
Maximum Dry Density	pcf									
Optimum Water Content	%									

Quality Review / Date

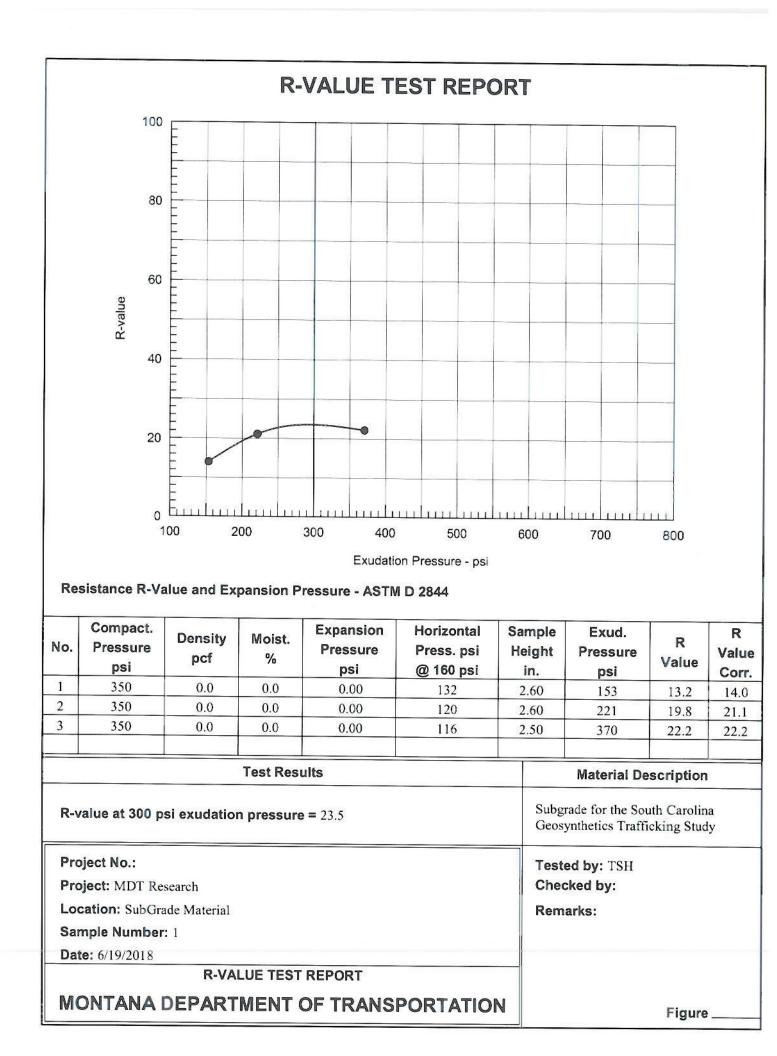
The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.



Laboratory Compaction Characteristics of Soil Using Modified Effort (ASTM D1557)

Client:	DDRF	TRI Log #:	36943.2
Project:	CBR Testing Program		
Sample ID:	Soil		

Compaction Effort	-	Modified
Method	-	A
Rammer Type	-	Automatic
Maximum Dry Density	pcf	111.0
Optimum Water Content	%	17.0


Oversize Particle / "Rock" Correction (ASTM D4718)									
Oversized Particles	%								
Maximum Dry Density	pcf								
Optimum Water Content	%								

Quality Review / Date

Page 1 of 1

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TESTING, RESEARCH, CONSULTING AND FIELD SERVICES Austin, TX - USA | Anaheim, CA - USA | Anderson, SC - USA | Gold Coast - Australia | Suzhou - China

GEOTEXTILE TEST RESULTS TRI Client: TRI Project: MDT Study

Material: Nonwoven Geotextile Sample Identification: Geotex 801

TRI Log #: 42772

TRI LOG #: 427	1
----------------	---

PARAMETER	TESTREF	LICATE N	UMBER								MEAN	DEV
	1	2	3	4	5	6	7	8	9	10		
Brab Tensile Properties (ASTM D 463	2)											
/ID - Tensile Strength (Ibs)	233	192	208	356	155	330	260	180	147	130	219	76
D - Tensile Strength (lbs)	232	243	238	219	125	212	239	251	217	248	222	37
/ID - Elong. @ Max. Load (%)	79	82	95	64	85	75	98	72	71	90	81	11
D - Elong. @ Max. Load (%)	113	114	101	115	84	93	101	101	88	80	99	13
Vide Width Tensile Properties (ASTM	D 4595)											
ID Specimen Width (inches)	8											
ID Specimen Width (mm)	° 203											
	450	540				70.1						
ID Ultimate Strength (lbs)	452 2013	510 2270	1001 4456	600 2668	688 3062	791 3521					674 2998	201 896
/ID Ultimate Strength (N) /ID Ultimate Strength (ppi)	2013 56.6	2270 63.8	4456 125.2	2668 74.9	3062 86.0	3521 98.9					2998	896 25.2
•,		63.8										
ID Ultimate Strength (kN/m)	9.9	11.2	21.9	13.1	15.1	17.3					14.8	4.4
ID Strength @ 2% Strain (lbs)	18.5	17.6	34.6	22.1	22.9	27.9					23.9	6.4
ID Strength @ 2% Strain (N)	82.2	78.2	154	98.4	102	124					106	28
ID Strength @ 2% Strain (ppi)	2.31	2.20	4.32	2.76	2.86	3.48					2.99	0.80
ID Strength at 2% Strain (kN/m)	0.40	0.38	0.76	0.48	0.50	0.61					0.52	0.14
ID Strength @ 5% Strain (lbs)	40.0	37.5	91.0	50.3	54.7	69.6					57.2	20.2
1D Strength @ 5% Strain (N)	178	167	405	224	244	310					255	20.2
1D Strength @ 5% Strain (ppi)	5.00	4.69	11.4	6.29	6.84	8.70					7.15	2.52
1D Strength at 5% Strain (kN/m)	0.88	0.82	1.99	1.10	1.20	1.52					1.25	0.44
1D Strength @ 10% Strain (lbs)	74.1	69.7	175	92.4	103.5	131					108	40
ID Strength @ 10% Strain (N)	330	310	778	411	460	581					478	176
ID Strength @ 10% Strain (ppi)	9.26	8.72	21.9	11.6	12.9	16.3					13.4	5.0
ID Strength at 10% Strain (kN/m)	1.62	1.53	3.83	2.02	2.27	2.86					2.35	0.87
ID Break Elongation (%)	64.0	77.1	76.8	76.6	70.6	79.2					74.0	5.7
D Specimen Width (in)	8											
D Specimen Width (mm)	203											
D I litimata Strongth (lbs)	700	754	766	070	1006	768					828	00
D Ultimate Strength (lbs) D Ultimate Strength (N)	798 3552	751 3341	766 3407	879 3910	1006 4476	768 3419					3684	98 438
D Ultimate Strength (ppi)	100	93.9	95.7	110	4476 126	96.0					103	430
D Ultimate Strength (kN/m)	17.5	33.9 16.4	16.8	19.2	22.0	16.8					18.1	2.2
	11.5		10.0	10.2	22.0	10.0						2.2
D Strength @ 2% Strain (lbs)	18.2	17.7	18.1	22.1	23.6	18.8					19.7	2.5
D Strength @ 2% Strain (N)	81.0	78.7	80.5	98.5	105	83.5					87.9	11.0
D Strength @ 2% Strain (ppi)	2.28	2.21	2.26	2.77	2.95	2.35					2.47	0.31
D Strength at 2% Strain (kN/m)	0.40	0.39	0.40	0.48	0.52	0.41					0.43	0.05
D Strength @ 5% Strain (lbs)	40.0	36.7	37.4	53.4	62.1	43.5					45.5	10.1
D Strength @ 5% Strain (N)	178	163	166	237	276	193					202	45
D Strength @ 5% Strain (ppi)	5.01	4.59	4.67	6.67	7.76	5.44					5.69	1.27
D Strength at 5% Strain (kN/m)	0.88	0.80	0.82	1.17	1.36	0.95					1.00	0.22
D Observath @ 40% Ot 1 ///)	00.0	00 7	74.0	400	40.4	00.0						
D Strength @ 10% Strain (lbs)	80.9	68.7	71.6	109	131	90.6					91.9	24.0
D Strength @ 10% Strain (N)	360	306	319	486	581	403					409	107
D Strength @ 10% Strain (ppi) D Strength at 10% Strain (kN/m)	10.1 1.77	8.59 1.50	8.95 1.57	13.7 2.39	16.3 2.86	11.3 1.98					11.5 2.01	3.0 0.52
D Guongui ac 10 /0 Ottalli (KIN/III)	1.77	1.50	1.57	2.39	2.00	1.90						0.02

MD Machine Direction

TD Transverse Direction

Page 1 of 1

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI. TRI Environmental | 9063 Bee Cave Rd., Austin, TX 78733, USA | 512-263-5944 | www.tri-env.com

TESTING, RESEARCH, CONSULTING AND FIELD SERVICES Austin, TX - USA | Anaheim, CA - USA | Anderson, SC - USA | Gold Coast - Australia | Suzhou - China

GEOTEXTILE TEST RESULTS TRI Client: TRI Environmental Project: Geotextile Testing

Material: Tencate RS280I Woven Geotextile Sample Identification: Lot: 023161328, Unit: 956716035 TRI Log #: 43853

PARAMETER	TEST REF		UMBER								MEAN	DEV
	1	2	3	4	5	6	7	8	9	10		
Vide Width Tensile Properties (ASTN	1 D 4595)											
ID Specimen Width (inches)	8											
ID Specimen Width (mm)	203											
ID Ultimate Strength (lbs)	3008	3001	3012	3108	2979	2911					3003	63
ID Ultimate Strength (N)	13384	13353	13405	13830	13256	12955					13364	282
ID Ultimate Strength (ppi)	376	375	377	388	372	364					375	8
ID Ultimate Strength (kN/m)	65.9	65.7	66.0	68.1	65.2	63.8					65.8	1.4
D Chinate Caengar (krann)	00.0	00.1	00.0	00.1	00.2	00.0						
/ID Strength @ 2% Strain (Ibs)	646	640	640	642	618	619					634	12
ID Strength @ 2% Strain (N)	2874	2847	2848	2857	2750	2757					2822	54
/ID Strength @ 2% Strain (ppi)	80.7	80.0	80.0	80.3	77.2	77.4					79.3	1.5
ID Strength at 2% Strain (kN/m)	14.1	14.0	14.0	14.1	13.5	13.6					13.9	0.3
ID Strength @ 5% Strain (lbs)	1434	1412	1427	1430	1402	1389					1416	18
1D Strength @ 5% Strain (N)	6382	6283	6349	6364	6239	6182					6300	79
1D Strength @ 5% Strain (ppi)	179	176	178	179	175	174					177	2
ID Strength at 5% Strain (kN/m)	31.4	30.9	31.2	31.3	30.7	30.4					31.0	0.4
1D Strength @ 10% Strain (lbs)	2714	2649	2712	2727	2656	2650					2685	37
ID Strength @ 10% Strain (N)	12079	11788	12067	12135	11819	11791					11947	16
1D Strength @ 10% Strain (ppi)	339	331	339	341	332	331					336	5
ID Strength at 10% Strain (kN/m)	59.4	58.0	59.4	59.7	58.2	58.0					58.8	0.8
ID Break Elongation (%)	11.7	12.2	11.8	11.8	11.6	11.5					11.8	0.2
D Specimen Width (in)	8											
D Specimen Width (mm)	203											
D Ultimate Strength (lbs)	2483	2237	2259	2245	2322	2277					2304	93
D Ultimate Strength (N)	11048	9954	10051	9990	10335	10133					10252	41
D Ultimate Strength (ppi)	310	280	282	281	290	285					288	12
D Ultimate Strength (kN/m)	54.4	49.0	49.5	49.2	50.9	49.9					50.5	2.0
D Glamate Guengar (KN/m)	54.4	45.0	40.0	40.Z	50.5	40.0						2.0
D Strength @ 2% Strain (lbs)	699	684	686	762	706	697					706	29
D Strength @ 2% Strain (N)	3111	3045	3054	3393	3141	3101					3141	12
D Strength @ 2% Strain (ppi)	87.4	85.5	85.8	95.3	88.2	87.1					88.2	3.6
D Strength at 2% Strain (kN/m)	15.3	15.0	15.0	16.7	15.5	15.3					15.5	0.0
D Strength @ 5% Strain (Ibs)	1458	1423	1434	1523	1466	1465					1461	35
D Strength @ 5% Strain (N)	6487	6331	6380	6778	6526	6519					6503	15
D Strength @ 5% Strain (ppi)	182	178	179	190	183	183					183	4
D Strength at 5% Strain (kN/m)	31.9	31.2	31.4	33.4	32.1	32.1					32.0	0.8
D Strength @ 10% Strain (lbs)	2398	2209	2226	2148	2271	2223					2246	85
D Strength @ 10% Strain (N)	10672	9832	9905	9556	10106	9890					9994	37
D Strength @ 10% Strain (ppi)	300	276	278	268	284	278					281	11
D Strength at 10% Strain (kN/m)	52.5	48.4	48.7	47.0	49.7	48.7					49.2	1.9
											1.	0.8

MD Machine Direction

TD Transverse Direction