Montana Department of Transportation Wetland Mitigation Monitoring Report: Year 2002

Beaverhead Gateway
Dillon, Montana

Prepared for:
Montana Department of Transportation
2701 Prospect Ave
Helena, MT 59620-1001

Prepared by:
Land & Water Consulting, Inc.
P.O. Box 8254
Missoula, MT 59807

February 2003
Project No: 130091.011
MONTANA DEPARTMENT OF TRANSPORTATION

WETLAND MITIGATION MONITORING REPORT:

YEAR 2002

Beaverhead Gateway
Dillon, Montana

Prepared for:
MONTANA DEPARTMENT OF TRANSPORTATION
2701 Prospect Ave
Helena, MT 59620-1001

Prepared by:
LAND & WATER CONSULTING, INC.
P.O. Box 8254
Missoula, MT 59807

February 2003

Project No: 130091.011
TABLES

Table 1 2001/2002 Beaverhead Gateway Vegetation Species List
Table 2 Wildlife Species Observed on the Beaverhead Gateway Mitigation Site During 2001 and 2002
Table 3 Summary of 2001/2002 Wetland Function/Value Ratings and Functional Points

FIGURES

Figure 1 Project Site Location Map

APPENDICES

Appendix A: Figures 2 and 3
Appendix B: Completed 2002 Wetland Mitigation Site Monitoring Form
 Completed 2002 Bird Survey Forms
 Completed 2002 Wetland Delineation Forms
 Completed 2002 Functional Assessment Forms
 Macroinvertebrate Sample Analyses
Appendix C: Representative Photographs
 2002 Aerial Photograph
Appendix D: Original Site Plan
 Soil Survey Map and Description
 MDT Bird Observations
Appendix E: Bird Survey Protocol
 GPS Protocol
 Macroinvertebrate Protocol
1.0 INTRODUCTION

This report represents the second year of monitoring at the Beaverhead Gateway Ranch wetland mitigation site by Land & Water Consulting. The Beaverhead Gateway Ranch Wetland Mitigation Site was developed to mitigate wetland impacts associated with Montana Department of Transportation (MDT) roadway projects in Watershed 6 located in the Butte District. Some of these projects are completed and some have yet to be constructed. The mitigation site is located 13 miles northeast of Dillon and 14 miles southwest of Twin Bridges on Highway 41 (Figure 1). Elevations range from approximately 4825 to 4830 feet. The western portion of the site is in Beaverhead County and the eastern portion is in Madison County. MDT personnel monitored the site in 1998, 1999 and 2000.

The approximate site boundary is illustrated on Figure 2 (Appendix A), and the original site plans are included in Appendix D. The project is located adjacent to the Beaverhead River and Highway 41. Upwelling groundwater and springs with surface retention behind a constructed dike provides wetland hydrology. Precipitation and surface runoff will provide minor contributions to wetland hydrology at this site. The site is in private ownership and has a conservation easement in place. The wetland easement area is not fenced.

Construction was completed in 1997 with the goal of creating at least 52 acres of wetland. The site includes a dike constructed to retain storm water and groundwater collected in two prior-existing drainage ditch systems. A control structure was completed in the northwest portion of the impoundment located where the two former drainage ditches converged. This control structure can be used to adjust impoundment water levels. The impoundment was designed to inundate approximately 26 acres with water depths of 0 to 3 feet.

The site was designed to mitigate for specific wetland functions impacted by MDT roadway projects, including: storm water retention, roadway runoff filtration, sediment and nutrient retention, water quality, groundwater recharge, waterfowl and wildlife habitats and riparian restoration. In addition to creating 52 acres of new wetland, a primary goal is to use an ephemeral creek channel entering the southeastern quadrant of the site to capture storm water flows from nearby farmland and allow silts/suspended sediments to settle out within the wetland.

A pre-project construction wetland delineation documented 5.2 acres of wetlands at the site (Hackley 1997). The Beaverhead Gateway site will be monitored once per year over the 3-year contract period to document wetland and other biological attributes. The monitoring area is illustrated in Figure 2 (Appendix A).
2.0 METHODS

2.1 Monitoring Dates and Activities

The site was visited on May 31 (early season), August 16 (mid-season) and November 1, 2002 (late season). The primary purpose of the May visit was to conduct a bird/general wildlife reconnaissance, as early season monitoring is likely to detect migrant and early nesting activities for a variety of avian species (Carlson pers. comm.), as well as maximize the potential for amphibian detection. In Montana, most amphibian larval stages are present by early June (Werner pers. comm.).

The mid-season visit was conducted in August to document vegetation, soil, and hydrologic conditions used to map jurisdictional wetlands. All information contained on the Wetland Mitigation Site Monitoring Form (Appendix B) was collected at this time. Activities and information conducted/collated included: wetland delineation; wetland/open water aquatic habitat boundary mapping; vegetation community mapping; vegetation transect; soils data; hydrology data; bird and general wildlife use; photograph points; macroinvertebrate sampling; GPS data points; functional assessment; and (non-engineering) examination of dike structures.

2.2 Hydrology

Wetland hydrology indicators were recorded during the mid-season visit using procedures outlined in the COE 1987 Wetland Delineation Manual (Environmental Laboratory 1987). Hydrology data were recorded on COE Routine Wetland Delineation Data Forms (Appendix B).

Additional hydrologic data were recorded on the mitigation site monitoring form (Appendix B). No groundwater monitoring wells were installed at the site. If present within 18 inches of the ground surface (soil pit depth for purposes of delineation), groundwater depths were documented on the routine wetland delineation data form at each data point.

2.3 Vegetation

General dominant species-based vegetation community types (e.g., Alopecurus/Juncus) were delineated on an aerial photograph during the mid-season visit. Standardized community mapping was not employed as many of these systems are geared towards climax vegetation and do not reflect yearly changes. Estimated percent cover of the dominant species in each community type was listed on the site monitoring form (Appendix B).

Two 10-foot wide belt transects established in 2001 were sampled during the mid-season monitoring event to represent the range of current vegetation conditions. Percent cover was estimated for each vegetative species encountered within the “belt” using the following values: T (few plants); P (1-5%); 1 (5-15%); 2 (15-25%); 3 (25-35%); 4 (35-45%); 5 (45-55%) and so on to 9 (85-95). Percent cover was estimated for each vegetative species encountered. The transect locations are illustrated on Figure 2 (Appendix A). The transects will be used to evaluate changes over time, especially the establishment and increase of hydrophytic vegetation. The transect locations were marked on the air photo and all data were recorded on the mitigation site.
monitoring form. Transect endpoint locations were recorded with the GPS unit during 2001. A photo was taken from both ends of each transect looking along the transect path.

A comprehensive plant species list for the site was compiled and will be updated as new species are encountered. Ultimately, observations from past years will be compared with new data to document vegetation changes over time. Woody species were not planted at this mitigation site.

2.4 Soils

Soils were evaluated during the mid-season site visit using the hydric soils determination procedures outlined in the COE 1987 Wetland Delineation Manual. Soil data was recorded for each wetland determination point on the COE Routine Wetland Delineation Data Forms (Appendix B). The most current terminology used by NRCS was used to describe hydric soils (USDA 1998).

2.5 Wetland Delineation

Wetland delineation was conducted during the mid-season visit according to the 1987 COE Wetland Delineation Manual. Wetland and upland areas within the monitoring area were investigated for the presence of wetland hydrology, hydrophytic vegetation and hydric soils. The information was recorded on COE Routine Wetland Delineation Data Forms (Appendix B). The wetland/upland boundary recorded with a resource grade GPS unit in 2001 was again checked in 2002 using an aerial photograph. The wetland/upland boundary in combination with the wetland/open water boundary was used to calculate the final wetland acreage. A pre-construction wetland delineation documented 5.2 acres of wetlands at the site (Hackley 1997).

2.6 Mammals and Herptiles

Mammal and herptile species observations and other positive indicators of use, such as vocalizations, were recorded on the wetland monitoring form 2002 monitoring events. Indirect use indicators, including tracks, scat, burrows, eggshells, skins, bones, etc. were also recorded. Observations were recorded as the observer traversed the site while conducting other required activities. Direct sampling methods, such as snap traps, live traps, and pitfall traps, were not used.

2.7 Birds

Bird observations were also recorded 2002 monitoring events. No formal census plots, spot mapping, point counts, or strip transects were conducted. Observations were recorded incidental to other monitoring activities and were categorized by species, activity code, and general habitat association. A comprehensive list of observed species was compiled including those observed by MDT personnel in recent years.
2.8 Macroinvertebrates

Six macroinvertebrate samples were collected during the mid-season site visit at six separate locations (Figure 2). Macroinvertebrate sampling procedures are provided in Appendix E. Samples were preserved as outlined in the sampling procedure and sent to a laboratory for analysis.

2.9 Functional Assessment

A functional assessment form was completed using the 1999 MDT Montana Wetland Assessment Method (Appendix B). Field data necessary for this assessment was collected during the mid-season visit. No pre-project functional assessment was conducted at this site.

2.10 Photographs

Photographs were taken illustrating current land uses surrounding the site, the upland buffer, the monitored area and the vegetation transects. Each photograph point location was recorded with a resource grade GPS. The location of photo points is shown on Figure 2, Appendix A. All photographs were taken using a 50 mm lens.

2.11 GPS Data

During the 2001 monitoring season, point data were collected with a resource grade GPS unit at the vegetation transect beginning and ending locations and at all photograph locations. Wetland boundaries were also recorded with a resource grade GPS unit. The method used to collect these points is described in the GPS protocol in Appendix E. No GPS data were collected in 2002.

2.12 Maintenance Needs

Observations were made of existing structures and of erosion/sediment problems to identify maintenance needs. This did not constitute an engineering-level structural inspection, but rather a cursory examination. Current or future potential problems were documented on the monitoring form.

3.0 RESULTS

3.1 Hydrology

The main source of hydrology seems to be upwelling groundwater and “springs” evident along the constructed channels (ditch/berms) leading south and west from the main open water area (Figure 3). Water was observed upwelling from the bottom of these channels. These waters are retained behind a constructed dike. Another source of hydrology comes from the SE corner of the site from irrigation drainage. Precipitation and surface runoff provide minor contributions to wetland hydrology at this site except during rare and extreme events.
Open water occurred across approximately 6.3 acres or 5% of the 118-acre wetland area (Figure 3) during the mid-season visit. Water depth at the open water/rooted vegetation boundary was approximately 1.5 feet. Inundation was observed at this time across another 10-15% of the wetland area. Inundation was present throughout all of Community Type 2 (Figure 3), throughout most of Type 8 and in small portions of Type 6. Casual observations during the early season visit indicated complete inundation of Type 8 and more extensive inundation throughout Type 6. Water levels should have been higher, but the landowner lowered water levels to save the dike in May 2002. Water levels dropped 2 to 3 feet across the site.

Only one of six wetland sites documented on the Routine Wetland Determination forms (Appendix B) had groundwater within 18 inches of the surface on August 16, 2002. Casual observations at other locations on this date revealed groundwater within 18 inches of the surface in small areas of Community Types 2 and 6 (Figure 3). These groundwater depths seem low compared with the soil and vegetation indicators present. It is important to note that drought conditions have dominated for many years in recent time. Hydrologic conditions must be considered within this climatic context.

3.2 Vegetation

Almost 100 plant species were identified at the site and are listed in Table 1. No new species were identified in 2002. The majority of these species were herbaceous. Few woody species were found within the monitoring area. One plant species of concern, Lemmon’s Alkali Grass (Puccinellia lemmonii), was identified and is ranked S1 by the Montana Natural Heritage Program. Four Wetland Community Types (Type 2: Scirpus, Type 5: Alopecurus/Juncus, Type 6: Alopecurus/Scirpus and Type 8: Potamogeton/Polygonum) and three Upland Community Types (Type 3: Hordeum/Kochia, Type 4: Muhlenbergia/Agropyron and Type 7: Sarcobatus/Elymus) were identified and mapped at the mitigation area (Figure 3, Appendix A). Plant species observed within each of these communities are listed on the attached data form (Appendix B).

Type 8 is the wettest community type and occurred as an aquatic bed community in the shallower water areas (Figure 3). It was dominated by pondweed (Potamogeton spp.) and smartweed (Polygonum spp.). Type 2 is the next wettest and occurred mainly as a fringe around the border of shallow water areas dominated by bulrush (Scirpus spp.). Type 6 is the next wettest wetland vegetation type and occurred throughout the monitoring area on sites slightly higher than Type 2. The vegetation in Type 6 was highly variable from spot to spot due to small changes in soil properties, topography, and past disturbance. Vegetation in Type 6 was also highly variable since it was in transition from upland to wetland. Across much of this type, the vegetation was dominated meadow foxtail (Alopecurus pratensis) and bulrush. However, small areas were dominated by other species.

Adjacent upland vegetation community types were mainly dominated by rangeland species with cropland along the southern border. Type 3 was located along dikes, spoil pile and or other highly disturbed soil materials and was dominated by weedy species such as foxtail barley (Hordeum jubatum), summer-cypress (Kochia scoparia) and Canada thistle (Cirsium arvense). Type 4 was mostly dominated by alkali muhly (Muhlenbergia asperifolia), slender wheatgrass
(Agropyron trachycaulum) and western wheatgrass (Agropyron smithii). Type 7 was dominated by greasewood (Sarcobatus vermiculatus), basin wild rye (Elymus cinereus) and western wheatgrass.

Table 1: 2001/2002 Beaverhead Gateway Vegetation Species List

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Region 9 (Northwest) Wetland Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agropyron cristatum</td>
<td>Crested Wheatgrass</td>
<td>--</td>
</tr>
<tr>
<td>Agropyron repens</td>
<td>Quack Grass</td>
<td>FACU</td>
</tr>
<tr>
<td>Agropyron smithii</td>
<td>Western Wheatgrass</td>
<td>FACU</td>
</tr>
<tr>
<td>Agropyron trachycaulum</td>
<td>Slender Wheatgrass</td>
<td>FAC</td>
</tr>
<tr>
<td>Agrostis stolonifera</td>
<td>Redtop</td>
<td>FAC+</td>
</tr>
<tr>
<td>Alopecurus pratensis</td>
<td>Meadow Foxtail</td>
<td>FACW</td>
</tr>
<tr>
<td>Artemisia frigida</td>
<td>Fringed Sagewort</td>
<td>--</td>
</tr>
<tr>
<td>Artemisia spp.</td>
<td>Sagebrush</td>
<td>--</td>
</tr>
<tr>
<td>Aster falcatus</td>
<td>Leafy-Bracted Aster</td>
<td>FAC-U--</td>
</tr>
<tr>
<td>Aster hesperis</td>
<td>Siskiyou Aster</td>
<td>OBL</td>
</tr>
<tr>
<td>Astragalus spp.</td>
<td>Milkvetch</td>
<td>--</td>
</tr>
<tr>
<td>Bromus inermis</td>
<td>Smooth Brome</td>
<td>--</td>
</tr>
<tr>
<td>Bromus japonicus</td>
<td>Japanese Brome</td>
<td>FACU</td>
</tr>
<tr>
<td>Bromus tectorum</td>
<td>Cheatgrass</td>
<td>--</td>
</tr>
<tr>
<td>Calamagrostis neglecta</td>
<td>Slim Reedgrass</td>
<td>FACW</td>
</tr>
<tr>
<td>Cardaria draba</td>
<td>White Top</td>
<td>--</td>
</tr>
<tr>
<td>Cardus nutans*</td>
<td>Musk Thistle</td>
<td>FACW</td>
</tr>
<tr>
<td>Carex capillaries</td>
<td>Hair-like Sedge</td>
<td>FACW</td>
</tr>
<tr>
<td>Carex limnophila</td>
<td>Pond sedge</td>
<td>FACW</td>
</tr>
<tr>
<td>Carex nebrascensis</td>
<td>Nebraska Sedge</td>
<td>OBL</td>
</tr>
<tr>
<td>Carex praegracilis</td>
<td>Clustered Field sedge</td>
<td>FACW</td>
</tr>
<tr>
<td>Carex toreyi*</td>
<td>Torrey's Sedge</td>
<td>FAC</td>
</tr>
<tr>
<td>Centaurea maculosa*</td>
<td>Spotted Knapweed</td>
<td>--</td>
</tr>
<tr>
<td>Chenopodium album</td>
<td>White Goosefoot</td>
<td>FAC</td>
</tr>
<tr>
<td>Chenopodium rubrum</td>
<td>Coastal-Blite Pigweed</td>
<td>FACW+</td>
</tr>
<tr>
<td>Chrysothamnus nauseosus</td>
<td>Rubber Rabbitbrush</td>
<td>--</td>
</tr>
<tr>
<td>Cirsium arvense</td>
<td>Canada Thistle</td>
<td>FACU+</td>
</tr>
<tr>
<td>Cirsium undulatum</td>
<td>Wavy-leaf Thistle</td>
<td>FACU+</td>
</tr>
<tr>
<td>Cleome serrulata</td>
<td>Rocky Mountain Bee plant</td>
<td>FACU</td>
</tr>
<tr>
<td>Cornus stolonifera*</td>
<td>Red-Osier Dogwood</td>
<td>FACW</td>
</tr>
<tr>
<td>Cynoglossum officinalis</td>
<td>Hound's Tongue</td>
<td>FACU</td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td>Orchard Grass</td>
<td>FAC</td>
</tr>
<tr>
<td>Descurainia sophia</td>
<td>Tansy Mustard</td>
<td>--</td>
</tr>
<tr>
<td>Distichlis spicata</td>
<td>Saltgrass</td>
<td>FAC+</td>
</tr>
<tr>
<td>Elaeagnus angustifolia*</td>
<td>Russian Olive</td>
<td>FAC</td>
</tr>
<tr>
<td>Eleocharis acicularis*</td>
<td>Least Spike Rush</td>
<td>OBL</td>
</tr>
<tr>
<td>Eleocharis pauciflora</td>
<td>Few-Flowered Spike Rush</td>
<td>OBL</td>
</tr>
<tr>
<td>Elymus cinereus</td>
<td>Big Basin Wild Rye</td>
<td>FACU</td>
</tr>
<tr>
<td>Epilobium palustreus</td>
<td>Swamp Willow-herb</td>
<td>OBL</td>
</tr>
<tr>
<td>Equisetum laevigatum</td>
<td>Smooth Scouring-Rush</td>
<td>FACW</td>
</tr>
<tr>
<td>Festuca idahoensis</td>
<td>Idaho fescue</td>
<td>FACU</td>
</tr>
<tr>
<td>Festuca pratensis</td>
<td>Meadow Fescue</td>
<td>FACU+</td>
</tr>
<tr>
<td>Gentianella amarella</td>
<td>Northern Gentian</td>
<td>FACW-</td>
</tr>
<tr>
<td>Glaux maritime</td>
<td>Sea-Milkwort</td>
<td>FACW+</td>
</tr>
<tr>
<td>Grindelia squarroso</td>
<td>Curly-cup Gumweed</td>
<td>FACU</td>
</tr>
<tr>
<td>Habenaria dilatata</td>
<td>Bog orchid</td>
<td>--</td>
</tr>
<tr>
<td>Haplopappus carthamoides</td>
<td>Columbia Goldenweed</td>
<td>--</td>
</tr>
<tr>
<td>Helianthus nutalus</td>
<td>Nuttall's Sunflower</td>
<td>FACW-</td>
</tr>
<tr>
<td>Helianthus autumnalis*</td>
<td>Sneezeweed</td>
<td>FACW</td>
</tr>
<tr>
<td>Hippuris vulgaris</td>
<td>Common Mare's Tail</td>
<td>OBL</td>
</tr>
<tr>
<td>Hordeum jubatum</td>
<td>Foxtail barley</td>
<td>FAC+</td>
</tr>
<tr>
<td>Iris missouriensis</td>
<td>Rocky Mountain Iris</td>
<td>OBL</td>
</tr>
<tr>
<td>Jva axillaries</td>
<td>Small-Flower Sumpweed</td>
<td>FAC</td>
</tr>
<tr>
<td>Juncus balticus</td>
<td>Baltic Rush</td>
<td>FACW+</td>
</tr>
<tr>
<td>Juncus bufonius</td>
<td>Toad Rush</td>
<td>FACW+</td>
</tr>
<tr>
<td>Juncus ensifolius</td>
<td>Three-stamen Rush</td>
<td>FACW</td>
</tr>
<tr>
<td>Kochia scoparia</td>
<td>Summer-Cypress</td>
<td>FAC</td>
</tr>
</tbody>
</table>
Table 1: (continued)

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Region 9 (Northwest) Wetland Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactuca serriola</td>
<td>Prickly Lettuce</td>
<td>FAC-</td>
</tr>
<tr>
<td>Lepidium perfoliatum</td>
<td></td>
<td>FACU+</td>
</tr>
<tr>
<td>Lycopus asper</td>
<td>Rough Bugleweed</td>
<td>OBL</td>
</tr>
<tr>
<td>Medicago lupulina</td>
<td>Black Medic</td>
<td>FAC</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>Alfalfa</td>
<td>---</td>
</tr>
<tr>
<td>Mellilotus alba</td>
<td>White Sweetclover</td>
<td>FACU</td>
</tr>
<tr>
<td>Mellilotus officinalis</td>
<td></td>
<td>FACU</td>
</tr>
<tr>
<td>Mentha arvensis*</td>
<td>Mint</td>
<td>FAC</td>
</tr>
<tr>
<td>Minulis spp.*</td>
<td>Monkey Flower</td>
<td>OBL</td>
</tr>
<tr>
<td>Myrtenbergia asperifolia</td>
<td></td>
<td>FACW</td>
</tr>
<tr>
<td>Myosotis discolor*</td>
<td>Forget me not</td>
<td>FACW</td>
</tr>
<tr>
<td>Phalaris arundinacea</td>
<td>Canary Reed Grass</td>
<td>FACW</td>
</tr>
<tr>
<td>Phleum pratense*</td>
<td>Timothy</td>
<td>FACU</td>
</tr>
<tr>
<td>Plantago erecta</td>
<td>Saline Plantain</td>
<td>FACW</td>
</tr>
<tr>
<td>Phlox longifolia</td>
<td>Long-leaf Phlox</td>
<td>FACU</td>
</tr>
<tr>
<td>Phragmites australis*</td>
<td>Common Reed</td>
<td>FACW+</td>
</tr>
<tr>
<td>Poa pratensis</td>
<td>Kentucky Bluegrass</td>
<td>FACU+</td>
</tr>
<tr>
<td>Poa sandbergii</td>
<td>Sandberg’s Bluegrass</td>
<td>FACU</td>
</tr>
<tr>
<td>Polygonum amphibium*</td>
<td>Water smartweed</td>
<td>OBL</td>
</tr>
<tr>
<td>Polygonum aviculare</td>
<td>Prostrate Knotweed</td>
<td>FACW+</td>
</tr>
<tr>
<td>Populus trichocarpa*</td>
<td>Cottonwood</td>
<td>FAC</td>
</tr>
<tr>
<td>Potamogeton spp.*</td>
<td>Pondweed</td>
<td>OBL</td>
</tr>
<tr>
<td>Potentilla anserine</td>
<td>Silverweed</td>
<td>FACU</td>
</tr>
<tr>
<td>Potentilla fruticosa*</td>
<td>Shrubbery Cinquefoil</td>
<td>FACU</td>
</tr>
<tr>
<td>Puccinellia lemmonti</td>
<td>Lemon’s Alkaline Grass</td>
<td>FAC</td>
</tr>
<tr>
<td>Ranunculus popolago</td>
<td>Popular Buttercup</td>
<td>FACW</td>
</tr>
<tr>
<td>Rezpiga spp.*</td>
<td>Watercress</td>
<td>FACU+</td>
</tr>
<tr>
<td>Rumex crispus*</td>
<td>Curly Dock</td>
<td>FACU</td>
</tr>
<tr>
<td>Salicornia spp.*</td>
<td>Saltwort</td>
<td>FACU</td>
</tr>
<tr>
<td>Salix alba</td>
<td>Bebbs Willow</td>
<td>FACU</td>
</tr>
<tr>
<td>Salix exigua</td>
<td>Sandbar Willow</td>
<td>FACU</td>
</tr>
<tr>
<td>Salix alba</td>
<td>Russian Thistle</td>
<td>FACU</td>
</tr>
<tr>
<td>Sarcobatus vermiculatus</td>
<td>Greasewood</td>
<td>FACU+</td>
</tr>
<tr>
<td>Scirpus acutus*</td>
<td>Hard stem Bulrush</td>
<td>OBL</td>
</tr>
<tr>
<td>Scirpus americanus</td>
<td>American Bulrush</td>
<td>OBL</td>
</tr>
<tr>
<td>Scirpus maritimus*</td>
<td>Salt marsh Bulrush</td>
<td>OBL</td>
</tr>
<tr>
<td>Scirpus parvus*</td>
<td>Three-square Bulrush</td>
<td>OBL</td>
</tr>
<tr>
<td>Scirpus validus*</td>
<td>Soft-stem Bulrush</td>
<td>OBL</td>
</tr>
<tr>
<td>Shepherdia spp.*</td>
<td>Buffaloberry</td>
<td>---</td>
</tr>
<tr>
<td>Sisyrinchium angustifolium</td>
<td>Western Blue Eyed</td>
<td>FACU</td>
</tr>
<tr>
<td>Sonchus arvensis</td>
<td>Field Sowthistle</td>
<td>FACU</td>
</tr>
<tr>
<td>Spatina gracilis</td>
<td>Alkaline Cordgrass</td>
<td>FACW</td>
</tr>
<tr>
<td>Sporobolus cryptandrus</td>
<td>Sand Dropseed</td>
<td>FACU</td>
</tr>
<tr>
<td>Stipa comata</td>
<td>Needle & Thread Grass</td>
<td>---</td>
</tr>
<tr>
<td>Suaeda intermedia</td>
<td>Alkaline Seepweed</td>
<td>FAC</td>
</tr>
<tr>
<td>Tragopogon dubius</td>
<td>Yellow Salsify</td>
<td>FACU</td>
</tr>
<tr>
<td>Triglochin maritime</td>
<td>Seaside Arrowgrass</td>
<td>OBL</td>
</tr>
<tr>
<td>Typha latifolia</td>
<td>Cattail</td>
<td>OBL</td>
</tr>
<tr>
<td>Urtica dioica</td>
<td>Stinging Nettle</td>
<td>FAC+</td>
</tr>
<tr>
<td>Zigadenus venenosus</td>
<td>Meadow Death deathcamas</td>
<td>FAC</td>
</tr>
</tbody>
</table>

* - Plant species observed by Montana Department of Transportation.

Noxious weeds at the site included spotted knapweed (*Centaurea maculosa*) and Canada thistle. Other weedy species included summer-cypress, hound’s-tongue (*Cynoglossum officinalis*), curly-cup gumweed (*Grindelia squarrosa*), lambsquarters (*Chenopodium album*), whitetop (*Cardaria draba*) and quackgrass (*Agropyron repens*). MDT has reported Eurasian water-milfoil (*Myriophyllum spicatum*) at this site. No common reed (*Phragmites australis*) was observed at the site although it was present nearby along Highway 41. This is an extremely aggressive invader of wetlands and a serious concern at this site. Weed control and revegetation is needed.
at this site to prevent further spread and protect soil from wind and water erosion. Additional effort should be made to determine if Eurasian water-milfoil, common reed or other important weeds are present. If Eurasian water-milfoil is present it will likely require significant effort to manage in the future.

Vegetation transect results are detailed in the attached data forms, and are summarized graphically below.

Transect 1 for year 2001:

<table>
<thead>
<tr>
<th>Start</th>
<th>Sarcobatus/Elymus Upland (40')</th>
<th>Alopecurus/Juncus Wetland (1030')</th>
<th>Alopecurus/Scirpus Wetland (150')</th>
<th>Juncus/Triglochin Wetland (400')</th>
<th>Scirpus Wetland (30')</th>
<th>Total: 1650'</th>
<th>End</th>
</tr>
</thead>
</table>

Transect 2 for year 2001:

<table>
<thead>
<tr>
<th>Start</th>
<th>Hordeum/Kochia Upland (50')</th>
<th>Alopecurus/Scirpus Wetland (100')</th>
<th>Muhlenbergia/Agropyron Upland (170')</th>
<th>Total: 280'</th>
<th>End</th>
</tr>
</thead>
</table>

Transect 1 for year 2002:

<table>
<thead>
<tr>
<th>Start</th>
<th>Sarcobatus/Elymus Upland (40')</th>
<th>Alopecurus/Juncus Wetland (1030')</th>
<th>Alopecurus/Scirpus Wetland (150')</th>
<th>Juncus/Triglochin Wetland (400')</th>
<th>Scirpus Wetland (30')</th>
<th>Total: 1650'</th>
<th>End</th>
</tr>
</thead>
</table>

Transect 2 for year 2002:

<table>
<thead>
<tr>
<th>Start</th>
<th>Hordeum/Kochia Upland (50')</th>
<th>Alopecurus/Scirpus Wetland (100')</th>
<th>Muhlenbergia/Agropyron Upland (170')</th>
<th>Total: 280'</th>
<th>End</th>
</tr>
</thead>
</table>

3.3 Soils

The western two-thirds of the site are within Beaverhead County where soil survey information is not currently available. The eastern one-third of the site was mapped as part of the Madison County Soil Survey (USDA 1989). The soil in the eastern one-third of the site is mapped as Neen silty clay loam with randomly distributed soils that have a layer of organic material 4 to 20 inches thick at the surface (USDA 1989). Neen soils are not listed on the Montana NRCS Hydric Soil list. **Appendix D** contains a copy of the soil survey map and description. Soil characteristics at each wetland determination point were compared with those of the Neen soil. The soils observed across most of the site did not generally match the Neen soil. The main portion of the site mapped during the Madison County soil survey is currently under water.

Wetland soils were similar to those observed in 2001. Wetland soils observed during monitoring and documented on the Routine Wetland Determination form were mostly loams, silt loams or silty clay loams with very low chromas (0 or 1) within 2 inches of the surface. Mottles (redoximorphic features) were present in most profiles observed. Only one of four soil profiles described on the Routine Wetland Determination forms was saturated within 18 inches of the surface reflecting the time of year and the recent history of drought discussed above. Small areas were observed with thin organic surface layers and with mucky mineral surface layers.
3.4 Wetland Delineation

Wetland boundaries were similar in 2002 to those mapped in 2001. Delineated wetland boundaries are illustrated on Figure 3. Completed wetland delineation forms are included in Appendix B. Soils, vegetation, and hydrology are discussed in preceding sections.

Monitoring in both 2001 and 2002 identified the following conditions:

<table>
<thead>
<tr>
<th></th>
<th>Monitoring Area</th>
<th>Above Dike</th>
<th>Below Dike</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Wetland Area</td>
<td>118.2</td>
<td>97.9</td>
<td>20.3</td>
</tr>
<tr>
<td>Open Water Area</td>
<td>6.5</td>
<td>6.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Net Wetland Area</td>
<td>111.7</td>
<td>91.4</td>
<td>20.3</td>
</tr>
</tbody>
</table>

Approximately 111.7 wetland acres and 6.5 open water acres are currently within the monitoring area (Figure 3). The pre-construction wetland delineation reported 5.2 wetland and no open water acres. The net increase in wetland acres is $111.7 - 5.2 = 106.5$ acres plus 6.5 acres of open water. Additional area may form with time and more normal precipitation around the low gradient portions of the current wetland area.

3.5 Wildlife

Wildlife species, or evidence of wildlife, observed on the site during 2002 monitoring efforts is listed in Table 2. The site receives substantial use by American white pelicans, trumpeter swans, black terns, sandhill cranes, and other species. American white pelicans, trumpeter swans, and black terns are all considered species of concern by the MNHP relative to breeding locations. Of these three species, black terns are likely breeders on the site.

In 2002 there were fewer birds observed and fewer bird species. The greatest number of birds observed at the site was about 200, compared with over 500 in 2001. Specific evidence observed, as well as activity codes pertaining to birds, is provided on the completed monitoring form in Appendix B.

This site provides habitat for a variety of wildlife species. Two mammal and twenty-four bird species were noted at the mitigation site during the 2002 site visits. Many other wildlife species use the site but were not present during the monitoring visits. Appendix D includes a list of 81 bird species observed at the site by MDT biologists over the past five years.
Table 2: Wildlife Species Observed at the Beaverhead Gateway Mitigation Site During 2001 and 2002

<table>
<thead>
<tr>
<th>Category</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISH</td>
<td>None</td>
</tr>
<tr>
<td>AMPHIBIANS</td>
<td>None</td>
</tr>
<tr>
<td>REPTILES</td>
<td>Garter Snake (Thamnophis spp.)*</td>
</tr>
<tr>
<td>BIRDS</td>
<td>Killdeer (Charadrius vociferous)</td>
</tr>
<tr>
<td></td>
<td>Lesser Scaup (Aythya affinis) *</td>
</tr>
<tr>
<td></td>
<td>Mallard (Anas platyrhynchos) **</td>
</tr>
<tr>
<td></td>
<td>Marsh Hawk (Circus cyaneus)</td>
</tr>
<tr>
<td></td>
<td>Plovers (Charadrius spp.)</td>
</tr>
<tr>
<td></td>
<td>Red-head Duck (Aythya americana) **</td>
</tr>
<tr>
<td></td>
<td>Red-tail Hawk (Buteo jamaicensis) **</td>
</tr>
<tr>
<td></td>
<td>Red-winged Blackbird (Agelaius phoeniceus) **</td>
</tr>
<tr>
<td></td>
<td>Sandhill Cranes (Grus canadensis *)</td>
</tr>
<tr>
<td></td>
<td>Vesper Sparrow (Poecetes gramineus) **</td>
</tr>
<tr>
<td></td>
<td>Western Bluebird (Sialia mexicana) *</td>
</tr>
<tr>
<td></td>
<td>Western Meadowlark (Sturnella neglecta) **</td>
</tr>
<tr>
<td></td>
<td>Yellow-headed Blackbird (Xanthocephalus xanthocephalus)</td>
</tr>
<tr>
<td>MAMMALS</td>
<td>Coyote (Canis latrans) *</td>
</tr>
<tr>
<td></td>
<td>Mule Deer (Odocoileus hemionus) *</td>
</tr>
<tr>
<td></td>
<td>Muskrat (Ondatra zibethicus) *</td>
</tr>
</tbody>
</table>

* - Wildlife species observed in 2001.
** - Wildlife species observed in both 2001 and 2002

Note: Bolded titles represent new wildlife species observed in 2002.

3.6 Macroinvertebrates

Complete results from the six-macroinvertebrate sampling locations (Figure 2) are presented in Appendix B. The best macroinvertebrate results were from locations 1, 5 and 6. These sites were located along the northern edge of the main water body. The poorest macroinvertebrate results were from sites 2 and 4. Site 2 is located along the western side of the main water body and site 4 is on the southern end.

At Beaverhead #1 there was a slight improvement in total bioassessment scores calculated for this site between 2001 and 2002; the scores for both years imply that biological conditions were sub-optimal. Low chironomid taxa richness suggested monotonous substrates. The biotic index value was near the median value for wetland sites in this study, suggesting that water quality may have been mildly impaired by nutrients, elevated water temperatures, or both.

At Beaverhead #2 between 2001 and 2002, this site apparently suffered a decrease in taxa richness and an increase in the overall tolerance (biotic index = 7.91) of the sampled assemblage to warm temperatures and/or nutrient enrichment. As a result, the bioassessment scores suggested that conditions degenerated from near optimal in 2001 to sub-optimal in 2002. In the latter year, the sample was swamped with ostracods, which may have been a sampling artifact; ostracod distribution was patchy. Organic detritus appears to have been plentiful. As before, midge diversity was low, suggesting monotonous substrates.
At Beaverhead #3 total bioassessment scores at this site dropped between 2001 and 2002; suggesting that conditions deteriorated from near-optimal to sub-optimal. In the latter year, copepods were the dominant taxon, and cladocerans were plentiful. This apparently represented a shift in assemblage habitus from a benthic orientation to a water-column orientation, but it could be merely an artifact of sampling technique. In either event, the result was an increase in apparent overall assemblage tolerance to warm temperatures and/or nutrient enrichment (biotic index = 7.92), and a loss of diversity.

At Beaverhead #4 conditions at this site remained sub-optimal in 2002, with diversity suffering a decline, and a complete loss of the relatively intolerant taxa (POET). The midge *Camptocladius stercorarius* was abundant at the site. This animal is associated with cow dung, suggesting that cattle have had access here. Low midge diversity suggested monotonous habitats.

At Beaverhead #5 snails and amphipods continued to overwhelm the sampled assemblage taken at this site, representing an assemblage highly tolerant of warm water temperatures and nutrient enrichment. The midge fauna was composed of a single individual; substrates were apparently monotonous. The bioassessment method classified this site as sub-optimal in both years.

At Beaverhead #6 an improvement in assemblage diversity improved the bioassessment score at this site between 2001 and 2002. Conditions were classified as sub-optimal in both years. Amphipods and snails remained dominant, but several midge taxa were collected in the second year. This suggested somewhat improved habitat diversity. As before, the presence of macrophytes was suggested by the taxonomic composition of the assemblage. Water quality indicators appeared to suggest warm temperatures and/or nutrient enrichment (biotic index = 7.59); this represented a big change from 2001, when assemblage tolerance was relatively low.

3.7 Functional Assessment

The functional assessment numbers for 2002 are similar to those from 2001. A completed functional assessment form is included in Appendix B. The Beaverhead Gateway mitigation site is currently rated as a Category II (high value) site, primarily due to exceptional wildlife habitat, TE habitat, MNHP species habitat, surface water storage, sediment/nutrient removal, food chain support and groundwater discharge ratings. The site received a moderate fish rating due to few fish and habitat deficiencies. The site received a moderate flood attenuation rating since only a small portion below the dike is subject to flooding by the Beaverhead River. The site received a low recreation/education rating since it has moderate disturbance and is in private ownership. The site received a low rating for sediment/shoreline stability due to a lack of plants with deep binding roots. The high turbidity along the shoreline suggests that wave action is eroding the shoreline especially along the dike.

It is significant to note that much of the wetland area, especially vegetation community Type 6 (Figure 3) would have significantly higher functional ratings if the height of existing herbaceous vegetation and the number of vegetation strata or layers were increased. This area has little cover or vertical diversity. Eliminating or reducing grazing, planting taller herbaceous species and planting woody species are examples of methods for increasing functional ratings at the site.
Based on functional assessment results (Table 3), approximately 993 functional units have been created thus far at the Beaverhead Gateway mitigation site.

Table 3: Summary of 2001/2002 Wetland Function/Value Ratings and Functional Points

<table>
<thead>
<tr>
<th>Function and Value Parameters From the 1999 MDT Montana Wetland Assessment Method</th>
<th>Wetland Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listed/Proposed T&E Species Habitat</td>
<td>Mod (0.7)</td>
</tr>
<tr>
<td>MNHP Species Habitat</td>
<td>High (1.0)</td>
</tr>
<tr>
<td>General Wildlife Habitat</td>
<td>Exceptional (1.0)</td>
</tr>
<tr>
<td>General Fish/Aquatic Habitat</td>
<td>Low (0.5)</td>
</tr>
<tr>
<td>Flood Attenuation</td>
<td>Mod (0.5)</td>
</tr>
<tr>
<td>Short and Long Term Surface Water Storage</td>
<td>High (1.0)</td>
</tr>
<tr>
<td>Sediment, Nutrient, Toxicant Removal</td>
<td>High (1.0)</td>
</tr>
<tr>
<td>Sediment/Shoreline Stabilization</td>
<td>Low (0.3)</td>
</tr>
<tr>
<td>Production Export/Food Chain Support</td>
<td>High (1.0)</td>
</tr>
<tr>
<td>Groundwater Discharge/Recharge</td>
<td>High (1.0)</td>
</tr>
<tr>
<td>Uniqueness</td>
<td>Mod (0.5)</td>
</tr>
<tr>
<td>Recreation/Education Potential</td>
<td>Low (0.3)</td>
</tr>
<tr>
<td>Actual Points/Possible Points</td>
<td>8.8 / 12</td>
</tr>
<tr>
<td>% of Possible Score Achieved</td>
<td>73%</td>
</tr>
<tr>
<td>Overall Category</td>
<td>II</td>
</tr>
<tr>
<td>Total Acreage of Assessed Wetlands and Other Aquatic Habitats</td>
<td>118.2 ac</td>
</tr>
<tr>
<td>Functional Units (acreage x actual points)</td>
<td>1040.16 fu</td>
</tr>
<tr>
<td>Net Acreage Gain</td>
<td>112.8 ac</td>
</tr>
<tr>
<td>Net Functional Unit Gain</td>
<td>992.64 fu</td>
</tr>
</tbody>
</table>

3.8 Photographs

Representative photographs taken from photo-points and transect ends are presented in Appendix C, as is a 2002 aerial photograph of the site.

3.9 Maintenance Needs/Recommendations

Weed control and revegetation of disturbed sites is still needed to prevent further weed spread, reduce the risk of new weeds invading, reduce wind and water erosion and reduce sediment input to surface waters. Several noxious weeds are present including Canada thistle, hound’s-tongue and spotted knapweed which must be controlled under the Montana County Noxious Weed Control Act [7-22-2151].

Spoil piles left from ditch excavation will continue to create a weed problem, a wind and water erosion hazard and a sedimentation source. This same issue applies to the dike and other poorly vegetated sites. The most effective remedy is to grade the spoil piles and revegetate them along with other sites needing revegetation. It may be necessary to treat these sites with organic matter or other amendments and plant desired native species.

The lack of hiding cover throughout much of the wetland area has a significant impact on the sites value for many wildlife species. Methods to improve wildlife value and the functional
rating include suspension of grazing and planting of taller herbaceous and woody species. No woody plant regeneration (shrubs/trees) was observed across the site.

Dike erosion and sediment production from the poorly vegetated shoreline should be monitored more closely by installing permanent markers or by periodic surveys. Examples of potential solutions to erosion problems include shoreline reinforcement, off-shore wave protection, protected off-shore plantings and shoreline plantings especially using woody species.

3.10 Current Credit Summary

At this time approximately 107 acres of wetland and 6.5 acres of open water creation have been accomplished compared with a goal of 52 acres. It is likely that additional acreage will form with additional time and more normal precipitation.

4.0 REFERENCES

Urban, L. Wetland Mitigation Specialist, Montana Department of Transportation. Helena, MT. March 2001 meeting; January 2002 meeting.

Appendix A

FIGURES 2 - 3

MDT Wetland Mitigation Monitoring
Beaverhead Gateway
Dillon, Montana
Appendix B

Completed 2002 Wetland Mitigation Site Monitoring Form
Completed 2002 Bird Survey Form
Completed 2002 Wetland Delineation Forms
Completed 2002 Functional Assessment Form
Macroinvertebrate Sample Analyses

MDT Wetland Mitigation Monitoring
Beaverhead Gateway
Dillon, Montana
LWC / MDT WETLAND MITIGATION SITE MONITORING FORM

Project Name: Beaverhead Rock Project Number: 130091.12 Assessment Date: 8/16/02
Location: NE of Dillon MDT District: Butte Milepost:_________
Legal description: T____ R____ Section 21, 27, & 28 Time of Day: All
Weather Conditions: Clear Person(s) conducting the assessment: B. Dutton
Initial Evaluation Date:____/____/____ Visit #: 2 Monitoring Year: 2002
Size of evaluation area: 147 acres Land use surrounding wetland: Agriculture (crops & grazing)

Monitoring area includes wetland & upland.

HYDROLOGY

Surface Water Source:______________________________
Inundation: Present X Absent____ Average depths: 0.25 ft Range of depths: 0 - 4 ft
Assessment area under inundation:____%
Depth at emergent vegetation-open water boundary: 1.5 ft
If assessment area is not inundated are the soils saturated w/in 12” of surface: Yes____ No____
Other evidence of hydrology on site (drift lines, erosion, stained vegetation etc.): Drift lines, stained
vegetation, drainage patterns, oxidized root channels.

Groundwater
Monitoring wells: Present____ Absent X
Record depth of water below ground surface

<table>
<thead>
<tr>
<th>Well #</th>
<th>Depth</th>
<th>Well #</th>
<th>Depth</th>
<th>Well #</th>
<th>Depth</th>
</tr>
</thead>
</table>

Additional Activities Checklist:
X Map emergent vegetation-open water boundary on air photo
X Observe extent of surface water during each site visit and look for evidence of past surface water
 elevations (drift lines, erosion, vegetation staining etc.)
NA GPS survey groundwater monitoring wells locations if present

COMMENTS/PROBLEMS: Site is large and variable. It’s difficult to group areas into vegetation types that
are narrowly defined without having hundreds of small polygons. Vegetation types as mapped have varying
coverage of the indicator species.

High turbidity in submerged/open water areas, perhaps wave action eroding dike which has insufficient
vegetation cover, especially of the deep -rooted plants.
VEGETATION COMMUNITIES

Community No.: 2 Community Title (main species): Scirpus

<table>
<thead>
<tr>
<th>Dominant Species</th>
<th>% Cover</th>
<th>Dominant Species</th>
<th>% Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scirpus americanus</td>
<td>9</td>
<td>Scirpus acutus</td>
<td>P</td>
</tr>
</tbody>
</table>

COMMENTS/PROBLEMS: Bullrush along shorelines- also occurs elsewhere than where shown on map but areas are to small to delineate.

NOTE: # 1 is open water on map.

Community No.: 3 Community Title (main species): Hordeum / Kochia

<table>
<thead>
<tr>
<th>Dominant Species</th>
<th>% Cover</th>
<th>Dominant Species</th>
<th>% Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hordeum jubatum</td>
<td>2</td>
<td>Agropyron trachycaulum</td>
<td>P</td>
</tr>
<tr>
<td>Kochia scoparia</td>
<td>2</td>
<td>Distichlis spicata</td>
<td>P</td>
</tr>
<tr>
<td>Cirsium arvense</td>
<td>1</td>
<td>Suaeda intermedia</td>
<td>P</td>
</tr>
<tr>
<td>Cardaria draba</td>
<td>P</td>
<td>Descurainia sophia</td>
<td>P</td>
</tr>
<tr>
<td>Chenopodium album</td>
<td>T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS/PROBLEMS: Weedy community on dikes. Species composition varies.

Community No.: 4 Community Title (main species): Muhlenbergia / Juncus

<table>
<thead>
<tr>
<th>Dominant Species</th>
<th>% Cover</th>
<th>Dominant Species</th>
<th>% Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muhlenbergia asperifolia</td>
<td>5</td>
<td>Suaeda intermedia</td>
<td>T</td>
</tr>
<tr>
<td>Agropyron smithii</td>
<td>2</td>
<td>Sarcobatus vermiculatus</td>
<td>T</td>
</tr>
<tr>
<td>Hordeum jubatum</td>
<td>T</td>
<td>Juncus balticus</td>
<td>T</td>
</tr>
<tr>
<td>Elymus cinereus</td>
<td>P</td>
<td>Agropyron trachycaulum</td>
<td>P</td>
</tr>
<tr>
<td>Poa pratensis</td>
<td>T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS/PROBLEMS: Slightly higher mound above wetland area.

Additional Activities Checklist: X Record and map vegetative communities on air photo
VEGETATION COMMUNITIES (continued)

Community No.: 5 Community Title (main species): Alopecurus / Juncus

<table>
<thead>
<tr>
<th>Dominant Species</th>
<th>% Cover</th>
<th>Dominant Species</th>
<th>% Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alopecurus pratensis</td>
<td>7</td>
<td>Rumex crispus</td>
<td>P</td>
</tr>
<tr>
<td>Triglochin maritima</td>
<td>P</td>
<td>Agropyron trachycaulum</td>
<td>P</td>
</tr>
<tr>
<td>Agrostis alba</td>
<td>1</td>
<td>Carex limnophila</td>
<td>T</td>
</tr>
<tr>
<td>Carex nebrascensis</td>
<td>1</td>
<td>Muhlenbergia asperifolia</td>
<td>P</td>
</tr>
<tr>
<td>Juncus balticus</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS/PROBLEMS: This area is highly variable. It is dominated by these species but their coverage varies across this community type. Variation is in part due to the transition to wetland character.

Community No.: 6 Community Title (main species): Alopecurus / Scirpus

<table>
<thead>
<tr>
<th>Dominant Species</th>
<th>% Cover</th>
<th>Dominant Species</th>
<th>% Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alopecurus pratensis</td>
<td>5</td>
<td>Carex limnophila</td>
<td>T</td>
</tr>
<tr>
<td>Scirpus americanus</td>
<td>1</td>
<td>Agropyron trachycaulum</td>
<td>T</td>
</tr>
<tr>
<td>Scirpus acutus</td>
<td>P</td>
<td>Scirpus pungens</td>
<td>T</td>
</tr>
<tr>
<td>Juncus balticus</td>
<td>2</td>
<td>Hordeum jubatum</td>
<td>T</td>
</tr>
<tr>
<td>Triglochin maritima</td>
<td>1</td>
<td>Chenopodium album</td>
<td>T</td>
</tr>
</tbody>
</table>

COMMENTS/PROBLEMS: This community is also highly variable on a micro-site basis due to small topographic changes and due to increasing wetlands influence.

Community No.: 7 Community Title (main species): Sarcobatus / Elymus

<table>
<thead>
<tr>
<th>Dominant Species</th>
<th>% Cover</th>
<th>Dominant Species</th>
<th>% Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarcobatus vermiculatus</td>
<td>3</td>
<td>Juncus balticus</td>
<td>T</td>
</tr>
<tr>
<td>Elymus cinereus</td>
<td>1</td>
<td>Poa pratensis</td>
<td>T</td>
</tr>
<tr>
<td>Hordeum jubatum</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agropyron smithii</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agropyron trachycaulum</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS/PROBLEMS: Upland areas adjacent to wetland. Similar to 2001.
COMPREHENSIVE VEGETATION LIST

<table>
<thead>
<tr>
<th>Species</th>
<th>Vegetation Community Number(s)</th>
<th>Species</th>
<th>Vegetation Community Number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agropyron cristatum</td>
<td>Equisetum laevigatum</td>
<td>Agropyron smithii</td>
<td>Gentianella amarella</td>
</tr>
<tr>
<td>Agropyron repens</td>
<td>Festuca pratensis</td>
<td>Agropyron trachycaulum</td>
<td>Glaux maritime</td>
</tr>
<tr>
<td>Agrostis stolonifera</td>
<td>Grindelia squarrosa</td>
<td>Artemisia frigida</td>
<td>Haplopappus carthamoides</td>
</tr>
<tr>
<td>Alopecurus pratensis</td>
<td>Habenaria dilatata</td>
<td>Bromus inermis</td>
<td>Iris missouriensis</td>
</tr>
<tr>
<td>Aster falcatus</td>
<td>Helianthus nuttallii</td>
<td>Bromus japonicus</td>
<td>Iva axillaries</td>
</tr>
<tr>
<td>Bromus tectorum</td>
<td>Juncus arvensis</td>
<td>Calamagrostis neglecta</td>
<td>Juncus balticus</td>
</tr>
<tr>
<td>Cardaria draba</td>
<td>Kochia scoparia</td>
<td>Carex nebrascensis</td>
<td>Lactuca serriola</td>
</tr>
<tr>
<td>Carex limipilata</td>
<td>Kochia scoparia</td>
<td>Carex nebrascensis</td>
<td>Lepidium perfoliatum</td>
</tr>
<tr>
<td>Carex praegracilis</td>
<td>Medicago lupulina</td>
<td>Carex praegracilis</td>
<td>Medicago sativa</td>
</tr>
<tr>
<td>Carex spp.</td>
<td>Melilotus alba</td>
<td>Carex praegracilis</td>
<td>Melilotus officinalis</td>
</tr>
<tr>
<td>Centaurea maculosa</td>
<td>Mentha arvensis</td>
<td>Chenopodium album</td>
<td>Mentha arvensis</td>
</tr>
<tr>
<td>Chenopodium rubrum</td>
<td>Mentha arvensis</td>
<td>Chrysothamnus nauseosus</td>
<td>Mimulus spp.</td>
</tr>
<tr>
<td>Cirsium arvense</td>
<td>Muhlenbergia asperifolia</td>
<td>Cirsium undulatum</td>
<td>Phalaris arundinacea</td>
</tr>
<tr>
<td>Cleome serrulata</td>
<td>Phlox pratense</td>
<td>Cynoglossum officinale</td>
<td>Phlox longifolia</td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td>Phragmites australis</td>
<td>Descurainia sophia</td>
<td>Plantago eriopoda</td>
</tr>
<tr>
<td>Distichlis spicata</td>
<td>Poa pratensis</td>
<td>Eleocharis acicularis</td>
<td>Poa sandbergii</td>
</tr>
<tr>
<td>Eleocharis pauciflora</td>
<td>Polygonum aviculare</td>
<td>Elymus cinereus</td>
<td>Polygonum spp.</td>
</tr>
<tr>
<td>Epilobium palustris</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS/PROBLEMS: No new species in 2002.
<table>
<thead>
<tr>
<th>Species</th>
<th>Vegetation Community Number(s)</th>
<th>Species</th>
<th>Vegetation Community Number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentilla anserina</td>
<td></td>
<td>Puccinellia lemmonii</td>
<td></td>
</tr>
<tr>
<td>Ranunculus populago</td>
<td></td>
<td>Rumex crispus</td>
<td></td>
</tr>
<tr>
<td>Salicornia spp.</td>
<td></td>
<td>Salix exigua</td>
<td></td>
</tr>
<tr>
<td>Salsola kali</td>
<td></td>
<td>Sarcobatus vermiculatus</td>
<td></td>
</tr>
<tr>
<td>Scirpus acutus</td>
<td></td>
<td>Scirpus americanus</td>
<td></td>
</tr>
<tr>
<td>Scirpus maritimus</td>
<td></td>
<td>Scirpus pungens</td>
<td></td>
</tr>
<tr>
<td>Scirpus validus</td>
<td></td>
<td>Sisyrinchium angustifolium</td>
<td></td>
</tr>
<tr>
<td>Sonchus arvensis</td>
<td></td>
<td>Spartina gracilis</td>
<td></td>
</tr>
<tr>
<td>Suaeda intermedia</td>
<td></td>
<td>Sporobolus cryptandrus</td>
<td></td>
</tr>
<tr>
<td>Stipa comata</td>
<td></td>
<td>Tragopogon dubius</td>
<td></td>
</tr>
<tr>
<td>Typha latifolia</td>
<td></td>
<td>Triglochin maritima</td>
<td></td>
</tr>
<tr>
<td>Urtica dioica</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WILDLIFE

BIRDS

(Attach Bird Survey Field Forms)

Were man made nesting structures installed? Yes_____ No____ Type:_____ How many?_____
Are the nesting structures being utilized? Yes_____ No_____
Do the nesting structures need repairs? Yes_____ No_____

MAMMALS AND HERPTILES

<table>
<thead>
<tr>
<th>Species</th>
<th>Number Observed</th>
<th>Indirect indication of use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tracks</td>
</tr>
<tr>
<td>Deer</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Coyote</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Additional Activities Checklist:
X Macroinvertebrate sampling (if required)

COMMENTS/PROBLEMS: __
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
PHOTOGRAPHS
Using a camera with a 50 mm lenses and color film take photographs of the following permanent reference points listed in the checklist below. Record the direction of the photograph using a compass. (The first time at each site establish a permanent reference point by setting a ½ inch rebar or fencepost extending 2-3’ above ground, survey the location with a resource grade GPS and mark the location on the air photo.)

Checklist:

- One photo for each of the 4 cardinal directions surrounding wetland
- At least one photo showing upland use surrounding wetland – if more than one upland use exists, take additional photos
- At least one photo showing buffer surrounding wetland
- One photo from each end of vegetation transect showing transect

<table>
<thead>
<tr>
<th>Location</th>
<th>Photo Frame #</th>
<th>Photograph Description</th>
<th>Compass Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Looking NE along fence and W. across mitigation site.</td>
<td>120 & 300</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Panoramic looking from SW to NE.</td>
<td>270 – 45</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Looking NE, emergent vegetation / open water and SW along transect.</td>
<td>45 & 225</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Looking NE, upland vegetation.</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Looking NE across site.</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Looking E. along pond bank and N. along Transect # 2.</td>
<td>90 & 35</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Looking S. along Transect # 2.</td>
<td>180</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Looking SE along pond bank & W. along other bank.</td>
<td>150 & 270</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Looking NE along spoil pile, weedy community.</td>
<td>45</td>
</tr>
</tbody>
</table>

COMMENTS/PROBLEMS: __
__
__
__
__
__

GPS SURVEYING
Using a resource grade GPS survey the items on the checklist below. Collect at least 3 location points with the GPS unit set at 5 second recording rate. Record file numbers fore site in designated GPS field notebook

Checklist:

- Jurisdictional wetland boundary
- 4-6 landmarks recognizable on the air photo
- Start and end points of vegetation transect(s)
- Photo reference points
- Groundwater monitoring well locations

COMMENTS/PROBLEMS: __
__
__
__
__
WETLAND DELINEATION

(Attach Corps of Engineers delineation forms)

At each site conduct the items on the checklist below:

X Delineate wetlands according to the 1987 Army Corps manual.
X Delineate wetland-upland boundary on the air photo
X Survey wetland-upland boundary with a resource grade GPS survey

COMMENTS/PROBLEMS: Similar to 2001.

FUNCTIONAL ASSESSMENT

(Complete and attach full MDT Montana Wetland Assessment Method field forms; also attach abbreviated field forms, if used)

COMMENTS/PROBLEMS: __

MAINTENANCE

Were man-made nesting structures installed at this site? YES___ NO____
If yes, do they need to be repaired? YES___ NO____
If yes, describe problems below and indicate if any actions were taken to remedy the problems.

Were man-made structures build or installed to impound water or control water flow into or out of the wetland?
YES____ NO____
If yes, are the structures working properly and in good working order? YES____ NO____
If no, describe the problems below.

COMMENTS/PROBLEMS: Erosion/sedimentation along dike, wind and water erosion in bare areas and still lots of weeds along excavation piles.
MDT Wetland Monitoring – Vegetation Transect

Site: Beaverhead Rock
Date: 8/16/02
Examiner: B. Dutton
Transect # 1

Approx. transect length: 1650 ft.
Compass Direction from Start (Upland): 35°

Vegetation type A:	Sarcobatus/Elymus
Length of transect in this type:	40 feet
Species:	Cover:
Sarcobatus vermiculatus	4
Elymus cinereus	3
Agropyron trachycaulum	2
Poa pratensis	P
Juncus balticus	P
Hordeum jubatum	P
Phleum pratense	T

Total Vegetative Cover: 90%

Vegetation type B:	Alopecurus/Juncus
Length of transect in this type:	1030 feet
Species:	Cover:
Alopecurus pratensis	3
Juncus balticus	3
Hordeum jubatum	P
Chenopodium album	P
Festuca pratensis	T
Aster falcatus	T
Muhlenbergia asperifolia	2
Plantago spp.	T
Agropyron smithii	T
Spartina gracilis	P
Agropyron trachycaulum	P
Carex limnophila	P

Total Vegetative Cover: 90%

Vegetation type C:	Alopecurus/Scirpus
Length of transect in this type:	150 feet
Species:	Cover:
Alopecurus pratensis	3
Juncus balticus	2
Scirpus pungens	1
Muhlenbergia asperifolia	1
Carex limnophila	P
Hordeum jubatum	P
Spartina gracilis	P
Agropyron trachycaulum	P
Chenopodium album	1

Total Vegetative Cover: 90%

Vegetation type D:	Juncus/Triglochin
Length of transect in this type:	400 feet
Species:	Cover:
Juncus balticus	3
Triglochin maritima	3
Alopecurus pratensis	1
Hordeum jubatum	P
Agropyron trachycaulum	2
Carex limnophila	P
Scirpus pungens	P
Equisetum laevigatum	T
Agropyron smithii	T
Plantago spp.	T
Helenium autumnale	T

Total Vegetative Cover: 90%
Site: Beaverhead Rock
Date: 8/16/02
Examiner: B. Dutton
Transect #: 1
Approx. transect length: 1650
Compass Direction from Start (Upland): 35°

Vegetation type E: Scirpus

- **Length of transect in this type:** 30 feet
- **Species:** Scirpus americanus
 - **Cover:** 9
- **Species:** Scirpus acutus
 - **Cover:** P

Total Vegetative Cover: 90%

Vegetation type F:

- **Length of transect in this type:** feet
- **Species:**
 - **Cover:**
- **Length of transect in this type:** feet
- **Species:**
 - **Cover:**

Total Vegetative Cover:

Vegetation type G:

- **Length of transect in this type:** feet
- **Species:**
 - **Cover:**

Total Vegetative Cover:

Vegetation type H:

- **Length of transect in this type:** feet
- **Species:**
 - **Cover:**
- **Length of transect in this type:** feet
- **Species:**
 - **Cover:**

Total Vegetative Cover:
Site: Beaverhead Rock
Date: 8/16/02
Examiner: B. Dutton
Transect #: 2

Approx. transect length: 280 ft.
Compass Direction from Start (Upland): 350^0

<table>
<thead>
<tr>
<th>Vegetation type A:</th>
<th>Hordeum / Kochia – dike upland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of transect in this type:</td>
<td>30 feet</td>
</tr>
<tr>
<td>Species:</td>
<td>Cover:</td>
</tr>
<tr>
<td>Hordeum jubatum</td>
<td>2</td>
</tr>
<tr>
<td>Kochia scoparia</td>
<td>2</td>
</tr>
<tr>
<td>Cirsium arvense</td>
<td>P</td>
</tr>
<tr>
<td>Cardaria draba</td>
<td>T</td>
</tr>
<tr>
<td>Chenopodium album</td>
<td>T</td>
</tr>
<tr>
<td>Agropyron trachycaulum</td>
<td>P</td>
</tr>
<tr>
<td>Distichlis spicata</td>
<td>T</td>
</tr>
<tr>
<td>Suaeda intermedia</td>
<td>T</td>
</tr>
</tbody>
</table>

Total Vegetative Cover: 40%

<table>
<thead>
<tr>
<th>Vegetation type B:</th>
<th>Alopecurus/Scirpus – wetland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of transect in this type:</td>
<td>100 feet</td>
</tr>
<tr>
<td>Species:</td>
<td>Cover:</td>
</tr>
<tr>
<td>Alopecurus pratensis</td>
<td>8</td>
</tr>
<tr>
<td>Agropyron trachycaulum</td>
<td>1</td>
</tr>
<tr>
<td>Juncus balticus</td>
<td>2</td>
</tr>
<tr>
<td>Carex nebrascensis</td>
<td>1</td>
</tr>
<tr>
<td>Rumex crispus</td>
<td>P</td>
</tr>
<tr>
<td>Habenaria dilatata</td>
<td>T</td>
</tr>
</tbody>
</table>

Total Vegetative Cover: 90%

<table>
<thead>
<tr>
<th>Vegetation type C:</th>
<th>Muhlenbergia/Agropyron – upland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of transect in this type:</td>
<td>170 feet</td>
</tr>
<tr>
<td>Species:</td>
<td>Cover:</td>
</tr>
<tr>
<td>Muhlenbergia asperifolia</td>
<td>6</td>
</tr>
<tr>
<td>Agropyron trachycaulum</td>
<td>2</td>
</tr>
<tr>
<td>Festuca idahoensis</td>
<td>P</td>
</tr>
<tr>
<td>Rumex crispus</td>
<td>P</td>
</tr>
<tr>
<td>Agropyron smithii</td>
<td>P</td>
</tr>
<tr>
<td>Hordeum jubatum</td>
<td>1</td>
</tr>
<tr>
<td>Juncus balticus</td>
<td>P</td>
</tr>
<tr>
<td>Poa pratensis</td>
<td>P</td>
</tr>
<tr>
<td>Elymus cinereus</td>
<td>T</td>
</tr>
</tbody>
</table>

Total Vegetative Cover: 90%

Vegetation type D:	

Length of transect in this type:	feet
Species:	Cover:

Total Vegetative Cover:

B-11
MDT WETLAND MONITORING – VEGETATION TRANSECT (back of form)

<table>
<thead>
<tr>
<th>Cover Estimate</th>
<th>Indicator Class:</th>
<th>Source:</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ = <1%</td>
<td>+ = Obligate</td>
<td>P = Planted</td>
</tr>
<tr>
<td>1 = 1-5%</td>
<td>- = Facultative/Wet</td>
<td>V = Volunteer</td>
</tr>
<tr>
<td>2 = 6-10%</td>
<td>0 = Facultative</td>
<td></td>
</tr>
<tr>
<td>3 = 11-20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 = 21-50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 = >50%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percent of perimeter ____________ % developing wetland vegetation – excluding dam/berm structures.

Establish transects perpendicular to the shoreline (or saturated perimeter). The transect should begin in the upland area. Permanently mark this location with a standard metal fencepost. Extend the imaginary transect line towards the center of the wetland, ending at the 3 foot depth (in open water), or at a point where water depths or saturation are maximized. Mark this location with another metal fencepost.

Estimate cover within a 10 ft wide “belt” along the transect length. At a minimum, establish a transect at the windward and leeward sides of the wetland. Remember that the purpose of this sampling is to monitor, not inventory, representative portions of the wetland site.

Notes:

Similar to 2001 field season.
BIRD SURVEY – FIELD DATA SHEET

SITE: Beaverhead Gateway
Time:
Date: 5/31/02
Date: 11/1/02

<table>
<thead>
<tr>
<th>Bird Species</th>
<th>#</th>
<th>Behavior</th>
<th>Habitat</th>
<th>Bird Species</th>
<th>#</th>
<th>Behavior</th>
<th>Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelicans</td>
<td>40</td>
<td>F/FO</td>
<td>OW/MA/MS</td>
<td>Mallard</td>
<td>15</td>
<td>L/F</td>
<td>MA</td>
</tr>
<tr>
<td>Island hill crane</td>
<td>28</td>
<td>F/N/B</td>
<td>WM</td>
<td>Hooded merganser</td>
<td>0</td>
<td>F</td>
<td>MA</td>
</tr>
<tr>
<td>Mallards</td>
<td>12</td>
<td>F/N/B</td>
<td>MS/OW</td>
<td>Canada goose</td>
<td>35</td>
<td>FO</td>
<td>MA</td>
</tr>
<tr>
<td>Heron</td>
<td>3</td>
<td>F/FO</td>
<td>WM</td>
<td>American coot</td>
<td>4</td>
<td>L</td>
<td>MA</td>
</tr>
<tr>
<td>Hooded merganser</td>
<td>0</td>
<td>F</td>
<td>MS/MA</td>
<td>Lesser scaup</td>
<td>0</td>
<td>L</td>
<td>MA</td>
</tr>
<tr>
<td>Redhead duck</td>
<td>1</td>
<td>F/N/B</td>
<td>MS</td>
<td>Vesper sparrow</td>
<td>1</td>
<td>L</td>
<td>UP</td>
</tr>
<tr>
<td>American coot</td>
<td>2</td>
<td>F</td>
<td>MA</td>
<td>Marsh hawk</td>
<td>1</td>
<td>F</td>
<td>UP</td>
</tr>
<tr>
<td>Canada goose</td>
<td>4</td>
<td>F/FO</td>
<td>OW/MS</td>
<td>Franklin gulls</td>
<td>4</td>
<td>L</td>
<td>MA</td>
</tr>
<tr>
<td>Cinnamon teal</td>
<td>2</td>
<td>F</td>
<td>MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redwing blackbird</td>
<td>8</td>
<td>F/L/N</td>
<td>UP/MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank swallow</td>
<td>10</td>
<td>F/FO</td>
<td>UP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black tern</td>
<td>0</td>
<td>F</td>
<td>MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red-tail hawk</td>
<td>1</td>
<td>FO</td>
<td>UP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common snipe</td>
<td>0</td>
<td>F/L</td>
<td>MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American dipper</td>
<td>30</td>
<td>F/L</td>
<td>MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American crow</td>
<td>1</td>
<td>FO</td>
<td>UP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western bluebird</td>
<td>0</td>
<td>FO</td>
<td>UP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cowbird</td>
<td>0</td>
<td>F/L</td>
<td>UP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franklin gull</td>
<td>6</td>
<td>FO</td>
<td>MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western meadowlark</td>
<td>1</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidentified varies</td>
<td>50</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Killdeer</td>
<td>4</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plovers</td>
<td>10</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow wing blackbird</td>
<td>10</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marsh hawk</td>
<td>1</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Behavior: BP – one of a breeding pair; BD – breeding display; F – foraging; FO – flyover; L – loafing; N – nesting
Habitat: AB – aquatic bed; FO – forested; I – island; MA – marsh; MF – mud flat; OW – open water; SS – scrub/shrub; UP – upland buffer; WM – wet meadow, US – unconsolidated shoreline
DATA FORM
ROUTINE WETLAND DETERMINATION
(1987 COE Wetlands Delineation Manual)

<table>
<thead>
<tr>
<th>Project/Site:</th>
<th>Beaverhead Rock</th>
<th>Date:</th>
<th>8/16/02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicant/Owner:</td>
<td>MDT</td>
<td>County:</td>
<td>Beaverhead</td>
</tr>
<tr>
<td>Investigator:</td>
<td>B. Dutton</td>
<td>State:</td>
<td>MT</td>
</tr>
</tbody>
</table>

Do Normal Circumstances exist on the site: X Yes No
Is the site significantly disturbed (Atypical Situation)? X Yes No
Is the area a potential Problem Area?: X Yes No

(If needed, explain on reverse.)

VEGETATION

<table>
<thead>
<tr>
<th>Dominant Plant Species</th>
<th>Stratum</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alopecurus pratensis</td>
<td>H</td>
<td>FACW</td>
</tr>
<tr>
<td>Agropyron trachycaulum</td>
<td>H</td>
<td>FAC</td>
</tr>
<tr>
<td>Juncus balticus</td>
<td>H</td>
<td>FACW+</td>
</tr>
<tr>
<td>Carex nebrascensis</td>
<td>H</td>
<td>OBL</td>
</tr>
<tr>
<td>Rumex crispus*</td>
<td>H</td>
<td>FACW</td>
</tr>
<tr>
<td>Habenaria dilatata</td>
<td>H</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Percent of Dominant Species that are OBL, FACW, or FAC (excluding FAC-): 6/6 = 100%

Hydrophytic vegetation present, wetland plants.

HYDROLOGY

<table>
<thead>
<tr>
<th>Recorded Data (Describe in Remarks):</th>
<th>Wetland Hydrology Indicators:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream, Lake, or Tide Gauge</td>
<td>Primary Indicators:</td>
</tr>
<tr>
<td>Aerial Photographs</td>
<td>Inundated</td>
</tr>
<tr>
<td>Other</td>
<td>Saturated in Upper 12 Inches</td>
</tr>
<tr>
<td>X No Recorded Data Available</td>
<td>Water Marks</td>
</tr>
</tbody>
</table>

Field Observations:

- Depth of Surface Water: _______ (in.)
- Depth to Free Water in Pit: >18 (in.)
- Depth to Saturated Soil: >18 (in.)

Remarks:
Dry year.
SOILS

<table>
<thead>
<tr>
<th>Map Unit Name</th>
<th>Neen silty clay loam</th>
<th>Drainage Class</th>
<th>Somewhat poorly</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>(Series and Phase):</th>
<th>Field Observations</th>
<th>Confirm Mapped Type?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Taxonomy (Subgroup):</th>
<th>Aquic calcic orthids</th>
</tr>
</thead>
</table>

Profile Description:

<table>
<thead>
<tr>
<th>Depth inches</th>
<th>Matrix Color (Munsell Moist)</th>
<th>Mottle Colors (Munsell Moist)</th>
<th>Mottle Abundance/Contrast</th>
<th>Texture, Concretions, Structure, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 2</td>
<td>O 10YR 4/2</td>
<td>-</td>
<td>-</td>
<td>Silt loam</td>
</tr>
<tr>
<td>2 – 12</td>
<td>A1 10 YR 2/0</td>
<td>-</td>
<td>-</td>
<td>Silt loam</td>
</tr>
<tr>
<td>12 – 18+</td>
<td>B2 10 YR 1/1 10 YR 6/6</td>
<td>Few/Faint</td>
<td>Very fine sandy loam</td>
<td></td>
</tr>
</tbody>
</table>

Hydric Soil Indicators:

- Histosol
- Histic Epipedon
- Sulfidic Odor
- Aquic Moisture Regime
- Reducing Conditions
- Gleyed or Low-Chroma Colors

- Concretions
- High Organic Content in surface Layer in Sandy Soils
- Organic Streaking in Sandy Soils
- Listed on Local Hydric Soils List
- Listed on National Hydric Soils List
- Other (Explain in Remarks)

Mucky mineral surface soil.

WETLAND DETERMINATION

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>X Yes No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Hydrology Present?</td>
<td>X Yes No</td>
</tr>
<tr>
<td>Hydric Soils Present?</td>
<td>X Yes No</td>
</tr>
</tbody>
</table>

Is this Sampling Point Within a Wetland? X Yes No

Remarks:

Same conditions in 2002 as 2001.

Approved by HQUSACE 2/92
DATA FORM
ROUTINE WETLAND DETERMINATION
(1987 COE Wetlands Delineation Manual)

<table>
<thead>
<tr>
<th>Project/Site:</th>
<th>Beaverhead Rock</th>
<th>Date:</th>
<th>8/16/02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicant/Owner:</td>
<td>MDT</td>
<td>County:</td>
<td>Beaverhead</td>
</tr>
<tr>
<td>Investigator:</td>
<td>B. Dutton</td>
<td>State:</td>
<td>MT</td>
</tr>
</tbody>
</table>

Do Normal Circumstances exist on the site:
- [x] Yes
- [] No
Is the site significantly disturbed (Atypical Situation)?
- [x] Yes
- [] No
Is the area a potential Problem Area?:
- [x] Yes
- [] No
(If needed, explain on reverse.)

VEGETATION

<table>
<thead>
<tr>
<th>Dominant Plant Species</th>
<th>Stratum</th>
<th>Indicator</th>
<th>Dominant Plant Species</th>
<th>Stratum</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Agropyron trachycaulum</td>
<td>H</td>
<td>FAC</td>
<td>9 Elymus cinereus</td>
<td>H</td>
<td>FACU</td>
</tr>
<tr>
<td>2 Muhlenbergia asperifolia</td>
<td>H</td>
<td>FACW</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Festuca idahoensis</td>
<td>H</td>
<td>FACU</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Rumex crispus*</td>
<td>H</td>
<td>FACW</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Agropyron smithii</td>
<td>H</td>
<td>FACU</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Hordeum jubatum</td>
<td>H</td>
<td>FAC+</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Juncus balticus</td>
<td>H</td>
<td>FACW+</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Poa pratensis</td>
<td>H</td>
<td>FACU+</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percent of Dominant Species that are OBL, FACW, or FAC (excluding FAC-):
\[
\frac{5}{9} = 55\%
\]

HYDROLOGY

- [] Recorded Data (Describe in Remarks):
 - Stream, Lake, or Tide Gauge
 - Aerial Photographs
 - Other
- [x] No Recorded Data Available

Field Observations:

<table>
<thead>
<tr>
<th>Depth of Surface Water:</th>
<th>(in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth to Free Water in Pit:</td>
<td>>20 (in.)</td>
</tr>
<tr>
<td>Depth to Saturated Soil:</td>
<td>>20 (in.)</td>
</tr>
</tbody>
</table>

Wetland Hydrology Indicators:

Primary Indicators:
- [] Inundated
- [] Saturated in Upper 12 Inches
- [] Water Marks
- [] Drift Lines
- [] Sediment Deposits
- [] Drainage Patterns in Wetlands

Secondary Indicators (2 or more required):
- [] Oxidized Root Channels in Upper 12 Inches
- [] Water-Stained Leaves
- [] Local Soil Survey Data
- [] FAC-Neutral Test
- [] Other (Explain in Remarks)

Remarks:

Dry year, no obvious hydrologic indicators.
SOILS

Map Unit Name: Neen silty clay loam
(Series and Phase): Aquic calciorthids
Taxonomy (Subgroup): Aquic calcorthids
Drainage Class: somewhat poorly
Field Observations
Confirm Mapped Type? Yes [X] No

Profile Description:

<table>
<thead>
<tr>
<th>Depth inches</th>
<th>Horizon</th>
<th>Matrix Color (Munsell Moist)</th>
<th>Mottle Colors (Munsell Moist)</th>
<th>Mottle Abundance/Contrast</th>
<th>Texture, Concretions, Structure, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 4</td>
<td>A</td>
<td>10 YR 3/2</td>
<td>-</td>
<td>-</td>
<td>Silt loam</td>
</tr>
<tr>
<td>4 – 8</td>
<td>B1</td>
<td>10 YR 4/3</td>
<td>-</td>
<td>-</td>
<td>Silt loam</td>
</tr>
<tr>
<td>8 - 20</td>
<td>B2</td>
<td>10 YR 5/3</td>
<td>-</td>
<td>-</td>
<td>Silt loam</td>
</tr>
</tbody>
</table>

Hydric Soil Indicators:

- Histosol
- Histic Epipedon
- Sulfidic Odor
- Aquic Moisture Regime
- Reducing Conditions
- Gleyed or Low-Chroma Colors

Concretions
High Organic Content in surface Layer in Sandy Soils
Organic Streaking in Sandy Soils
Listed on Local Hydric Soils List
Listed on National Hydric Soils List
Other (Explain in Remarks)

Upland soil colors and features.

WETLAND DETERMINATION

Hydrophytic Vegetation Present? [X] Yes No
Wetland Hydrology Present? Yes [X] No
Hydric Soils Present? Yes [X] No

Is this Sampling Point Within a Wetland? Yes [X] No

Remarks:

Upland site, same conditions in 2002 as 2001.

Approved by HQUSACE 2/92
DATA FORM
ROUTINE WETLAND DETERMINATION
(1987 COE Wetlands Delineation Manual)

Project/Site: Beaverhead Rock
Applicant/Owner: MDT
Investigator: B. Dutton
Date: 8/16/02
County: Beaverhead
State: MT

Do Normal Circumstances exist on the site: x Yes x No
Is the site significantly disturbed (Atypical Situation)? Yes x No
Is the area a potential Problem Area?: Yes x No

VEGETATION

<table>
<thead>
<tr>
<th>Dominant Plant Species</th>
<th>Stratum</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarcobatus vermiculatus</td>
<td>S</td>
<td>FACU+</td>
</tr>
<tr>
<td>Elymus cinereus</td>
<td>H</td>
<td>FACU</td>
</tr>
<tr>
<td>Poa pratensis</td>
<td>H</td>
<td>FACU+</td>
</tr>
<tr>
<td>Agropyron trachycaulum</td>
<td>H</td>
<td>FAC</td>
</tr>
<tr>
<td>Juncus balticus</td>
<td>H</td>
<td>FACW+</td>
</tr>
</tbody>
</table>

Percent of Dominant Species that are OBL, FACW, or FAC (excluding FAC-): 2/5 = 40%

Upland vegetation.

HYDROLOGY

Recorded Data (Describe in Remarks):

- Stream, Lake, or Tide Gauge
- Aerial Photographs
- Other
- x No Recorded Data Available

Field Observations:

- Depth of Surface Water: _______ (in.)
- Depth to Free Water in Pit: >18 (in.)
- Depth to Saturated Soil: >18 (in.)

Wetland Hydrology Indicators:

Primary Indicators:
- Inundated
- Saturated in Upper 12 Inches
- Water Marks
- Drift Lines
- Sediment Deposits
- Drainage Patterns in Wetlands

Secondary Indicators (2 or more required):
- Oxidized Root Channels in Upper 12 Inches
- Water-Stained Leaves
- Local Soil Survey Data
- FAC-Neutral Test
- Other (Explain in Remarks)

Remarks:

No hydrologic indicators present.
SOILS

<table>
<thead>
<tr>
<th>Map Unit Name</th>
<th>Neen silty clay loam</th>
<th>Drainage Class:</th>
<th>somewhat poorly</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Series and Phase):</td>
<td></td>
<td>Field Observations</td>
<td></td>
</tr>
<tr>
<td>Taxonomy (Subgroup):</td>
<td>Aquic calcicorthids</td>
<td>Confirm Mapped Type?</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Field Observations

Profile Description:

<table>
<thead>
<tr>
<th>Depth inches</th>
<th>Matrix Color (Munsell Moist)</th>
<th>Mottle Colors (Munsell Moist)</th>
<th>Mottle Abundance/Contrast</th>
<th>Texture, Concretions, Structure, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 7</td>
<td>A1 10 YR 3/2</td>
<td>-</td>
<td>-</td>
<td>Loam</td>
</tr>
<tr>
<td>7 - 18</td>
<td>B1 10 YR 4/3</td>
<td>-</td>
<td>-</td>
<td>Loam</td>
</tr>
</tbody>
</table>

Hydric Soil Indicators:

- Histosol
- Histic Epipedon
- Sulfidic Odor
- Aquic Moisture Regime
- Reducing Conditions
- Gleyed or Low-Chroma Colors
- Concretions
- High Organic Content in surface Layer in Sandy Soils
- Organic Streaking in Sandy Soils
- Listed on Local Hydric Soils List
- Listed on National Hydric Soils List
- Other (Explain in Remarks)

Upland soils.

WETLAND DETERMINATION

Hydrophytic Vegetation Present? | Yes | X | No |
Wetland Hydrology Present? | Yes | X | No |
Hydric Soils Present? | Yes | X | No |

Is this Sampling Point Within a Wetland? | Yes | X | No |

Remarks:

Upland site on small mound above wetland. Same conditions in 2002 as 2001.

Approved by HQUSACE 2/92
DATA FORM
ROUTINE WETLAND DETERMINATION
(1987 COE Wetlands Delineation Manual)

<table>
<thead>
<tr>
<th>Project/Site:</th>
<th>Beaverhead Rock</th>
<th>Date:</th>
<th>8/16/02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicant/Owner:</td>
<td>MDT</td>
<td>County:</td>
<td>Beaverhead</td>
</tr>
<tr>
<td>Investigator:</td>
<td>B. Dutton</td>
<td>State:</td>
<td>MT</td>
</tr>
</tbody>
</table>

- **Do Normal Circumstances exist on the site:** Yes
- **Is the site significantly disturbed (Atypical Situation):** Yes
- **Is the area a potential Problem Area:** Yes

VEGETATION

<table>
<thead>
<tr>
<th>Dominant Plant Species</th>
<th>Stratum</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alopecurus pratensis</td>
<td>H</td>
<td>FACW</td>
</tr>
<tr>
<td>Hordeum jubatum</td>
<td>H</td>
<td>FAC+</td>
</tr>
<tr>
<td>Equisetum laevigatum</td>
<td>H</td>
<td>FACW</td>
</tr>
<tr>
<td>Muhlenbergia asperifolia</td>
<td>H</td>
<td>FACW</td>
</tr>
<tr>
<td>Juncus balticus</td>
<td>H</td>
<td>FACW+</td>
</tr>
<tr>
<td>Carex limnophila</td>
<td>H</td>
<td>FACW</td>
</tr>
</tbody>
</table>

Percent of Dominant Species that are OBL, FACW, or FAC (excluding FAC-). **6/6 = 100%**

Wetland vegetation present.

HYDROLOGY

- **Recorded Data (Describe in Remarks):**
 - Stream, Lake, or Tide Gauge
 - Aerial Photographs
 - No Recorded Data Available

Field Observations:

- **Depth of Surface Water:** (in.)
- **Depth to Free Water in Pit:** >18 (in.)
- **Depth to Saturated Soil:** >18 (in.)

Wetland Hydrology Indicators:

- **Primary Indicators:**
 - Inundated
 - Saturated in Upper 12 Inches
 - Water Marks
 - Drift Lines
 - Sediment Deposits
 - Drainage Patterns in Wetlands

- **Secondary Indicators (2 or more required):**
 - Oxidized Root Channels in Upper 12 Inches
 - Water-Stained Leaves
 - Local Soil Survey Data
 - FAC-Neutral Test
 - Other (Explain in Remarks)

Remarks:

Secondary hydrologic indicators present. No water in pit, probably due to time of year and multi-year drought.
SOILS

<table>
<thead>
<tr>
<th>Map Unit Name</th>
<th>Neen silty clay loam</th>
<th>Drainage Class:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Series and Phase):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxonomy (Subgroup):</td>
<td>Aquic calciorthids</td>
<td></td>
</tr>
</tbody>
</table>

Field Observations

<table>
<thead>
<tr>
<th>Confirm Mapped Type?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Profile Description:

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (Munsell Moist)</th>
<th>Mottle Colors (Munsell Moist)</th>
<th>Mottle Abundance/Contrast</th>
<th>Texture, Concretions, Structure, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 14 A1</td>
<td>10 YR 2/0</td>
<td>-</td>
<td>-</td>
<td>Loam</td>
</tr>
<tr>
<td>14 - 20 B1</td>
<td>10YR 2/1</td>
<td>10 YR 6/6</td>
<td>Few/Faint</td>
<td>Loam</td>
</tr>
</tbody>
</table>

Hydric Soil Indicators:

- Histosol
- Histic Epipedon
- Sulfidic Odor
- Aquic Moisture Regime
- X Reducing Conditions
- X Gleyed or Low-Chroma Colors
- Concretions
- High Organic Content in surface Layer in Sandy Soils
- Organic Streaking in Sandy Soils
- Listed on Local Hydric Soils List
- Listed on National Hydric Soils List
- Other (Explain in Remarks)

Hydric soil indicators present.

WETLAND DETERMINATION

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Hydrology Present?</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>Hydric Soils Present?</td>
<td>x</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Is this Sampling Point Within a Wetland?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Remarks:

Wetland probably will see indicators improve over time as it develops and more natural precipitation levels returns. Same conditions in 2002 as 2001.

Approved by HQUSACE 2/92
DATA FORM
ROUTINE WETLAND DETERMINATION
(1987 COE Wetlands Delineation Manual)

Project/Site: Beaverhead Rock
Applicant/Owner: MDT
Investigator: B. Dutton
Date: 8/16/02
County: Beaverhead
State: MT

Do Normal Circumstances exist on the site? Yes X No
Is the site significantly disturbed (Atypical Situation)? Yes X No
Is the area a potential Problem Area?: Yes X No

(If needed, explain on reverse.)

VEGETATION

<table>
<thead>
<tr>
<th>Dominant Plant Species</th>
<th>Stratum</th>
<th>Indicator</th>
<th>Dominant Plant Species</th>
<th>Stratum</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juncus balticus</td>
<td>H</td>
<td>FACW+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spartina gracilis</td>
<td>H</td>
<td>FACW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alopecurus pratensis</td>
<td>H</td>
<td>FACW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chenopodium album</td>
<td>H</td>
<td>FAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantago eriopoda</td>
<td>H</td>
<td>FACW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex limnophila</td>
<td>H</td>
<td>FACW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muhlenbergia asperifolia</td>
<td>H</td>
<td>FACW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agropyron trachycaulm</td>
<td>H</td>
<td>FAC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percent of Dominant Species that are OBL, FACW, or FAC (excluding FAC-). 8/8 = 100%

Hydrophytic vegetation present.

HYDROLOGY

Recorded Data (Describe in Remarks):
- Stream, Lake, or Tide Gauge
- Aerial Photographs
- Other
- No Recorded Data Available

Field Observations:
- Depth of Surface Water: (in.)
- Depth to Free Water in Pit: >18 (in.)
- Depth to Saturated Soil: >18 (in.)

Wetland Hydrology Indicators:

Primary Indicators:
- Inundated
- Saturated in Upper 12 Inches
- Water Marks
- Drift Lines
- Sediment Deposits
- Drainage Patterns in Wetlands

Secondary Indicators (2 or more required):
- Oxidized Root Channels in Upper 12 Inches
- Water-Stained Leaves
- Local Soil Survey Data
- FAC-Neutral Test
- Other (Explain in Remarks)

Remarks:
Dry part of year during multi-year drought cycle. Secondary hydrologic indicators present.
SOILS

<table>
<thead>
<tr>
<th>Map Unit Name</th>
<th>Neen silty clay loam</th>
<th>Drainage Class:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Series and Phase):</td>
<td></td>
<td>Field Observations</td>
</tr>
<tr>
<td>Taxonomy (Subgroup):</td>
<td>Aquic calciorthids</td>
<td>Confirm Mapped Type? Yes No</td>
</tr>
</tbody>
</table>

Field Observations

Profile Description:

<table>
<thead>
<tr>
<th>Depth</th>
<th>Horizon</th>
<th>Matrix Color (Munsell Moist)</th>
<th>Mottle Colors (Munsell Moist)</th>
<th>Mottle Abundance/Contrast</th>
<th>Texture, Concretions, Structure, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 2</td>
<td>A1</td>
<td>10 YR 5/4</td>
<td>-</td>
<td></td>
<td>Loam</td>
</tr>
<tr>
<td>2 – 18</td>
<td>B1</td>
<td>10 YR 7/1</td>
<td>10 YR 6/6</td>
<td>Few/Faint</td>
<td>Silty clay loam</td>
</tr>
</tbody>
</table>

Hydric Soil Indicators:

- **Histosol**
- **Histic Epipedon**
- **Sulfidic Odor**
- **Aquic Moisture Regime**
- **Reducing Conditions**
- **Gleyed or Low-Chroma Colors**
- **Concretions**
- **High Organic Content in surface Layer in Sandy Soils**
- **Organic Streaking in Sandy Soils**
- ** Listed on Local Hydric Soils List**
- ** Listed on National Hydric Soils List**
- **Other (Explain in Remarks)**

Soil is developing hydric features, will likely get stronger with more normal rainfall.

WETLAND DETERMINATION

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Hydrology Present?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hydric Soils Present?</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Is this Sampling Point Within a Wetland? Yes No

Remarks:

Soil and hydrology indicators are not very strong, but there, and are likely to improve with normal precipitation. Same conditions in 2002 as 2001.

Approved by HQUSACE 2/92
DATA FORM
ROUTINE WETLAND DETERMINATION
(1987 COE Wetlands Delineation Manual)

<table>
<thead>
<tr>
<th>Project/Site:</th>
<th>Beaverhead Rock</th>
<th>Date:</th>
<th>8/16/02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicant/Owner:</td>
<td>MDT</td>
<td>County:</td>
<td>Beaverhead</td>
</tr>
<tr>
<td>Investigator:</td>
<td>B. Dutton</td>
<td>State:</td>
<td>MT</td>
</tr>
</tbody>
</table>

Do Normal Circumstances exist on the site: Yes No
Is the site significantly disturbed (Atypical Situation)? Yes X No
Is the area a potential Problem Area?: Yes X No

(If needed, explain on reverse.)

VEGETATION

<table>
<thead>
<tr>
<th>Dominant Plant Species</th>
<th>Stratum</th>
<th>Indicator</th>
<th>Dominant Plant Species</th>
<th>Stratum</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Scirpus acutus*</td>
<td>H</td>
<td>OBL</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Hordeum jubatum</td>
<td>H</td>
<td>FAC+</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Scirpus americanus</td>
<td>H</td>
<td>OBL</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 h</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percent of Dominant Species that are OBL, FACW, or FAC (excluding FAC-). 3/3 = 100%

Wetland vegetation present.

HYDROLOGY

Recorded Data (Describe in Remarks):
- Stream, Lake, or Tide Gauge
- Aerial Photographs
- Other
- No Recorded Data Available

Field Observations:
- Depth of Surface Water: __________ (in.)
- Depth to Free Water in Pit: __________ (in.)
- Depth to Saturated Soil: __________ (in.)

Wetland Hydrology Indicators:

Primary Indicators:
- Inundated
- Saturated in Upper 12 Inches
- Water Marks
- Drift Lines
- Sediment Deposits
- Drainage Patterns in Wetlands

Secondary Indicators (2 or more required):
- Oxidized Root Channels in Upper 12 Inches
- Water-Stained Leaves
- Local Soil Survey Data
- FAC-Neutral Test
- Other (Explain in Remarks)

Remarks:

Wetland hydrology.
SOILS

<table>
<thead>
<tr>
<th>Map Unit Name</th>
<th>Neen silty clay loam</th>
<th>Drainage Class:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Series and Phase):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxonomy (Subgroup):</td>
<td>Aquic calcicorthids</td>
<td></td>
</tr>
<tr>
<td>Field Observations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm Mapped Type?</td>
<td>Yes</td>
<td>X</td>
</tr>
</tbody>
</table>

Profile Description:

<table>
<thead>
<tr>
<th>Depth inches</th>
<th>Matrix Color (Munsell Moist)</th>
<th>Mottle Colors (Munsell Moist)</th>
<th>Mottle Abundance/Contrast</th>
<th>Texture, Concretions, Structure, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 2</td>
<td>10 YR 6/3</td>
<td>-</td>
<td>-</td>
<td>Silt loam</td>
</tr>
<tr>
<td>2 – 18</td>
<td>10 YR 7/1</td>
<td>10 YR 7/4</td>
<td>-</td>
<td>Loam</td>
</tr>
</tbody>
</table>

Hydric Soil Indicators:

- Histosol
- Histic Epipedon
- Sulfidic Odor
- Aquic Moisture Regime
- Reducing Conditions
- Gleyed or Low-Chroma Colors
- Concretions
- High Organic Content in surface Layer in Sandy Soils
- Organic Streaking in Sandy Soils
- Listed on Local Hydric Soils List
- Listed on National Hydric Soils List
- Other (Explain in Remarks)

Thin surface layer of more recent deposition over very low chroma and high organic matter layer.

WETLAND DETERMINATION

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Hydrology Present?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hydric Soils Present?</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Is this Sampling Point Within a Wetland? Yes No

Remarks:

Good wetland, same conditions in 2002 as 2001.
MDT Montana Wetland Assessment Form (revised 5/25/1999)

1. Project Name: Beavers Bend Gateway
 2. Project #: 130091 T12
 3. Evaluation Date: Mo & Day 23 yr. 01
 4. Evaluator(s): B. Walton J. Beck
 5. Wetlands Site #: 28/27/21

6. Wetland Location(s): I. Legal: T 5 N or S, R 7 E or W of S
 II. Approx. Stationing or Milepost:
 III. Watershed: 1002004

7. a. Evaluating Agency: MDT
 b. Purpose of Evaluation:
 1. Wetlands potentially affected by MDT project
 2. Mitigation wetlands: pre-construction
 3. Mitigation wetlands: post-construction
 4. Other

8. Wetland size: (total acres) 118 (visually estimated)

9. Assessment area: (AA, lot, ac.,) 118 ac (visually estimated)

10. Classification of Wetland and Aquatic Habitats in AA (HGM according to Brinson, first column; USFWS according to Cowardin [1979], remaining columns)

<table>
<thead>
<tr>
<th>HGM Class</th>
<th>System</th>
<th>Subsystem</th>
<th>Class</th>
<th>Water Regime</th>
<th>Modifier</th>
<th>% of AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riverine</td>
<td>Riverine</td>
<td>Lower perennial</td>
<td>EM</td>
<td>B</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AB</td>
<td>H</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UB</td>
<td>H</td>
<td>D</td>
<td>10</td>
</tr>
</tbody>
</table>

(Abbreviations: System: Palustrine (P), Subsystem: ground wetlands; Rock Bottom (RB), Unconsolidated bottom (UB), Aquatic Bed (AB), Unconsolidated Shore (US), Moss-bog Wetland (ML). Emergent Wetland (EM), Scrub-Shrub Wetland (SS), Forested Wetland (FW). System: Laotstrand (LV, Subsystem: Limnoid (L) Classes: RB, UB, AB, Subsystem: Litoral (L) Classes: RB, UB, AB, US, EM System: Riverine (R) Subsystem: Lower Perennial (L) Classes: RB, UB, AB, US, EM Subsystem: Upper Perennial (U) Classes: RB, UB, AB, US. Water Regime: Permanently Flooded (P), Intermittently Flooded (I), Semi-Permanently Flooded (S), Seasonally Flooded (S), Satirated (S), Temporarily Flooded (T), Modified (M), Excavated (E), Impounded (I), Diked (D), Drained (D), Farmed (F), Artificial (A)).

11. Estimated relative abundance: (of similarly classified sites within the same Major Montana Watershed Basin, see definitions)
 (Circle one) Unknown Rare Common Abundant
 Comments:

12. General condition of AA:
 I. Regarding disturbance: (use matrix below to determine [circle] appropriate response)

<table>
<thead>
<tr>
<th>Conditions within AA</th>
<th>Dominant conditions adjacent to (within 500 feet of) AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA occurs and is managed in predominantly natural state, is not grazed, logged, or otherwise converted; does not contain roads or buildings.</td>
<td>Land cultivated or heavily grazed or logged; subject to substantial fill placement, grading, or hydrological alteration; high road or building density.</td>
</tr>
<tr>
<td>AA is cultivated, or heavily grazed or logged; subject to substantial fill placement, grading, or hydrological alteration; contains few roads or buildings.</td>
<td>Land cultivated or heavily grazed or logged; subject to substantial fill placement, grading, or hydrological alteration; high road or building density.</td>
</tr>
<tr>
<td>AA is cultivated, or heavily grazed or logged; subject to relatively minor disturbance; contains few roads or buildings.</td>
<td>Land cultivated or heavily grazed or logged; subject to substantial fill placement, grading, or hydrological alteration; high road or building density.</td>
</tr>
</tbody>
</table>

 Comments: (types of disturbance, intensity, season, etc.). Moderate grazing, hay production

 II. Prominent woody, alien, & Introduced species (including those not-domesticated, feral): 1. Whitetop, Knapweed, Eurasian milfoil, hound tongue, Canada-thistle, Curly Nightshade, Quackgrass, Kudzu, Lamb's-quarter

 III. Provide brief descriptive summary of AA and surrounding land use/habitat:

 Constructed wetland units portions were formerly wetland. Includes open water, and within wetland dominated by herbaceous species. Surrounding land use is crops and grazing.

13. Structural Diversity: (based on number of "Cowardin" vegetated classes present [do not include unvegetated classes], see #10 above)

<table>
<thead>
<tr>
<th># of "Cowardin" vegetated classes present in AA (see #10)</th>
<th>≥ 3 vegetated classes or 2 vegetated classes (or ≤ 1 vegetated class)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating (circle)</td>
<td>High Moderate Low</td>
</tr>
</tbody>
</table>

 Comments:
SECTION PERTAINING to FUNCTIONS & VALUES ASSESSMENT

14A. Habitat for Federally Listed or Proposed Threatened or Endangered Plants or Animals:

- **I.** AA is Documented (D) or Suspected (S) to contain (circle one based on definitions contained in instructions):
 - Primary or critical habitat (list species)
 - D
 - Secondary habitat (list species)
 - S
 - Incidental habitat (list species)
 - S
 - No usable habitat

- **II. Rating** (use the conclusions from I above and the matrix below to arrive at [circle] the functional points and rating [H = high, M = moderate, or L = low] for this function)

<table>
<thead>
<tr>
<th>Highest Habitat Level</th>
<th>doc./primary</th>
<th>sus./primary</th>
<th>doc./secondary</th>
<th>sus./secondary</th>
<th>doc./incidental</th>
<th>sus./incidental</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Points and Rating</td>
<td>1 (H)</td>
<td>.9 (H)</td>
<td>.8 (M)</td>
<td>.7 (M)</td>
<td>.5 (L)</td>
<td>.3 (L)</td>
<td>0 (L)</td>
</tr>
</tbody>
</table>

Sources for documented use (e.g. observations, records, etc.):

14B. Habitat for plant or animals rated S1, S2, or S3 by the Montana Natural Heritage Program: (not including species listed in 14A above)

- **I.** AA is Documented (D) or Suspected (S) to contain (circle one based on definitions contained in instructions):
 - Primary or critical habitat (list species)
 - D
 - Secondary habitat (list species)
 - S
 - Incidental habitat (list species)
 - S
 - No usable habitat

- **II. Rating** (use the conclusions from I above and the matrix below to arrive at [circle] the functional points and rating [H = high, M = moderate, or L = low] for this function)

<table>
<thead>
<tr>
<th>Highest Habitat Level</th>
<th>doc./primary</th>
<th>sus./primary</th>
<th>doc./secondary</th>
<th>sus./secondary</th>
<th>doc./incidental</th>
<th>sus./incidental</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Points and Rating</td>
<td>1 (H)</td>
<td>.8 (H)</td>
<td>.7 (M)</td>
<td>.6 (M)</td>
<td>.2 (L)</td>
<td>.1 (L)</td>
<td>0 (L)</td>
</tr>
</tbody>
</table>

Sources for documented use (e.g. observations, records, etc.):

14C. General Wildlife Habitat Rating:

- **I.** Evidence of overall wildlife use in the AA (circle substantial, moderate, or low based on supporting evidence):
 - **Substantial** (based on any of the following [check]):
 - observations of abundant wildlife #s or high species diversity (during any period)
 - abundant wildlife sign such as scat, tracks, nest structures, game trails, etc.
 - presence of extremely limiting habitat features not available in the surrounding area
 - interviews with local biologists with knowledge of the AA

 - **Low** (based on any of the following [check]):
 - few or no wildlife observations during peak use periods
 - little to no wildlife sign
 - sparse adjacent upland food sources
 - interviews with local biologists with knowledge of the AA

- **Moderate** (based on any of the following [check]):
 - observations of scattered wildlife groups or individuals or relatively few species during peak periods
 - common occurrence of wildlife sign such as scat, tracks, nest structures, game trails, etc.
 - adequate adjacent upland food sources
 - interviews with local biologists with knowledge of the AA

- **ii.** Wildlife habitat features (working from top to bottom, circle appropriate AA attributes in matrix to arrive at exceptional (E), high (H), moderate (M), or low (L) rating. Structural diversity is from #13. For class cover to be considered evenly distributed, vegetated classes must be within 20% of each other in terms of their percent composition of the AA (see #10). Abbreviations for surface water durations are as follows: P/P = permanent/perennial; S/I = seasonal/intermittent; T/E = temporary/ephemeral; and A = absent [see instructions for further definitions of these terms].

<table>
<thead>
<tr>
<th>Structural diversity (see #13)</th>
<th>Even</th>
<th>Uneven</th>
<th>Even</th>
<th>Uneven</th>
<th>Even</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class cover distribution (all vegetated classes)</td>
<td>P/P</td>
<td>S/I</td>
<td>T/E</td>
<td>A</td>
<td>P/P</td>
</tr>
<tr>
<td>Duration of surface water in > 10% of AA</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>H</td>
</tr>
<tr>
<td>Low disturbance at AA (see #12)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Moderate disturbance at AA (see #12)</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>L</td>
</tr>
</tbody>
</table>

- **iii. Rating** (use the conclusions from i and ii above and the matrix below to arrive at [circle] the functional points and rating [E = exceptional, H = high, M = moderate, or L = low] for this function)

<table>
<thead>
<tr>
<th>Evidence of wildlife use (i)</th>
<th>Exceptional</th>
<th>Wildlife habitat features rating (ii)</th>
<th>High</th>
<th>Moderate</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substantial</td>
<td>1 (E)</td>
<td>.9 (H)</td>
<td>.8 (H)</td>
<td>.7 (M)</td>
<td>.3 (L)</td>
</tr>
<tr>
<td>Moderate</td>
<td>.7 (H)</td>
<td>.7 (M)</td>
<td>.5 (M)</td>
<td>.3 (L)</td>
<td></td>
</tr>
<tr>
<td>Minimal</td>
<td>.6 (M)</td>
<td>.4 (M)</td>
<td>.2 (L)</td>
<td>.1 (L)</td>
<td></td>
</tr>
</tbody>
</table>

Comments:
14D. General Fish/Aquatic Habitat Rating: (Assess this function if the AA is used by fish or the existing situation is "correctable" such that the AA could be used by fish [i.e., fish use is precluded by perched culvert or other barrier, etc.]. If the AA is not or was not historically used by fish due to lack of habitat, excessive gradient, etc., circle NA here and proceed to the next function. If fish use occurs in the AA but is not desired from a resource management perspective [such as fish use within an irrigation canal], then Habitat Quality [i below] should be marked as "Low", applied accordingly in ii below, and noted in the comments.)

Habitat Quality (circle appropriate AA attributes in matrix to arrive at exceptional (E), high (H), moderate (M), or low (L) quality rating.)

<table>
<thead>
<tr>
<th>Duration of surface water in AA</th>
<th>Permanent/Perennial</th>
<th>Seasonal/Intermittent</th>
<th>Temporary/Ephemeral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover - % of waterbody in AA containing cover objects such as submerged logs, large rocks & boulders, overhanging banks, floating-leaved vegetation, etc.</td>
<td>>25%</td>
<td>10-25%</td>
<td><10%</td>
</tr>
<tr>
<td>Shading - 75% of streambank or shoreline within AA contains riparian or wetland scrub/shrub or forested communities</td>
<td>E</td>
<td>E</td>
<td>H</td>
</tr>
<tr>
<td>Shading - 50 to 75% of streambank or shoreline within AA contains riparian or wetland scrub/shrub or forested communities</td>
<td>H</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>Shading - < 50% of streambank or shoreline within AA contains riparian or wetland scrub/shrub or forested communities</td>
<td>H</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

ii. Modified Habitat Quality (Circle the appropriate response to the following question. If answer is Y, then reduce rating in i above by one level [E = H = M, M = L, L = L]). Is fish use of the AA precluded or significantly reduced by a culvert, dike, or other man-made structure or activity or is the waterbody included on the MDEQ list of waterbodies in need of TMDL development with listed "Probable Impaired Uses" including cold or warm water fishery or aquatic life support? Y N Modified habitat quality rating = (circle) E H M L

iii. Rating (use the conclusions from i and ii above and the matrix below to arrive at [circle] the functional points and rating [E = exceptional, H = high, M = moderate, or L = low for this function])

<table>
<thead>
<tr>
<th>Types of fish known or suspected within AA</th>
<th>Exceptional</th>
<th>High</th>
<th>Moderate</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native game fish</td>
<td>1 (E)</td>
<td>9 (H)</td>
<td>7 (M)</td>
<td>5 (L)</td>
</tr>
<tr>
<td>Introduced game fish</td>
<td>0.9 (H)</td>
<td>8 (H)</td>
<td>6 (M)</td>
<td>4 (L)</td>
</tr>
<tr>
<td>Non-game fish</td>
<td>0.7 (M)</td>
<td>6 (M)</td>
<td>5 (M)</td>
<td>3 (L)</td>
</tr>
<tr>
<td>No fish</td>
<td>0.5 (M)</td>
<td>3 (L)</td>
<td>2 (L)</td>
<td>1 (L)</td>
</tr>
</tbody>
</table>

Comments: Unidentified minnows assumed to be native game fish.

14E. Flood Attenuation: (applies only to wetlands subject to flooding via in-channel or overbank flow. If wetlands in AA are not flooded from in-channel or overbank flow, circle NA here and proceed to next function.)

i. Rating (working from top to bottom, use the matrix below to arrive at [circle] the functional points and rating [H = high, M = moderate, or L = low for this function])

<table>
<thead>
<tr>
<th>Estimated wetland area in AA subject to periodic flooding</th>
<th>≥ 10 acres</th>
<th><10, >2 acres</th>
<th><2 acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of flooded wetland classified as forested, scrub/shrub, or both</td>
<td>75%</td>
<td>25-75%</td>
<td><25%</td>
</tr>
<tr>
<td>AA contains no outlet or restricted outlet</td>
<td>1 (H)</td>
<td>9 (H)</td>
<td>6 (M)</td>
</tr>
<tr>
<td>AA contains unrestricted outlet</td>
<td>0.9 (H)</td>
<td>8 (H)</td>
<td>6 (M)</td>
</tr>
</tbody>
</table>

ii. Are residences, businesses, or other features which may be significantly damaged by floods located within 0.5 miles downstream of the AA (circle)? Y N Comments: Potentially flooded area is NE of dike along river.

14F. Short and Long Term Surface Water Storage: (Applies to wetlands that flood or pond from overbank or in-channel flow, precipitation, upland surface flow, or groundwater flow. If no wetlands in the AA are subject to flooding or ponding, circle NA here and proceed with the evaluation.)

i. Rating (working from top to bottom, use the matrix below to arrive at [circle] the functional points and rating [H = high, M = moderate, or L = low for this function. Abbreviations for surface water durations are as follows: P/P = permanent/perennial; S/I = seasonal/intermittent; and T/E = temporary/ephemeral [see instructions for further definitions of these terms].)

<table>
<thead>
<tr>
<th>Estimated maximum acre feet of water contained in wetlands within the AA that are subject to periodic flooding or ponding</th>
<th>>5 acre feet</th>
<th><5, >1 acre foot</th>
<th><1 acre foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of surface water at wetlands within the AA</td>
<td>P/P</td>
<td>S/I</td>
<td>T/E</td>
</tr>
<tr>
<td>Wetlands in AA flood or pond ≥ 5 out of 10 years</td>
<td>1 (H)</td>
<td>9 (H)</td>
<td>8 (H)</td>
</tr>
<tr>
<td>Wetlands in AA flood or pond < 5 out of 10 years</td>
<td>0.9 (H)</td>
<td>8 (H)</td>
<td>6 (M)</td>
</tr>
</tbody>
</table>

Comments: POTENTIAL FLOODING AREAS.

14G. Sediment/Nutrient/Toxicant Retention and Removal: (Applies to wetlands with potential to receive excess sediments, nutrients, or toxicants through influx of surface or ground water or direct input. If no wetlands in the AA are subject to such input, circle NA here and proceed with the evaluation.)

i. Rating (working from top to bottom, use the matrix below to arrive at [circle] the functional points and rating [H = high, M = moderate, or L = low for this function.)

<table>
<thead>
<tr>
<th>Sediment, nutrient, and toxicant input levels within AA</th>
<th>Yes</th>
<th>No</th>
<th><70%</th>
<th>Yes</th>
<th>No</th>
<th><70%</th>
</tr>
</thead>
<tbody>
<tr>
<td>% cover of wetland vegetation in AA</td>
<td>≥ 70%</td>
<td>Yes</td>
<td>No</td>
<td><70%</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Evidence of flooding or ponding in AA</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>AA contains no outlet or restricted outlet</td>
<td>≥ 0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>AA contains unrestricted outlet</td>
<td>≥ 0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Comments: Most of the AA has a restricted outlet and is subject to agriculture runoff from cropland to the west.
14H Sediment/Shoreline Stabilization: (applies only if AA occurs on or within the banks of a river, stream, or other natural or man-made drainage, or on the shoreline of a standing water body which is subject to wave action. If does not apply, circle NA here and proceed to next function)

I. Rating (working from top to bottom, use the matrix below to arrive at [circle] the functional points and rating [E = exceptional, H = high, M = moderate, or L = low] for this function.

<table>
<thead>
<tr>
<th>% Cover of wetland streambank or shoreline by species with deep, binding rootmasses</th>
<th>Duration of surface water adjacent to rooted vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>permanent / perennial</td>
<td>seasonal / intermittent</td>
</tr>
<tr>
<td>> 65%</td>
<td>1 (H)</td>
</tr>
<tr>
<td>35-64%</td>
<td>.7 (M)</td>
</tr>
<tr>
<td>< 35%</td>
<td>.3 (L)</td>
</tr>
</tbody>
</table>

Comments:

14I. Production Export/Food Chain Support: (I. Rating (working from top to bottom, use the matrix below to arrive at [circle] the functional points and rating [H = high, M = moderate, or L = low] for this function. Factor A = acreage of vegetated component in the AA; Factor B = structural diversity rating from #13; Factor C = whether or not the AA contains a surface or subsurface outlet; the final three rows pertain to duration of surface water in the AA, where P = permanent/perennial; S/I = seasonal/intermittent; T/E = temporary/ephemeral or absent [see instructions for further definitions of these terms].

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Vegetated component >5 acres</th>
<th>Vegetated component 1-5 acres</th>
<th>Vegetated component <1 acre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P/I</td>
<td>.9H</td>
<td>.9H</td>
<td>.9H</td>
<td>.8H</td>
<td>.7M</td>
</tr>
<tr>
<td>S/I</td>
<td>.8H</td>
<td>.8H</td>
<td>.8H</td>
<td>.7M</td>
<td>.7M</td>
</tr>
<tr>
<td>T/E</td>
<td>.6H</td>
<td>.7M</td>
<td>.7M</td>
<td>.6M</td>
<td>.5M</td>
</tr>
</tbody>
</table>

Comments:

14J. Groundwater Discharge/Recharge: (Check the indicators in i & ii below that apply to the AA)

i. Discharge Indicators

- ☑ Springs are known or observed
- ☑ Vegetation growing during dormant season/drought
- ☑ Wetland occurs at the toe of a natural slope
- ☑ Seeps are present at the wetland edge
- ☑ AA permanently flooded during drought periods
- ☑ Wetland contains an outlet, but no inlet

ii. Recharge Indicators

- ☑ Permeable substrate present without underlying impeding layer
- ☑ Wetland contains inlet but no outlet
- ☑ Other

iii. Rating: Use the information from i and ii above and the table below to arrive at [circle] the functional points and rating [H = high, M = moderate, or L = low] for this function.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Functional Points and Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA is known Discharge/Recharge area or one or more indicators of D/R present</td>
<td>1 (H)</td>
</tr>
<tr>
<td>No Discharge/Recharge indicators present</td>
<td>.1 (L)</td>
</tr>
<tr>
<td>Available Discharge/Recharge information inadequate to rate AA D/R potential</td>
<td>N/A (Unknown)</td>
</tr>
</tbody>
</table>

Comments:

14K. Uniqueness:

i. Rating (working from top to bottom, use the matrix below to arrive at [circle] the functional points and rating [H = high, M = moderate, or L = low] for this function.

<table>
<thead>
<tr>
<th>Replacement potential</th>
<th>AA contains fen, bog, warm springs or mature (>80 yr-old) forested wetland or plant association listed as "S1" by the MNHP</th>
<th>AA does not contain previously cited rare types and structural diversity (#13) is high or contains plant association listed as "S2" by the MNHP</th>
<th>AA does not contain previously cited rare types or associations and structural diversity (#13) is low-moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated relative abundance (#11)</td>
<td>rare</td>
<td>common</td>
<td>abundant</td>
</tr>
<tr>
<td>Low disturbance at AA (#12)</td>
<td>.1 (H)</td>
<td>.9 (H)</td>
<td>.8 (H)</td>
</tr>
<tr>
<td>Moderate disturbance at AA (#12)</td>
<td>.9 (H)</td>
<td>.8 (H)</td>
<td>.7 (M)</td>
</tr>
<tr>
<td>High disturbance at AA (#12)</td>
<td>.8 (H)</td>
<td>.7 (M)</td>
<td>.6 (M)</td>
</tr>
</tbody>
</table>

Comments:

14L. Recreation/Education Potential: I. Is the AA a known rec./ed. site (circle) Y N If yes, rate as [circle] High [1] and go to ii; if no go to iii

ii. Check categories that apply to the AA: ☑ Educational/scientific study ☑ Consumptive rec.; ☑ Non-consumptive rec.; Other

iii. Based on the location, diversity, size, and other site attributes, is there strong potential for rec./ed. use Y N

If yes, go to ii, then proceed to iv; if no, then rate as [circle] Low [0.1]

iv. Rating (use the matrix below to arrive at [circle] the functional points and rating [H = high, M = moderate, or L = low] for this function.

<table>
<thead>
<tr>
<th>Ownership</th>
<th>Disturbance at AA (#12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>public ownership</td>
<td>low</td>
</tr>
<tr>
<td>private ownership</td>
<td>.1 (H)</td>
</tr>
</tbody>
</table>

Comments:
<table>
<thead>
<tr>
<th>Function & Value Variables</th>
<th>Rating</th>
<th>Actual Functional Points</th>
<th>Possible Functional Points</th>
<th>Functional Units: (Actual Points x Estimated AA Acreage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Listed/Proposed T&E Species Habitat</td>
<td>M</td>
<td>.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B. MT Natural Heritage Program Species Habitat</td>
<td>H</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C. General Wildlife Habitat</td>
<td>E</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D. General Fish/Aquatic Habitat</td>
<td>M</td>
<td>.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E. Flood Attenuation</td>
<td>M</td>
<td>.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>F. Short and Long Term Surface Water Storage</td>
<td>H</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G. Sediment/Nutrient/Toxicant Removal</td>
<td>H</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>H. Sediment/Shoreline Stabilization</td>
<td>L</td>
<td>.3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>I. Production Export/Food Chain Support</td>
<td>H</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>J. Groundwater Discharge/Recharge</td>
<td>H</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>K. Uniqueness</td>
<td>M</td>
<td>.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L. Recreation/Education Potential</td>
<td>L</td>
<td>.3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Totals:</td>
<td></td>
<td>8.6</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

OVERALL ANALYSIS AREA (AA) RATING: (Circle appropriate category based on the criteria outlined below) I II III IV

Category I Wetland: (Must satisfy one of the following criteria; if does not meet criteria, go to Category II)
- Score of 1 functional point for Listed/Proposed Threatened or Endangered Species; or
- Score of 1 functional point for Uniqueness; or
- Score of 1 functional point for Flood Attenuation and answer to Question 14E.ii is "yes"; or
 Total actual functional points > 80% (round to nearest whole #) of total possible functional points.

Category II Wetland: (Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go to Category IV)
- *X* Score of 1 functional point for Species Rated S1, S2, or S3 by the MT Natural Heritage Program; or
- *X* Score of .9 or 1 functional point for General Wildlife Habitat; or
- *X* Score of .9 or 1 functional point for General Fish/Aquatic Habitat; or
 "High" to "Exceptional" ratings for both General Wildlife Habitat and General Fish/Aquatic Habitat; or
- *X* Score of .9 functional point for Uniqueness; or
 Total Actual Functional Points > 65% (round to nearest whole #) of total possible functional points.

Category III Wetland: (Criteria for Categories I, II or IV not satisfied)

Category IV Wetland: (Criteria for Categories I or II are not satisfied and all of the following criteria are met; if does not satisfy criteria go to Category III)
- "Low" rating for Uniqueness; and
- "Low" rating for Production Export/Food Chain Support; and
 Total actual functional points < 30% (round to nearest whole #) of total possible functional points
Beaverhead # 1: There was a slight improvement in total bioassessment scores calculated for this site between 2001 and 2002; the scores for both years imply that biological conditions were sub-optimal. Low chironomid taxa richness suggested monotonous substrates. The biotic index value was near the median value for wetland sites in this study, suggesting that water quality may have been mildly impaired by nutrients, elevated water temperatures, or both.

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Beaverhead 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>8/16/2002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Family</th>
<th>Scientific Name</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligochaeta</td>
<td>Tubificidae</td>
<td>Tubificidae - immature</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limnodrilus lenticollis</td>
<td>1</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>Lymnaeidae</td>
<td>Fossaria</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Physidae</td>
<td>Physa</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Planorbidae</td>
<td>Gyraulus</td>
<td>1</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Cladocera</td>
<td>Cladocera</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calanoida</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ostracoda</td>
<td>Ostracoda</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Amphipoda</td>
<td>Gammarus</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyalella azteca</td>
<td>57</td>
</tr>
<tr>
<td>Acarina</td>
<td></td>
<td>Acari</td>
<td>4</td>
</tr>
<tr>
<td>Odonata</td>
<td>Libellulidae</td>
<td>Sympernum</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Coenagrionidae</td>
<td>Coenagrionidae-early instar</td>
<td>7</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>Baetidae</td>
<td>Callibaetis</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Caenidae</td>
<td>Caenis</td>
<td>4</td>
</tr>
<tr>
<td>Hemiptera</td>
<td>Corixidae</td>
<td>Corixidae - immature</td>
<td>4</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>Ha'ilipidae</td>
<td>Ha'ilipus</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peltodytes</td>
<td>1</td>
</tr>
<tr>
<td>Diptera</td>
<td>Chironomidae</td>
<td>Ablabesmyia</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arctiopus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psectrocladius elatus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total taxa</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POET</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chironomidae taxa</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crustacea taxa + Mollusca taxa</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% Chironomidae</td>
<td>4.04%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orthocladiinae/Chironomidae</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% Amphipoda</td>
<td>33.80%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% Crustacea + % Mollusca</td>
<td>59.88%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HBI</td>
<td>7.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% Dominant taxon</td>
<td>35.19%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% Collector-Gatherers</td>
<td>80.25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% Filters</td>
<td>2.47%</td>
</tr>
</tbody>
</table>

Scores (2002 criteria)
Total taxa	3
POET	5
Chironomidae	1
Crustacea taxa + Mollusca taxa	5
% Chironomidae	5
Orthocladiinae/Chironomidae	5
% Amphipoda	1
% Crustacea + % Mollusca	3
HBI	3
% Dominant taxon	3
% Collector-Gatherers	3
% Filters	1

Total score: 38
Beaverhead Mitigation Monitoring Project
for Land and Water Consulting

<table>
<thead>
<tr>
<th>2002</th>
<th>Project Name</th>
<th>Date</th>
<th>Beaverhead 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8/16/2002</td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>Physidae</td>
<td>Physa</td>
<td>2</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Cladocera</td>
<td>Cladocera</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ostracoda</td>
<td>Ostracoda</td>
<td>387</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>Hyalella azteca</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>Caenidae</td>
<td>Caenis</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Corixidae</td>
<td>Corixidae - immature</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corydilla larvalis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sigara</td>
<td>5</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>Dytiscidae</td>
<td>Dytiscidae - early instar larvae</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydrotus</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laccophilus</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haliphus</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydrophilidae</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyalella azteca</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chironomidae</td>
<td>2</td>
</tr>
<tr>
<td>Insecta</td>
<td></td>
<td>Chironomus</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>421</td>
<td></td>
</tr>
<tr>
<td>Total taxa</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>POET</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chironomidae taxa</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Crustaceae taxa + Mollusca taxa</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Chironomidae</td>
<td></td>
<td>0.71%</td>
<td></td>
</tr>
<tr>
<td>Orthocladiinae/Chironomidae</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%Amphipoda</td>
<td></td>
<td>0.71%</td>
<td></td>
</tr>
<tr>
<td>%Crustacea + %Mollusca</td>
<td>93.89%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBI</td>
<td></td>
<td>7.91</td>
<td></td>
</tr>
<tr>
<td>%Dominant taxon</td>
<td></td>
<td>91.92%</td>
<td></td>
</tr>
<tr>
<td>%Collector-Gatherers</td>
<td>93.82%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%Filterers</td>
<td></td>
<td>0.48%</td>
<td></td>
</tr>
</tbody>
</table>

Scores (2002 criteria)
- Total taxa: 3
- POET: 1
- Chironomidae taxa: 1
- Crustaceae taxa + Mollusca taxa: 5
- % Chironomidae: 5
- Orthocladiinae/Chironomidae: 3
- %Amphipoda: 5
- %Crustacea + %Mollusca: 1
- HBI: 1
- %Dominant taxon: 1
- %Collector-Gatherers: 5
- %Filterers: 1

Total score: 32

Beaverhead #2: Between 2001 and 2002, this site apparently suffered a decrease in taxa richness and an increase in the overall tolerance (biotic index = 7.91) of the sampled assemblage to warm temperatures and/or nutrient enrichment. As a result, the bioassessment scores suggested that conditions degenerated from near-optimal in 2001 to sub-optimal in 2002. In the latter year, the sample was swamped with ostracods, which may have been a sampling artifact; ostracod distribution was patchy. Organic detritus appears to have been plentiful. As before, midge diversity was low, suggesting monotonous substrates.
Beaverhead #3: Total bioassessment scores at this site dropped between 2001 and 2002, suggesting that conditions deteriorated from near-optimal to sub-optimal. In the latter year, copepods were the dominant taxon, and cladocerans were plentiful. This apparently represented a shift in assemblage habitus from a benthic orientation to a water-column orientation, but it could be merely an artifact of sampling technique. In either event, the result was an increase in apparent overall assemblage tolerance to warm temperatures and/or nutrient enrichment (biotic index = 7.92), and a loss of diversity.
Beaverhead #4. Conditions at this site remained sub-optimal in 2002, with diversity suffering a decline, and a complete loss of the relatively intolerant taxa (POET). The midge Caenphloeus sterconarius was abundant at the site. This animal is associated with cow dung, suggesting that cattle have had access here. Low midge diversity suggested monotonous habitats.

<table>
<thead>
<tr>
<th>Insect Group</th>
<th>Taxon</th>
<th>Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gadfly</td>
<td>Nais variabilis</td>
<td>7</td>
</tr>
<tr>
<td>Barnacles</td>
<td>Physa</td>
<td>3</td>
</tr>
<tr>
<td>Planorbida</td>
<td>Gyraulus</td>
<td>25</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>Ostracoda</td>
<td>41</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>Gammarus</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Hyalella eucneca</td>
<td>1</td>
</tr>
<tr>
<td>Acari</td>
<td>Acanax</td>
<td>1</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>Halocryptus</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hydrochiridae</td>
<td>1</td>
</tr>
<tr>
<td>Diptera</td>
<td>Rizzardiellina</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Dolichopodidae</td>
<td>1</td>
</tr>
<tr>
<td>Psychodidae</td>
<td>Pericoma</td>
<td>1</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>Caenphloeus sterconarius</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Plectrochironus clucus</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>115</td>
</tr>
<tr>
<td>Total taxa</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>POET</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Chironomidae taxa</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Crustacea taxa + Mollusca taxa</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>% Chironomidae</td>
<td></td>
<td>19.13%</td>
</tr>
<tr>
<td>Orthocladiinae/Chironomidae</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>%Amphipoda</td>
<td></td>
<td>7.83%</td>
</tr>
<tr>
<td>%Crustacea + %Mollusca</td>
<td></td>
<td>67.83%</td>
</tr>
<tr>
<td>HB1</td>
<td></td>
<td>7.37</td>
</tr>
<tr>
<td>%Dominant taxon</td>
<td></td>
<td>35.65%</td>
</tr>
<tr>
<td>%Collector-Gatherers</td>
<td></td>
<td>54.78%</td>
</tr>
<tr>
<td>%Filterers</td>
<td></td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Scores (2002 criteria)

Total taxa	5
POET	1
Chironomidae taxa	1
Crustacea taxa + Mollusca taxa	5
% Chironomidae	3
Orthocladiinae/Chironomidae	5
%Amphipoda	3
%Crustacea + %Mollusca	1
HB1	3
%Dominant taxon	3
%Collector-Gatherers	3
%Filterers	1

Total score 32
Montana Department of Transportation
Wetland Mitigation Monitoring Project
for Land and Water Consulting

2002

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Beaverhead 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>8/16/2002</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>Physidae</td>
</tr>
<tr>
<td></td>
<td>Physa</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Plankobidac</td>
</tr>
<tr>
<td></td>
<td>Gyranus</td>
</tr>
<tr>
<td></td>
<td>104</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Cladocera</td>
</tr>
<tr>
<td></td>
<td>Cladocera</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ostracoda</td>
</tr>
<tr>
<td></td>
<td>Ostracoda</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Amphipoda</td>
</tr>
<tr>
<td></td>
<td>Gammarus</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Hyaella azteca</td>
</tr>
<tr>
<td></td>
<td>67</td>
</tr>
<tr>
<td>Acanina</td>
<td>Acari</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Odonata</td>
<td>Libellulidae</td>
</tr>
<tr>
<td></td>
<td>Libellulidae-early instar</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Coenagriidae</td>
</tr>
<tr>
<td></td>
<td>Coenagriidae-early instar</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>Baetidae</td>
</tr>
<tr>
<td></td>
<td>Callibaetis</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Heteroptera</td>
<td>Corixidae</td>
</tr>
<tr>
<td></td>
<td>Corixidae - immature</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>Leptoceridae</td>
</tr>
<tr>
<td></td>
<td>Yedos</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>Halipididae</td>
</tr>
<tr>
<td></td>
<td>Halipus</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Berosus</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Diptera</td>
<td>Chironomidae</td>
</tr>
<tr>
<td></td>
<td>Acricotophas</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>242</td>
</tr>
<tr>
<td>Total taxa</td>
<td>15</td>
</tr>
<tr>
<td>POET</td>
<td>4</td>
</tr>
<tr>
<td>Chironomidae taxa</td>
<td>1</td>
</tr>
<tr>
<td>Crustacea taxa + Mollusca taxa</td>
<td>6</td>
</tr>
<tr>
<td>% Chironomidae</td>
<td>0.41%</td>
</tr>
<tr>
<td>Orthocladiinae/Chironomidae</td>
<td>1.00</td>
</tr>
<tr>
<td>%Amphipoda</td>
<td>38.02%</td>
</tr>
<tr>
<td>%Crustacea + %Mollusca</td>
<td>92.98%</td>
</tr>
<tr>
<td>HBI</td>
<td>7.56</td>
</tr>
<tr>
<td>%Dominant taxon</td>
<td>42.98%</td>
</tr>
<tr>
<td>%Collector-Gatherers</td>
<td>50.41%</td>
</tr>
<tr>
<td>%Filterers</td>
<td>0.83%</td>
</tr>
</tbody>
</table>

Scores (2002 criteria)

Total taxa	3
POET	5
Chironomidae taxa	1
Crustacea taxa + Mollusca taxa	5
% Chironomidae	5
Orthocladiinae/Chironomidae	5
%Amphipoda	1
%Crustacea + %Mollusca	1
HBI	3
%Dominant taxon	3
%Collector-Gatherers	3
%Filterers	1

Total score 36

Beaverhead #5: Snails and amphipods continued to overwhelm the sampled assemblage taken at this site, representing an assemblage highly tolerant of warm water temperatures and nutrient enrichment. The midge fauna was composed of a single individual; substrates were apparently monotonous. The bioassessment method classified this site as sub-optimal in both years.
Beaverhead #6: An improvement in assemblage diversity improved the bioassessment score at this site between 2001 and 2002. Conditions were classified as sub-optimal in both years. Amphipods and snails remained dominant, but several midge taxa were collected in the second year. This suggested somewhat improved habitat diversity. As before, the presence of macrophytes was suggested by the taxonomic composition of the assemblage. Water quality indicators appeared to suggest warm temperatures and/or nutrient enrichment (biotic index = 7.59); this represented a big change from 2001, when assemblage tolerance was relatively low.

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Family</th>
<th>Species</th>
<th>Date</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coelenterata</td>
<td>Hydra</td>
<td></td>
<td>8/16/2002</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>Tubificidae</td>
<td>Tubificidae - immature</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hirudinea</td>
<td>Thamnophyes</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>Physidae</td>
<td>Physa</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planorbidae</td>
<td>Gyraulus</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Crustacea</td>
<td>Cladocera</td>
<td>Cladocera</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copepoda</td>
<td>Calanoidia</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ostracoda</td>
<td>Ostracoda</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Amphipoda</td>
<td>Gammarus</td>
<td></td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hyalella azteca</td>
<td></td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td>Coenagrionidae</td>
<td>Coenagrionidae-early instar</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Hemiptera</td>
<td>Corixidae</td>
<td>Corixidae - immature</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sigara</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Diptera</td>
<td>Chironomidae</td>
<td>Dicrotendipes</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Einfeldia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microtendipes</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orthocladiinae anneciers</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psammochironomida elatus</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>Total taxa</td>
<td></td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>POET</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chironomidae taxa</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Crustacea taxa + Mollusca taxa</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>% Chironomidae</td>
<td></td>
<td></td>
<td>49.2%</td>
<td></td>
</tr>
<tr>
<td>Orthocladiinae/Chironomidae</td>
<td></td>
<td></td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>% Amphipoda</td>
<td></td>
<td></td>
<td>59.08%</td>
<td></td>
</tr>
<tr>
<td>% Crustacea + % Mollusca</td>
<td></td>
<td></td>
<td>90.15%</td>
<td></td>
</tr>
<tr>
<td>HBI</td>
<td></td>
<td></td>
<td>7.59</td>
<td></td>
</tr>
<tr>
<td>% Dominant taxon</td>
<td></td>
<td></td>
<td>47.69%</td>
<td></td>
</tr>
<tr>
<td>% Collector-Gatherers</td>
<td></td>
<td></td>
<td>86.15%</td>
<td></td>
</tr>
<tr>
<td>% Filterers</td>
<td></td>
<td></td>
<td>2.77%</td>
<td></td>
</tr>
</tbody>
</table>

Scores (2002 criteria)

<table>
<thead>
<tr>
<th>Category</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total taxa</td>
<td>3</td>
</tr>
<tr>
<td>POET</td>
<td>1</td>
</tr>
<tr>
<td>Chironomidae taxa</td>
<td>3</td>
</tr>
<tr>
<td>Crustacea taxa + Mollusca taxa</td>
<td>5</td>
</tr>
<tr>
<td>% Chironomidae</td>
<td>5</td>
</tr>
<tr>
<td>Orthocladiinae/Chironomidae</td>
<td>5</td>
</tr>
<tr>
<td>% Amphipoda</td>
<td>1</td>
</tr>
<tr>
<td>% Crustacea + % Mollusca</td>
<td>1</td>
</tr>
<tr>
<td>HBI</td>
<td>3</td>
</tr>
<tr>
<td>% Dominant taxon</td>
<td>3</td>
</tr>
<tr>
<td>% Collector-Gatherers</td>
<td>5</td>
</tr>
<tr>
<td>% Filterers</td>
<td>1</td>
</tr>
</tbody>
</table>

Total score 36
Appendix C

Representative Photographs

2002 Aerial Photograph

MDT Wetland Mitigation Monitoring

Beaverhead Gateway

Dillon, Montana
Photo Point No. 1: View looking northeast along fence-line (60°).

Photo Point No. 1: View looking northwest across mitigation site. Upland to wetland vegetation transition (300°).

Photo Point No. 3: View looking southwest along the end of Transect 1, emergent wetland vegetation dominated by bulrush (225°).

Photo Point No. 3: View looking northeast, open water and emergent wetland vegetation dominated by bulrush (45°).

Photo Point No. 4: View looking northeast along the beginning of Transect 1 (40°).

Photo Point No. 5: View looking northeast across mitigation site (45°).

Beaverhead Rock: 2002
Photo Point No. 7: View looking east along dike shore, emergent wetland vegetation and open water (90°).

Photo Point No. 7: View looking north along the start of Transect 2 (350°).

Photo Point No. 8: View looking south from the end of Transect 2 (170°).

Photo Point No. 9: View looking west along dike shore and open water (270°).

Photo Point No. 9: View looking southeast along dike shore (150°).

Photo Point No. 10: View looking northeast along spoil pile dominated by a weedy plant community (45°).

Beaverhead Rock: 2002
Photo Point No. 2: Panoramic view of mitigation site, southern half, 300° to 220°. Photo taken looking north to south.

Photo Point No. 2: Panoramic view of mitigation site, northern half, 40° to 300°. Photo taken looking north to south.
Appendix D

ORIGINAL SITE PLAN
SOIL SURVEY MAP AND DESCRIPTION
MDT BIRD OBSERVATIONS

MDT Wetland Mitigation Monitoring
Beaverhead Gateway
Dillon, Montana
Project Area

NRCS - Madison County Soil Survey
This unit is used as irrigated cropland. The main crops are small grain, alfalfa, and clover for hay, and grass for pasture.

Cropped management. This unit is limited for irrigated crops by the hazard of soil blowing, the seasonal high water table, salinity, and soil tilth. Excess salts generally can be leached from the soil with irrigation. Good irrigation water management is necessary to avoid application of too much water and to keep the root zone free of salts. Sprinkler irrigation is suitable for the controlled application of water. Silt-tolerant crops should be grown in the initial stages of reclamation. The surface layer of the soil in this unit is high in content of lime and low in content of organic matter. Crops respond well to phosphorus and nitrogen. Using green manure crops, barnyard manure, and crop residue increases organic matter content and fertility. Growing grasses and legumes for hay and pasture reduces soil blowing. Maintaining crop residue on or near the surface reduces soil blowing and helps to maintain soil tilth and organic matter content.

Windbreak management. This unit is suited to windbreaks. The seasonal high water table limits the choice of trees and shrubs to those that are water tolerant. Suitable trees for planting are cottonwood, golden willow, white willow, Russian olive, Siberian elm, Siberian crabapple, blue spruce, and Rocky Mountain juniper. Suitable shrubs are purpleosier willow, common chokecherry, lilac, and silver buffaloberry.

Homestead development. This unit is poorly suited to homeste development because of the rare periods of flooding and the seasonal high water table.

This map unit is in capability subclass 4Ve, irrigated.

86—Neen silty clay loam, wet, 0 to 2 percent slopes. This deep, somewhat poorly drained, salt-affected soil is in swales on stream terraces in the western part of the survey area. It has a wetness problem associated with excess irrigation. It formed in loamy alluvium. Elevation is 4,200 to 6,000 feet. The average annual precipitation is about 12 inches, the average annual air temperature is about 40 degrees F, and the average frost-free period is about 100 days.

Included in this unit are small, randomly distributed areas of Villy soils and soils that have a layer of organic material 4 to 20 inches thick on the surface. Included areas make up about 10 percent of the total acreage.

Typically, the surface layer of this Neen soil is light gray silty clay loam about 9 inches thick. The underlying material to a depth of 60 inches or more is light gray silty clay loam.

Permeability is moderately slow. Available water capacity is about 7 inches. Effective rooting depth is 60 inches or more. Where this soil is under native vegetation, the average annual wetting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight. The hazard of soil blowing is slight. A seasonal high water table is at a depth of 6 to 12 inches from April through August. This soil is subject to occasional, brief periods of flooding from January through June. The soil is calcareous throughout. It is moderately salt-affected throughout the soil profile.

This unit is used as rangeland. It is very poorly suited to cultivated crops because of the seasonal high water table and the problem of salts in the surface layer.

Rangeland management. The potential native plant community is mainly alkali sacaton, sedges, alkali cordgrass, tufted hairgrass, inland saltgrass, alkali bluegrass. American sloughgrass, and northern reedgrass. If the rangeland is overgrazed, the proportion of alkali sacaton, alkali cordgrass, tufted hairgrass, alkali bluegrass. American sloughgrass, and northern reedgrass decreases and the proportion of inland saltgrass, slough sedge, and beaked sedges increases. If overgrazing continues, plants such as foxtail barley, Baltic rush, and annual forbs may invade. The potential native plant community produces about 4,500 pounds of air-dry vegetation per acre in years of above-normal precipitation and 3,800 pounds in years of below-normal precipitation.

Grazing should be delayed until the soil is firm and the more desirable forage plants have achieved sufficient growth to withstand grazing pressure. Use of mechanical treatment is not practical because of wetness and the high content of salts in the soil.

Windbreak management. This unit is very poorly suited to windbreaks. It is limited by the seasonal high water table and the high content of salts.

Homestead development. This unit is very poorly suited to homeste development because of the occasional periods of flooding and the seasonal high water table.

This map unit is in capability subclass VVw, nonirrigated. It is in Wet Meadow range site, 10- to 14-inch precipitation zone.

89—Nuley sandy loam, 2 to 12 percent slopes. This deep, well drained soil is on hills and broad ridgetops in the northwestern and central parts of the survey area. It formed in gneiss. Elevation is 4,500 to 6,500 feet. The average annual precipitation is about 12 inches, the average annual air temperature is about 40 degrees F, and the average frost-free period is about 100 days.

Included in this unit are small, randomly distributed areas of Rock outcrop and soils that have bedrock at a
Soil Survey

Sols on fans and terraces. These soils formed in
luvial and eolian material derived mainly from
nestone. Slope is 0 to 25 percent. Elevation is 4,500
6,500 feet. The average annual precipitation is 10 to
4 inches, the average annual air temperature is 38 to
2 degrees F, and the frost-free period is 90 to 105
days.

These soils are coarse-loamy, carbonate-lodic,
alfic horizons.

Typical pedon of Musselshell loam, cool, 2 to 8
percent slopes, in an area of rangeland, 700 feet north
of 300 feet east of the southwest corner of sec. 36, T.
S., R. 6 W.

11—0 to 4 inches; light brownish gray (10YR 6/2)
loam, dark brown (10YR 3/3) moist; moderate fine
granular structure; soft, very friable, slightly sticky
and plastic; many very fine, fine, and medium roots;
common very fine and fine pores; 5 percent
pebbles; strongly effervescent; moderately alkaline;
abrupt wavy boundary.

12—4 to 8 inches; pale brown (10YR 6/3) loam, dark
yellowish brown (10YR 4/4) moist; moderate
medium subangular blocky structure; slightly hard,
friable, slightly sticky and plastic; many very fine,
fine, and medium roots; common very fine and fine
pores; 10 percent pebbles; strongly effervescent;
moderately alkaline; abrupt wavy boundary.

1ca—8 to 15 inches; white (10YR 8/2) loam, pale
brown (10YR 6/3) moist; moderate medium
subangular blocky structure; slightly hard, friable,
slightly sticky and plastic; many very fine and fine
roots; few fine pores; 10 percent pebbles; common
fine soft masses of lime and lime coatings on
pebbles; violently effervescent; moderately alkaline;
clear wavy boundary.

2ca—15 to 25 inches; very pale brown (10YR 7/3)
gravelly loam, yellowish brown (10YR 5/4) moist;
massive; slightly hard, friable, slightly sticky and
slightly plastic; common very fine and fine roots;
common fine pores; 30 percent pebbles; common
fine soft masses of lime, lime coatings on pebbles,
and lime pendants on underside of pebbles;
violently effervescent; moderately alkaline; clear
smooth boundary.

3ca—25 to 41 inches; white (10YR 8/2) very gravelly
loam, pale brown (10YR 6/3) moist; moderate fine
granular structure; slightly hard, very friable, slightly
sticky and slightly plastic; 40 percent pebbles;
common fine soft masses of lime, lime coatings on
pebbles, and lime pendants on underside of

pebbles; violently effervescent; moderately alkaline;
gradual wavy boundary.

11c4—41 to 60 inches; light gray (10YR 7/2) very
gravelly sandy loam, grayish brown (10YR 5/2)
mottled; soft, very friable; slightly sticky and
slightly plastic; 60 percent pebbles; strongly
effervescent; moderately alkaline.

The A horizon is loam or gravelly loam and is 5 to 25
percent pebbles. The C horizon is loam or gravelly loam
in the upper part and very gravelly loam or very gravelly
sandy loam in the lower part. There is a very gravelly
loamy sand layer below a depth of about 40 inches in
some pedons. The Cca horizon is 40 to 80 percent
calcium carbonate. Reaction is moderately alkaline or
strongly alkaline.

Neen Series

The Neen series consists of deep, somewhat poorly
drained soils on stream terraces and in upland swales.
These soils formed in alluvium. Slope is 0 to 2 percent.
Elevation is 4,200 to 6,000 feet. The average annual
precipitation is 10 to 14 inches, the average annual air
temperature is 38 to 42 degrees F, and the frost-free
period is 90 to 105 days.

These soils are fine-silty, mixed, frigid Aquic
Calciorthids.

Typical pedon of Neen silty clay loam, 0 to 2 percent
slopes, in an area of rangeland, 2,140 feet west and
1,940 feet north of the southeast corner of sec. 25, T. 4
S., R. 7 W.

A11sa—0 to 2 inches; grayish brown (10YR 5/2) silty
clay loam, dark grayish brown (10YR 4/2) moist;
weak to moderate fine and medium granular
structure; slightly hard, friable, slightly sticky and
plastic; few very fine and fine roots; many very fine
interstitial pores; many very fine salt crystals;
violently effervescent; moderately alkaline; abrupt
smooth boundary.

A12sa—2 to 9 inches; light gray (10YR 6/1) silty clay
loam, dark gray (10YR 4/1) moist; weak very fine
and fine granular structure; slightly hard, friable,
sticky and plastic; many very fine roots; many very
fine interstitial pores; many very fine salt crystals;
strongly effervescent; moderately alkaline; abrupt
wavy boundary.

C1sa—9 to 32 inches; light gray (10YR 7/2) silty clay
loam, grayish brown (10YR 5/2) moist; moderate
fine granular structure; slightly hard, friable, sticky
and plastic; common very fine roots; common very fine continuous tubular pores; violently effervescent; many very fine salt crystals; moderately alkaline; clear smooth boundary.

C2e-a—32 to 50 inches; light gray (10YR 7/2) silty clay loam, grayish brown (10YR 5/2) moist; weak to moderate fine and medium subangular blocky structure; slightly hard, friable, sticky and plastic; few very fine roots; common very fine continuous tubular pores; few very fine salt crystals; violently effervescent; moderately alkaline; clear smooth boundary.

C3c-ag—50 to 60 inches; light gray (5Y 7/2) silty clay loam, olive gray (5Y 5/2) moist; common fine distinct yellowish red (5YR 4/6) motles; massive; hard, firm, sticky and plastic; many very fine roots; many very fine interstitial pores; few very fine salt crystals; strongly effervescent; moderately alkaline.

The water table fluctuates between depths of 24 and 42 inches during the growing season. The electrical conductivity is 8 to 16 millimhos per centimeter. Where the profile is drained and irrigated, the conductivity is 2 to 4 millimhos per centimeter in the upper part and 2 to 8 millimhos per centimeter in the lower part. Depth to the Cca horizon is 6 to 30 inches. The C3 horizon is clay loam or silty clay loam.

Nuley Series

The Nuley series consists of deep, well drained soils on uplands. These soils formed in material derived from metamorphic and igneous rock. Slope is 2 to 35 percent. Elevation is 4,500 to 6,500 feet. The average annual precipitation is 10 to 14 inches, the average annual air temperature is 38 to 42 degrees F., and the frost-free period is 90 to 105 days.

These soils are fine-loamy, mixed Aridic Argiborolls. Typical pedon of Nuley clay loam, 2 to 8 percent slopes, in an area of cropland, 2,000 feet west and 25 feet north of the southeast corner of sec. 16, T. 1 S., R. 1 W.

Ap—0 to 7 inches; grayish brown (10YR 5/2) clay loam, dark brown (10YR 3/3) moist; weak to moderate fine granular structure; soft, friable, slightly sticky and slightly plastic; many fine roots; many fine tubular pores and few fine interstitial pores; 5 percent pebbles; mildly alkaline; abrupt smooth boundary.

B2t—7 to 11 inches; brown (10YR 4/3) clay loam, dark yellowish brown (10YR 3/4) moist; moderate medium subangular blocky structure; slightly hard, friable, sticky and plastic; many fine roots; common fine tubular pores; common to many distinct clay films on faces of peds; 5 percent pebbles; mildly alkaline; clear wavy boundary.

B3c-a—11 to 15 inches; light gray (10YR 7/2) sandy clay loam, yellowish brown (10YR 5/4) moist; weak medium subangular blocky structure; soft, friable, slightly sticky and slightly plastic; common fine roots; few fine tubular pores and common fine interstitial pores; 5 percent pebbles; disseminated lime; violently effervescent; moderately alkaline; abrupt smooth boundary.

C1ca—15 to 24 inches; white (10YR 8/1) sandy loam, light gray (10YR 7/2) moist; massive; slightly hard, friable, nonsticky and nonplastic; common fine roots; common fine tubular pores; 5 percent pebbles; disseminated lime; violently effervescent; moderately alkaline; abrupt smooth boundary.

IIc-2—24 to 50 inches; grayish brown (2.5Y 5/2) gravelly coarse sand, dark grayish brown (2.5Y 4/2) moist; single grain; loose, nonsticky and nonplastic; very few very fine roots; common fine and medium interstitial pores; 25 percent pebbles; moderately efervescent; moderately alkaline; gradual irregular boundary.

R—50 inches; granitic gneiss.

Depth to calcareous material is 10 to 15 inches. Depth to granitic bedrock is 40 to 60 inches. The A and B horizons are 5 to 15 percent rock fragments, mainly pebbles. The A and B2t horizons are neutral or mildly alkaline. The Ap horizon is clay loam or sandy loam. The B2t horizon is mainly clay loam or sandy clay loam and is 20 to 35 percent clay. The IIc horizon is gravelly coarse sand or gravelly loamy coarse sand. It is 25 to 35 percent rock fragments.

Oro Fino Series

The Oro Fino series consists of deep, well drained soils on uplands. These soils formed in colluvium and material derived from gneiss and schist. Slope is 2 to 45 percent. Elevation is 6,000 to 7,500 feet. The average annual precipitation is 15 to 19 inches, the average annual air temperature is 36 to 40 degrees F., and the frost-free period is 60 to 90 days.

These soils are fine-loamy, mixed Argic Cryoborolls. Typical pedon of an Oro Fino gravelly loam in an area of Oro Fino-Poin complex, 4 to 15 percent slopes, in an area of rangeland, 2,400 feet north and 1,000 feet west of the southeast corner of sec. 13, T. 8 S., R. 7 W.
BEAVERHEAD GATEWAY RANCH
WETLAND MITIGATION SITE
ACTIVE BIRD LIST 1997 to Present

(b) breeding

Waterfowl:
Tundra Swan
Trumpeter Swan
Blue-winged Teal (b)
Green-winged Teal
Cinnamon Teal (b)
Mallard Duck (b)
Pintail Duck (b)
Ruddy Duck (b?)
Greater Canada Geese (b)
Snow Goose
Northern Shoveller (b)
American Wigeon (b)
Redhead Duck (b)
Gadwall (b)
Bufflehead (b)
Common Goldeneye (c)
Barrow's Goldeneye (c)
Lesser Scaup
American Coot (b)
Western Grebe
Eared Grebe (b)
Double-Crested Cormorants
Red-breasted Merganser
Common Merganser

Heron / Cranes:
Great Blue Heron
Black Crowned Night Heron
Sandhill Cranes (b)

Eagles / Hawks:
Golden Eagle
Red-Tailed Hawk
Merlin
American Kestrel
Northern Harrier
Rough-legged Hawk
Peregrine Falcon

Shorebirds:

American Avocet
Willet
Marbled Godwit
Wilson's Phalarope
Red Phalarope (b)
Common Snipe (b)
Solitary Sandpiper
Spotted Sandpiper (b)
Killdeer (b)
Greater Yellowlegs
Sanderlings
Lesser Yellowlegs
Long-billed Dowitcher

Gulls / Terns:
Franklin's Gull
Bonaparte's Gull
Common Tern
Black Tern (b?)

Swallows / Swifts:
Bank Swallows (b)
Cliff Swallows (b)
Violet-green Swallows (b)
Barn Swallows (b)

Upland Gamebirds:
Ring-necked Pheasant
Sage Grouse
Chukar
Hungarian Partridge (b)

Dippers:
American Dipper

Owls:
Short-eared owl

Crows / Ravens:
American Crow
Common Raven
Black-billed Magpie

Songbirds:
Red-winged Blackbird (b)
Yellow-headed blackbird (b)
Brewer's Blackbird
Vesper Sparrow (b)
Song Sparrow
Savannah Sparrow (b)
Western Bluebirds (b)
American Robin
American Goldfinch (b)
Brown-headed Cowbird
Western Meadowlark (b)
European Starling
Mourning Dove
Rock Dove
Spotted Towhee

Pelicans:
American White Pelican
Appendix E

BIRD SURVEY PROTOCOL
GPS PROTOCOL
MACROINVERTEBRATE PROTOCOL

MDT Wetland Mitigation Monitoring
Beaverhead Gateway
Dillon, Montana
BIRD SURVEY PROTOCOL

The following is an outline of the MDT Wetland Mitigation Site Monitoring Bird Survey Protocol. Though each site is vastly different, the bird survey data collection methods must be standardized to a certain degree to increase repeatability. An Area Search within a restricted time frame will be used to collect the following data: a bird species list, density, behavior, and habitat-type use. There will be some decisions that team members must make to fit the protocol to their particular site. Each of the following sections and the desired result describes the protocol established to reflect bird species use over time.

Species Use within the Mitigation Wetland: Survey Method

Result: To conduct a bird survey of the wetland mitigation site within a restricted period of time and the budget allotment.

Sites that can be circumambulated or walked throughout.

These types of sites will include ponds, enhanced historic river channels, wet meadows, and any area that can be surveyed from the entirety of its perimeter or walked throughout. If the wetland is not uncomfortably inundated, conduct several “meandering” transects through the site in an orderly fashion (record the number and approximate location/direction of the transects in the field notebook; they do not have to be formalized or staked). If a very small portion of the site cannot be crossed due to inundation, this method will also apply. Though the sizes of the site vary, each site will require surveying to the fullest extent possible within a set time limit. The optimum times to conduct the survey are in the morning hours. Conduct the survey from sunrise to no later than 11:00 AM. (Note: some sites may have to be surveyed in the late afternoon or evening due to time constraints or weather; if this is the case, record the time of day and include this information in your report discussion.) If the survey is completed before 11:00 AM and no additions are being made to the list, then the task is complete. The overall limiting factor regarding the number of hours that are spent conducting this survey is the number of budgeted hours; this determination must be made by site by each individual.

In many cases, binoculars will be the only instrument that is needed to identify and count the birds using the wetland. If the wetland includes deep water habitat that can not be assessed with binoculars, then a scope and tripod are necessary. If this is the case, establish as many lookout posts as necessary from key vantage points to collect the data. Depending on the size of the open water, more time may be spent viewing the mitigation area from these vantage points than is spent walking the peripheries of more shallow-water wetlands.

Sites that cannot be circumambulated.

These types of sites will include large-bodied waters, such as reservoirs, particularly those with deep water habitat (>6 ft) close to the shore and no wetland development in that area of the shoreline. If one area of the reservoir was graded in such a way to create or enhance the development of a wetland, then that will be the area in which the ambulatory bird survey is conducted. The team member must then determine the length of the shoreline that will be surveyed during each visit.
As stated above in the ambulatory site section, these large sites most likely will have to be surveyed from established vantage points.

Species Use within the Mitigation Wetland: Data Recording

Result: A complete list of bird species using the site, an estimate of bird densities and associated behaviors, and identification of habitat use.

1. **Bird Species List**

Record the bird species on the Bird Survey - Field Data Sheet using the appropriate 4-letter code of the common name. The coding uses the first two letters of the first two words of the birds’ common name or if one name, the first four (4) letters. For example, mourning dove is coded MODO and mallard is MALL. If an unknown individual is observed, use the following protocol and define your abbreviation at the bottom of the field data sheet: unknown shorebird: UNSB; unknown brown bird (UNBR); unknown warbler (UNWA); unknown waterfowl (UNWF). For a flyover of a flock of unknown species, use a term that describes the birds’ general characteristics and include the approximate flock size in parentheses; do not fill in the habitat column. For example, a flock of black, medium-sized birds could be coded: UNBB / FO (25). You may also note on the data sheet if that particular individual is using a constructed nest box.

2. **Bird Density**

In the office, sum the Bird Survey – Field Data Sheet data by species and by behavior. Record this data in the Bird Summary Table.

3. **Bird Behavior**

Bird behavior must be identified by what is known. When a species is simply observed, the behavior that it is immediately exhibiting is what is recorded. Only behaviors that have discreet descriptive terms should be used. The following terms are recommended: breeding pair individual (BP); foraging (F); flyover (FO); loafing (L; e.g. sleeping, roosting, floating with head tucked under wing are loafing behaviors); and, nesting (N). If more behaviors are observed that do have a specific descriptive word, use them and we will add it to the protocol; descriptive words or phrases such as “migrating” or “living on site” are unknown behaviors.

4. **Bird Species Habitat Use**

We are interested in what bird species are using which particular habitat within the mitigation wetlands. This data is easily collected by simply recording what habitat the species was initially observed. Use the following broad category habitat classifications: aquatic bed (AB - rooted floating, floating-leaved, or submergent vegetation); forested (FO); marsh (MA – cattail, bulrush, emergent vegetation, etc. with surface water); open water (OW – primarily unvegetated); scrub-shrub (SS); and upland buffer (UP); wet meadow (WM – sedges, rushes, grasses with little to no surface water). If other categories are observed onsite that are not suggested here, we will make a new category next year.
AQUATIC INVERTEBRATE SAMPLING PROTOCOL

Equipment List

- D-frame sampling net with 1 mm mesh. Wildco is a good source of these.
- Spare net.
- 1-liter plastic sample jars, wide-mouth. VWR has these: catalog #36319-707.
- 95% ethanol: Northwest Scientific in Billings carries this.

All these other things are generally available at hardware or sporting goods stores. Make the labels on an ink jet printer preferably.
- hip waders.
- pre-printed sample labels (printed on Rite-in-the-Rain or other coated paper, two labels per sample).
- pencil.
- plastic pail (3 or 5 gallon).
- large tea strainer or framed screen.
- towel.
- tape for affixing label to jar.
- cooler with ice for sample storage.

Site Selection

Select the sampling site with these considerations in mind:
- Select a site accessible with hip waders. If substrates are too soft, lay a wide board down to walk on.
- Determine a location that is representative of the overall condition of the wetland.

Sampling

Wetland invertebrates inhabit the substrate, the water column, the stems and leaves of aquatic vegetation, and the water surface. Your goal is to sweep the collecting net through each of these habitat types, and then to combine the resulting samples into the 1-liter sample jar.

Dip out about a gallon of water into the pail. Pour about a cup of ethanol into the sample jar. Fill out the top half of the sample labels, using pencil, since ink will dissolve in the ethanol.

Ideally, you can sample a swath of water column from near-shore outward to a depth of approximately 3 feet with a long sweep of the net, keeping the net at about half the depth of the water throughout the sweep. Sweep the water surface as well. Pull the net through a vegetated area, beneath the water surface, for at least a meter of distance.

Sample the substrate by pulling the net along the bottom, bumping it against the substrate several times as you pull.
This step is optional, but it gives you a chance to see that you’ve collected some invertebrates. Rinse the net out into the bucket, and look for insects, crustaceans, etc. If necessary, repeat the sampling process in a nearby location, and add the net contents to the bucket. Remember to sample all four environments.

Sieve the contents of the bucket through the straining device and pour or carefully scrape the contents of the strainer into the sample jar.

If you skip the bucket-and-sieve steps, simply lift handfuls of material out of the sampling net into the jars. In either case, please include some muck or mud and some vegetation in the jar. Often, you will have collected a large amount of vegetable material. If this is the case, lift out handfuls of material from the sieve into the jar, until the jar is about half full. Please limit material you include in the sample, so that there is only a single jar for each sample.

Top off the sample jar with enough ethanol to cover all the material in the jar. Leave as little headroom as possible.

It is not necessary to sample habitats in any specified order. Keep in mind that disturbing the habitats prior to sampling will chase off the animals you are trying to capture.

Complete the sample labels. Place one label inside the sample jar and tape the other label securely to the outside of the jar. Dry the jar before attaching the outer label if necessary. In some situations, it may be necessary to collect more than one sample at a site. If you take multiple samples from the same site, clearly indicate this by using individual sample numbers, along with the total number of samples collected at the site (e.g. Sample #3 of 5 total samples). Photograph the sampled site.

Sample Handling/Shipping

- In the field, keep collected samples cool by storing them in a cooler. Only a small amount of ice is necessary.
- Inventory all samples, preparing a list of all sites and enumerating all samples, before shipping or delivering to the laboratory.
- Deliver samples to Rhithron.
GPS Mapping and Aerial Photo Referencing Procedure

The wetland boundaries, photograph location points and sampling locations were field located with mapping grade Trimble Geo III GPS units. The data was collected with a minimum of three positions per feature using Course/Acquisition code. The collected data was then transferred to a PC and differentially corrected to the nearest operating Community Base Station. The corrected data was then exported to ACAD drawings in Montana State Plain Coordinates NAD 83 international feet.

The GPS positions collected and processed had a 68% accuracy of 7 feet except in isolated areas of Tasks .008 and .011, where it went to 12 feet. This is within the 1 to 5 meter range listed as the expected accuracy of the mapping grade Trimble GPS.

Aerial reference points were used to position the aerial photographs. This positioning did not remove the distortion inherent in all photos; this imagery is to be used as a visual aide only. The located wetland boundaries were given a final review by the wetland biologist and adjustments were made if necessary.

Any relationship of features located to easement or property lines are not to be construed from these figures. These relationships can only be determined with a survey by a licensed surveyor.