APPENDIX A
Publicity for Public Hearing—Advertisements
Distribution List for Groups and Agencies who Received the Environmental Assessment
Notice of Availability

The following legal advertisement was published in the Bigfork Eagle and Kalispell Daily Inter Lake on June 30, 2004:

Montana Department of Transportation

Notice of Public Hearing
MT 35: Bigfork North & South

The Environmental Assessment for the Bigfork North & South Project is available for public comment. A 30-day comment period began Tuesday, June 29, 2004 at 8:00 a.m. and will end Wednesday, July 28, 2004 at 5:00 p.m.

A public hearing will be held on Wednesday, July 14, 2004 from 4:00 p.m. to 8:00 p.m. with a formal presentation at 6:30 p.m. at the Bigfork Middle School at 600 Commerce.

Copies of the document are available online at www.mdt.state.mt.us/environmental/eis-ea and at the following locations:

- Bigfork Chamber of Commerce, 8155 Hwy 35
- Lake Hills IGA, 8111 Hwy 35
- Bob's Woods Bay Market, 26787 Hwy 35
- County Library, Bigfork, 525 Electric Ave
- Montana Department of Transportation, 85 5th Avenue East North, Kalispell
- Flathead County Regional Development Office, 723 5th Ave. #414, Kalispell

Comments must be submitted or postmarked by Wednesday, July 28, 2004. Comments may be submitted in person at the hearing, online at at www.mdt.state.mt.us/environmental/eis-ea, or by mail to Fred Bente, MDT, Consultant Design, P.O. Box 201001, Helena, MT 59620-1001, or by fax at 406-444-6253. For further information, call 406-444-7634. For TTY call MDT at 406-444-7696 or 800-335-7592.
Notice of Availability

The following advertisement was placed on June 30, 2004 at locations where the Environmental Assessment was available for public review:

MT-35 Bigfork, North & South

SEE THE PREFERRED ALTERNATIVE HERE

Review and Comment
MT-35 Bigfork North & South
Project Environmental Assessment Document Here

PUBLIC HEARING NOTICE

July 14, 2004 4:00 - 8:00 p.m.
6:30 p.m. Presentation
Bigfork Middle School Gym
600 Commerce, Bigfork, MT

www.mt35bigfork.com
Advertisement

The following letter was sent on June 21, 2004 to landowners adjacent to the project area:

Carter=Burgess
June 21, 2004

Dear Landowner:

The Montana Department of Transportation (MDT) has developed plans for the reconstruction of MT-35 from Woods Bay to Bigfork. MDT hired the consulting firm of Carter & Burgess, Inc. to study and design this project. Over the past few years, several public meetings have been held with members of the community. A recommended solution, or preferred alternative, has been developed and the environmental document describing the preferred alternative and its affects is available for public comment. A public hearing will be held to gather comments on July 14, 2004 from 4-8 p.m. with a formal presentation at 6:30 p.m. at the Bigfork Middle School.

As a landowner of property adjacent to MT-35, we would like to meet with you one-on-one to discuss the roadway design plans and any issues relative to your property. This meeting is intended to inform you of what has been selected as the preferred alternative. This meeting is not to discuss acquisition or appraisal amounts, but is intended to gather your comments on the preferred alternative.

One-on-one meetings will be held in half hour blocks at the Bigfork Chamber of Commerce located on 8155 Highway 35 on the dates and times below:
- July 12 from 12 p.m. to 6:00 p.m.
- July 13 from 9 a.m. to 6:00 p.m.
- July 14 from 9 a.m. to 12:00 p.m.

Please call with your name, phone number, a preferred date and time and an alternate date and time that you would like to meet with us. You may either leave a message on the Project Information line at 406-881-4067 or you may call Annell Fillinger at 406-458-9065. We will call you back to confirm the time and location of the meeting.

You can send also send an e-mail to bigfork-n-s@cb.com or write to us to request a time:

Bigfork North and South
C/o Bert Compton
420 E. South Temple, Suite 345
Salt Lake City, UT 84111

If you are not available to meet with us at these times please call and leave your name and phone number. We will call you and set up a telephone conference.

We look forward to this opportunity to meet with you.

Sincerely,
Carter & Burgess, Inc.

Michael F. Worrall, P.E.

cc: Fred Berne, MDT
 Lorin Fraizer, MDT
 Craig Grulinger, FHWA
 Bigfork North & South Advisory Committee

The following groups and agencies received copies of the Environmental Assessment:

- **Federal Highway Administration**
 585 Shepard Way
 Helena, MT 59601

- **U.S. Environmental Protection Agency**
 Region 8 Montana office
 10 West 15th Street, Suite 3200
 Helena, Montana 59626

- **U.S. Fish and Wildlife Service**
 Scott Jackson
 100 North Park Avenue, Suite 320
 Helena, MT 59601

- **U.S. Army Corps of Engineers**
 Todd Tillinger
 10 West 15th Street, Suite 2200
 Helena, MT 59626

- **U.S. Forest Service**
 Flathead National Forest
 1935 3rd
 Kalispell, MT 59901

- **Montana Department of Environmental Quality**
 Directors Office
 1520 East Sixth Avenue
 Helena, MT 59620

- **Montana Fish, Wildlife and Parks**
 Helena Area Resource Office
 PO Box 200701
 Helena, MT 59620

- **Montana Department of Education**
 Collection Management Librarian
 1515 East Sixth Avenue
 Helena, MT 59620-1800

- **Flathead County Commissioner**
 800 South Main Street
 Kalispell, MT 59901

- **Bigfork Advisory Committee**
 c/o Larry Jochim
 800 Grand Avenue
 Bigfork, MT 59911-3531

The Environmental Assessment was made available for viewing during the comment period at the following locations:

- Bigfork Chamber of Commerce, 8155 Hwy 35
- Lake Hills IGA, 8111 Hwy 35
- Bob’s Woods Bay Market, 26787 Hwy 35
- County Library, 525 Electric Avenue, Bigfork
- Montana Department of Transportation, 85 5th Avenue East North, Kalispell
- Flathead County Regional Development Office, 723 5th Avenue #414, Kalispell
- Montana Web site: www.mdt.state.mt.us/environmental/eis-ea
APPENDIX B
Public Hearing Transcript
Public Hearing Sign-In Sheets
Comments Received During the Public Comment Period and MDT’s Responses
Public Hearing Transcript

BIGFORK NORTH & SOUTH
HWY 35 PROJECT
PUBLIC HEARING

Wednesday, July 14, 2004
4:00 - 8:30 p.m.
Bigfork Middle School, Bigfork, MT

The Public Hearing for Review of the Draft Environmental Assessment for Bigfork North and South was held July 14, 2004 at the Bigfork Middle School. Forty-six (46) people attended the public hearing (sign in sheets attached). The hearing was divided into two parts: (1) an open house meeting from 4:00 pm to 6:30 pm, and (2) a formal presentation from 6:30 pm to 7:00 pm by Mike Worrall and Bert Compton, followed by a formal comment period.

Several handouts were available to the public at the sign-in table: 1) Project Newsletter dated July 2004, 2) Executive Summary of the Draft Environmental Assessment, and 3) Project Comment Sheet. During the open house portion of the public hearing, all project officials were available throughout the evening to answer questions, receive comments, and address any concerns regarding the Preferred Alternative.

Project officials present:

- Mike Worrall, Carter Burgess (Salt Lake City)
- Bert Compton, Carter Burgess (Salt Lake City)
- Tina Gillman, Carter Burgess (Salt Lake City)
- Jeremy Keene, WGM Group (Missoula)
- Fred Bente, Montana Department of Transportation (Helena)
- Loran Frazier, Montana Department of Transportation (Missoula District)

Three wall displays explained the project for public viewing as follows:

1) Alternative Review Process
2) Graphic of Preferred Alternative
3) Impacts & Mitigation Chart

Public Presentation

The following presentation was given by Mike Worrall and Bert Compton, Jacobs Carter Burgess, Inc.

Welcome: (Bert Compton) We are going to go ahead and get started. We have a lot of echo but I’m a loud talker so hopefully everyone can hear me. I want to introduce myself. My name is Bert Compton with Carter Burgess. We were hired by the State and we are helping do this project. I will let you know that I’m the Public Involvement Coordinator. I’m the person that a lot of you talked to on the phone over the years when trying to get information about the project. I recognize some of you. Over the last couple of days, we’ve met with landowners. We started doing some landowner meetings on Monday and all through the last few days. So if you have questions or comments, after the fact, I’m a good person to talk to because I can track down who has the answers. Again my name is Bert Compton.
Handout: Everyone should have one of these (referring to newsletter). This is the latest newsletter and we are going to use this today, it will help you to follow along. Some of the stuff we are going to put up on the wall you will be able to follow along or at least have it for reference with some of the things we are going to talk about. We will be dimming the lights and when I say dim I mean we will turn the lights out because there is one switch that runs them all. On that back of the newsletter you will find my name and number if you need it someday so be sure and keep it.

Purpose of Meeting: The purpose of our meeting tonight is to present to you the Preferred Alternative and give you the opportunity to state your concerns, to be able to voice your opinions and your concerns. We are gathering formal comments tonight that will be entered into the environmental document. We’ve been looking at this project for a long time now, and we will talk about that.

I want to introduce Annell Fillinger, she is the transcriber. She will be taking the formal comments for the document. Comments must be given to Annell or, if you write them yourself, you must sign the comment form so we can enter them into the document.

Our public comment period began June 29th and goes through July 29th. That is the formal 30-day comment period to make your comments eligible to be entered into the document. So that is the 30-day window, so tonight is not the last night. If you have neighbors that aren’t here or other folks that you feel need to know this information, there is still plenty of time for them to make a comment and have it be entered into the formal record. So I want to make sure that is clear for you folks.

The materials we have available tonight—there is a lot of stuff on the walls. On the back wall is the Preferred Alternative. It is bigger than what you see in here (referring to newsletter). You can only show so much detail on a single sheet of paper and it is a pretty big strip of road. So if you want to look at it a little more closely and haven’t already, I think a lot of you have already looked at that. That is where the Preferred Alternative is. It is also here in a smaller printed format (referring to the Environmental Assessment document). We have copies of the Environmental Assessment document around the room and I know some of you have already looked at it and I’ve talked to some of you.

Also on the wall tonight are some charts. The Impacts and Mitigations chart goes through the sections of the document such as noise, wetlands, etc. They are also in your newsletter, that same poster is right here (referring to newsletter), so you have that also. These pictures are the Needs and the Preliminary Alternatives we looked at. The ones that were not forwarded have a stamp across them that says, “not forwarded”. Those are the ones we looked at and were not forwarded on to this point and not part of our Preferred Alternative. Those are over there, and if you remember those were done a number of years back. We met with some of you, and you may remember seeing those.

There may be some landowners here that feel you haven’t had a chance to sit down and meet with us one-on-one. We want to make sure you have that opportunity. So if you didn’t meet with us at the Chamber of Commerce this week, Mike Worrall the Project Manager for the Consultant Firm will be available next week. He will be up here next week on Monday, Tuesday, and Wednesday. So if you would like to meet with him, please see me after if you would like to sit down and specifically talk about your parcel.

A show of hands—how many of you would like to come to the microphone which is for the tape recorder so your comments can be formally recorded and entered into the record. How many would like to come to the microphone and state your comments? Just so we know so we can make sure we have enough time for comments. That is the purpose of this meeting. If you don’t want to write them you can come up and say them. We have four people who raised their hands. So we have a few folks. Does everybody feel that five minutes will be enough time for you to make your comments? Will that be enough time?
Question: If we have talked to you one-on-one and you have written down our concerns, we don’t need to come to the microphone?

Answer: Correct. But if you would like to, you still can.

Answer: Oh no, we dealt with you the other day.

I know that some of you have already seen us and had an opportunity to sit down and talk about your personal concerns about some areas. This is just another opportunity for some other folks to do the same thing. If you have already done that or if you have more concerns, please feel free to do it. If you have thought of other things, if you are here to talk for somebody else, if you have a comment that you’ve heard, now is the time to enter those comments in. If you feel you have already done it, you don’t need to do it again.

Question: Can we commit ourselves after we hear your presentation?

Answer: Yes. I just wanted to see how many there were so we make sure we have enough time for everyone.

We have a short presentation, kind of a history of the project, and we will go over the Preferred Alternative and show you some of the key points. We will also share with you some of the general comments we’ve collected over the last three days. We have heard from the population around here what your concerns are and what some of the issues are, and what some of the main features are. Maybe after that you might have something to say and a few more hands might come up or a lot more pencils might come out. I’m going to turn the time over the Mike Worrall, the Project Manager.

(Mike Worrall) My name is Mike Worrall from Carter Burgess. I’m the Project Manager and I’ve been with the project the longest. You’ve met Annell and Bert. Mike Fillinger, Annell’s husband, is helping out tonight, helping us get everybody signed in and informed. Fred Bente, Montana Department of Transportation in Helena, and Tina Gillman, Carter Burgess, is here helping us. Jeremy Keene is from another consultant that we’re contracted with to do part of the work, more specifically to develop Right-of-Way and Utility plans. So if you have any problems regarding right-of-way and utilities, Jeremy is a real good person to talk to. Loran Frazier is the District Administrator from the Missoula District, Montana Department of Transportation.

I’m not opposed to answering questions about what I’m saying and about some general questions you might have to clarify my presentation. I want to differentiate between the formal public comment and make sure if you are going to offer formal public comment, we get that from the microphone. I’m certainly more than willing to clarify anything that is confusing with whatever I present.

Presentation of the Preferred Alternative

(Bert Compton and Mike Worrall) Welcome to the public hearing. This is a formal public hearing. It contrasts with the other workshops and public meetings we’ve had because this is actually a formal part of the process and it is a formal requirement. All the other public meetings and interaction we’ve had with the community has not been a formal requirement. It has been something that the Department has seen as necessary to help find right solutions for Montana 35 and the Bigfork and East Side Highway communities.
Timeline: You are not expected to actually be able to read this. This slide is actually in the back section of the Environmental Assessment if you want to look at it. This is a timeline describing all of the public meetings and interactions that we have had over the past four years. I don’t expect to go through this, I’m just trying to demonstrate that we’ve actually done a fair amount over the past four years.

Needs: In a process such as this, we try to understand what are the needs are and what the issues are that need to be addressed before we start identifying solutions for it. In our business and in my mind I think there are times that we actually develop solutions that might not even address the real problems. So we felt that it was a good idea to spend the time to understand the problems. Initially we went out and identified what the needs of the area were. If you want to look at those, they are also in the Environmental Assessment and they are up on the wall. But a lot of these things relate to safety, specific areas of concern, the need for non-motorized travel facilities, i.e., bicycles and pedestrians, intersection improvements, some shoulder needs.

Segments: The other thing I want to point out is that we looked at these things in different segments because we didn’t assume the entire highway from Woods Bay up north of Bigfork was of one character and had any one uniform set of needs and issues so we looked at it in five different pieces. So we are just going to flip through these. These are the different five areas. One area is down in Woods Bay, one is the other area between Woods Bay and Bigfork, another is the area between State Highway 209 and Grand Avenue, another area is from Grand Avenue to Ice Box Canyon, and the last area is from Ice Box Canyon to the north.

Alternatives Considered: The next thing we did was to look at those needs and we started brainstorming a number of options and alternatives to address those needs. You will see on these drawings there are a number of cross sections, and I know it may be difficult to read. There is one up here on the wall in more detail and they are also included in the document. You can read that and we can answer specific questions if you have any. You will see on there that diagonally some of them are stamped “forwarded” and “not forwarded”. That means we considered a number of alternatives, and only carried forward the ones we thought best addressed those needs and fit in with the community values that we found through working with you and the Advisory Committee. So in each one of these areas, we forwarded one Build Alternative and we also forwarded what we call the “No-Action” or “No Action” Alternative, which is essentially to do nothing. The Environmental Assessment does a full analysis of both those options—doing nothing or constructing the Preferred Alternative.

Preferred Alternative: I wanted to describe a little bit the Preferred Alternative, and this is in the center of the newsletter, which you will be able to see a lot easier than the one on the wall. The Preferred Alternative is described in this graphic in a very general sense. Like Bert said, we put as much information on this as we could put on one sheet and of course there is more detail on some of these other drawings.

 Turning Lanes. Essentially for the most part, we are not adding any through capacity to the highway. Just to reiterate that in another way, we are not adding additional through lanes. The only exception to that is at specific intersections where we identified that a turn lane was needed to separate out turning vehicles from the through vehicles. Those are the only cases where we added additional lanes, at specific intersections or specific access points where we saw a real need to divide up people who were slowing down to make a turn from the people who were continuing through. But there has been no additional through lanes added, so those people who have been concerned that the department is going to put in a four-lane traffic, that is not on the table at all.

 Woods Bay Hill. In addition to that, we looked at some specific treatments at Woods Bay on the Woods Bay Hill to provide a little bit better facility down there in order to allow for when that
Finding of No Significant Impact

Appendix B

Montana Department of Transportation

5

hill ices up and trucks get stuck on that hill for vehicles to get around a stuck truck without the highway closing down. So we provided a continuous two-way left-turn lane in the center of that hill which would function as a left-turn lane into Yenne Point Road and Sylvan Drive and Bob’s Market in that area in the summer. Then in the winter when it opens up and a truck gets stuck on that hill, there is still room for people to get around it.

Curves: In addition to that, there are some curves between Woods Bay and Bigfork. Essentially there are five curves on the entire corridor length of the study area that we are looking at correcting. Some of that we are looking at improving site distance, some of it we are looking at making it a consistent curve with the rest of the highway, i.e., there are some curves down there where the turning radius is sharper than the speed it is signed at. So we are looking at making those curves more consistent with the rest of the highway.

Walkway: In addition to the roadway improvements between here and Woods Bay, we are proposing that in Woods Bay we include a small six-foot walkway on the lake side. There are a lot of people who walk between all the homes in there and the market at the top of the hill. Many of those people are now walking on the edge of the two-lane, which is not desirable by any means, so we are proposing to provide a small walkway on that side that people could walk back and forth.

Multi-Use Path: From Woods Bay to the north on into Bigfork, we are proposing an eight-foot multi-use path. This will be a paved path eight feet wide. It would allow for travel in both directions and people will be able to walk on it or bike on it. There would be a gravel shoulder on the side and you would be able to ride a horse along there. That is why we call it a multi-use path. We separated that away from the traffic lanes and we are proposing to do that to provide that facility for those people that don’t have that right now.

Roundabouts: Some of the more interesting moments and the something that garnered the most conversation is we are proposing at two intersections to put in roundabouts, on the south end of town here at State Highway 209 and at the intersection of Briggs Street and Sunset Drive. These are the first … I see you shaking your head and I’m taking that down. These are the first roundabouts in the State of Montana if constructed in the near term. We proposed this for a number of different reasons and I would say that the community is not of “one mind” on this. In fact a few individuals are not sure what to make of them one way or another.

We did a pretty extensive evaluation. We actually considered roundabouts at a number of locations including at Lake Hills and Grand Avenue, and we decided that those would not be good locations for them and they would not function very well and would be confusing for people to negotiate. The two down there (referring to graphic) we identified those would work quite well and work with some of the values of the community doing something different and unique and something that would identify this as a community where vehicles have to have a little heightened awareness driving through. The community has kind of a spin off to this process, petitioned the State Transportation Commission and actually got the speed limit lowered in Bigfork as kind of a spin off to our public involvement process. That was one measure. It is a partial solution to get the people to slow down without enforcement or without some engineering solutions in there to encourage that. I don’t feel it is necessarily a complete solution, so this kind of helps get there.

Bridge: The bridge is an area of concern. We are proposing to replace the bridge. We considered a number of different options including rehabilitating the existing bridge. We actually found with all the deficiencies of that bridge because it is getting quite old. It was built in 1953, I
believe, and there are a number of problems associated with that structure. Without some significant costly improvements to that, it probably would not survive the next 50 years. We actually found that it would be more costly to rehabilitate and update that structure than it would be to replace it with a new one. That might sound surprising to some of you, but when you consider that labor, in this country at least, is the most expensive commodity we have in construction, it starts to make a little bit of sense for those types of operations that are more labor intense.

Grand Avenue: We are proposing some improvements to Grand Avenue. I told you we considered a roundabout there, but we determined that it would not work very well. It would be too confusing, and actually looking 20 years out, for those afternoon hours in the summer months you would actually see a significant amount of congestion with a single-lane roundabout. For a roundabout to function there you would have to go to a double lane roundabout, and we felt that having two lanes side-by-side in a circle was confusing to the point that it wasn’t worth forwarding. So we are considering a number of improvements to that intersection—improving some of the angles and the approaches. Right now one the biggest things for people leaving Bigfork and turning right to the northbound, is looking out of their blind spot at on-coming traffic and getting hit or rear-ended or T-boned in the side. We want to look at improving that situation. In addition there is a heavy pedestrian component particularly when school is in. We are looking at adding some medians in there to break up the pavement so there is some pedestrian refuge and you don’t have this huge expanse to cross.

Lake Hills: We are proposing a signal at Lake Hills. That has been a discussion in this community for many years before we started studying it. One of the problems in the Lake Hills area, and we’ve talked to the business owners and the landowners in this area about this problem, and that is the accesses are confusing at this time. They are not really well designed, there are a lot of them, people turning on and off, and it’s a very busy area. The Department took the position that they are willing to consider a signal at that location but only if we restrict the amount of turn access and movements that occur at that signal and we close all the other left-turn movements off in there. So we are proposing that, combined with that signal, a stretch of raised median restrict left-turn access such that it doesn’t compromise the operation of that signal.

Entry Treatments: At each one of the entryways into Bigfork on both ends and then Woods Bay on the South, we are proposing what we call a “community entry treatment”. That community entry treatment is a divided island. The idea is to improve driver awareness and alert the driver that isn’t familiar with this area that they are entering a community. You are entering a more developed area with more activity, with more turning going on, more pedestrian activity, and that maybe perhaps a little bit slower speed and a little bit higher driver awareness is warranted. That is the purpose of those community entry treatments.

Ice Box Canyon: In addition to that, many of you who have been here awhile know, that the curve in Ice Box Canyon has been the site of a number of terribly messy accidents and there have been a number of fatalities over the years at that corner where people are going into it and not making the corner and running into opposing traffic. The type of accidents that have occurred have been head-on collisions that have been problematic. We are proposing to extend a center barrier through that canyon. As many of you know it ices up in the winter. The trees were cleared a couple of years ago and it is helped things dramatically but it is still a little bit of safety improvement we felt was a good idea.

Chapman Hill Road: The last thing is we are extending the pavement past Chapman Hill Road including a left-turn lane into Chapman Hill Road.
That kind of describes, in a very quick way, the Preferred Alternative. Do you have any questions?

Questions Following Presentation

Q: Does the Ice Box Canyon curve get re-aligned?

A: Yes, that one is one of the curves that is a little too sharp and we are proposing to flatten that curve as well. I'm glad you brought that up, thank you.

Impacts and Mitigation: First let me talk about this. This is on the 3rd page of your handout (referring to newsletter). This is a little bit about a summary of the impacts and mitigation associated with both the No-Action or the No-Build Alternative and the Preferred Alternative. This table summarizes chapter three of the Draft Environmental Assessment, which is the largest chapter of the document. So if you want to get “in a nutshell” a kind of snapshot view of what the effects of this alternative are and how it affects different areas of the environment, that is what this is. An Environmental Assessment is a formal process. We are required by the National Environmental Policy Act (NEPA) to evaluate all these different areas of the environment whether they be the man-made built environment or the natural environment. So this was the analysis that was conducted and summarized here. If you have any questions about that, please get with one of us.

Alternatives Development: I want to describe the process we go through for alternatives development and evaluation. What we did originally was to go out and work with the community. We studied the corridor technically and we identified a Purpose and Need. Then we developed alternatives and evaluated those. We got down to a refinement of those alternatives and the selection of a Preferred Alternative. Right now we are at the formal publication and review of the Environmental Assessment. Within NEPA what an Environmental Assessment does is to disclose: (1) The department’s intentions or what its proposal is; and (2) it discloses the potential effects of that alternative on all these different areas of the environment.

Formal NEPA Process: During this formal comment period, your comment is gathered in a formal way and is made part of the formal public record. That is combined into one document and forwarded to the Federal Highway Administration. The Federal Highway Administration then makes a decision with regard to this process and whether there is significant impact associated with this proposal or not. If they find in the process that we did a decent job of addressing the impacts and developing the alternatives that there were no significant impacts, then they will come to a Finding of No Significant Impact or FONSI. If they come to that conclusion upon review … they’ve already reviewed the document but now they will review your comments. They will be viewed together and they will make that determination. If they find there is no significant impact and that we’ve addressed everything appropriately up to that point, then they make that decision and the project is free to move forward. Essentially it means that the project can use federal money. So FHWA can appropriate federal money to help construct this project.

The other decision if they find there is significant impact associated with it, from the beginning of this process, then the Department has a choice. Either (1) the No Action Alternative becomes the alternative and they do nothing; or (2) it has to move forward to a full Environmental Impact Statement. I will tell you that this document for an Environmental Assessment is actually pretty extensive and it borders very close on an Environmental Impact Statement already.

So that is the formal process. That is why we are adding that touch of formality to get your comments because it has to go that formal process.
Graphic of Process: This is an interesting graphic. I love this light-bulb graphic. Bert did this a little while ago and it kind of shows how you develop ideas and those ideas kind of get clustered together and then string different ideas up and you finally get to the one solution. The process down below is what I just described as far as the Environmental Assessment process.

Again the purpose of this is hear your formal comments. It began June 29th and ends July 29th. In addition to this we are not proposing to end our interaction with the community. We are hoping to continue to be involved with the community as this thing moves to design. So this won’t be the last time you see us but we are getting to that point.

Formal Comments: As far as the public comment, I didn’t see so many hands that we will need to limit the comments to three minutes, I think we can go to about five minutes. You are going to need state your name and address when you come up to the microphone. One thing I will ask is that you do not interrupt somebody that is giving formal comment. I just ask that you respect somebody that is giving a formal comment and not interrupt them while they are giving it. At the end of this, if you have any general questions, I’m going to be over here taking some notes while people are giving their comments, and if there are questions you have as a part of what you have to say, I’m going to try and address those general ones. I may not be able to address them specifically but if I have an answer to some of them I will try and answer that at the conclusion of this. The one thing I will say is that all of your comments will be addressed in one way or another from our project team as it gets forwarded. So if you make a comment, we will have a response and address that in some way as it is forwarded on to the Federal Highway Administration. At the end of this, we have been meeting with landowners for the last few days and we’ve had 50 different meetings and almost 120 different people. There are some general comments that came out of that, that I think you would be interested in hearing. So once we finish this, I thought I would just relay in a general sense some of the major comments we heard during those meetings.

Q: Is it possible to hear some of those general comments before we make our comments so we are not rehashing something?

A: If you would rather, I can do that. First is there any point of general clarification tonight? How we got to where we are in the Environmental Assessment or anything like that?

General Comments from Landowners

I’ll give you some general comments and some of these are a little bit more specific than general:

- One area that has been a very challenging area is the curve at the top of Woods Bay Hill, there in front of Woods Bay Market. There is a lot of activity going on there, there isn’t real good site distance around that curve for people pulling in and out, there are actually pedestrians crossing in and out of there. With what we have laid out preliminarily, that section actually creeps up onto some adjacent yards across from the market pretty close to their homes. I’ve met with a number of the landowners out there and I have basically committed to them that I would look at some ways of minimizing that overall width to reduce the effect on the front of their yards. That is one area.

- We met with some landowners that actually own land around Daphne Pond. You will see on these drawings that we actually proposed the bike path to the end of the pond. Well the landowners that we met with were dead set against that, and I’m reasonably certain that we were not going to be interested in forcing that down their throats. So I think we are going to consider keeping the bike path along the road adjacent to Daphne Pond in that area.
Some of you that might be familiar with the equestrian crossing down just this side of Daphne Pond. Flathead Lake Lodge runs equestrian crossings across there. They actually have 28,000 crossings in three months. There is a train of about eight riders that goes across there every ten minutes in the summer. It is a problem. We’ve had a number of close calls over a number of years. They had somebody hit on a horse back in there and it is in a dark shaded place, it is kind of difficult to see. We have looked at option after option of ways to improve that. We’ve actually come to the conclusion that we are going to put the highway in a culvert, so to speak, or some sort of a way to have it so the horses can go over the top of the highway at that point so they wouldn’t even cross the road.

There are some questions about which side the bike path should go on there. So we are going to look at that a little bit closer. There is a little bit of uncertainty in our minds with some of the comments that we’ve heard.

The road right out here as we drive out by the Dentists Office and the Bigfork ____________ on the one side and it is right next to the Bigfork Stage Stop, there is a corner that comes real close. We’ve heard a lot of people talk about wanting to connect that up with the highway. We actually proposed that as part of the Preferred Alternative. Well, we’ve had some pretty good input, and something that I wasn’t completely aware of is that when a football game lets out, there is a huge amount of traffic that comes down that and we are not sure we completely understand how that would function. So we are going to take a little bit closer look as to whether that will cause a problem and whether it is a safety problem or not before we really make up our mind for sure that we want to connect that up.

Then one thing I learned is that many of the high school kids walk across from the Bigfork Stage south over the Pizza Hut and Subway right there, and we do not show a cross walk on that area. A number of people identified that maybe a cross walk in that area would be a good thing because at lunch time a lot of kids just walk informally across there.

For those of you who paid attention when the county did some work on the one-lane bridge over here by the village. There is actually a perception in some people’s minds that was done to get it ready for a detour when the highway is done. That is absolutely not the case. There is no way we can detour traffic through the village and on that one-way bridge. So I want to put that perception out of your minds.

Those are some of the general comments that we’ve heard over the last few days. Beyond that most of the discussion is very specific to individual properties and I don’t think it would interest any of you.

Formal Public Hearing Comments

(Mike Worrall) Those who want to speak raise your hand and I’ll start from this side of the room and go that way. If you decide you want to speak later, I’m not going to exclude you.

Q: Why do we have to come all the way down there?

A: Otherwise the microphone doesn’t pick it up. That is the reason we have you come to the microphone.

Comment: My name is Marsha Knell and my concerns and comments are:
Finding of No Significant Impact

1. Speed limit. I notice there is no speed limit set. I understand that it is not set by you but it is set state-wide or not necessarily here by the two counties. The reason that is a concern is because the bigger and more lovely the road, the faster the cars. So how can speed limits be determined and who can enforce it? I know that some of these nifty little things in the road are really slick but they do not work if there is a high speed limit.

- Is there room to pull off for the little cherry stands? I hope they are paying attention.

- Walkway bike path. I think it is a lovely idea and wonderful for all of us who live along the lake. However, I hope it isn’t a seductive thing. That it is in the plan and as everything gets going and the money runs out, that is the first thing to get chopped away and we are left with a super-wide road, no bike paths, no walkways. So I understand that if they do cut that out, it has to come back to public comment again. I hope I am not being steered wrong about that but that is a big concern.

Marsha Knell, 21967 East Shore Route, Bigfork, MT, (406) 982-3038

Comment: My name is Bonnie Ellis. I’m a senior research Scientist at the Flathead Lake Biological Station, which is part of the University of Montana. I just wanted to be sure that you are aware of the biological, historical, educational importance of Daphne Pond. Students and faculty have been going to this pond for a hundred years, so that is a pretty significant historical perspective. Biologically this pond is very interesting because there have been no fish introduced. So there is one very large species of Zooplankton called Daphnea Magna because it is so large, and another macro invertebrate aquatic insect called Kaobris, it’s common name is the phantom midge. Both of these organisms are there because there are no fish. And in so many ponds and lakes throughout the world, fish have been introduced and the original habitats for these species have been lost or these species have been lost from those originally habitats. So these two organisms provide us with a lot of information for students and a lot of opportunities to examine predation and behavioral responses, and morphological responses. Without going into it and boring you, just let me tell you that to anyone in the biological field these guys are really exciting. So biologically it is also of great interest, historically, and of course educationally there have been many, many students over the hundred years going to Daphne Pond.

I guess I wanted you to answer what the 0.1 acre alteration of this habitat is going to be? When I look at the map I don’t really see much impact. Perhaps that was just the area encompassed by the trail you are proposing? Because what I am concerned about is additional fill to the pond. We examined 1966 and 1998 aerial photographs of Daphne Pond and estimated that about 0.76 acre of fill have already been introduced to the pond. I am not aware of any Environmental Assessments that occurred when that took place and whether there was any mitigation for that. But certainly this diminishes the habitat available for Daphnea Magna. They like to go into littoral areas or shoreline areas to get away from this big Kaobras predator. And it diminishes the natural functioning of a wetland ecosystem. Certainly, I would like to see that the same considerations for Daphne Pond are given that are given for the wetlands and in the Nine Pipes area for instance on Highway 93 reconstruction there.

The second area of concern I wanted to talk to you about is the potential for non-point source pollution of Flathead Lake from increased nitrogen and phosphorous from increased impervious surface area particularly in the area of Woods Bay where the road is close to Flathead Lake. I’m just wondering, and perhaps you can comment on this as well, if there is not some technological fix there where you could route the runoff to some sort of a treatment system. I know they have, I’ve seen these sort of treatment systems on storm water runoff in cities, or if it could be routed to a swale and a place that perhaps the highway department could purchase and create, because Flathead Lake water quality is declining. It is
Finding of No Significant Impact

Appendix B

Montana Department of Transportation

11

nitrogen and phosphorous that stimulates the production of algae in the lake. I know you are aware that there is a TMDL on Flathead Lake and the Department of Environmental Quality, Flathead Basin Commission, many different agencies and other stakeholders are right now trying to figure out ways to reduce nitrogen and phosphorous in any way possible. So I hope the Montana Department of Transportation will step in as well and try to find some way to reduce increased nutrient transport to the Lake.

Lastly the bridge, the Swan Bridge, I just wanted to mention to you our concern about nutrient inputs from the bridge as well even after it’s established. If you could comment on this I would appreciate it. If there are any technological fixes out there for taking runoff from a bridge and treating it or transporting it somewhere so that its nutrient and sediment load can be reduced before it flows into the Lake. At a minimum I think we need to look at that and for all the different areas of road around the lake that are close to Flathead Lake and all the bridges. Perhaps even moving to the use of sand rather than a deicer. Thank you for tolerating my long comments and I look forward to your response.

Bonnie Ellis, Senior Research Scientist, Flathead Lake Biological Station, 311 Bio Station Lane, Polson, MT 59860, (406) 982-3301, Ext. 239

Comment: My name is Dan Harvey, 66 Sunset Lane, Box 901. One of my foremost concerns, if you go to Bridge Street and Highway 35 and go straight down the hill, that is where I live. When I think of the environmental assessment on page ES-6 it says “minimize impacts to existing vegetation”. Now if that is an important aspect of this, which it is said to be, then one of the things that I don’t understand is that part of me thinks that this project, in terms of the width of the embankment and the width of the road surface, is excessive. And if, introducing nitrogen and phosphorous as she just mentioned, is this way, if you take all the trees that are currently in the 30-40 year old right-of-way and cut them down and make the road wider and the embankment wider, then you have less surface area for pollutants to get filtered before they go into the lake. Right there the lake is 100 yards away, max. To me one of the thing I don’t get and I’m having difficulty with on this, that while I understand traffic and making the road safer, if I look at the handout I see the current road is 26 feet wide right there and the plan is to make it 52 feet wide. What I don’t understand is why it has to be twice as wide. If you are not going to gain any more lane surface, are you going to have eight feet of shoulder? I live there. I see how often cars break down and back up the road and it is not that often. Not that often to me, maybe to some other people, sure. I would like greater consideration to go into the width of not only the road but the width of the embankment along the different sections, the six different sections or however many you have described here.

Another thing I would definitely like to say is that Bob’s Woods Bay Market is the only place to get gas for 30 miles. The thought that is just tucked back in here, that “oh, we’ll just put them out of business because of the right-of-way.” Go to New England, they’ve got gas stations over there. So I think I would like to see greater concern given to the character of the area. I’ve said this before and I’ve written this before, and so that is what I would like to see. Bob’s Woods Bay Market is the only gas station between Bigfork and Polson. Are you going to put them out of business? That seems a bit rash considering the width of the roadway right there.

I guess I would just like to see greater attention given to minimizing the impacts to the existing vegetation, for instance at Grand Avenue, the same thing. If you take from Bridge and you make that embankment twice as wide, so you cut down all the trees that have taken the last 40 years to grow up there, you are going to have a big road cut. Are we going to do that in Ice Box Canyon? So I would like to see the character of Bigfork preserved so it doesn’t look like a big road cut because somebody has a bunch of money to spend on a road. Thank you.
Comment: My name is Tom Jenko and I live at Windsor Drive. I also own a business on the highway. I’ll be speaking with you probably the first part of the week, so some of the other comments I have I’ll talk to you about then.

There are a couple of things I want to talk about. One is that I’ve written already to whomever we were supposed to mail things to. I just get the sense that we are aback to where we were before, so I just hope you are listening. I don’t know if everybody else feels this, but I just hope you are really listening to us and we are not going through some sort of a rote, legalistic type of thing that you have to do, that you really are willing to change, and it might mean scrapping a lot of these things. This project is probably a wonderful project for you because it appears that Bigfork wants to do some unique things. So it might be a planning bonanza—you can talk about roundabouts and you can talk about community entrances and all those sort of things, but practically thinking there are some real issues. We have a commercial faction that wants to keep it as a village but there are a lot of realistic things in terms of just people moving through and tourism and 18-wheel trucks that we really have to keep in mind here.

There are two things I want to bring up just mainly for conversation and maybe for discussion. One of them is the roundabouts. I’ve lived in New England and have had a lot of experience of roundabouts and I’ve traveled a great deal overseas and have been in roundabouts. I’ve been through thousands and thousands of roundabouts. They are a wonderful alternative to a stoplight and that is why they are there. But to have a roundabout in Bigfork is disastrous. It is just not the right thing for this place. It is the only roundabout in Montana and is probably in the northwest United States, maybe one of the few in the western United States. They are very, very confusing if you don’t drive them. The problem is that if you want to go off at a right angle, on a spoke off a roundabout, you’ve got to cross traffic. They are only proposing just one lane around here. You’ve got to have two lanes where if you don’t make it you’ve got at least be able to drive around it again until there is a slot you can cross over and get in the other direction that you want to go. We’ve got chip trucks, 18-wheelers, RV’s, tourists, elderly people, school busses. It just isn’t going to work. We’ve got a 35 mph speed limit, we don’t need to have roundabouts to slow people down. That is the only reason these are proposed. It is ludicrous. It is more than one disaster waiting to happen. So I hope you really reconsider the roundabout proposal because they are a lot of wasted money. It requires a huge amount of right-of-way to do this right. It is huge circle that is going to be required to be able to get an 18-wheeler through there, and I don’t think anybody realizes how much space that is going to take. And the two of them are too close together as proposed. I can’t believe you are even talking about it. I’ve written a lengthy letter describing all of this stuff and it doesn’t seem to have made any difference to anybody.

The second thing is Ice Box Canyon. The way I look at the proposal here, we are going to have a big concrete median in the middle of this thing. Then we have to have a vegetated area there or something there to kind of buffer the concrete on both sides. So we are creating this monstrous thing that we are trying to help us help ourselves so that we don’t get in accidents there. But I can see it being an enormous boondoggle in terms of cost. It will probably cost one million bucks to put all that concrete in and build the two things on the end of it, when all we really need is to straighten the corner out. The landowner who is on both sides of that is willing to give more access as I understand it, more right-of-way to straighten the corner out a little bit. So we don’t need to have this big concrete abutment through the middle of it and these things on either end of it at an incredible cost.

So I really hope, again, that you will listen to those two things. There are some other issues I have terms of my own business and I’ll talk to you later about that. I hope everybody else wants to talk about this sort of thing because this is really big if you don’t understand roundabouts. Thank you.
Tom Jenko, 500 Windsor Drive, Bigfork, MT, (406) 837-5541

Comment: My name is Rose Schwennesen and I live at 22074 East Shore Route on the east shore down south of Bigfork. I’ve been involved in this process for four years, I think, and I’d like to make a couple of comments. In general I see what has come out of this has been fairly responsive to what public input has given you. I appreciate the fact that we have the potential of having a pedestrian bikeway and multi-use paths. I think that is really important. I have kids who are grown now but I could never let them ride on Hwy 35 because there was never a shoulder and whenever they disobeyed, they had to dive for the borrow pit. So I really appreciate the fact that we will have the option of walking and biking on this stretch of road. Eventually I’d like to see it happen the whole way around the lake. Why are we needing to be so backward? Why can’t we be progressive and allow ourselves the exercise capability of that? I know that is not within the scope of this meeting, but it just a thing I would like to see.

As far as the roundabouts go, I beg to differ with Tom. Sorry about that. I too have driven in Europe and everywhere and as an education tool, and I think this will be a challenge for the Montana Department of Transportation to educate people as to how to drive in a roundabout. To my knowledge the person who is in the roundabout has the right-of-way, so that people who want to enter the roundabout yield to the person who is within the roundabout themselves, and therefore that person who wants to turn left, goes around and he is not impeded by people coming in because he has the right-of-way. So I think it is an efficient movement of traffic. I think that it is something that we should allow in Bigfork as a unique situation. Actually I think there is a roundabout already in Missoula, but that may be not within the Department of Transportation and may be in the City, I’m not sure. Is that right Loran? (Answer: it is the City of Missoula). At any rate, we aren’t the first, dog-gone-it, but I’d like us to be able to have that.

It was hard for me to hear, but I’d like to second Dan’s comment on the width of the bridge and the impact of the width of the bridge. I’ve heard from old-timers in the Bigfork area that say that during the 50’s and the construction period of the bridge as it exists, the impact of the shoulder area that braces up our roadway, was extreme and it denuded this area for years and years. And as we are seeing now, maybe we need to cut some trees, but I think where you allow the breadth of the roadway’s impact is going to be very significant to us in Bigfork, visually and also to those that of course live in that area.

That leads into a question that I have as to how the highway department or the construction crew is going to mediate the impact if we are not going to detour Bigfork, which I agree would be a poor idea. That seems in my mind, to make us have a greater impact on what we are talking about which is both sides of the existing bridge. I just don’t see how that is going to happen, and maybe you can enlighten me in that?

The last question I have is what is the timeline for funding this? I realize funding is the key thing, but if we had a go from this right now in 2004, how much more gray am I going to have to get before we get a nice sequence from Woods Bay to the Canyon? Thank you.

Rose Schwennesen, 22074 East Shore Route, Bigfork, MT, (406) 982-3410

Comment: My name is Jerry Agen and I live in Woods Bay and have lived there with my family since I was one year old, so I have seen a lot of changes in this area. I have three comments that I would like to make, and some of these comments relate to what I have said in previous hearings.
I will start first by mentioning and commenting on your comment on roundabouts. I also live on Bainbridge Island, which is across from Seattle, and they put a roundabout there. That roundabout works well but it only works with slow speed. Highway 35 is not a slow highway even if it posted at 55 mph or 35 mph. How they would ever get around a roundabout going at that speed, I have no idea. I think that is a big consideration that you folks should make.

The other thing I am concerned with, as I have said before, wider highways generally mean greater speeds. I hope you are not being short sighted in looking at the potential that is all of Highway 35 from Polson to Bigfork. There are few places in the state that have a greater potential of being a beautiful scenic highway and do you in all of this or in any of this, and that is an environmental statement, have you taken into consideration what this area will be and should be 50 years from now? You speak in terms of the bridge, you want a bridge that is going to last 50 years, well you should have a highway that represents the needs of this entire area—the economic needs, the human needs, the environmental needs. I think we have a great potential to build or to have a very special scenic highway and I don’t see this even mentioned anywhere with in this statement. I think it is short sighted that you have not considered that.

Finally as a resident of Woods Bay, you are building this wider probably faster highway and you are dumping it into a congested area that is served by an “S” curve. You come down the Woods Bay Hill, it narrows down and then you go around this S turn, with businesses down there, residents down there. If people come down there faster than what they are now going, you are going to create probably a more hazardous highway condition than anything you are going to solve with this entire project. Thank you.

Jerry Agen, 26146 East Cole Sloe Street, Bigfork, MT 59911, (406) 250-6630

(Mike Worrall) Is there any one else that would like to speak for the public record? Ok. Thank you for your comments. I want to answer some of the questions asked. I wasn’t going to get in and counter anybody’s comment but I wanted to answer a few questions that came up just to hopefully clarify.

Answers to General Questions

Daphne Pond: We were aware of Daphne Pond’s unique nature—that there are no fish and the significance of that. The one acre of wetland is not Daphne Pond, we’ve actually strived to stay away from any involvement whatsoever with Daphne Pond. That 1 acre of impact happens to be at the glacial basin that is just north of Woods Bay, in that area, which in an area that is sensitive in its own right. But it wasn’t Daphne pond.

Non-Point Discharge: The potential for non-point discharge? We did consider that. One of the goals of the community was to not create any point discharge by putting in any curb and gutter facilitating the drainage to open ditches, that you would not concentrate the flow at a pipe that would outlet. That was one thing and understanding the particular sensitivities of the bridge and that is an area of special focus that we need to continue to look as it goes on to final design and find a way to avoid that. So that is to answer those questions specifically.

Embankment Near Bridge: With regard to the embankment near the bridge, we talked about the bridge width and the sensitivities of the slopes and the vegetation on those slopes, and we worked with the Advisory Committee on this quite extensively. One of the reasons that a roundabout was considered at that location is because it precluded the need for an additional left-turn lane that you would need at a conventional intersection at that bridge street. That was one reason. In addition we were aware of the
sensitivity of the slope. I think somebody mentioned that when those slopes were originally constructed in the late 50’s, it took years and years and years … and you actually had people from the community I think neighbors of yours, who had pictures of this when it was first built and how bare the slopes were for many years. I think the way we’ve laid that out, with the use of some shorter retaining walls (3 to 5 feet) on that edge, we can avoid the direct effect to the majority of that.

Bob’s Woods Bay Market: Bob’s Woods Bay Market is not going to go away. It wasn’t a direct impact that was identified and we are not going to affect that. Just to clarify that.

Timeline: As far as the time line, right now what we’ve been telling people is that the absolute soonest that this thing could be ready is 2007. Actually more realistically 2008 given the current fund stream. It has been in place for the past six years. For those of you who actually pay attention to what is going on in Washington D.C., just to paint the picture for you, Montana happens to be a state that relies most heavily for federal aid with regard to transportation.

(Loran Frazier) I can jump in on that. About 87% of the money we spend on highways in the State of Montana is federal aid money and 13% of that is our state gas tax. So what we’ve been running on and projecting that we’d keep about the same amount of money coming into Montana for the next six years as we received in the last six years. I have this project funding sitting in our plan. Every November we get into a fight here with construction plans. I have Bigfork slated in for 2008. That is if we go through this process and through this document and Federal Highways gives us the go ahead that our document is good and we get a FONSI, we can start final design. That is a 24-30 month time frame. Then after that we have right-of-way, which takes about 18 months. So we are from 40-48 months aware from being able to go to construction just as the process builds and that is if everything just clicks along real good. That is our goal for the funding. We are looking at four years out from this decision point.

(Loran Frazier) The other interesting thing is that we have been without a highway bill since October 1, 2003, and they have been running on a continuation. Right now, we are hoping that our Senators in Washington, in the House, will be able to get some type of bill out of Congress so we can have a funded highway bill. We are running a little short of cash as we are getting towards the end of the federal fiscal year and the continuation. Right now in the State of Montana we’ve spent all money that was given to us so far. We know there is suppose to be another one coming and I’m hoping Congress will do that. I’d hate to shut down for a few months. Anyway however this highway bill comes out also affects this funding and we are trying to guess what Congress is going to give us.

Construction: As far as the construction and the timeline of construction, I think that is an area the community should pay particular attention to because it potentially could affect you. What we’ve been estimating is that it would take the better part of a couple of construction seasons to do the roadway construction. Not all of that would necessarily mean that everything is completely closed down during that time, but we anticipate it would take a good part of that. The bridge and that whole area is an area of specific concern. We’ve looked at a couple of different things and a number of different people in the community have asked some very good questions and come up with some very good ideas based on things that they’ve seen in other areas of the world. One of the things we are investigating is the use of a temporary bridge that could be placed in there. There are a number of people that have seen some extensively long temporary bridges in Canada being used lately on construction and we are trying to track some of that down. That would help. If that doesn’t materialize we’ve developed a construction sequencing whereby traffic would be reduced down to one lane that would alternate lanes with a temporary signal at both ends that would basically flag direction of travel across that. What would happen is that we would tear down half of the existing structure while you are maintaining one lane on the other half. Construct half of the new structure and move that traffic over to the new structure and tear down the other half of the old structure, and then finish the new structure. Our goal would be for all of
that period where the community would see lane closures and any closures at all with regard to traffic, would occur to the greatest extent in the off season, in the nine months from September through May that it is not reliant on tourist traffic. We are hoping we can avoid detours. If there was a detour, the only detour available to us is Hwy 83 to 209, which is about a 12-mile detour. It might be an option for trucks particularly during this period. If that comes up we would like to limit that to the bare minimum—a week or so at max. We haven’t completely resolved every detail of that but we think that is reasonable at this point. From here on out, there is a lot of final design that has to happen and that issue is going to continue to be on the top of our minds and it is another issue we will continue to coordinate with the public on and communicate with you on. It won’t be without its effects. It won’t be. But we are going to make every attempt possible to minimize that.

Those were the general questions asked, the other ones were more specific and I didn’t want to necessarily comment on that. Are there any other general questions that you might have to clarify anything?

Q: What is the proposed speed limit going to be?

A: We are not proposing to change the speed limit from what is there right now. In Bigfork and Woods Bay it is now posted at 35 mph. The design we are proposing is consistent with that. Then along the entire east shore the speed limit outside of those speed zones is 55 mph. We are not proposing to change that or adjust that in any way.

Width and Runoff: One point of clarification I might make with regard to the amount of width for those people who brought that up. We did consider the additional impervious space that would contribute to runoff and we did consider whether we would need to do treatment or not, and since we aren’t collecting that in a point discharge. If we were we would need to treat that in some way, but to this point we haven’t identified that we are collecting that in a storm sewer that would require that since it is going to be flowing in open ditches which is actually better than most of what you could construct.

Width: One of the things I wanted to point out is that you are not alone in the concern of the overall width. That has been a concern that has been voiced by the community from day one. The Department has actually agreed to a number of design modifications or adjustments or compromises, if you will, on their typical standards in order to reduce the overall paved width. By rights with the amount of traffic that MT-35 receives, it should have eight-foot shoulders all the way through according to national standards. We looked at that and with the concerns of the community about the overall width, and trying to balance that with need to have some shoulder. For those of you that have your wheel tickle the edge of that white line and drop over the edge once in awhile, it’s an unnerving moment. We developed a section that instead of an eight-foot paved shoulder; it has a four-foot paved shoulder. So a four-foot paved space outside of the white stripe, and then four feet of turf that has some sort of a foundation underneath so it wouldn’t become a mud hole but it wouldn’t be all pavement either. That is the section we proposed between Woods Bay and Bigfork in that rural section.

Ditch Widths and Slopes: The other thing I’ll say is that the Department has compromised on their typical standards, in the ditch widths and the slopes. Typically the ideal situation is to put in a ten-foot wide ditch that a mower can get down into the center to clear the weeds to facilitate the flow down the ditch. This project the Department has decided to compromise on that and go to a narrow V ditch, not unlike what you see out there now. So you don’t have the wide ditches that you would see on Creston North and South. The other thing is that the Department agreed to allow us to
steepean some of the slopes. We’ve actually included a great amount of retaining wall to contain those slopes such that it doesn’t get to be this big wide corridor as well. So we were cognizant of that and I think we did a reasonable effort to try and keep those narrow. I just wanted to relay that those issues have been brought up continuously from the community, so you are not alone.

Q: I just want to add that the proposed alternative as it stands now is not responsive to the Flathead Lake TMDL in that it would behoove the Department of Transportation to pay attention to the Woods Bay area and some sort of modification to reduce nutrient transport.

A: (Mike Worrall) Ok, we will look at that.

Q: I would like to add one thing. The water, the runoff from Bob’s Woods Bay Market goes down Hwy 35 and down Yenne Point Road and it does down almost to Lake Shore Drive, and it is bringing mud in and highway materials in and I was wondering if you could look at that?

A: (Mike Worrall) Ok, thank you.

Q: Could you address again who is responsible for the upkeep and the maintenance of the meridian areas, the lawns and that kind of stuff?

A: (Loran Frazier) Most of the medians if they are a landscaped area, mostly due to resource constraints we have the local communities maintain those.

Q: Will they be running water to them out in the middle of the road?

A: (Loran Frazier) We can. In some of the communities that wanted to do that, actually when we built the road, we put conduit under the road so they can get the water line out to the middle of the median to water the plants that are out there. That is up to the local communities to maintain those landscaped medians. I just simply don’t have the money or the men to go out and be gardeners.

Q: Are you able to address the concerns of the roundabouts.

A: (Mike Worrall) I can address them just by saying that in the process of evaluating and considering those roundabouts, I will say that the community is not of one mind on this. There are some people that really, really would like to see them and there are some people that really, really would not, and there are some people that are on the fence. That is the impression I have. I am more interested in facilitating the process to come up with the best solution for the community. We feel like this represents something that reaches toward doing something that is unique with regard to Bigfork. It is certainly unique with regard to the way the highway looks and identifying it as something different, and something to help provide more continuity of speeds in some areas, not necessarily road speeds.

A: (Loran Frazier) I have something to add in there. I was really apprehensive about these. About four years ago I got requests for roundabouts from Bigfork to Stevensville from about every community in western Montana. So we at the Department made quite an effort over the last two years to try and educate ourselves on them and to go look at them. I even went down on a road trip to Colorado, we
took a van down and our State Traffic Engineer and some other folks and we drove the ones that are in Golden Colorado, Breckenridge and Aspen. There are a whole bunch of roundabouts in Colorado. As a boy from Montana who hasn’t traveled outside of the state except about four times, I was even able to drive a 12-passenger van through them without even a scary incident. I was really amazed at the ones in Golden, Colorado that were on a 45 mph roadway and they seemed to function really well. In looking at those, I had a lot of concerns. I really wouldn’t allowed them to be looked at as an alternative if I thought they were unsafe. I had the experts in the traffic field look at them and they feel with the designs here, they will work. One of the key components to that is having a little bit of a median that gives the driver a little raised median and a little narrowing of the roadway, a little psychological effect and the driver starts backing off the throttle and paying attention as they come into to them. With that in there, our Traffic Engineer who is retired as of this year, but the last few years he looked through that. His name is Don Dusick and he is probably one of the most conservative Traffic Engineers that we’ve seen, and he felt that it would work and I trust his professional judgment on that.

Q: The communities in Colorado get a little different type of snow than what we get here, so I’m wondering about our type of snow. It has a different water content. I’m concerned about the ice and maintenance of these roundabouts. How is your department going to keep these clear of snow?

A: (Loran Frazier) We plan on running a plow around them to get it out. We looked at that for maintenance and the other issues. You can look at a conventional intersection now where you’ve a got a right-turn lane and a left-turn lane. I’ve got to send my snow plow through the intersection, turn that left-turn lane and go down back up and come back and go through it again. Where with a roundabout they can make two laps around it and continue down one of the legs.

Q: Where do they put the snow? In a really heavy snow, where is all that snow going?

A: (Loran Frazier) We would plow to the outside.

Q: How high can you pile it?

A: (Loran Frazier) Well, we pile it about seven feet tall on Lookout Pass.

Q: You have plenty of equipment to do that?

A: (Loran Frazier) We have equipment in the Flathead area that can handle great amounts of snow. We have snow blowers and actually we have V-7 that we keep on line if the snow gets deep, that we use on Marias Pass for the avalanches. If snow gets that high, we do have the equipment here that we can move in.

Q: But what if it’s higher?

A: (Loran Frazier) It could be. We could “what if” scenario all we want, but the equipment is in our Kalispell area and we can mobilize it. Chances are that if the snow is that heavy here in Bigfork, I am going to borrowing stuff from all other parts of the state. Kind of like when the North got hit bad this winter, and we sent all our cabs and all our snow blowers over east of Havre to help them out.
Q: Is this considered all one project?

A: (Loran Frazier) Yes.

Q: So it doesn’t get, like Lake Hills is important because it is a safety issue with a lot of people in there grocery shopping, it wouldn’t be just that section, it has to be the whole thing?

A: (Loran Frazier) Our plan is to try and approach it so that we … I would like to keep it funded as one whole project. It all depends on how that money comes in. If we don’t get as much as we thought we would, maybe we would have to split it up by section, but I would rather not. I would keep it as one section and try and minimize the amount of construction impacts to the community.

Q: But either way it is a forward to go? Something is to be done or nothing?

A: (Loran Frazier) Yes, it is a project that I’m planning to put in 2008. Unless we come up with a finding of significant impact and we go to an EIS process then it would carry things out for a few more years. Someday that bridge is going to be addressed, the roadway base that is there now is tired. You’ve been seeing a lot of patching activities going on and we get to a point where we start spending an awful lot of money on maintenance and it becomes time to build a road.

Q: Ever since you put the 35 mph speed limit in, especially through Ice Box curve. It is fairly narrow there and you have cars all backed up that are ten-fifteen deep. When it was 45 mph we didn’t have that problem at all. Now you have a problem with a lot if people taking more chances and driving fast. The more you are slowing us up, the more you are backing the traffic up.

Q: How does the appraiser value your property?

A: (Mike Worrall) What happens is that an independent appraiser gets hired. That appraiser conducts appraisals of the property prior to the right-of-way acquisition and after the acquisition. Then the assessment is for the fair market value of the difference between the two. That is what that appraisal is.

(Loran Frazier) With federal aid the process is basically a certified appraiser comes and appraises your property, that appraisal is then reviewed by a review appraiser and they make some recommendations. Then after that the review appraisal, then our negotiator comes out and makes an offer and the negotiations go on after that. On average if we take 100 people that we deal with, probably 85-90% of the appraisals are good. Every now and then we have that 2-3% where somehow they missed the mark, and it gets down to negotiations. We do our best to pay fair price for the property that we need.

Q: What if you don’t want to sell at all?

A: (Loran Frazier) For those where we are not able to negotiate a settlement and they don’t what to sell at all, we do have the authority of eminent domain, which means that then we get a day in court to
tell the judge why you don’t want to sell or why we don’t need it. The burden on us as we design the right-of-way is “the minimum private injury for the most public good”. So when we design the right-of-way, we design for the minimum right-of-way that we need.

Q: Were you here four years ago?
A: (Loran Frazier) Yes.

Q: I was at every one of those meetings and we live on Hwy 35. That cut goes right through my back door. This is a question that I asked one of the engineers, and I don’t know if he is here tonight? He told me at the time that my place would not be touched. Anything with a Chevron sign on it, you were going to do something else.
A: The oil and gas line?

Q: There have been several accidents at my house and my neighbors’ house too. 99% of the wrecks are from drunks and damn fools, it is not because of climate. The more you modernize this highway, the faster they are going to go. Just like Lyle said, this 35 mph speed limit up here is killing everybody. I don’t know how started it or anything else. I go through it about 3 or 4 times a day, and I’ve had, especially young girls, passing me on that center line, and they are going by me, I’m doing 35 mph and they pass me like I’m standing still. So it’s a killer. And the roundabouts, no, I cannot see them here in this town. I’ve been for 52 years, and 32 years as Fire Marshall, I’ve driven these roads all around and to me those roundabouts are going to ruin this town and it has already done with what’s happened to it now. It is not Bigfork any more, it is a tourist trap, and that is going to help it go down hill.

Q: Now is this targeting primarily environmental requirements for this project? Being as how I don’t plan to sell my house if you plan to do the road for sure, I wonder how far it goes before you absolutely won’t listen to any idea? If you go out here across the street to the Baptist church when they widened that stretch out, the guy put up a chain saw with a slash through it. Maybe you’ve driven by it right across from here just up a little ways. I’ve seen them come into the roadway shoulder and cut down every single tree. If they don’t have to be cut, I wonder how fixed in stone this is? A guy with a D-9 is probably not your best landscaper. Right there where I live, you can slow down to look at the lake because you can start to see the lake—you have just passed Bridge Street heading up to Grand Avenue. So I wonder is if somebody is just going to go in and because the state owns inside my front fence, they can go in and cut down every single tree, and I wonder the possibility of saying do you need to cut these trees, do you need to cut all these trees? You go out there and you have trees this big from the last time this happened. That is what I would like to know. Because you are talking about now only doing this side of the road, you are talking about both sides of the road, and doing all the way to Marina Kay and making it twice as wide. So I guess I see that as just one big eye sore for ten years after this project is done. I have a concern about that. I wonder if that is something that needs to be done because you put the guardrails up, that is the end of the __________ as far as the state goes. So I mean, how set in stone is this for that kind of thing?
A: I think it would be easiest if we sat down with you and showed you exactly what the proposal looks like through there, so you can see for yourself what it is going to do.
Q: Sure I would appreciate that.

Closing Remarks

I guess we can consider the formal comment phase of this project done along with the questions answer period. We are going to be around for a while if you want to talk with us and if you want to set up a meeting between me and yourself for next week, I’ll be here Monday through Wednesday, talk to Bert and he will set me up on a schedule. I’ll also be around for a little while to talk to you. Thank you for coming.
Public Hearing Sign-In Sheet (2 of 5)

<table>
<thead>
<tr>
<th>Name</th>
<th>Address/Location</th>
<th>City State Zip</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: R. (Client)</td>
<td>Address: 1201 Johnson St.</td>
<td>Bigfork, MT 59911</td>
<td>Phone: 837-0116</td>
</tr>
<tr>
<td>Name: Johnson</td>
<td>Address: 300 Adams St.</td>
<td>Bigfork, MT 59911</td>
<td>Phone: 837-0116</td>
</tr>
<tr>
<td>Name: Smith</td>
<td>Address: 205 Adams St.</td>
<td>Bigfork, MT 59911</td>
<td>Phone: 837-0116</td>
</tr>
<tr>
<td>Name: Pierce</td>
<td>Address: 500 Adams St.</td>
<td>Bigfork, MT 59911</td>
<td>Phone: 837-0116</td>
</tr>
<tr>
<td>Name: Thompson</td>
<td>Address: 600 Adams St.</td>
<td>Bigfork, MT 59911</td>
<td>Phone: 837-0116</td>
</tr>
</tbody>
</table>

Note: The above table includes the names, addresses, and phone numbers of individuals present at the public hearing. The contact information reflects a typical format used in public meetings for record-keeping purposes.
Public Hearing Sign-In Sheet (3 of 5)

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
<th>Organization</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brian Johnson</td>
<td>123 Main St, Bigfork, MT 59911</td>
<td>406-523-4567</td>
<td>bjohnson@email.com</td>
<td>Montana Department of Transportation</td>
<td>Applicant</td>
</tr>
<tr>
<td>Mary Smith</td>
<td>456 Maple Ave, Bigfork, MT 59911</td>
<td>406-523-7890</td>
<td>msmith@email.com</td>
<td>Montana Department of Transportation</td>
<td>Opponent</td>
</tr>
<tr>
<td>John Doe</td>
<td>789 Oak Rd, Bigfork, MT 59911</td>
<td>406-523-0123</td>
<td>jdoe@email.com</td>
<td>Montana Department of Transportation</td>
<td>Applicant</td>
</tr>
<tr>
<td>Jane Smith</td>
<td>101 Pine Ln, Bigfork, MT 59911</td>
<td>406-523-4321</td>
<td>jsmith@email.com</td>
<td>Montana Department of Transportation</td>
<td>Opponent</td>
</tr>
<tr>
<td>Michael Brown</td>
<td>234 Cedar Dr, Bigfork, MT 59911</td>
<td>406-523-5678</td>
<td>mbrown@email.com</td>
<td>Montana Department of Transportation</td>
<td>Applicant</td>
</tr>
<tr>
<td>Sarah White</td>
<td>345 Elm St, Bigfork, MT 59911</td>
<td>406-523-9876</td>
<td>swhite@email.com</td>
<td>Montana Department of Transportation</td>
<td>Opponent</td>
</tr>
</tbody>
</table>

Finding of No Significant Impact

Appendix B

Montana Department of Transportation

Page 24
Public Hearing Sign-In Sheet (4 of 5)

<table>
<thead>
<tr>
<th>Name</th>
<th>Mailing Address</th>
<th>City, State, Zip</th>
<th>Phone</th>
<th>Organization (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom E. Rainwater</td>
<td>195 Buckhorn Rd</td>
<td>MT 59911</td>
<td>752-3928</td>
<td></td>
</tr>
<tr>
<td>Kirk Hansen</td>
<td>2413 Never Rd</td>
<td>MT 59911</td>
<td>937-3039</td>
<td></td>
</tr>
<tr>
<td>R. J. B. Alkire</td>
<td>150 N. Mock Rd</td>
<td>MT 59911</td>
<td>406-396-5008</td>
<td></td>
</tr>
<tr>
<td>Butch L. Huxley</td>
<td>Box 372</td>
<td>MT 59911</td>
<td>837-6882</td>
<td></td>
</tr>
<tr>
<td>Steve M. Alkire</td>
<td>Box 1155</td>
<td>MT 59911</td>
<td>906-937-6188</td>
<td></td>
</tr>
</tbody>
</table>
Comments Received During the Public Comment Period and MDT Response

The following pages present comments received during the public comment period and MDT’s responses to those comments. Comments 1 through 6 are formal verbal comments provided at the July 14, 2004 public hearing. The remaining comments are written comments submitted at the public hearing and during the public comment period.

Comments are reproduced on the left side of the page, and corresponding responses are provided on the right side of the page. Where possible, individual themes within a comment are called out with a label in the left margin (i.e., 21A, 21B, 21C) so that corresponding responses can be more easily tracked on the right side.

Listed below are individuals who submitted comments on the EA, and the page number of the comment and responses in this appendix:

Marsha Knell: ... 30
Bonnie Ellis, Flathead Lake Biological Station: ... 31
Dan Harvey: ... 32
Tom Jenko: ... 33
Rose Schwennesen: ... 35
Jerry Agen: ... 37
Russell H. Kinzer, Bigfork School District No. 38: ... 39
Russell H. Kinzer, Bigfork School District No. 38: ... 40
Ken Degitz: ... 41
Hugh Doty & Jerry McClenahan: ... 42
Kirk Hansen: ... 43
Ron & Carol Pierce: ... 44
Michael Jones & Karen Devaane: ... 45
Patrick Gould: ... 46
Joe & Julie Cassetta: ... 47
Bart Anderson: ... 49
Joe Pastor: ... 50
Ted Nickols, Bigfork Auto Parts Store: ... 51
Dana & Sandy Saxten: ... 52
Jim & Sheila Fleming: ... 53
Barbara & Mike Wolstein: ... 54
Kent Bolstad, Bethany Lutheran: ... 56
Larry & Yvonne Janoff: ... 57
Kathy Collins: ... 58
Arnold & Carol Morris: ... 59
Ted Groenke & Fritz (illegible), Bigfork Orchards: ... 60
Robert & Karen Nelson: ... 62
Doris Gorsuch: ... 63
Dan Hodges: ... 64
Jerry & Shirley Neilson: ... 65
Lyle & Loretta Aklestead: ... 66
Charles Wilson: ... 67
Pickavance – Bowling Alley: ... 68
Jack Paulson: ... 69
Kathleen Greytak: ... 70
Allen & Nancy Ebeltoft: ... 71
Jim & Corinne Johnson: ... 72
John & Diane Gadrielson: ... 73
Randy & Linda Snyder: .. 74
Jim Greytak: .. 75
Dannie Fischer: ... 76
Thelma Russell: ... 77
Craig Spicher for Donna Hudson: .. 78
Jim Greytak: .. 79
Judith R. Stevens: ... 80
Charlene Herron: .. 81
John Bourquin: ... 82
Linda Carter: ... 83
Kirk Mackenzie: ... 84
T.D. Harvey: .. 85
T.D. Harvey: .. 86
Kirk Hansen: ... 87
Brett Thuma: ... 88
Marty Miller: ... 89
Arnold B. Morris: ... 90
Patricia Haugo: .. 91
No Name Provided: ... 92
No Name Provided: ... 95
No Name Provided: ... 96
Gary McCrummen: .. 97
Don & Mike Burton: ... 98
Bud McKenzie, Acorn Storage: .. 99
Pat Hawley: ... 100
Lei Anderson: .. 101
Maris K. Johnson: ... 103
Bigfork Water & Sewer: .. 105
Name Illegible: .. 106
Rand & Linda Robbin: ... 107
Katherine Haug: .. 109
Catherine Haug: ... 110
George Darrow: .. 111
Tom Jenko, Bigfork Medical Clinic: .. 114
Donald E. Diggins: .. 116
Marcia Dion Knell: .. 117
David & Chris Maichel: ... 118
Norwood Nedom: ... 119
Chris G. Moritz: ... 122
Mark Bloomfield: ... 123
Val Chambers: .. 124
Kathy Naïve: ... 125
Sharon Anderson: ... 126
John, Patricia, Mabel Little: ... 127
Clem Johnson: .. 128
James Johnson: ... 129
James Poling: .. 130
Jerry Logan: ... 131
Don Nelins: ... 132
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tim Hill</td>
<td>133</td>
</tr>
<tr>
<td>Bill J. Capps</td>
<td>134</td>
</tr>
<tr>
<td>Jim & Sue Tebay</td>
<td>135</td>
</tr>
<tr>
<td>Stan Bones</td>
<td>136</td>
</tr>
<tr>
<td>Bonnie K. Ellis, Flathead Lake Biological Station</td>
<td>139</td>
</tr>
<tr>
<td>Wayne Krahe</td>
<td>141</td>
</tr>
<tr>
<td>John Zupicich</td>
<td>142</td>
</tr>
<tr>
<td>Tina M. Gillman</td>
<td>143</td>
</tr>
<tr>
<td>George Darrow</td>
<td>144</td>
</tr>
<tr>
<td>Carlene Williams</td>
<td>145</td>
</tr>
<tr>
<td>Grant & Diane Compton</td>
<td>146</td>
</tr>
<tr>
<td>Jerry L. Agen</td>
<td>147</td>
</tr>
<tr>
<td>Russell W. Rocheford, U.S. Army Corps of Engineers</td>
<td>149</td>
</tr>
<tr>
<td>Ann Johnson</td>
<td>151</td>
</tr>
<tr>
<td>Marise K. Johnson</td>
<td>156</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
</tr>
<tr>
<td>1</td>
<td>Marsha Knell</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
</tr>
</tbody>
</table>
| 2 | Bonnie Ellis, Flathead Lake Biological Station: | Senior Research Scientist | I just wanted to be sure that you are aware of the biological, historical, educational importance of Daphne Pond. Students and faculty have been going to this pond for a hundred years, so that is a pretty significant historical perspective. Biologically this pond is very interesting because there have been no fish introduced. So there is one very large species of Zooplankton called Daphnea Magna because it is so large, and another macroinvertebrate aquatic insect called Kaobris, its’ common name is the phantom midge. Both of these organisms are there because there are no fish. And in so many ponds and lakes throughout the world, fish have been introduced and the original habitats for these species have been lost or these species have been lost from those originally habitats. So these two organisms provide us with a lot of information for students and a lot of opportunities to examine predation and behavioral responses, and morphological responses. Without going into it and boring you, just let me tell you that to anyone in the biological field these guys are really exciting. So biologically it is also of great interest, historically, and of course educationally there have been many, many students over the hundred years going to Daphne Pond.

I guess I wanted you to answer what the .1 acre alteration of this habitat is going to be? When I look at the map I don’t really see much impact. Perhaps that was just the area encompassed by the trail you are proposing? Because what I am concerned about is additional fill to the pond. We examined 1966 and 1998 aerial photographs of Daphne Pond and estimated that about .76 acres of fill have already been introduced to the pond. I am not aware of any Environmental Assessments that occurred when that took place and whether there was any mitigation for that. But certainly this diminishes the habitat available for Daphnea Magna. They like to go into littoral areas or shoreline areas to get away from this big Kaobras predator. And it diminishes the natural functioning of a wetland ecosystem. Certainly I would like to see that the same considerations for Daphne Pond are given that are given for the wetlands and in the Nine Pipes area for instance on Highway 93 reconstruction there. |

| Response 2A: | The Environmental Assessment states there would be an estimated 0.04 hectare (0.1 acre) of impact at Wetland #5 (where Daphne Pond is located). The 0.1 acres of impact was associated partly with highway widening and partly with the multi-purpose path that was assumed to be located along the east side of Daphne Pond. Because of concerns voiced about impacts to Daphne Pond, the multi-purpose path will now be located adjacent to the highway, on the west side of Daphne Pond. This change will not alter the acreage of wetland impact; however, it will reduce impacts to higher quality pond edge wetlands east of the pond. This will preserve their function for ongoing educational and natural resource protection purposes. Wetland impacts and associated mitigation will be determined during the final design process for the highway and path. |

Response 2B:	The Environmental Assessment commits to roadside ditches (where feasible) to convey storm water (page 3-32). Roadside ditches help to improve water quality because they provide natural filtration and sedimentation functions before the storm water reaches its final water resource destination.		
2			
2B	The second area of concern I wanted to talk to you about is the potential for non-point source pollution of Flathead Lake from increased nitrogen and phosphorus from increased impervious surface area particularly in the area of Woods Bay where the road is close to Flathead Lake. I’m just wondering, and perhaps you can comment on this as well, if there is not some technological fix there where you could route the runoff to some sort of a treatment		

| | | |

Montana Department of Transportation
<p>| No. | Name | Affiliation | Comment | Response |
|-----|------------|-------------|---|
| | | | system. I know they have, I’ve seen these sort of treatment systems on storm water runoff in cities, or if it could be routed to a swale and a place that perhaps the highway department could purchase and create, because Flathead Lake water quality is declining. It is nitrogen and phosphorous that stimulates the production of algae in the lake. I know you aware that there is a TMDL on Flathead Lake and the Department of Environmental Quality, Flathead Basin Commission, many different agencies and other stakeholders are right now trying to figure out ways to reduce nitrogen and phosphorous in any way possible. So I hope the Montana Department of Transportation will step in as well and try to find some way to reduce increased nutrient transport to the Lake. | Additionally, ditches do not concentrate flow, unlike curb and gutter or storm sewers. |
| 2C | | | Lastly the bridge, the Swan Bridge, I just wanted to mention to you our concern about nutrient inputs from the bridge as well even after it’s established. If you could comment on this I would appreciate it. If there are any technological fixes out there for taking runoff from a bridge and treating it or transporting it somewhere so that its nutrient and sediment load can be reduced before it flows into the Lake. At a minimum I think we need to look at that and for all the different areas of road around the lake that are close to Flathead Lake and all the bridges. Perhaps even moving to use of sand rather than a deicer. Thank you for tolerating my long comments and I look forward to your response. | Response 2C: MDT will integrate appropriate water quality best management practices into final design of the project to ensure roadway and bridge runoff meets the water quality standards established by the Montana Department of Environmental Quality. MDT uses liquid deicers, such as calcium magnesium acetate, when snowplowing alone is insufficient. |
| | Dan Harvey | Individual | One of my foremost concerns, if you go to Bridge Street and Highway 35 and go straight down the hill, that is where I live. When I think of the environmental assessment on page ES-6 it says “minimize impacts to existing vegetation”. Now if that is an important aspect of this, which it is said to be, then one of the things that I don’t understand is that part of me thinks that this project, in terms of the width of the embankment and the width of the road surface, is excessive. And if, introducing nitrogen and phosphorous as she just mentioned, is this way, if you take all the trees that are currently in the 30-40 year old right-of-way and cut them down and make the road wider and the embankment wider, then you have less surface area for pollutants to get filtered before they go into the lake. Right there the lake is 100 yards away, max. To me one of the thing I don’t get and I’m having difficulty with on this, that while I understand traffic and making the road safer, if I look at the handout I see the current road is 26-feet wide right there and the plan is to make it 52-feet wide. What I don’t understand is why it has to be twice as wide. If you are not going to gain any more lane surface, are you going to have eight-feet of | Response 3A: The proposed new bridge will be wider than the existing structure because of the addition of shoulders and path. Yes, the lanes are 3.6 meters (12 feet) wide with 2.4-meter (8-foot) shoulders on each side, plus a trail that is 1.8 meters (6 feet) wide. The community has expressed great concern over the loss of trees on the bridge embankment. Currently, the trees do not occur until some distance down the hill. To address the community and public concerns in this area, the Preferred Alternative includes elements such as retaining walls to minimize impacts to existing vegetation. Roadway improvements, including bridges and retaining walls, will be designed to minimize disturbance to surrounding trees and vegetation. The roadway over the bridge will collect water along the bridge rails. The project team recognizes the sensitivities of the Swan River and fish species there. MDT will integrate appropriate water |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Affiliation</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A</td>
<td>Individual</td>
<td></td>
<td>There are a couple of things I want to talk about. One is that I’ve written already to whomever we were suppose to mail things to. I just get the sense that we are aback to where we were before, so I just hope you are listening. I don’t know if everybody else feels this, but I just hope you are really listening to us and we are not going through some sort of a rote, legalistic type of thing that you have to do, that you really are willing to change, and it might mean scrapping a lot of these things. This project is probably a wonderful project for you because it appears that Bigfork wants to do some unique things. So it might be a planning bonanza—you can talk about roundabouts and you can talk about community</td>
<td>Response 4A: Your comments are heard, and your comments are used to shape the project within the greater good of all concerned, as well as within the feasible and practical constraints under which the MDT must operate. Your comments are documented in the environmental assessment process, and will be taken into further consideration during the next design phase. It is recognized that there is a certain dynamic of competing interests within the community, which has been considered carefully in developing the Preferred Alternative.</td>
</tr>
<tr>
<td>3B</td>
<td>Individual</td>
<td></td>
<td>Another thing I would definitely like to say is that Bob’s Woods Bay Market is the only place to get gas for 30 miles. The thought that is just tucked back in here, that “oh, we’ll just put them out of business because of the right-of-way.” Go to New England, they’ve got gas stations over there. So I think I would like to see greater concern given to the character of the area. I’ve said this before and I’ve written this before, and so that is what I would like to see. Bob’s Woods Bay Market is the only gas station between Bigfork and Polson. Are you going to put them out of business? That seems a bit rash considering the width of the roadway right there.</td>
<td>Response 3B: In the location of Bob’s Woods Bay Market, some right-of-way will be acquired to relocate the approach, but this will not result in a total acquisition.</td>
</tr>
<tr>
<td>3C</td>
<td>Individual</td>
<td></td>
<td>I guess I would just like to see greater attention given to minimizing the impacts to the existing vegetation, for instance at Grand Avenue, the same thing. If you take from Bridge and you make that embankment twice as wide, so you cut down all the trees that have taken the last 40 years to grow up there, you are going to have a big road cut. Are we going to do that in Ice Box Canyon? So I would like to see the character of Bigfork preserved so it doesn’t look like a big road cut because somebody has a bunch of money to spend on a road. Thank you.</td>
<td>Response 3C: Your concern over the visual effects of the project, and clearing of trees is shared by many. Minimizing impacts to existing vegetation was identified as a major issue during the stakeholder process. The Preferred Alternative includes mitigation measures to address this issue, as discussed in Section 3.14 and 3.19 of the Environmental Assessment. The community has expressed great concern over loss of trees on the bridge embankment, Ice Box Canyon, and other areas in the project area. Roadway improvements, including bridges and retaining walls, will be designed to minimize disturbance to surrounding trees and vegetation.</td>
</tr>
<tr>
<td>4A</td>
<td>Individual</td>
<td></td>
<td>There are a couple of things I want to talk about. One is that I’ve written already to whomever we were suppose to mail things to. I just get the sense that we are aback to where we were before, so I just hope you are listening. I don’t know if everybody else feels this, but I just hope you are really listening to us and we are not going through some sort of a rote, legalistic type of thing that you have to do, that you really are willing to change, and it might mean scrapping a lot of these things. This project is probably a wonderful project for you because it appears that Bigfork wants to do some unique things. So it might be a planning bonanza—you can talk about roundabouts and you can talk about community</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Affiliation</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>entrances and all those sort of things, but practically thinking there are some real issues. We have a commercial faction that wants to keep it as a village but there are a lot of realistic things in terms of just people moving through and tourism and 18-wheel trucks that we really have to keep in mind here.</td>
<td>Alternative.</td>
</tr>
<tr>
<td>4B</td>
<td></td>
<td></td>
<td>There are two things I want to bring up just mainly for conversation and maybe for discussion. One of them is the roundabouts. I’ve lived in New England and have had a lot of experience of roundabouts and I’ve traveled a great deal overseas and have been in roundabouts. I’ve been through thousands and thousands of roundabouts. They are a wonderful alternative to a stoplight and that is why they are there. But to have a roundabout in Bigfork is disastrous. It is just not the right thing for this place. It is the only roundabout in Montana and is probably in the northwest United States, maybe one of the few in the western United States. They are very, very confusing if you don’t drive them. The problem is that if you want to go off at a right angle, on a spoke off a roundabout, you’ve got to cross traffic. They are only proposing just one lane around here. You’ve got to have two lanes where if you don’t make it you’ve got at least be able to drive around it again until there is a slot you can cross over and get in the other direction that you want to go. We’ve got chip trucks, 18-wheelers, RV’s, tourists, elderly people, school busses. It just isn’t going to work. We’ve got a 35 mph speed limit, we don’t need to have roundabouts to slow people down. That is the only reason these are proposed. It is ludicrous. It is more than one disaster waiting to happen. So I hope you really reconsider the roundabout proposal because they are a lot of wasted money. It requires a huge amount of right-of-way to do this right. It is huge circle that is going to be required to be able to get an 18-wheeler through there, and I don’t think anybody realizes how much space that is going to take. And the two of them are too close together as proposed. I can’t believe you are even talking about it. I’ve written a lengthy letter describing all of this stuff and it doesn’t seem to have made any difference to anybody.</td>
<td>Response 4B: Inclusion of roundabouts was discussed at length with the Bigfork Advisory Committee, who supports them. Other comments both for and against their use have been received. Please note that the roundabouts are designed as single-lane intersections so it would not be necessary to cross from an inside lane to make a right-turn movement. Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process. During the environmental assessment process, several area motor carrier companies were contacted. The roundabouts were developed in coordination with those companies by acquiring truck turning data from each company and using that information to design the roundabouts. So far, the trucking companies have not expressed any concerns with the roundabouts. MDT will conduct a public education program about the use of roundabouts before they are implemented.</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Affiliation</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4C</td>
<td>The second thing is Ice Box Canyon. The way I look at the proposal here, we are going to have a big concrete median in the middle of this thing. Then we have to have a vegetated area there or something there to kind of buffer the concrete on both sides. So we are creating this monstrous thing that we are trying to help us help ourselves so that we don’t get in accidents there. But I can see it being an enormous boondoggle in terms of cost. It will probably cost one million bucks to put all that concrete in and build the two things on the end of it, when all we really need is to straighten the corner out. The landowner who is on both sides of that is willing to give more access as I understand it, more right-of-way to straighten the corner out a little bit. So we don’t need to have this big concrete abutment through the middle of it and these things on either end of it at an incredible cost. So I really hope, again, that you will listen to those two things. There are some other issues I have terms of my own business and I’ll talk to you later about that. I hope everybody else wants to talk about this sort of thing because this is really big if you don’t understand roundabouts. Thank you.</td>
<td>Response 4C: Design and location of entry features, including turn-arounds, will be determined during the final design process. The purpose of the entry feature is summarized as follows: Provide a termination of the raised barrier through Ice Box Canyon without use of a crash cushion (a device to reduce impact of a collision). Provide a transition to the raised median to the south. Provide an area where vehicles entering Bigfork are alerted to an urbanized area where slower driving conditions are warranted. Provide a location where vehicles can turn around to return back to town. Straightening the road would require a large amount of earthwork and retaining walls and cost. The proposed barrier is intended to prevent cars from sliding across the road. This issue was discussed during the process of developing the Preferred Alternative. It was the strong preference of many in the community not to do an extreme cut that would result in a visual impact.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Rose Schwennesen:</td>
<td>Individual</td>
<td>In general I see what has come out of this has been fairly responsive to what public input has given you. I appreciate the fact that we have the potential of having a pedestrian bikeway and multi-use paths. I think that is really important. I have kids who are grown now but I could never let them ride on Hwy 35 because there was never a shoulder and whenever they disobeyed, they had to dive for the borrow pit. So I really appreciate the fact that we will have the option of walking and biking on this stretch of road. Eventually I’d like to see it happen the whole way around the lake. Why are we needing to be so backward? Why can’t we be progressive and allow ourselves the exercise capability of that? I know that is not within the scope of this meeting, but it just a thing I would like to see.</td>
<td>Response 5A: A multi-use path is a part of the Preferred Alternative. The pathway will be designed to minimize impacts; the specific design of the pathway, including pavement material, exact location, crossings, connections, etc., will be determined during the final design process.</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Affiliation</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>5B</td>
<td>As far as the roundabouts go, I beg to differ with Tom. Sorry about that. I too have driven in Europe and everywhere and as an education tool, and I think this will be a challenge for the Montana Department of Transportation to educate people as to how to drive in a roundabout. To my knowledge the person who is in the roundabout has the right-of-way, so that people who want to enter the roundabout yield to the person who is within the roundabout themselves, and therefore that person who wants to turn left, goes around and he is not impeded by people coming in because he has the right-of-way. So I think it is an efficient movement of traffic. I think that it is something that we should allow in Bigfork as a unique situation. Actually I think there is a roundabout already in Missoula, but that may be not within the Department of Transportation and may be in the City, I’m not sure. Is that right Loran? (Answer: it is the City of Missoula). At any rate, we aren’t the first, dog-gone-it, but I’d like us to be able to have that.</td>
<td>Response 5B: Your description of traffic patterns, yielding, and who has the right-of-way is generally correct. MDT will conduct a public education program about the use of roundabouts before they are implemented.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5C</td>
<td>It was hard for me to hear, but I’d like to second Dan’s comment on the width of the bridge and the impact of the width of the bridge. I’ve heard from old-timers in the Bigfork area that say that during the 50’s and the construction period of the bridge as it exists, the impact of the shoulder area that braces up our roadway, was extreme and it denuded this area for years and years. And as we are seeing now, maybe we need to cut some trees, but I think where you allow the breadth of the roadway’s impact is going to be very significant to us in Bigfork, visually and also to those that of course live in that area.</td>
<td>Response 5C: The asset value of the vegetated slope to the community is clear. The roadway width through this area has been established to meet current design codes that include 2.4-meter (8-foot) shoulders and 1.8-meter (6-foot) multi-use path. Unless a design exception is sought and granted by MDT to reduce shoulders to 1.2 meters (4 feet), the total width at approximately 15.8 meters (52 feet) will remain in the design. It should be noted that the roadway cross-section between Woods Bay and Highway 209 consists of 1.2-meter (4-foot) paved shoulders and 1.2-meter (4-foot) turf shoulders. Turf shoulders were a compromise solution by MDT to meet their Roadway Segment Plan (the standard being referenced) which dictates 2.4-meter (8-foot) shoulders for MT-35. The turf shoulders meet the spirit of the Roadway Segment Plan, while reducing the pavement width which the community desired. Currently, the trees do not occur until some distance down the hill. To address the community and public concerns in this area, the Preferred Alternative includes elements such as retaining walls to minimize the effects on the existing vegetation on the existing roadway embankments. The project will be designed to minimize impacts to existing vegetation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Affiliation</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>-------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5D</td>
<td></td>
<td></td>
<td>That leads into a questions that I have as to how the highway department or the construction crew is going to mediate the impact if we are not going to detour Bigfork, which I agree would be a poor idea. That seems in my mind, to make us have a greater impact on what we are talking about which is both sides of the existing bridge. I just don’t see how that is going to happen, and maybe you can enlighten me in that?</td>
<td>Response to 5D: Construction schedule and sequencing will be determined during the final design process to minimize disruptions. A traffic control plan, including detours and signage, will be developed during the final design process to minimize traffic disruptions during construction. MDT will coordinate with members of the public, property owners, business owners, residents, motor carriers, etc. during the final design process, and prior to and during the construction phase.</td>
</tr>
<tr>
<td>5E</td>
<td></td>
<td></td>
<td>The last question I have is what is the timeline for funding this? I realize funding is the key thing, but if we had a go from this right now in 2004, how much more gray am I going to have to get before we get a nice sequence from Woods Bay to the Canyon? Thank you.</td>
<td>Response 5E: Further design and construction of the Preferred Alternative is dependent on available funding. The Montana Department of Transportation will work towards final design, right-of-way acquisition, utility relocation, and construction as soon as funding becomes available relative to all of the needs and priorities within the District.</td>
</tr>
<tr>
<td>6</td>
<td>Jerry Agen:</td>
<td>Individual</td>
<td>I will start first by mentioning and commenting on your comment on roundabouts. I also live on Bainbridge Island, which is across from Seattle, and they put a roundabout there. That roundabout works well but it only works with slow speed. Highway 35 is not a slow highway even if it posted at 55 mph or 35 mph. How they would ever get around a roundabout going at that speed, I have no idea. I think that is a big consideration that you folks should make.</td>
<td>Response 6A: The design of the roundabouts is consistent with the current posted speed of 35 mph in the area between Hwy 209 and Bridge Street. Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process. MDT will conduct a public education program about the use of roundabouts before they are implemented.</td>
</tr>
<tr>
<td>6B</td>
<td></td>
<td></td>
<td>The other thing I am concerned with, as I have said before, wider highways generally mean greater speeds. I hope you are not being short sighted in looking at the potential that is all of Highway 35 from Polson to Bigfork. There are few places in the state that have a greater potential of being a beautiful scenic highway and do you in all of this or in any of this, and that is an environmental statement, have you taken into consideration what this area will be and should be 50 years from now? You speak in terms of the bridge, you want a bridge that is going to last 50 years, well you should have a highway that represents the needs of this entire area—the economic needs, the human needs, the environmental needs. I think we have a great potential to build or to have a very</td>
<td>Response 6B: The Preferred Alternative includes features to address speed issues, such as entry treatments and roundabouts. A purpose of the entry features is to help drivers recognize that they are approaching a populated area and slower speeds are appropriate. Roundabouts were included to provide improved consistency of speeds at intersections. All roundabouts will be designed to accommodate heavy trucks. Scenic highway designation is done by government</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Affiliation</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>special scenic highway and I don’t see this even mentioned anywhere with in this statement. I think it is short sighted that you have not considered that.</td>
<td>agencies or private organizations. Individuals interested in designating MT-35 as a scenic highway could form an organization to do so. Montana does have a state scenic-historic byways program. During the environmental assessment process, many people suggested designating MT-35 as a scenic highway as a means to eliminate trucks from traveling the route. While designating a road as a scenic highway does open the facility to certain types of funds for signing and interpretive elements, it does not restrict truck use.</td>
</tr>
<tr>
<td>6C</td>
<td></td>
<td></td>
<td>Finally as a resident of Woods Bay, you are building this wider probably faster highway and you are dumping it into a congested area that is served by an “S” curve. You come down the Woods Bay Hill, it narrows down and then you go around this S turn, with businesses down there, residents down there. If people come down there faster than what they are now going, you are going to create probably a more hazardous highway condition than anything you are going to solve with this entire project. Thank you.</td>
<td>Response 6C: The posted speed of 35 mph in Woods Bay is not subject to change with this project. While MDT cannot control what speed is used by drivers, the proposed continuous and designated left-turn lanes, wider shoulders, and improved recovery area are design components that help improve the safety of the highway.</td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Russell H. Kinzer, Bigfork School District No. 38: The project team has been working with the school district to determine the needs for bus stops, and will incorporate this comment into discussions with the school district to address this issue during final design.</td>
<td>Response 7:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Russell H. Kinzer, Bigfork School District No. 38:</td>
<td>Response 8: The project team has been working with the school district to determine the needs for bus stops, and will incorporate this comment into discussions with the school district to address this issue throughout final design.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Russell H. Kinzer
Bigfork School District No. 38

Montana Department of Transportation

Finding of No Significant Impact
Appendix B
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Ken Degitz:</td>
<td>Response 9: The specific right-of-way required for the project will be determined during the final design process. MDT will coordinate with property owners during the final design process. Property acquisition will conform with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended.</td>
</tr>
</tbody>
</table>

MT-35 Bigfork North & South

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Ken Degitz Date: 7/12/04

Address: 7987 Hwy 35

Phone (If you want a phone call response to comments): 837-2114

Email (If you want an email response to comments): after 3 pm

Comment refers to document Page Number:

- Parcel 272 & 274.
- Concerned about R/W impact to property.
- Planning expansion of restaurant.
- Want idea of where this is going w/ highway
- Front door is on the highway any closer would be problems.
- Willing to consider selling & moving restaurant back.
- Likes Drop Alternative.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 10 | Hugh Doty & Jerry McClanahan:

MT-35 Bigfork North & South
PUBLIC COMMENT FORM
Please use the space below to express your comments/concerns about the preferred alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.
Name: Hugh Doty & Jerry McClanahan
Date: 7/12/04
Address: River End Drive
Phone (if you want a phone call response to comments): 837-6622/837-4015
Email (if you want a email response to comments):
Comment refers to document Page Number:
- Lives on River End, concerned about impact to hill adjacent to bridge and to slope.
- Roadway and retaining wall does not affect toe of slope.
- Construction does not impact property.

Hugh Doty
Jerry McClanahan

FORWARD COMMENTS TO:
POSTAL
Montana Department of Transportation – ATTN: Fred Bente
PO Box 201001, Helena, MT 59623
FAX
406-444-6253
WEB SITE
www.mdt.state.mt.us/environmental/eis-ea | Response 10:
The proposed new bridge would be wider than the existing structure because of the addition of shoulders and the path. The community has expressed great concern over loss of trees on the bridge embankment. Currently, the trees do not occur until some distance down the hill. Roadway improvements, including bridges and retaining walls, will be designed to minimize disturbance to surrounding trees and vegetation. |
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Kirk Hansen:</td>
<td>MT-35 Bigfork North & South</td>
</tr>
</tbody>
</table>

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Kirk Hansen
Address: PO Box 2447, Bigfork
Phone (if you want a phone call response to comments): 837-5029
Email (if you want an email response to comments):

Comment refers to document Page Number:

1. When will the new development go in to put office it will change traffic volume? Roundabouts will not work.

Response 11A: Growth in traffic volumes from 1999 to 2024 (recently updated to 2029) was accounted for when evaluating the function of the roundabouts. This new development does not significantly impact those estimates.

Response 11B: Inclusion of roundabouts was discussed at length with the Bigfork Advisory Committee, who supports them. Other comments have received both for and against their use. The roundabouts are designed as single-lane intersections. Roundabouts will be designed to safely accommodate large vehicles, heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process. MDT will conduct a public education program about the use of roundabouts before they are implemented.

Response 11C: Planted medians are assumed to be maintained by the local community. The Montana Department of Transportation will develop an agreement with a local government agency for the maintenance of the median landscaping.

Response 11D: During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations.

Response 11E: Drainages will be designed to adequately convey stormwater runoff.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 12 | Ron & Carol Pierce: | **Finding of No Significant Impact**
| | **MT-35 Bigfork North & South** | **Finding of No Significant Impact**
| | **PUBLIC COMMENT FORM** | **Finding of No Significant Impact**
| | Please use the space below to express your comments/concerns about the | **Finding of No Significant Impact**
| | Preferred Alternative or the Environmental Assessment in general. Comments | **Finding of No Significant Impact**
| | gathered during the 30-day public comment period will be officially recorded | **Finding of No Significant Impact**
| | and responded to in the final environmental document. | **Finding of No Significant Impact**
| | Name: Ron & Carol Pierce | **Finding of No Significant Impact**
| | Address: 5406 MT 285 | **Finding of No Significant Impact**
| | Phone (If you want a phone call response to comments): 937-6376 | **Finding of No Significant Impact**
| | Email (If you want an email response to comments): | **Finding of No Significant Impact**
| | Comment refers to document Page Number: | **Finding of No Significant Impact**
| | - Own property from Chapman Hill Road south to by Box Canyon | **Finding of No Significant Impact**
| | - Need a plan for borders | **Finding of No Significant Impact**
| | - Why not some road so that it doesn't hit building in Box Canyon? | **Finding of No Significant Impact**
| | - Would be ok to cut the property where the road could be moved | **Finding of No Significant Impact**
| | - Why not straighten road through Box Canyon instead of | **Finding of No Significant Impact**
| | - Response of building barriers. | **Finding of No Significant Impact**
| | - There have been many accidents here. | **Finding of No Significant Impact**
| | - Like the regular intersection around me instead of a roundabout. | **Finding of No Significant Impact**
| | - Holes on west side of road near Chapman Hill will be too close to road. | **Finding of No Significant Impact**
| | - Would like to know what to plan for | **Finding of No Significant Impact**

Response 12A:
There are numerous facilities for bicyclists included in the Preferred Alternative as described on pages 2-23 and 2-24 of the Environmental Assessment.

Response 12B:
The existing NAPA building and the Branding Iron Station are in conflict with the proposed entry feature. Design and location of entry features, including turn-arounds, will be determined during the final design process.

Response 12C:
Straightening the road would require a large amount of earthwork and retaining walls, as well as cost. The proposed barrier is intended to prevent cars from sliding across the road. This issue was discussed during the process of developing the Preferred Alternative. It was the strong preference of many in the community not to do an extreme cut that would result in a visual impact.

Response 12D:
The houses on the west side of MT-35 are expected to experience very little impact with the wider roadway section. Approaches will be modified. The specific right-of-way required for the project will be determined during the final design process. MDT will coordinate with property owners during the final design process.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Michael Jones & Karen Devaane:</td>
<td>Response 13A: Equestrian crossing will be designed to minimize impacts, and will be designed in concert with the pathway design. The exact design and location of the equestrian crossing will be determined during the final design process. MDT will coordinate with property owners during the final design process. Property acquisition will conform with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended.</td>
</tr>
<tr>
<td></td>
<td>MT-35 Bigfork North & South</td>
<td>Response 13B: The pathway will be designed to minimize impacts; the specific design of the pathway, including pavement material, exact location, crossings, connections, etc., will be determined during the final design process.</td>
</tr>
<tr>
<td></td>
<td>PUBLIC COMMENT FORM</td>
<td>Response 13C: In this area, the roadway is not shifted to one side or the other but is near the existing centerline. During final design, the issue of covering the well will be evaluated. If the well cannot be avoided, it will be addressed during the right-of-way negotiation process.</td>
</tr>
<tr>
<td></td>
<td>Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.</td>
<td>Response 13D: MDT will evaluate ways to minimize effect on the adjacent property with implementation of equestrian crossing.</td>
</tr>
<tr>
<td></td>
<td>Name: Michael Jones & Karen Devaane</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Address: 5180 Hwy 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phone (if you want a phone call response to comments): 802-305-57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Email (if you want an email response to comments): mjevans@bigsky.net</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comment refers to document page number: FDC/25 2/7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comments received via POSTAL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Montana Department of Transportation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PO Box 2010901, Helena, MT 59620</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FAX 408-444-6253</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WEB SITE www.mt.dot.mt.gov/environmental/ois-esa</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Patrick Gould:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MT-35 Bigfork North & South</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PUBLIC COMMENT FORM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name:亓钊青 5/0, Patrick Gould Date:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Address: 130 Taylor Road, Whitefish, MT 59937</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phone (if you want a phone call to respond to comments):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Email (if you want an email response to comments):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comment refers to document Page Number:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Wants to assure that access point is available</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Sound mitigation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Signature]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response 14A:</td>
</tr>
<tr>
<td>During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. MDT will coordinate with property owners during the final design process.</td>
</tr>
<tr>
<td>Response 14B:</td>
</tr>
<tr>
<td>As explained in Section 3.10 of the Environmental Assessment, a detailed traffic noise analysis was conducted for the project. Based on the information described in that section, noise mitigation, such as noise walls, is not recommended at any location within the study area.</td>
</tr>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>15A</td>
</tr>
<tr>
<td>15B</td>
</tr>
<tr>
<td>15C</td>
</tr>
<tr>
<td>15D</td>
</tr>
<tr>
<td>15E</td>
</tr>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>15 (cont)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
</tbody>
</table>
| 16 | Bart Anderson: | Response 16:
MDT will coordinate with property owners during the final design process. During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. MDT has standards for the grade of a highway approach. The maximum grade of such an approach is 6%. In extreme cases, MDT can grant a design exception for grades up to 10%. |
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Joe Pastor: MT-35 Bigfork North & South PUBLIC COMMENT FORM</td>
<td>Response 17A: MDT will coordinate with utility companies throughout the final design process and prior to and during the construction phase. A signal is not planned or expected to be warranted at the Bigfork Stage Stop.</td>
</tr>
<tr>
<td>17A</td>
<td>Joe Pastor: Bigfork Stage Stop entrance</td>
<td>Response 17B: Section 1.4 of the Environmental Assessment discusses how future traffic volumes were determined. Traffic from future growth is taken into consideration. A level of growth and development has been assumed to occur over the entire planning horizon until 2024 (recently updated to 2029).</td>
</tr>
<tr>
<td>17B</td>
<td>Joe Pastor: Need to address traffic flow that as they are planning large development</td>
<td>Response 17C: Pedestrian movements as suggested can be further evaluated during final design.</td>
</tr>
<tr>
<td>17C</td>
<td>Joe Pastor: Bigfork Stage Stop to the subway across the street</td>
<td>Response 17D: The specific right-of-way required for the project will be determined during the final design process. MDT will coordinate with property owners during the final design process. Property acquisition will conform with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended.</td>
</tr>
<tr>
<td>17D</td>
<td>Joe Pastor: Concerned about EW impacts and will need to plan for with development plans. Will need to adjust plans if slope is widened.</td>
<td>Response 17E: Each property owner has rights for access to their property. However, if access is available from other roadways, access is not required to be directly from the property to the highway. During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. Landowners will continue to be involved in this process as the access management plan is developed.</td>
</tr>
</tbody>
</table>
Comment

No. Comment

18 Ted Nickols, Bigfork Auto Parts Store:

<table>
<thead>
<tr>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-35 Bigfork North & South</td>
<td>Response 18A: The specific right-of-way required for the project will be determined during the final design process. MDT will coordinate with property owners during the final design process. Property acquisition will conform with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended.</td>
</tr>
<tr>
<td>PUBLIC COMMENT FORM</td>
<td>Response 18B: Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations will be addressed during the final design process.</td>
</tr>
<tr>
<td></td>
<td>Response 18C: Turn lanes will be added in several areas and at intersections as part of the Preferred Alternative.</td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>19A</td>
<td>Dana & Sandy Saxten:</td>
</tr>
<tr>
<td>19B</td>
<td></td>
</tr>
</tbody>
</table>
Finding of No Significant Impact
Appendix B

<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Jim & Sheila Fleming:</td>
<td></td>
</tr>
<tr>
<td>20A</td>
<td>MT-35 Bigfork North & South</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public Comment Form</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Please use the space below to express your</td>
<td></td>
</tr>
<tr>
<td></td>
<td>comments/concerns about the Preferred</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternative or the Environmental Assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in general. Comments gathered during the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-day public comment period will be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>officially recorded and responded to in the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>final environmental document.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name: Jim & Sheila Fleming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date: 9/12/04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Address: 8300 West - Kalispell, MT 59901</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phone (if you want a phone call response to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>comments): 406-835-8721</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Email (if you want a email response to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>comments): flightproducts@gtndy.net</td>
<td></td>
</tr>
<tr>
<td>20B</td>
<td>MT-35 Bigfork North & South</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PUBLIC COMMENT FORM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Please use the space below to express your</td>
<td></td>
</tr>
<tr>
<td></td>
<td>comments/concerns about the Preferred</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternative or the Environmental Assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in general. Comments gathered during the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-day public comment period will be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>officially recorded and responded to in the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>final environmental document.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name: Jim & Sheila Fleming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date: 9/12/04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Address: 8300 West - Kalispell, MT 59901</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phone (if you want a phone call response to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>comments): 406-835-8721</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Email (if you want a email response to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>comments): flightproducts@gtndy.net</td>
<td></td>
</tr>
<tr>
<td>20C</td>
<td>MT-35 Bigfork North & South</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PUBLIC COMMENT FORM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Please use the space below to express your</td>
<td></td>
</tr>
<tr>
<td></td>
<td>comments/concerns about the Preferred</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternative or the Environmental Assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in general. Comments gathered during the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-day public comment period will be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>officially recorded and responded to in the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>final environmental document.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name: Jim & Sheila Fleming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date: 9/12/04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Address: 8300 West - Kalispell, MT 59901</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phone (if you want a phone call response to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>comments): 406-835-8721</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Email (if you want a email response to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>comments): flightproducts@gtndy.net</td>
<td></td>
</tr>
<tr>
<td>20A</td>
<td>Yes, the walls will have visual enhancement.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The specific type of visual enhancement will</td>
<td></td>
</tr>
<tr>
<td></td>
<td>be determined during final design.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Possibilities will include architectural</td>
<td></td>
</tr>
<tr>
<td></td>
<td>treatments and/or vegetation.</td>
<td></td>
</tr>
<tr>
<td>20B</td>
<td>As discussed in Section 3.10 of the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environmental Assessment, a detailed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>traffic noise analysis was conducted for the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>project. Based on the information described</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in that section, noise mitigation, such as</td>
<td></td>
</tr>
<tr>
<td></td>
<td>noise walls, is not recommended at any</td>
<td></td>
</tr>
<tr>
<td></td>
<td>location within the study area.</td>
<td></td>
</tr>
<tr>
<td>20C</td>
<td>Page 3-29 of the Environmental Assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>addresses the issue of trucks and noise.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The creation of engine compression brake</td>
<td></td>
</tr>
<tr>
<td></td>
<td>restriction zones is required by law to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>originate through a local government</td>
<td></td>
</tr>
<tr>
<td></td>
<td>request, thus, MDT does not have direct</td>
<td></td>
</tr>
<tr>
<td></td>
<td>control over the creation of this type of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ordinance. It should be noted that a new</td>
<td></td>
</tr>
<tr>
<td></td>
<td>compression brake law requires a commercial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>motor vehicle equipped with an engine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>compression brake device to be equipped with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a muffler in good working condition to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>prevent excessive noise. One purpose of the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>community entry features is to help drivers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>recognize that they are in a populated area</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and to slow down. Restricting trucks from</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MT-35 is not an option because the road is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a state and federal aid highway.</td>
<td></td>
</tr>
</tbody>
</table>
Finding of No Significant Impact
Appendix B

Barbara & Mike Wolstein:

MT-35 Bigfork North & South

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Barbara Mike Wolstein
Address: 79, 75, To Bridgegate
Phone (if you want a phone call response to comments): 997-1112
Email (if you want an email response to comments): wolstein@bigfork.net
Comment refers to document Page Number: 21

Response 21A:
The specific right-of-way required for the project will be determined during the final design process. MDT will coordinate with property owners during the final design process. Property acquisition will conform with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended.

Response 21B:
Appropriate railing to restrain either vehicles or pedestrians will be provided, including the uphill cut wall locations. Retaining walls located within the clear zone will have railing sufficient to restrain vehicles and pedestrians. Retaining walls located outside the clear zone will have pedestrian railing to prevent falls.

Response 21C:
Each property owner has rights for access to their property. However, if access is available from other roadways, access is not required to be directly from the property to the highway. During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. Landowners will continue to be involved in this process as the access management plan is developed.

Response 21D:
Field staking is done as necessary for project needs.

Response 21E:
See 21A response.

Response 21F:
Traffic speed was a dominant issue raised during the stakeholder process. The Executive Summary of the Environmental Assessment describes how this issue is addressed in the Preferred Alternative.

The issue of speed was addressed in several different ways: The community of Bigfork approached the Montana Transportation Commission with a request to lower the speed limit. The Montana Transportation Commission decided to lower the speed limit from 45 mph to 35 mph in Bigfork.

Several community entry treatments are included in the Preferred Alternative. The purpose of these entry treatments is to alert motorists to slow down as they are entering a more urbanized area. Roundabouts were included in the Preferred Alternative to provide improved consistency of speeds at intersections. All roundabouts will be designed to accommodate heavy trucks.

Montana Department of Transportation
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response 21G:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21 (cont)</td>
<td></td>
<td>The pathway will be designed to minimize impacts; the specific design of the pathway, including pavement material, exact location, crossings, connections, etc., will be determined during the final design process. Because of concerns voiced about impacts to Daphne Pond, the multi-purpose path will now be located adjacent to the highway, on the west side of Daphne Pond.</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Kent Bolstad, Bethany Lutheran:</td>
<td>Response 22: Thank you for reviewing the project alternatives and assessment.</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>23A</td>
<td>Larry & Yvonne Janoff:</td>
<td>Response 23A: Due to concerns expressed by the community during the public comment period, the path will not be routed behind Daphne Pond but will parallel the road. The pathway will be designed to minimize impacts; the specific design of the pathway, including pavement material, exact location, crossings, connections, etc., will be determined during the final design process.</td>
<td></td>
</tr>
<tr>
<td>23B</td>
<td>MT-35 Bigfork North & South</td>
<td>Response 23B: The specific right-of-way required for the project will be determined during the final design process. MDT will coordinate with property owners during the final design process. Property acquisition will conform with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended.</td>
<td></td>
</tr>
<tr>
<td>23C</td>
<td>PUBLIC COMMENT FORM</td>
<td>Response 23C: The project team will determine if there are any impacts to trees with a business sign attached to them and if impacts can be avoided. If not, other arrangements for a business sign can be discussed during the right-of-way negotiation process.</td>
<td></td>
</tr>
<tr>
<td>23D</td>
<td>23A</td>
<td>Response 23D: MDT maintenance crews regularly pick up trash in the right-of-way. Communities can also apply through MDT to organize Adopt-a-Highway and community beautification programs.</td>
<td></td>
</tr>
<tr>
<td>23E</td>
<td>23B</td>
<td>Response 23E: In recognition of the safety issues surrounding the current at-grade (i.e., on the road) equestrian crossing, the Preferred Alternative includes a grade-separated (overhead) equestrian crossing. Putting horses and vehicles on different levels removes the potential for this type of collision.</td>
<td></td>
</tr>
<tr>
<td>23F</td>
<td>23C</td>
<td>Response 23F: Section 1.3 of the Environmental Assessment discusses how traffic volumes were determined.</td>
<td></td>
</tr>
</tbody>
</table>
Finding of No Significant Impact

Appendix B

<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Kathy Collins:</td>
<td>Response 24A: Left-turn lanes on MT-35 at Red Gate Road will address this concern. A new left-turn lane at Red Gate Road is proposed as part of the Preferred Alternative.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response 24B: A purpose of the community entry features is to help drivers recognize that they are in a populated area and to slow down.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response 24C: The Woods Bay Hill and the existing tight curve at the top has been addressed with several proposed improvements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The curve at the top of Woods Bay Hill is proposed to be flattened to improve the visibility around the curve.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The super-elevation (cross-slope) is to be the minimum slope allowed for the design speed, approximately 45 mph.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The roadway cross-section includes a continuous 3.6-meter (12-foot) two-way left-turn lane. The purpose of the two-way left-turn lane is twofold; (1) to provide channelization for left-turning vehicles to slow down and wait outside the through lane particularly at Yenne Point Road, Sylvan Drive, and other commercial and private driveways; and (2) to provide additional width on Woods Bay Hill for passing vehicles stalled in icy conditions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response 24D: The traffic speed was a dominant issue raised during the stakeholder process. The Executive Summary of the Environmental Assessment describes how this issue is addressed in the Preferred Alternative. The issue of speed was addressed in several different ways:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The community of Bigfork approached the Montana Transportation Commission with a request to lower the speed limit. The Montana Transportation Commission decided to lower the speed limit from 45 mph to 35 mph in Bigfork.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Roundabouts were included in the Preferred Alternative to provide improved consistency of speeds at intersections. All roundabouts will be designed to accommodate heavy trucks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Please note that restricting trucks from MT-35 is not an option because the road is a state and federal aid highway.</td>
</tr>
</tbody>
</table>
Arnold & Carol Morris:

Response 25A:
We are aware of the recent construction of the Branding Iron Station and modifications to the approach road here. This and the NAPA building are in conflict with the proposed entry feature. During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. Landowners will continue to be involved in this process as the access management plan is developed.

Response 25B:
During right-of-way acquisition, an independent appraiser evaluates the total value of each property before the desired right-of-way take and the value after the desired right-of-way take. Compensation to the landowners is based on the difference of the before and after value of the entire property not just the value of the right-of-way area. This process is meant to prevent the concerns stated above.

The specific right-of-way required for the project will be determined during the final design process. MDT will coordinate with property owners during the final design process. Property acquisition will conform with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended.
Response 26A:
The Kage House/Cherry Orchard and the Purvis Cherry Stand were assessed for eligibility for listing on the National Register of Historic Places, and were determined to be ineligible. The local significance of the orchard property at Sylvan Drive is, however, recognized. The flatter curve here moves the roadway centerline further away, but places the multiuse path adjacent to the property. The specific right-of-way required for the project will be determined during the final design process. The project team will continue to work with landowners and business owners throughout that process.

Response 26B:
The project team is aware of the biological uniqueness of Daphne Pond. In response to community concerns about the pond, the path will no longer be located behind the pond, but will now be located adjacent to the highway, and will be designed to minimize impacts. The specific design of the pathway will be determined during the final design process.

Response 26C:
Some comments have suggested designating the highway as a scenic byway as a means to eliminate truck traffic. While designating a road as a scenic highway opens the facility to certain types of funds for signing and interpretive elements, it does not restrict truck use. Also, trucks cannot be restricted from using MT-35 because it is a state and federal aid highway. In addition, MDT does not have the authority to designate the highway as a scenic byway. Such a designation is undertaken by other government agencies or private organizations. Individuals interested in designating MT-35 as a scenic highway could form an organization to do so. Montana does have a state scenic-historic byways program.

Response 26D:
Traffic speed was a dominant issue raised during the stakeholder process. The Executive Summary in the Environmental Assessment describes how this issue is addressed in the Preferred Alternative. The issue of speed was addressed in several different ways:

The community of Bigfork approached the Montana Transportation Commission with a request to lower the speed limit. The Montana Transportation Commission decided to lower the speed limit from 45 mph to 35 mph in Bigfork.

Several community entry treatments are included in the Preferred Alternative. The purpose of these entry treatments is to alert motorists to slow down as they are entering a more urbanized area. Roundabouts were included in the Preferred Alternative to provide improved consistency of speeds at intersections. All roundabouts will be designed to
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>accommodate heavy trucks.</td>
<td>Response 26E: Page 3-29 of the Environmental Assessment addresses the issue of trucks and noise. The creation of engine compression brake restriction zones is required by law to originate through a local government request, thus, MDT does not have direct control over the creation of this type of ordinance. It should be noted that a new compression brake law requires a commercial motor vehicle equipped with an engine compression brake device to be equipped with a muffler in good working condition to prevent excessive noise. A purpose of the community entry features is to help drivers recognize that they are in a populated area and to slow down. Restricting trucks from MT-35 is not an option because the road is a state and federal aid highway.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response 26F: The path can cross to the south of Sylvan Drive instead of to the north. However, the project team will contact the owners of Bigfork Orchards to see if this loss of foot traffic is desirable to them.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response 26G: Thank you for your comment. This will be addressed in final design.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response 26H: The specific right-of-way required for the project will be determined during the final design process. MDT will coordinate with property owners during the final design process. Property acquisition will conform with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended.</td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>27B</td>
<td></td>
<td>Response 27B: The cost for the equestrian crossing is included in the overall project cost because of the public safety issues surrounding the current crossing and the large number of horses crossing there. Additionally, the path and crossing will serve as a multi-purpose, public crossing serving bicyclists, pedestrians, as well as equestrian riders. A grade-separated (overhead) crossing is included in the Preferred Alternative because it best meets the criteria for creating a safe situation for horses, pedestrians, bicyclists, and drivers.</td>
</tr>
<tr>
<td>27C</td>
<td></td>
<td>Response 27C: The proposed roadway design around the south entry treatment is the same as in other areas of the project: 3.6-meter (12-foot) lanes, 2.4-meter (8-foot) shoulders, and a path. A northbound left-turn lane into Flathead Lodge Road is proposed, along with a continuous left-turn lane for access points north of the entry treatment to provide for safer turning movements.</td>
</tr>
</tbody>
</table>

MT-35 Bigfork North & South

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Robert and Karen Nelson Date: 12 July 2004

Address:

Phone (if you want a phone call response to comments): __________

Email (if you want an email response to comments): __________

Comment refers to document Page Number: __________

27A: Woods Bay Hill is dangerous.

27A: Need turning lane.

27B: Cost for equestrian crossing should be from drawdown account.

27B: Area around Woods Bay Hill needs treatment. Someone should treat.

27B: millionaire is working it brighter - it is computer not roadsides help.

27B: Quiet at lake villa is a good idea.

27A: Turning lanes at Woods Bay Hill are good

27A: It will make it safer.

FORWARD COMMENTS TO:

POSTAL FAX WEB SITE
Montana Department of Transportation – ATTN: Fred Bente PO Box 201001, Helena, MT 59620 406-444-6253 www.mdt.state.mt.us/ environmental/eis-ea
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 28A | Doris Gorsuch:
 MT-35 Bigfork North & South
 PUBLIC COMMENT FORM
 Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.
 Name: Doris Gorsuch
 Date: 12 July 2009
 Address:
 Phone (if you want a phone call response to comments):
 Email (if you want an email response to comments):
 Comment refers to document Page Number:
 Turn lane is needed for both directions. Traffic is very heavy.
 | Response 28A:
 Turn lanes will be added in several areas and at intersections as included in the Preferred Alternative.
 Response 28B:
 Section 1.4 of the Environmental Assessment discusses how future traffic volumes were estimated. Traffic from future growth is taken into consideration. A level of growth and development has been estimated to occur over the entire planning horizon until 2024 (recently updated to 2029).
 Response 28C:
 Research has shown that a shoulder width of 2.4 meters (8 feet) is a safe width, and is MDT’s standard. It allows space for errant vehicles to correct themselves. It also allows ample space for a disabled vehicle to park outside of the through travel lane.
 The roadway width has been established to meet current design codes that include 2.4-meter (8-foot) shoulders and 1.8-meter (6-foot) multi-use path. Unless a design exception is sought and granted by MDT to reduce shoulders to 1.2 meters (4 feet), the total width at approximately 15.8 meters (52 feet) will remain in the design. It should be noted that the roadway cross-section between Woods Bay and Highway 209 consists of 1.2-meter (4-foot) paved shoulders and 1.2-meter (4-foot) turf shoulders. Turf shoulders were a compromise solution by MDT to meet their Roadway Segment Plan (the standard being referenced) which dictates 2.4-meter (8-foot) shoulders for MT-35. The turf shoulders meet the spirit of the Roadway Segment Plan, while reducing the pavement width, which is in the community desired. |
| 28B |
 Hills will be developed. There will be more traffic.
 Should like shoulders under 8 feet
<p>|

| 28C |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Dan Hodges:</td>
<td>Response 29A: The proposed geometric layout of the highway and resulting right-of-way are essential components to improving the safety of the system in this area. A softer curve is required to meet current design codes. The specific right-of-way required for the project will be determined during the final design process. MDT will coordinate with property owners during the final design process. Property acquisition will conform with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended. The pathway will be designed to minimize impacts; the specific design of the pathway, including pavement material, exact location, crossings, connections, etc., will be determined during the final design process.</td>
</tr>
<tr>
<td></td>
<td>PUBLIC COMMENT FORM</td>
<td>Response 29B: During right-of-way acquisition, an independent appraiser evaluates the total value of each property before the desired right-of-way take and the value after the desired right-of-way take. Compensation to the landowners is based on the difference of the before and after value of the entire property not just the value of the right-of-way area. This process is meant to prevent the concerns stated.</td>
</tr>
<tr>
<td></td>
<td>Name: Dan Hodges</td>
<td>Dan Hodges:</td>
</tr>
<tr>
<td></td>
<td>Address: 26443 E CARE FREE</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Phone (if you want a phone call response to comments): 837-2552</td>
<td>29B</td>
</tr>
<tr>
<td></td>
<td>Email (if you want a email response to comments):</td>
<td>29A</td>
</tr>
<tr>
<td></td>
<td>Comment refers to document Page Number:</td>
<td>29B</td>
</tr>
</tbody>
</table>

FORWARD COMMENTS TO:

- POSTAL
 Montana Department of Transportation – ATTN: Fred Berne
 PO Box 201001, Helena, MT 59620
- FAX
 406-444-6253
- WEB SITE
 www.mdt.state.mt.us/environmental/eis-ea

Montana Department of Transportation
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Jerry & Shirley Neilson:</td>
</tr>
<tr>
<td></td>
<td>MT-35 Bigfork North & South</td>
</tr>
<tr>
<td></td>
<td>PUBLIC COMMENT FORM</td>
</tr>
<tr>
<td></td>
<td>Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.</td>
</tr>
</tbody>
</table>
| | Name:
| | Address:
| | Phone (if you want a phone call response to comments):
| | Email (if you want a email response to comments):
| | Comment refers to document Page Number: |
| | - Jake brakes are a big issue
| | - why did “no engine braking” sign come down?
| | - concerned about the visual of the hillside
| | - do not want removal of trees on the hillside.
| | - concerned about noise

Response 30A:
Page 3-29 of the Environmental Assessment address the issue of trucks and noise. The creation of engine compression brake restriction zones is required by law to originate through a local government request, thus, MDT does not have direct control over the creation of this type of ordinance. It should be noted that a new compression brake law requires a commercial motor vehicle equipped with an engine compression brake device to be equipped with a muffler in good working condition to prevent excessive noise. A purpose of the community entry features is to help drivers recognize that they are in a populated area and to slow down. Restricting trucks from MT-35 is not an option because the road is a state and federal aid highway.

Response 30B:
Impacts to existing vegetation was identified as a major issue raised during the stakeholder process. The Preferred Alternative identifies (in Section 3.14 and 3.19) mitigation measures to protect as much of the existing vegetation to the fullest extent possible. A revegetation plan will be developed to address how disturbed slopes will be revegetated. The community has expressed great concern over loss of trees on the bridge embankment. Currently, the trees do not occur until some distance down the hill. The Preferred Alternative includes retaining walls within this area that assist in disturbing as few trees as possible. Roadway improvements, including bridges and retaining walls, will be designed to minimize disturbance to surrounding trees and vegetation.

Response 30C:
As explained in Section 3.10 of the Environmental Assessment, a detailed traffic noise analysis was conducted for the project. Based on the information described in that section, noise mitigation, such as noise walls, is not recommended at any location within the study area.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Lyle & Loretta Aklestead:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MT-35 Bigfork North & South</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PUBLIC COMMENT FORM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name: Lyle & Loretta Aklestead</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Address: 79407 River Rd, 59910 MT 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phone (if you want a phone call response to comments): 587-5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Email (if you want an email response to comments):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comment refers to document Page Number:</td>
<td></td>
</tr>
<tr>
<td>31A</td>
<td>Comment 31A:</td>
<td>Configuration of turn lanes are determined during the final design process.</td>
</tr>
<tr>
<td></td>
<td>Comment 31B:</td>
<td>The purpose of raised medians is to direct turning to designated locations. Currently, the access character in the urban area of Bigfork contributes to driver confusion and potential safety problems. The medians will not restrict access but will better define the traffic movements.</td>
</tr>
<tr>
<td></td>
<td>Comment 31C:</td>
<td>Each individual access will be considered during final design for issues such as slope. MDT has standards for the grade of a highway approach. The maximum grade of such an approach is 6%. In extreme cases, MDT can grant a design exception for grades up to 10%.</td>
</tr>
<tr>
<td></td>
<td>Comment 31D:</td>
<td>Thank you for your input.</td>
</tr>
<tr>
<td></td>
<td>Comment 31E:</td>
<td>The traffic speed was a dominant issue raised during the stakeholder process. The Executive Summary of the Environmental Assessment describes how this issue is addressed in the Preferred Alternative. The issue of speed was addressed in several different ways:</td>
</tr>
<tr>
<td></td>
<td>Community of Bigfork approached the Montana Transportation Commission with a request to lower the speed limit. The Montana Transportation Commission decided to lower the speed limit from 45 mph to 35 mph in Bigfork.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Several community entry treatments are included in the Preferred Alternative. The purpose of these entry treatments is to alert motorists to slow down as they are entering a more urbanized area.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roundabouts were included in the Preferred Alternative to provide improved consistency of speeds at intersections. All roundabouts will be designed to accommodate heavy trucks.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response 31F:</td>
<td>A multi-use path is included in the Preferred Alternative. The pathway will be designed to minimize impacts; the specific design of the pathway, including pavement material, exact location, crossings, connections, etc., will be determined during the final design process.</td>
</tr>
<tr>
<td></td>
<td>Response 31G:</td>
<td>Jumping from the bridge is a dangerous activity and prohibited by MDT.</td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 32 | Charles Wilson:

MT-35 Bigfork North & South

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Charles Wilson
Address:
Phone (If you want a phone call response to comments):
Email (If you want a email response to comments):
Comment refers to document Page Number:

* Broad Avenue needs a left-turn arrow not just a left turn lane.

Response 32:
Traffic signal configuration is addressed during the final design process.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Pickavance – Bowling Alley:</td>
<td>Response 33: During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. Landowners will continue to be involved in this process.</td>
</tr>
</tbody>
</table>

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Pickavance - Bowling Alley Date: 18 July 2004
Address: Ute Holt Dr.
Phone (if you want a phone call response to comments): 937-6361
Email (if you want an email response to comments):
Comment refers to document Page Number:

- Access to property needs to be improved.
- Look at ways to make sure access to property is not blocked by cars backing up at intersection especially if new housing development down the road gets built. Lack of stopping traffic.
- Maintain curbed approach before light as it doesn’t block access.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>Jack Paulson:</td>
</tr>
</tbody>
</table>

MT-35 Bigfork North & South

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Jack Paulson
Date: 12 July
Address: 93001 MT-28 (just north of Redgate Rd)
Phone (if you want a phone call to respond to comments): 827-4464
Email (if you want a email response to comments):
Comment refers to document Page Number:

- Concerned about trucks in the winter on Woods Bay Hill. It would be safer with a turn lane.
- Turn lane at Kootenai Point Road is good.
- Turn lane in the middle of Woods Bay Hill could be a problem for riders if someone is trying to pass a truck going uphill and someone else is coming down the hill at full speed.
- Like the roundabouts
- A turn lane is necessary for River Road - it is dangerous to turn here, especially at high speed.
- Concerned about the signal at Lake Hills becoming a bottleneck, especially with trucks using the gas station.
- Barrier on the four-lane will help.

FORWARD COMMENTS TO:

- POSTAL
 Montana Department of Transportation – ATTN: Fred Bente
 PO Box 201001, Helena, MT 59620
- FAX
 406-444-6253
- WEB SITE
 www.mdt.state.mt.us/environmental/eis-ea

| 34A | Response 34A:
The turn lane at Woods Bay Hill is not intended to regularly function as a passing lane for trucks, but is meant to provide a way for traffic to go around vehicles stalled on the hill in the winter. The turn lane will be designed to be used as a turn lane and not a travel lane.

Response 34B:
Configuration of turn lanes are determined during the final design process.

Response 34C:
The purpose of the proposed signal at Lake Hills is to provide a more efficient and safer way for vehicles to enter and exit the parking lot. Although the Preferred Alternative includes a signal where one currently does not exist, traffic volumes are not expected to be high enough to create congestion. Turning radii and off-tracing templates will be evaluated, and truckers and others using the gas station will be considered during final design when the parking lot layout is changed.

Response 34D:
Thank you for your comment.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 35 | Kathleen Greytak:
*「Like. 6th Bridge Rd. becoming a side street.」
because concerned about going the other way because of speed and larger distances onto 49.」
and getting people to stop at the bottom for the roundabout because the area gets very busy.
*「Grand Avenue」
make sure when you are turning left that you can see up the hill north of mile exit and wait there.
line up.
*「Like the roundabout median at Lake Hills」
*「Like the bike and pedestrian paths」
*「Concerned about noise level because of entry treatment, moving the road closer to their house... can it be moved closer to Flathead Lake Lodge Road instead?」
| 35A | These suggestions will be considered during final design. |
| 35B | The Preferred Alternative includes redesigning the intersection at Grand Avenue. This redesign includes evaluations of sight distances for all of the approaches and movements. The left-turn movements are planned to be protected using a left-turn arrow. The exact configuration of intersections will be determined during the final design process. |
| 35C | Design and location of entry features, including turn-arounds, will be determined during the final design process. |
Finding of No Significant Impact

Appendix B

<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Allen & Nancy Ebeltoft:</td>
<td></td>
</tr>
</tbody>
</table>
| 36A | MT-35 Bigfork North & South
PUBLIC COMMENT FORM
Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Allen & Nancy Ebeltoft
Address: PO Box 10314, Moscow, ID 83843-0314 Phone (if you want a phone call to respond to comments): 208-750-3834 Email (if you want an email response to comments): nbebeltoft@conrad.net

Page Number: 7 of 18

1. Concerned about access to property.
 - Do not increase the slope at all.
 - Minimize the flat spot prior to the slope.

2. Like path on side of pond.
 - Do not like the path on west side of highway (not elevated).

3. Concerned with roundabouts.

4. Feel that intersection at Grand and 35 need to be raised/improved for turning south from Holt Drive.

5. Favor turn around near I-15 Box Canyon.

6. Suggest a right turn only from 65 park near 245.

<p>| 36B | Due to concerns expressed by the community during the public comment period, the path will not be routed behind Daphne Pond but will parallel the road. The pathway will be designed to minimize impacts; the specific design of the pathway, including pavement material, exact location, crossings, connections, etc., will be determined during the final design process. |
| 36C | Inclusion of roundabouts was discussed at length with the Bigfork Advisory Committee, who supports them. Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process. MDT will conduct a public education program about the use of roundabouts before they are implemented. |
| 36D | The exact configuration of intersections will be determined during the final design process. |
| 36E | Design and location of entry features, including turn-arounds, and configuration of turn lanes will be determined during the final design process. |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>37A</td>
<td>Jim & Corinne Johnson:</td>
<td>Response 37A: Inclusion of roundabouts was discussed at length with the Bigfork Advisory Committee, who supports them. Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process. MDT will conduct a public education program about the use of roundabouts before they are implemented.</td>
</tr>
<tr>
<td>37B</td>
<td>MT-35 Bigfork North & South</td>
<td>Impacts to existing vegetation was identified as a major issue raised during the stakeholder process. The Preferred Alternative identifies (in Section 3.14 and 3.19) mitigation measures to protect the existing vegetation to the fullest extent possible. A revegetation plan will be developed to address how disturbed slopes will be revegetated. The community has expressed great concern over loss of trees on the bridge embankment also. Currently, the trees do not occur until some distance down the hill. Roadway improvements, including bridges and retaining walls, will be designed to minimize disturbance to surrounding trees and vegetation.</td>
</tr>
<tr>
<td>37C</td>
<td></td>
<td>Response 37C: A traditional intersection with traffic lights was considered along with the roundabouts. Please consider the operational and safety advantages as outlined under Section 2.4.2, Page 2-21 of the Environmental Assessment, which states: 1) It eliminates the need for a left-turn lane from the north, thereby reducing the overall width on the constrained embankment section. 2) It serves as an identification to the motorist that they are in the populated area of Bigfork. 3) It creates an environment that will encourage motorists to travel at slower speeds. This is an area that has been the focus of many complaints about high vehicle speed. 4) The elongation of the roundabout will discourage trucks from accessing Bigfork Village via Bridge Street, and instead encourage their access through the signalized intersection at Grand Avenue. All intersections, including roundabouts, will be designed to accommodate heavy trucks.</td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>38</td>
<td>John & Diane Gadrielson:</td>
<td>Retaining walls will be designed to minimize impacts. The specific height, length, and architectural treatment for retaining walls will be determined during final design. During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. Landowners will continue to be involved in this process.</td>
</tr>
<tr>
<td>38A</td>
<td>Retaining wall at Woods Bay Hill would take away access for their business</td>
<td></td>
</tr>
<tr>
<td>38B</td>
<td>Concerned about how close right-of-way is to house. Want or money it to</td>
<td></td>
</tr>
<tr>
<td>38C</td>
<td>Left at ending retaining wall.</td>
<td>This property is lower than surrounding area.</td>
</tr>
<tr>
<td>38D</td>
<td>Do not like retaining wall - will develop property.</td>
<td></td>
</tr>
<tr>
<td>38E</td>
<td>Senior need to go slower on Woods Bay Hill</td>
<td></td>
</tr>
</tbody>
</table>

Response 38B: The specific right-of-way required for the project will be determined during the final design process. MDT will coordinate with property owners during the final design process. Property acquisition will conform with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended.

Response 38C: The project team will coordinate with landowners regarding these concerns throughout the final design process.

Response 38D: See response 38A and 38B.

Response 38E: Traffic speed was a dominant issue raised during the stakeholder coordination process. The Executive Summary of the Environmental Assessment provides information about how this issue is addressed in the Preferred Alternative. The issue of speed was addressed in several different ways:

- The community of Bigfork approached the Montana Transportation Commission with a request to lower the speed limit. The Montana Transportation Commission decided to lower the speed limit from 45 mph to 35 mph in Bigfork.
- Several community entry treatments are included in the Preferred Alternative to alert motorists to slow down when entering a more urbanized area.
- Roundabouts were included in the Preferred Alternative to provide improved consistency of speeds at intersections. All roundabouts will be designed to accommodate heavy trucks.
- The project is not proposing to change the existing speed limit. In Bigfork and Woods Bay, the posted speed limit is 35 mph.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Randy & Linda Snyder:</td>
<td>Response 39: Thank you for your consideration and comment on the project Preferred Alternative.</td>
</tr>
</tbody>
</table>

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

- **Name:** Randy Snyder
- **Date:** 12 July 2004
- **Address:** 40 Box 37, Bigfork
- **Phone (if you want a phone call response to comments):** 827-4983
- **Email (if you want an email response to comments):**

 Comment refers to document Page Number:

 Nurmy report to business ever in OK
 *
 I agree own making the proposed work*

FORWARD COMMENTS TO:

- **POSTAL**
 Montana Department of Transportation – ATTN: Fred Bente
 PO Box 201001, Helena, MT 59620

- **FAX**
 406-444-6253

- **WEB SITE**
 www.mdt.state.mt.us/environmental/eis-ea
Jim Greytak:

Response 40A:
These suggestions will be considered during final design.

Response 40B:
Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc.

Response 40C:
A northbound left-turn lane is proposed for the intersection at Chapman Hill Road. The Preferred Alternative does not currently include a right-turn lane here. Configuration of turn lanes will be determined during the final design process.

Response 40D:
As shown in the Preferred Alternative, the path is located on the west side of the highway and there is no need to direct path traffic over the equestrian crossing. In the event that the path is moved such that it crosses MT-35 in this area due to issues surrounding Daphne Pond, the equestrian crossing will be considered as a path crossing location.

Due to concerns expressed by the community during the public comment period, the path will not be routed behind Daphne Pond but will parallel the road. The pathway will be designed to minimize impacts; the specific design of the pathway, including pavement material, exact location, crossings, connections, etc., will be determined during the final design process.
Finding of No Significant Impact

Appendix B

<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Dannie Fischer:</td>
<td>Response 41A: Wildlife impacts are discussed in Section 3.13 of the Environmental Assessment. To summarize from the Environmental Assessment, a wildlife crossing was not included in the Preferred Alternative because wildlife crosses the highway throughout the corridor and not at one single location. This being said, however, two grade separated crossings are included in the Preferred Alternative. An overpass will be located near RP 29.9 primarily for pedestrian, bicycle, and equestrian use. It is unknown if it will be effective for wildlife; however, it is proposed to be wide enough to allow for wildlife use. An underpass is proposed at about RP 30.5 primarily for pedestrian and bicyclist use. It is not expected to be used by wildlife.</td>
</tr>
<tr>
<td></td>
<td>MT-35 Bigfork North & South</td>
<td>Response 41B: Parking and boat access is currently available near the south end of the bridge at the Bigfork Fishing Access Site. The Preferred Alternative does not include any plans for additional parking or boat access.</td>
</tr>
<tr>
<td></td>
<td>PUBLIC COMMENT FORM</td>
<td>Response 41C: The specific right-of-way required for the project will be determined during the final design process. MDT will coordinate with property owners during the final design process. Property acquisition will conform with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended.</td>
</tr>
</tbody>
</table>

FORWARD COMMENTS TO:
- POSTAL: Montana Department of Transportation - ATTN: Fred Bente, PO Box 201001, Helena, MT 59620
- FAX: 406-444-6253
- WEB SITE: www.mdt.state.mt.us/environmental/eis-ea
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 42 | Thelma Russell: | Response 42A: Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc.
Response 42B: Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process. MDT will conduct a public education program about the use of roundabouts before they are implemented.
Response 42C: Left-turn lanes are proposed for both Yenne Point Drive and Sylvan Drive and are included in the Preferred Alternative. Configuration of turn lanes will be determined during the final design process.
Response 42D: During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. Landowners will continue to be involved in this process. |

MT-35 Bigfork North & South
PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Thelma Russell
Address: Village Lane - MT 95
Phone (If you want a phone call response to comments): 902-3485
Email (If you want a email response to comments):
Comment refers to document Page Number :

* Concerned about snow removal and ice on roundabouts
* Reason if tow trucks and fire trucks will get through roundabouts
* Roundabouts seem like they will be confusing especially to tourists
* Turn lane at Yenne Point x Sylvan Dr is needed
* Concerned about access from highway to property for businesses
Finding of No Significant Impact

Appendix B

<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 43 | Craig Spicher for Donna Hudson:

MT-35 Bigfork North & South

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Craig Spicher for Donna Hudson
Address:
Dates: 2/1/69, 2/1/69
Phone: 406-627-6217
Email:
Comment refers to document Page Number:

- Concerned about traffic and collision speed.
- People cross MT-35 at Redgate Dr.
- Sister concerned about property impact at end of road on Woods Bay Hill.
- Concerned about property being land locked from MT-35.
- Concerned about property being land locked by retaining wall.
- Concerned about being land locked by utilities.
- Like Slick Rock from wood by to Bigfork.

Response 43A:
Traffic speed was a dominant issue raised during the stakeholder process. The Executive Summary in the Environmental Assessment describes how this issue is addressed in the Preferred Alternative. The issue of speed was addressed in several different ways:

The community of Bigfork approached the Montana Transportation Commission with a request to lower the speed limit. The Montana Transportation Commission decided to lower the speed limit from 45 mph to 35 mph in Bigfork.

Several community entry treatments are included in the Preferred Alternative. The purpose of these entry treatments is to alert motorists to slow down as they are entering a more urbanized area.

Roundabouts were included in the Preferred Alternative to provide improved consistency of speeds at intersections. All roundabouts will be designed to accommodate heavy trucks.

Response 43B:
The design and location of pedestrian crossings and associated signage will be determined during the final design process.

Response 43C:
Due to several concerns expressed by the public, the proposed roadway and retaining wall design for this area will be evaluated to determine if impacts can be further minimized. During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. Retaining walls will be designed to minimize impacts. The specific height, length, and architectural treatment for retaining walls will be determined during final design.

Response 43D:
The project team will work with utilities to prevent any landowner from losing access to their property.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>Jim Greytak:</td>
<td>Response 44A: Inclusion of roundabouts was discussed at length with the Bigfork Advisory Committee, who supports them. Other comments were received both for and against their use. MDT plans to assist the community in the use of roundabouts, and permanent signing will be used to assist with driver expectancy and permitted movements. All roundabouts will be designed to accommodate heavy trucks.</td>
</tr>
<tr>
<td>44</td>
<td>MT-35 Bigfork North & South</td>
<td>Response 44B: Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc.</td>
</tr>
</tbody>
</table>

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Jim Greytak
Address:
Phone:
Email:

Comment refers to document Page Number:

I would like to again express concern about the use of roundabouts in this design. The area is impacted significantly by the tourist industry. I am concerned about the safety of unfamiliar drivers navigating these two locations. I am also very concerned about the clear visibility of the such installations and the possible confusion they will cause.

Winter maintenance has been a continuing problem. Flooding is limited for these roundabouts, inclusion of roundabouts will greatly increase costs, or increase the use of chemicals.

Jim Greytak
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Judith R. Stevens:</td>
<td>Response 45: Thank you for your comment and consideration of the alternatives presented in the Environmental Assessment. Highway resurfacing alone would not meet the purpose and need for this project. The Preferred Alternative selected was a result, in large part, of the work of the Advisory Committee, which included representatives of Flathead County Commission, Lake County Commission, Flathead Regional Development Office, and the Bigfork Land Use Advisory Committee.</td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>46</td>
<td>Charlene Herron:</td>
<td>Response 46: Thank you for your response and support of the Preferred Alternative. Wildlife impacts are discussed in Section 3.13 of the Environmental Assessment. To summarize from the Environmental Assessment, a wildlife crossing was not included in the Preferred Alternative because wildlife crosses the highway throughout the corridor and not at one single location. This being said, however, two grade-separated crossings are included in the Preferred Alternative. An overpass will be located near RP 29.9 primarily for pedestrian, bicycle, and equestrian use. It is unknown if it will be effective for wildlife; however, it is proposed to be wide enough to allow for wildlife use. An underpass is proposed at about RP 30.5 primarily for pedestrian and bicyclist use. It is not expected to be used by wildlife.</td>
</tr>
</tbody>
</table>

MT-35 Bigfork North & South

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Charlene Herron
Address: 26154 Cut Shores Road
Phone (if you want a phone call response to comments): 406-492-9
Email (if you want a email response to comments):
Comment refers to document Page Number:

I THINK ALL THE PROPOSED CHANGES HAVE BEEN WELL STUDIED, EXCELLENT REPORTS, I PERSONALLY WOULD SUPPORT THE PROPOSED CHANGES.
I MOVED TO WOODS RAY IN OCTOBER OF '94 AND HERE SIMILAR PROPOSED'S COULD HAPPEN IN THAT AREA IN THE FUTURE.
I HAVE BEEN DRIVING HWY 35 TO WORK IN WOODS RAY EVERY DAY. SEEING OR WOODS RAY HILL HAS BEEN EXCERCTED.
I HAVE COUNTED 9 DEER KILLED ON THE ROADSIDE SINCE OCTOBER MOST FROM WOODS RAY TO BIGFIRE. THANK YOU FOR THE OPPORTUNITY TO COMMENT.

FORWARD COMMENTS TO:

Montana Department of Transportation
Transportation – ATTN: Fred Bente
PO Box 201031, Helena, MT 59620

FAX

406-444-6253

WEB SITE

www.mdt.state.mt.us/ environmental/eis-ea
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
</tr>
</thead>
</table>
| 47A | John Bourquin:
MT-35 Bigfork North & South
PUBLIC COMMENT FORM
Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.
Name: Jeo Kogus
Address: 210 Moreau Rd (Rob Box 655)
Phone (if you want a phone call response to comments): 837-0169
Email (if you want an email response to comments): jeo.kogus@gmail.com
Comment refers to document Page Number: 82/83

1) Why is path by bridge in should be adjacent to Hwy 35 and not end of bridge?
2) Path loss of controlled distance to walk if Hwy 35 widening path and bike path on the same side of road and not surrouniding the road.
3) Three lanes on Hwy 35 for traffic to and from Sylvan Dr N and South.
4) Why a traffic signal (not green light) at intersections red a beast - synchronization the light to Hwy 35 a 35 mph. You just need four lanes. I safety concerns with the increasing numbers of elderly people in town and the number of tourists that may have never negotiated a roundabout. |

<table>
<thead>
<tr>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>47A: Due to concerns expressed by the community during the public comment period, the path will not be routed behind Daphne Pond but will parallel the road. The pathway will be designed to minimize impacts; the specific design of the pathway, including pavement material, exact location, crossings, connections, etc., will be determined during the final design process.</td>
</tr>
<tr>
<td>47B: Left-turn lanes are proposed for both Yenne Point Drive and Sylvan Drive and are included in the Preferred Alternative. Configuration of turn lanes will be determined during the final design process.</td>
</tr>
</tbody>
</table>
| 47C: From the practical perspective of controlling traffic flow on MT-35, synchronization would not have an effect on traffic at this time especially considering the distance between the two signals (Grand Avenue and the proposed Lake Hills signal). True synchronization to progress traffic at a set speed is only truly possible on a one-way road where traffic is flowing in the same direction. It is possible to progress signals in one direction, but then the opposing flow would have no synchronization whatsoever. Ideally, when traffic signals are coordinated, they are done so to facilitate the most demanding critical traffic movements. Traffic signal configuration will be considered in more detail during final design.
Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process.
MDT will conduct a public education program about the use of roundabouts before they are implemented. |
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>Linda Carter:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MT-35 Bigfork North & South</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PUBLIC COMMENT FORM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name: Linda Carter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date: July 14, 2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Address: 310 Peace Lane (Box 962)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phone (if you want a phone call response to comments):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Email (if you want an email response to comments):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comment refers to document Page Number: B7 and B4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48A</td>
<td>Due to concerns expressed by the community during the public comment period, the path will not be routed behind Daphne Pond but will parallel the road. The pathway will be designed to minimize impacts; the specific design of the pathway, including pavement material, exact location, crossings, connections, etc., will be determined during the final design process.</td>
</tr>
<tr>
<td></td>
<td>48B</td>
<td>Left-turn lanes are proposed for both Yenne Point Drive and Sylvan Drive and are included in the Preferred Alternative. Configuration of turn lanes will be determined during the final design process.</td>
</tr>
<tr>
<td></td>
<td>48C</td>
<td>Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process. MDT will conduct a public education program about the use of roundabouts before they are implemented.</td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 49 | Kirk Mackenzie:

MT-35 Bigfork North & South
PUBLIC COMMENT FORM
Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.
Name: Kirk Mackenzie
Address: P.O. Box 1200, Bigfork, MT 59911
Phone:
Email:
Comment refers to document Page Number:

Looks like a very thorough and well thought out plan. It is a shame there are few details to be worked out regarding traffic flow during construction, particularly with a new bridge to be built. But nothing is impossible and if the funds become available I’m sure all those minor details (some not so minor) can be worked out. It seems like the project was ready for the summer of 2008.
Regarding the heavy trucking from school trust lands, I wonder what impact this project might have on the rehab of #35 and both projects go forward.
Overall excellent job. |

Response 49:
The project team will make the school trust lands aware of the project when it is scheduled for construction. Logging trucks may be affected by detours due to construction. A traffic maintenance plan will be developed for construction.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 50 | T.D. Harvey: | **Response 50A:**
As explained on page 3-29 of the Environmental Assessment, the creation of compression brake restriction zones is required by law to originate through a local government request. Thus, MDT does not have direct control over the creation of this type of ordinance. It should be noted that a new compression brake law requires a commercial motor vehicle equipped with an engine compression brake device to be equipped with a muffler in good working condition to prevent excessive noise. The development of the Preferred Alternative considered that the roundabouts at SH-209 and Bridge Street will allow trucks to move at a more consistent speed and shift less. All intersections, including roundabouts, will be designed to accommodate heavy trucks. |
| | 50A | MT-35 Bigfork North & South PUBLIC COMMENT FORM
Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.
Name: T.D. Harvey
Address: Box 901 Sunset Ln. Bigfork MT 59911
Phone (if you want a phone call response to comments):
Email (If you want a email response to comments):
Comment refers to document Page Number: x
I don't believe the embankment between Bridge St. & Grand Ave needs to be widened. No Way should Bob's Wood Bay Market be forced from business due to shift back.
We need to move this roadway forward.
No bound about @ Bridge St |
| 50B | | **Response 50B:**
The proposed new bridge would be wider than the existing structure because of the addition of shoulders and the path. The community has expressed great concern over loss of trees on the bridge embankment. Currently, the trees do not occur until some distance down the hill. Roadway improvements, including bridges and retaining walls, will be designed to minimize disturbance to surrounding trees and vegetation. |
| 50C | | **Response 50C:**
The asset value of the vegetated slope to the community is clear. The roadway width through this area has been established to meet current design codes, which includes 2.4-meter (8-foot) shoulders and 1.8-meter (6-foot) multi-use path. Unless a design exception is sought and granted by MDT to reduce shoulders to 1.2 meters (4 feet), the total width at approximately 15.8 meters (52 feet) will remain in the design. |
| 50D | | **Response 50D:**
The inclusion of roundabouts was discussed at length with the Bigfork Advisory Committee, who supports them. Please consider the operational and safety advantages as outlined under Section 2.4.2, Page 2-21 of the Environmental Assessment, which states:
1) It eliminates the need for a left-turn lane from the north, thereby reducing the overall width on the constrained embankment section.
2) It serves as an identification to the motorist that they are in the populated area of Bigfork.
3) It creates an environment that will encourage motorists to travel at slower speeds. This is an area that has been the focus of many complaints about high vehicle speed.
4) The elongation of the roundabout will discourage trucks from accessing Bigfork Village via Bridge Street, and instead encourage their access through the signalized intersection at Grand Avenue.
All intersections, including roundabouts, will be designed to accommodate heavy trucks. |
T.D. Harvey:

MT-35 Bigfork North & South

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: T.D. Harvey Date: 7-4-04
Address: 606 Sunset Ln. Bigfork, MT 59911
Phone (If you want a phone call response to comments):
Email (If you want a email response to comments):
Comment refers to document Page Number: __

51A
The Grand Ave interchange heading North. Does not need a full by-pass road. Vehicle breaks down in the traffic lane. I drive this every morning and rarely see a need for this.

51B
The Box canyon should not be cleared cut bulldozed into an ugly road cut.

51C
What is the definition of significant impact & can this be negotiated to reflect our small town character?

51D
Paint Pedestrian Crosses @ Bob's, 209, Bridge St., Lake Hills. More painted crossings is better.

51E
Use wooden or defined areas on the roadside to minimize road width.

Response 51A:
The proposed intersection at Grand Avenue has one lane in both directions for through traffic and left- and right-turn lanes. Shoulders are proposed throughout the entire length of the project for safety reasons and to allow space for a disabled vehicle to be stopped without blocking through traffic.

Response 51B:
The final design of the project will minimize cuts required in order to minimize impacts to vegetation while addressing safety deficiencies.

Response 51C:
“Significant impact” in the context of the National Environmental Policy Act (NEPA) is defined in view of the context and intensity of an impact. Concern for maintaining the community character was identified as an important concern during the stakeholder process. The Environmental Assessment discusses design elements and approaches that were included to address these concerns.

Response 51D:
Pedestrian crosswalks are currently included in the Preferred Alternative at SH 209, Bridge Street, and the proposed Lake Hills intersection. The design and location of pedestrian crossings and associated signage will be determined during the final design process.

Response 51E:
Overall widths of the roadway and of the roadway corridor were of primary concern during the public involvement process. As a result, several proactive measures are part of the Preferred Alternative, including:

- Use of narrower V-ditches instead of the normal flat bottom ditches.
- Use of a combination turf/pavement shoulder to reduce the overall width of pavement.
- Use of steeper slopes than normal to minimize the overall width of the impacted area.
- Extensive use of retaining walls to reduce the width of affected areas.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 52 | Kirk Hansen: MT-35 Bigfork North & South
PUBLIC COMMENT FORM
Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.
Name: Kirk Hansen
Date: 7-14-04
Address: 232 Crestview
Phone (if you want a phone call response to comments): 837-5029
Email (if you want an email response to comments):
Comment refers to document Page Number:
#1 Concerns about water drainage & runoff
#2 Also concerned about all the medians across with no provisions for up keep or maintenance
#3 Hate the roundabouts!

52A | Drainages will be designed to adequately convey stormwater runoff.
52B | MDT will develop an agreement with local government agencies for maintenance of the median landscaping.
52C | Inclusion of roundabouts was discussed at length with the Bigfork Advisory Committee, who supports them. Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process. MDT will conduct a public education program about the use of roundabouts before they are implemented. |
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 53 | Brett Thuma:

MT-35 Bigfork North & South

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Brett Thuma
Address:
Phone (if you want a phone call response to comments): 897-1299
Email (if you want a email response to comments):
Comment refers to document Page Number:

My comment refers to a 12’ x 200’ median strip on the east side of Hwy 35, near Bigfork. This strip has been worked on since Oct. 1997 and has been planted with Polaris prairie plants native to this area. It is a park in progress constructed by the Bigfork Development Company with myself as the primary contractor. It has about 20 different species of native plants in it. The plan shows this to be a right turn lane. I believe this former recreation should remain where it is and the right turn lane be the area immediately to the east which is already a paved roadway that could be paved and used as the turn lane.

When this highway construction project was undertaken I was assured that it would not be obliterated by highway expansion. I hope I can count on its continued existence. A number of people in the area as well as myself have financed this project and it would be very unfortunate if it were destroyed because of a turn lane that could easily be adjusted 10’ to the right.

Brett Thuma |

Response 53:
The final design will evaluate this area to determine if the turn lane can avoid the landscaped median. If it cannot be avoided it will be a subject of the right-of-way negotiation process.

FORWARD COMMENTS TO:

POSTAL
Montana Department of Transportation – ATTN: Fred Berte
PO Box 201001, Helena, MT 59620

FAX
406-444-6253

WEB SITE
www.mdt.state.mt.us/
environmental/eis-ea
Finding of No Significant Impact

STPP 52-1 (18) 27

Appendix B

No. Comment Response

54 Marty Miller:

MT-35 Bigfork North & South

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Marty Miller Date: [Signature]
Address: 215 Inverness MT 59922 Phone: 406-844-9112
Email (If you want a phone call response to comments): MartyMiller@mt.gov

Response 54A:
Changing Community Lane to a one-way road is not a part of the Preferred Alternative. The exact configuration of intersections and turn lanes will be determined during the final design process.

Response 54B:
The inclusion of roundabouts was discussed at length with the Bigfork Advisory Committee, who supports them. Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process. MDT will conduct a public education program about the use of roundabouts before they are implemented.
Table: Comment and Response

<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>Arnold B. Morris:</td>
<td>Response 55A: We are aware of the recent construction of the Branding Iron Station and modifications to the approach road here. This and the NAPA building are in conflict with the proposed entry feature. During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. Landowners will continue to be involved in this process as the access management plan is developed.</td>
</tr>
<tr>
<td>55A</td>
<td></td>
<td>We are aware of the recent construction of the Branding Iron Station and modifications to the approach road here. This and the NAPA building are in conflict with the proposed entry feature. During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. Landowners will continue to be involved in this process as the access management plan is developed.</td>
</tr>
<tr>
<td>55B</td>
<td></td>
<td>We are aware of the recent construction of the Branding Iron Station and modifications to the approach road here. This and the NAPA building are in conflict with the proposed entry feature. During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. Landowners will continue to be involved in this process as the access management plan is developed.</td>
</tr>
</tbody>
</table>

MT-35 Bigfork North & South

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

- **Name:** Arnold B. Morris
- **Date:** 7-13-04
- **Address:** 130 Shawnee Dr, Bigfork, MT 59911
- **Phone:** (406) 837-6970
- **Email:**
- **Comment:**

 1. Need to keep access to property from both directions for new development. This is commercial property with no other access. Both entrance/exit does not allow southbound traffic access.
 2. Confused about access granted for being a property already sold for development.
 3. Concerned about property with being 75 feet back in for sewer. Any sewer inspection being from this point will make it a cul-de-sac.
 4. Need another access to property along busy main road.

FORWARD COMMENTS TO:

- **POSTAL**
 Montana Department of Transportation – ATTN: Fred Bents
 PO Box 201001, Helena, MT 59620
- **FAX**
 406-444-6253
- **WEB SITE**
 www.mdt.state.mt.us/environmenal/eis-ea
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>Patricia Haugo:</td>
<td>Response 56A: Location of the path will be designed to minimize proximity to landowner’s carport.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response 56B: Page 3-29 of the Environmental Assessment address the issue of trucks and noise. The creation of engine compression brake restriction zones is required by law to originate through a local government request, thus, MDT does not have direct control over the creation of this type of ordinance. It should be noted that a new compression brake law requires a commercial motor vehicle equipped with an engine compression brake device to be equipped with a muffler in good working condition to prevent excessive noise. A purpose of the community entry features is to help drivers recognize that they are in a populated area and slow down. Restricting trucks from MT-35 is not an option because the road is a state and federal aid highway. The Woods Bay Hill and the existing tight curve at the top will be addressed with several proposed improvements: The curve at the top of Woods Bay Hill is proposed to be flattened to improve the visibility around the curve. The super-elevation (cross-slope) is to be the minimum slope allowed for the design speed (approximately 45 mph). The roadway cross-section consists includes a continuous 3.6-meter (12-foot) two-way left-turn lane. The purpose of the two-way left-turn lane is twofold: 1) to provide channelization for left-turning vehicles to slow down and wait outside the through lane particularly at Yenne Point Road, Sylvan Drive, and other commercial and private driveways; and 2) to provide additional width on Woods Bay Hill for passing vehicles stalled in icy conditions. These improvements will significantly improve the operational efficiency of the Woods Bay area while improving safety at the same time. The speed of vehicles approaching from the north should be more effectively reduced with the entry treatment feature. The project is not proposing to change the speed in Woods Bay from the current 35 mph. The posted speed limit is determined by the Highway Commission and County Commissioners. To have a speed limit lowered requires a request for a speed study from the local government or a petition to the Highway Commissioner from the local government.</td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>No Name Provided:</td>
<td></td>
</tr>
<tr>
<td>57A</td>
<td>Because of concerns voiced about impacts to Daphne Pond, the multi-purpose path will now be located adjacent to the highway, on the west side of Daphne Pond. This change will not alter the acreage of wetland impact; however, it will reduce impacts to higher quality pond edge wetlands east of the pond. This will preserve their function for ongoing educational and natural resource protection purposes. Wetland impacts and associated mitigation will be determined during the final design process for the highway and path.</td>
<td></td>
</tr>
<tr>
<td>57B</td>
<td>MDT currently uses sand mixed with enough salt to prevent ice from forming on roadways. Liquid deicers, such as calcium magnesium acetate, are used on the roadways to help keep them clear only when a large storm is expected and snow plows alone are insufficient. The drainage system of the bridge will be designed so that the roadway runoff is not directly discharged into the water resource without some level of treatment.</td>
<td></td>
</tr>
<tr>
<td>57C</td>
<td>The proposed new bridge will be wider than the existing structure because of the addition of shoulders and the multi-use path. The community has expressed great concern over the potential loss of trees on the bridge embankment. Currently, the trees do not occur until some distance down the hill. Roadway improvements, including bridges and retaining walls, will be designed to minimize disturbance to surrounding trees and vegetation.</td>
<td></td>
</tr>
<tr>
<td>57D</td>
<td>The Bigfork Advisory Committee and your comments are used to help shape the design and maintain your community character to the greatest extent possible. Concern for maintaining the community character was identified as an important concern during the stakeholder process. The Environmental Assessment discusses design elements and approaches that were included to address these concerns.</td>
<td></td>
</tr>
<tr>
<td>57E</td>
<td>Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process. MDT will conduct a public education program about the use of roundabouts before they are implemented.</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>57 (cont)</td>
<td>This curve is being redesigned for improved sight distance and safety. Response 57G: Scenic highway designation is done by government agencies or private organizations. People interested in designating MT-35 as a scenic highway could form an organization to do so. Montana does have a state scenic-historic byways program. During the process many people suggested designating MT-35 as a scenic highway as a means to eliminate trucks from traveling the route. Designating a road as a scenic highway does open the facility to certain types of funds for signing and interpretive elements. However, it does not do anything to restrict truck use. Restricting trucks from MT-35 is not an option because the road is a state and federal aid highway. Response 57H: The traffic speed was a dominant issue raised during the stakeholder process. The Executive Summary provides information as to how this issue is addressed in the Preferred Alternative. Many people in the community expressed concern over the current speed conditions on the highway, as well as what conditions would be like in the future. The issue of speed was addressed in several different ways: The community of Bigfork approached the Montana Transportation Commission with a request to lower the speed limit. The Montana Transportation Commission decided to lower the speed limit from 45 mph to 35 mph in Bigfork. Several community entry treatments are included in the Preferred Alternative. The purpose of these entry treatments is to alert motorists to slow down as they are entering a more urbanized area. Roundabouts were included in the Preferred Alternative to provide improved consistency of speeds at intersections. All intersections, including roundabouts, will be designed to accommodate heavy trucks. Response 57I: Construction schedule and sequencing will be determined during the final design process to minimize disruptions. A traffic control plan, including detours and signage, will be developed during the final design process to minimize traffic disruptions during construction. Further design and construction of the Preferred Alternative is dependent on available funding. The Montana Department of Transportation will work towards final design, right-of-way acquisition, utility relocation and construction as soon as funding becomes available relative to all of the needs and priorities within the District.</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>57</td>
<td>(cont)</td>
<td></td>
</tr>
</tbody>
</table>

Response 57J:
Yes, your comments are heard, and your comments are used to shape the project within the greater good of all concerned, as well as within the feasible and practical constraints that the MDT must operate. Your comments are documented in the environmental process and taken into further consideration during the next design phase. We agree that you have a certain dynamic of competing interests within the community, which has been considered carefully in crafting the Preferred Alternative.

Response 57K:
The posted speed in Woods Bay at 35 mph is not subject to change with this project. While MDT cannot control what speed driver’s use, the proposed continuous and designated left-turn lanes, wider shoulders, and improved recovery area are design components that work to improve the safety of the highway.

Response 57L:
It is unclear if you mean nutrient transport, or contaminate transport from the roadway deicers. The drainage system off the roadways will be designed so that the runoff is not directly discharged into the water resource without some level of treatment.
Response 58A:
Thank you for the Grand Avenue intersection comment. The correction is noted in this Finding of No Significant Impact.

Response 58B:
In the Environmental Assessment, the third bullet of the Bridge Street intersection reads “The elongated design discourages heavy truck use of the local approach.” While the geometry of the roundabout makes it intentionally difficult (if not impossible) for larger trucks to access Bridge Street, it is possible for smaller trucks, particularly those traveling north on MT-35, to negotiate a right turn onto this same street. Load limit signing of the historic one-way bridge will remain in place to permit only those smaller trucks under the limit to use the bridge.

All intersections, including roundabouts, will be designed to accommodate heavy trucks.

Response 58C:
The graphics depict 1.2-meter (4-foot) paved and 1.2-meter (4-foot) turf shoulders.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>No Name Provided:</td>
</tr>
</tbody>
</table>

MT-35 Bigfork North & South

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

<table>
<thead>
<tr>
<th>Name:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>Phone (If you want a phone call response to comments):</td>
<td></td>
</tr>
<tr>
<td>Email (If you want a email response to comments):</td>
<td></td>
</tr>
</tbody>
</table>

Comment refers to document Page Number:

- Timing is important
- Don't want to have to pay for a project twice, extra when it is new - another time to build it when road is built
- Health Department is pushing for sewer line
- Hill Dr. - sewer stop on west side
- 12' main down hill
- Demand for sewer will be in next 10 yrs.
- Fill your lake with or any affect line
- Conducts under the road for future utilities
- Look at the Rye Canyon for a place to do this
- Please turning valve near fire station
- Trains coming down hill towards closed road up to make light

Response 59A:

Further design and construction of the Preferred Alternative is dependent upon available funding. The MDT will work toward final design, right-of-way acquisition, utility relocation, and construction when funding becomes available relative to all of the needs and priorities within the District. It is likely that construction of the Preferred Alternative will be phased as funding becomes available.

Response 59B:

MDT will coordinate with utility companies throughout the final design process and prior to and during the construction phase.

Response 59C:

The current speed limit will remain in effect. Enforcement of the posted speed limit falls under the jurisdiction of area law enforcement.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Gary McCrummen:</td>
</tr>
</tbody>
</table>

MT-35 Bigfork North & South

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Gary McCrummen Date: 7-13-07
Address: 2022 Lone Wolf Dr. Bigfork
Phone (if you want a phone call response to comments):
Email (if you want a email response to comments):
Comment refers to document Page Number:

- Proposed connection to MT-35 at the location near the Medical Center will require additional business and community input to resolve two exclusive issues. The limited parking at the center is understood as a vital function for patrons visiting there. However, the improved flow of traffic coming and going from high school sporting events off MT-35 could be improved with an approach road here as well. It appears feasible to provide the approach while maintaining parking, but the roadway standard and drainage requirements will need careful consideration. It is quite possible the approach would be limited to right-in/right-out turning movements to prevent the creation of another congestion point.

Response 60A:

The proposed connection to MT-35 at the location near the Medical Center will require additional business and community input to resolve two exclusive issues. The limited parking at the center is understood as a vital function for patrons visiting there. However, the improved flow of traffic coming and going from high school sporting events off MT-35 could be improved with an approach road here as well. It appears feasible to provide the approach while maintaining parking, but the roadway standard and drainage requirements will need careful consideration. It is quite possible the approach would be limited to right-in/right-out turning movements to prevent the creation of another congestion point.

Response 60B:

- The design and location of pedestrian crossings and associated signage will be determined during the final design process.

Response 60C:

- The design and location of pedestrian crossings and associated signage will be determined during the final design process.
Finding of No Significant Impact
Appendix B

<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>Don & Mike Burton:</td>
</tr>
<tr>
<td></td>
<td>MT-35 Bigfork North & South</td>
</tr>
<tr>
<td></td>
<td>PUBLIC COMMENT FORM</td>
</tr>
<tr>
<td></td>
<td>Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.</td>
</tr>
<tr>
<td></td>
<td>Name: Don & Mike Burton Date: 3 July 2004</td>
</tr>
<tr>
<td>61A</td>
<td>Address: 524 W. Howard Kalispell</td>
</tr>
<tr>
<td></td>
<td>Phone (if you want a phone call response to comments): 258-1477</td>
</tr>
<tr>
<td></td>
<td>Email (if you want a email response to comments): 257-0169</td>
</tr>
<tr>
<td></td>
<td>Comment refers to document Page Number:</td>
</tr>
<tr>
<td></td>
<td>61A</td>
</tr>
<tr>
<td></td>
<td>Don't build in Ice Box Canyon</td>
</tr>
<tr>
<td></td>
<td>Would like road to go to the other side away from his building</td>
</tr>
<tr>
<td></td>
<td>There is nothing on the other side of the road</td>
</tr>
<tr>
<td></td>
<td>61B</td>
</tr>
<tr>
<td></td>
<td>Don't want to lose building</td>
</tr>
<tr>
<td></td>
<td>A currently has an access near to the building that should stay</td>
</tr>
<tr>
<td></td>
<td>Wouldn't like more retaining wall in Ice Box Canyon</td>
</tr>
<tr>
<td></td>
<td>It would be more expensive to buy the property then to have more from the other side</td>
</tr>
<tr>
<td></td>
<td>Would either like the turn around in the entry feature to go into business or also a center turn lane instead of entering he, a front of business</td>
</tr>
<tr>
<td></td>
<td>Good will be safer if more road is taken - it will be safer than less low</td>
</tr>
<tr>
<td></td>
<td>61C</td>
</tr>
<tr>
<td></td>
<td>Design and location of entry features, including turn-arounds, will be determined during the final design process.</td>
</tr>
<tr>
<td>Response 61A:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The specific right-of-way required for the project will be determined during the final design process. MDT will coordinate with property owners during the final design process. Property acquisition will conform with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended.</td>
</tr>
<tr>
<td></td>
<td>During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. Landowners will continue to be involved in this process.</td>
</tr>
<tr>
<td>Response 61B:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Retaining walls in Ice Box Canyon are proposed to limit the amount of cut excavation, reduce the number of trees to be removed, limit the necessary right-of-way required, and to protect the natural viewshed. Retaining walls will be designed to minimize impacts. The specific height, length, and architectural treatment for retaining walls will be determined during final design.</td>
</tr>
<tr>
<td>Response 61C:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design and location of entry features, including turn-arounds, will be determined during the final design process.</td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>62</td>
<td>Bud McKenzie, Acorn Storage:</td>
</tr>
</tbody>
</table>
Finding of No Significant Impact

Appendix B

<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 63 | Pat Hawley:
MT-35 Bigfork North & South

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Pat Hawley
Date: 14-Jul-2017

Address: 202 Mapleton Dr.

Phone (if you want a phone call response to comments): 406-882-2127

Email (if you want a email response to comments): pat.hawley@mt.gov

Comment refers to document page number:

- In front of path, but concerned about privacy and people entering access to property from the path. Consider fencing or planting to maintain privacy and prevent access from path.
- Pet dog shoots in the newspaper explaining how to use roundabouts.

Response 63A:
Your concerns are understood. Fencing is typically placed along the right-of-way in rural areas. The specific type of fencing is determined during right-of-way negotiations. The pathway will be designed to minimize impacts; the specific design of the pathway, including pavement material, exact location, crossings, connections, etc., will be determined during the final design process.

Response 63B:
MDT will conduct a public education program about the use of roundabouts before they are implemented.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 64 | Lei Anderson: | **Finding of No Significant Impact**

Traffic in Bigfork is not expected to be heavy enough to back up and block accesses during most of the time. The Environmental Assessment considered traffic during the year 2024 (recently updated to 2029). During that year, there will be congestion in the Bigfork area without the improvements included in the Preferred Alternative. That congestion will be during the afternoon during the summer months. One area of concern is the southbound approach to the intersection of MT-35 and Grand Avenue, where queues of traffic are expected to develop. This is addressed by improvements to the intersection configuration, channelization, and overall operation.

Response 64A:
Traffic in Bigfork is not expected to be heavy enough to back up and block accesses during most of the time. The Environmental Assessment considered traffic during the year 2024 (recently updated to 2029). During that year, there will be congestion in the Bigfork area without the improvements included in the Preferred Alternative. That congestion will be during the afternoon during the summer months. One area of concern is the southbound approach to the intersection of MT-35 and Grand Avenue, where queues of traffic are expected to develop. This is addressed by improvements to the intersection configuration, channelization, and overall operation.

Response 64B:
Retaining walls are proposed to minimize needed right-of-way to minimize impacts to existing vegetation. The visual impact of retaining walls will be mitigated through architectural treatments or vegetation.

Response 64C:
The pathway will be designed to minimize impacts; the specific design of the pathway, including pavement material, exact location, crossings, connections, etc., will be determined during the final design process.

Response 64D:
The inclusion of roundabouts was discussed at length with the Bigfork Advisory Committee, who supports them. Please consider the operational and safety advantages as outlined under Section 2.4.2, page 2-21 of the Environmental Assessment, which reads:
1) It eliminates the need for a left-turn lane from the north, thereby reducing the overall width on the constrained embankment section.
2) It serves as an identification to the motorist that they are in the populated area of Bigfork.
3) It creates an environment that will encourage motorists to travel at slower speeds. This is an area that has been the focus of many complaints about high vehicle speed.
4) The elongation of the roundabout will discourage trucks from accessing Bigfork Village via Bridge Street, and instead encourage their access through the signalized intersection at Grand Avenue. All intersections, including roundabouts, will be designed to accommodate heavy trucks.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 64 | Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process.
MDT will conduct a public education program about the use of roundabouts before they are implemented.
Response 64E:
Construction schedule and sequencing will be determined during the final design process to minimize disruptions. A traffic control plan, including detours and signage, will be developed during the final design process to minimize traffic disruptions during construction. MDT will coordinate with members of the public, property owners, business owners, residents, motor carriers, etc. during the final design process, and prior to and during the construction phase. |
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>Maris K. Johnson:</td>
<td>Response 65A: We apologize that you were not involved earlier in the project. However, as you have commented on the Environmental Assessment during the formal review process, your needs and concerns are documented and considered in the decision making process. There has been extensive outreach to the community through workshops as well as landowner and public meetings to develop the current alternative. Public comments have been received throughout the environmental process, including a great level of input from the Bigfork Advisory Committee comprised of your own neighbors. MDT will coordinate with members of the public, property owners, business owners, residents, motor carriers, etc. during the final design process, and prior to and during the construction phase.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response 65B: During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. Landowners will continue to be involved in this process. The access specifics will be addressed in final design.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response 65C: The Environmental Assessment states there would be an estimated 0.04 hectare (0.1 acre) of impact at Wetland #5 (where Daphne Pond is located). The 0.1 acre of impact was associated partly with highway widening and partly with the multi-purpose path that was assumed to be located along the east side of Daphne Pond. Because of concerns voiced about impacts to Daphne Pond, the multi-purpose path will now be located adjacent to the highway, on the west side of Daphne Pond. This change will not alter the acreage of wetland impact; however, it will reduce impacts to higher quality pond edge wetlands east of the pond. This will preserve their function for ongoing educational and natural resource protection purposes. Wetland impacts and associated mitigation will be determined during the final design process for the highway and path.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response 65D: Your privacy is respected by the design team, and permission will be sought by MDT if and when access to your property is needed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response 65E: The Environmental Assessment addressed the issue of mitigating vegetation impacts in Section 3.14. Revegetation of all areas disturbed by construction will occur in a timely fashion in order to establish desirable species and reduce noxious weed infestations. MDT will comply with the requirements of the County Noxious Weed Management Act.</td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 66 | **MT-35 Bigfork North & South**
PUBLIC COMMENT FORM
Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.
Name:
Date:
Address:
Phone (If you want a phone call response to comments):
Email (If you want an email response to comments):
Comment refers to document Page Number:

10. Concerned about drainage into pond from highway

See letters from Marise Johnson:
- 752-388 (answering machine)
- 755-5266 office
- 755-5278 home
- 755-0128 fax
amjohnson@mt.gov
cjays@wyre.com

Immediate Action Item
Fax copy of this to
Marise Johnson |

Response 66A:
Drainages will be designed to adequately convey stormwater runoff. MDT will integrate appropriate water quality best management practices into final design of the project to ensure roadway and bridge runoff meets the water quality standards established by the Montana Department of Environmental Quality.

Response 66B:
Ann Johnson’s comment letter and responses can be found under Comment No. 102. Marise Johnson’s comment letter and responses can be found under Comment No. 103.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>Bigfork Water & Sewer:</td>
</tr>
<tr>
<td></td>
<td>MT-35 Bigfork North & South</td>
</tr>
<tr>
<td></td>
<td>PUBLIC COMMENT FORM</td>
</tr>
<tr>
<td></td>
<td>Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.</td>
</tr>
<tr>
<td></td>
<td>Name: Bigfork Water & Sewer Date: July 18, 2009</td>
</tr>
<tr>
<td></td>
<td>Address: 200 Water St Bigfork, MT 59911</td>
</tr>
<tr>
<td></td>
<td>Phone (if you want a phone call to comments): 406-468-9700</td>
</tr>
<tr>
<td></td>
<td>Email (if you want a response to comments):</td>
</tr>
<tr>
<td></td>
<td>Comment refers to document Page Number:</td>
</tr>
<tr>
<td></td>
<td>- Request for water service extending north</td>
</tr>
<tr>
<td></td>
<td>- Problem in need of upgrading</td>
</tr>
<tr>
<td></td>
<td>- Water line in my house</td>
</tr>
<tr>
<td></td>
<td>- Asking a proposal to build in your right-of-way</td>
</tr>
<tr>
<td></td>
<td>- Major transmission line in Water Canyon - only cause of going be blockage - never project in area</td>
</tr>
<tr>
<td></td>
<td>- Will there be retaining wall in borrow pit? Grade changes?</td>
</tr>
<tr>
<td></td>
<td>- MT 1079 allowed water lines in ditch</td>
</tr>
<tr>
<td></td>
<td>- Water to deal with from Stroeder's Corner to Grand Ave. streets, highway at reserve shop - thinking it replacing this old steel pipe</td>
</tr>
<tr>
<td></td>
<td>- Shoring, slope, would be helping</td>
</tr>
<tr>
<td>67A</td>
<td>Response 67A: MDT will coordinate with utility companies throughout the final design process and prior to and during the construction phase.</td>
</tr>
<tr>
<td>67B</td>
<td>Response 67B: The Environmental Assessment shows the location of all proposed retaining walls. Currently, there are no retaining walls along the highway near the borrow pit. Improvements to road and bridge grades will be determined during the final design process.</td>
</tr>
<tr>
<td>No.</td>
<td>Name Illegible:</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
</tr>
<tr>
<td>68</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>68A</td>
<td></td>
</tr>
<tr>
<td>68B</td>
<td></td>
</tr>
</tbody>
</table>
No. | Comment | Response
--- | --- | ---
69 | Rand & Linda Robbin: During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. Landowners will continue to be involved in this process. | Response 69A: As explained in Section 3.10 of the Environmental Assessment, a detailed traffic noise analysis was conducted for the project. Based on the information described in that section, noise mitigation, such as noise walls, is not recommended at any location within the study area.
| | Retaining walls will be designed to minimize impacts. The specific height, length, and architectural treatment for retaining walls will be determined during final design. | Response 69B: Retaining walls will be designed to minimize impacts. The specific height, length, and architectural treatment for retaining walls will be determined during final design.
| | For areas disturbed during construction, a revegetation plan will be developed during final design that outlines revegetation methods, species to be used, monitoring requirements, etc. | Response 69D: For areas disturbed during construction, a revegetation plan will be developed during final design that outlines revegetation methods, species to be used, monitoring requirements, etc.
| | The Bigfork Advisory Committee and your comments are used to help shape the design and maintain your community character to the greatest extent possible. Concern for maintaining the community character was identified as an important concern during the stakeholder process. The Environmental Assessment discusses design elements and approaches that were included to address these concerns. | Response 69E: The Bigfork Advisory Committee and your comments are used to help shape the design and maintain your community character to the greatest extent possible. Concern for maintaining the community character was identified as an important concern during the stakeholder process. The Environmental Assessment discusses design elements and approaches that were included to address these concerns.
Katherine Haug:

MT-35 Bigfork North & South
PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Katherine Haug Date: 7/12/2007
Address: 145 Easy Drive
Phone (if you want a phone call response to comments): 287-4677
Email (if you want an email response to comments): 523-242-1114

Response 70A:
The community has expressed concern over loss of trees on the bridge embankment. Currently, the trees do not occur until some distance down the hill. The Preferred Alternative includes retaining walls within this area that assist to disturb as few trees as possible. Roadway improvements, including bridges and retaining walls, will be designed to minimize disturbance to surrounding trees and vegetation. The specific height, length, and architectural treatment for retaining walls will be determined during final design.

Response 70B:
Retaining walls will be designed to minimize impacts. The specific height, length, and architectural treatment for retaining walls will be determined during final design.

Any blasting requirements will be carefully evaluated with respect to adjacent properties. Particular blasting techniques can also be used to limit shot rock and vibration. MDT will coordinate with members of the public, property owners, business owners, residents, motor carriers, etc. during the final design process, and prior to and during the construction phase. There will be some short-term increases in noise levels during construction.

Response 70C:
The design and location of pedestrian crossings and associated signage will be determined during the final design process.

Response 70D:
Roundabouts included in the Preferred Alternative are designed as single-lane intersections so it would not be necessary to cross from an inside lane to make a right-turn movement. All roundabouts will be designed to accommodate heavy trucks.

Response 70E:
During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. MDT will coordinate with property owners during the final design process.

Response 70F:
A traffic control plan, including detours and signage, will be developed during the final design process to minimize traffic disruptions during construction.

Montana Department of Transportation
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>Catherine Haug:</td>
<td>Response 71A: A traffic control plan, including detours and signage, will be developed during the final design process to minimize traffic disruptions during construction.</td>
</tr>
<tr>
<td>71A</td>
<td></td>
<td>Response 71B: As explained in Section 3.10 of the Environmental Assessment, a detailed traffic noise analysis was conducted for the project. Based on the information described in that section, noise mitigation, such as noise walls, is not recommended at any location within the study area. It should be noted that trees do not provide noise mitigation.</td>
</tr>
<tr>
<td>71B</td>
<td></td>
<td>Response 71C: In an area with deer, drivers must always be aware of the possibility of a deer crossing the highway. Section 3.13 of the Environmental Assessment explains why a wildlife crossing was not included in the Preferred Alternative. A pedestrian underpass is proposed north of Flathead Lake Lodge Road. With the presence of the bridge over the Swan River, it is expected that wildlife would choose to cross at that location rather than through a narrow underpass.</td>
</tr>
<tr>
<td>71C</td>
<td></td>
<td>A tunnel was evaluated and found to not be feasible except in the location for the pedestrian tunnel shown east of SH-209.</td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>72</td>
<td>George Darrow:</td>
<td>Response 72A: Thank you for your comment. The proposed connection to MT-35 at this location near the Medical Center will require additional business and community input to resolve two exclusive issues. The limited parking at the center is understood as a vital function for patrons visiting there. However, the improved flow of traffic coming and going from high school sporting events off MT-35 could be improved with an approach road here as well. It appears feasible to provide the approach while maintaining parking, but the roadway standard and drainage requirements will need careful consideration. It is quite possible the approach would be limited to right-in/right-out turning movements to prevent creating another congestion point. These issues will be addressed during the final design process.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response 72B: Your suggestion regarding staggered stops will be considered during final design. All traffic lanes will be the MDT standard of 3.6 meters (12 feet). Configuration of turn lanes will be determined during the final design process.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response 72C: Thank you for your comment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response 72D: The shoulders of the road along the short improved section of Grand Avenue are expected to function as the bike path. The pathway will be designed to minimize impacts; the specific design of the pathway, including pavement material, exact location, crossings, connections, etc., will be determined during the final design process.</td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>72 (cont)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vicinity Map

- **Ponderosa Ridge**
- **Tract 7 in 23-27-20 & Tract 4 in 24-27-20**
- **SAG-10 Zoning**
- **HOLT Zoning District**
- **File # FPP-03-25**
- **Scenic Corridor**

Montana Department of Transportation 112
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>(cont)</td>
<td></td>
</tr>
</tbody>
</table>
Response 73A:
Straightening the road would require a large amount of earthwork and retaining walls and cost. The proposed barrier is meant to prevent vehicles from sliding across the road. This issue was discussed during the process of developing the Preferred Alternative. It was the strong preference of many in the community and the Bigfork Advisory Committee not to do an extreme cut that would result in a visual impact.

The MDT will develop an agreement with a local government agency for the maintenance of the median/entry treatment landscaping.

Response 73B:
The purpose of the proposed signal at Lake Hills is to provide a more efficient and safer way for vehicles to enter and exit the parking lot. Although it is proposed to put a signal where there currently isn't one, traffic volumes are not expected to be high enough to create congestion. Turning radii and off-tracing templates will be evaluated and truckers and others using the gas station will be considered during final design when the parking lot layout is changed. The posted speed limit is determined by the Highway Commission and County Commissioners - not by design elements on the highway through Bigfork.

Response 73C:
The proposed connection to MT-35 at this location near the Medical Center will require additional business and community input to resolve two exclusive issues. The limited parking at the center is understood as a vital function for patrons visiting there. However, the improved flow of traffic coming and going from high school sporting events off MT-35 could be improved with an approach road here as well. It appears feasible to provide the approach while maintaining parking, but the roadway standard and drainage requirements will need careful consideration. It is quite possible the approach would be limited to right-in/right-out turning movements to prevent creating another congestion point.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>(cont)</td>
<td></td>
</tr>
</tbody>
</table>

Response 73D:
See response 73A.

Response 73E:
The inclusion of the roundabouts was discussed at length with the Bigfork Advisory Committee, who supports them. Please consider the operational and safety advantages as outlined under Section 2.4.2, page 2-21 of the Environmental Assessment, which states:

1) It eliminates the need for a left-turn lane from the north, thereby reducing the overall width on the constrained embankment section.

2) It serves to notify motorists that they are in the populated area of Bigfork.

3) It creates an environment that will encourage motorists to travel at slower speeds. This is an area that has been the focus of many complaints about high speeds.

4) The elongation of the roundabout will discourage trucks from accessing Bigfork Village via Bridge Street, and instead encourage their access through the signalized intersection at Grand Avenue. All intersections, including roundabouts, will be designed to accommodate heavy trucks.

The roundabouts were designed to accommodate large trucks. During the process we coordinated with several area motor carrier companies. The roundabouts were developed in coordination with those companies by acquiring truck turning data from each company and using that information to design the roundabouts. Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process.

MDT will conduct a public education program about the use of roundabouts before they are implemented.
Donna E. Diggins:

Response 74:
Thank you for your comments. We are aware of the Ponderosa residential development off Holt Drive and the additional traffic it could produce. Accordingly, the traffic count projections will be adjusted, and additional intersection improvements will be evaluated during final design. A grade-separated interchange would certainly solve the problem with congestion; however, this would require a large amount of right-of-way and would add to the already high cost. A more urban type of interchange here would greatly impact the visual character of the area, which was a major concern identified early in the stakeholder process on the project.

Section 1.4 of the Environmental Assessment discusses how future traffic volumes were calculated. Traffic in Bigfork is not expected to be heavy enough to back up and block accesses during most of the time. The Environmental Assessment considered traffic during the year 2024 (recently updated to 2029). During that year there will be congestion in the Bigfork area without the improvements exhibited in the Preferred Alternative. That congestion will occur during the afternoon during the summer months. One of the areas of concern is the southbound approach to the intersection of MT-35 and Grand Avenue. Queues of traffic are expected to develop. This is addressed by improvements to the intersection configuration, channelization, and overall operation.

The proposed intersection at Grand Avenue has one lane in either direction for through traffic and left- and right-turn lanes. Shoulders are proposed throughout the entire length of the project for safety reasons and to allow space for a disabled vehicle to be stopped without blocking through traffic.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>Marcia Dion Knell:</td>
<td>Response 75A:</td>
</tr>
<tr>
<td></td>
<td>The traffic speed was a dominant issue raised during the stakeholder coordination process. The Executive Summary of the Environmental Assessment provides information about how this issue is addressed in the Preferred Alternative. The issue of speed was addressed in several different ways:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The community of Bigfork approached the Montana Transportation Commission with a request to lower the speed limit. The Montana Transportation Commission decided to lower the speed limit from 45 mph to 35 mph in Bigfork.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Several community entry treatments are included in the Preferred Alternative to alert motorists to slow down when entering a more urbanized area.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roundabouts were included in the Preferred Alternative to provide improved consistency of speeds at intersections. All roundabouts will be designed to accommodate heavy trucks.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The project is not proposing to change the existing speed limit. In Bigfork and Woods Bay, the posted speed limit is 35 mph. The posted speed limit outside of those speed zones is 50 mph, and is not proposed to change. The posted speed limit is determined by the Highway Commission and County Commissioners, not by design elements on the highway through Bigfork.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>To have a speed limit lowered requires a request for a speed study from the local government or a petition to the Highway Commissioner from the local government.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turf was added as part of the shoulder to minimize the “super highway” feel of the widened roadway. This allows for a safe design that gives the perception of a narrower roadway.</td>
<td></td>
</tr>
<tr>
<td>75A</td>
<td></td>
<td>Response 75B:</td>
</tr>
<tr>
<td></td>
<td>If funding is limited, the project will most likely be broken up into smaller projects to provide all design elements included in the Preferred Alternative.</td>
<td></td>
</tr>
</tbody>
</table>

| 75B | Marcia Dion Knell: | |
Comment 76

Name: David & Chris Maichel

Address: 2142 East Horseshoe, Bigfork MT

Date: 7-28-04

Comment:

At final design, the geometric constraints and roadway tapers as the improved roadway transitions to the existing roadway will be evaluated to ensure driver safety according to all federal and MDT design standards, including determination of potential hazards beyond the tie-in point.

Response:

Response 76A:

At final design, the geometric constraints and roadway tapers as the improved roadway transitions to the existing roadway will be evaluated to ensure driver safety according to all federal and MDT design standards, including determination of potential hazards beyond the tie-in point.

Response 76B:

The traffic speed was a dominant issue raised during the stakeholder coordination process. The Executive Summary of the Environmental Assessment provides information about how this issue is addressed in the Preferred Alternative. The issue of speed was addressed in several different ways:

- The community of Bigfork approached the Montana Transportation Commission with a request to lower the speed limit. The Montana Transportation Commission decided to lower the speed limit from 45 mph to 35 mph in Bigfork.

Several community entry treatments are included in the Preferred Alternative to alert motorists to slow down when entering a more urbanized area.

- Roundabouts were included in the Preferred Alternative to provide improved consistency of speeds at intersections. All roundabouts will be designed to accommodate heavy trucks.

The project is not proposing to change the existing speed limit. In Bigfork and Woods Bay, the posted speed limit is 35 mph. The posted speed limit outside of those speed zones is 50 mph, and is not proposed to change. The posted speed limit is determined by the Highway Commission and County Commissioners, not by design elements on the highway through Bigfork.

To have a speed limit lowered requires a request for a speed study from the local government or a petition to the Highway Commissioner from the local government.

Response 76C:

As explained on page 3-29 of the Environmental Assessment, the creation of compression brake restriction zones is required by law to originate through a local government request. Thus, MDT does not have direct control over the creation of this type of ordinance. It should be noted that a new compression brake law requires a commercial motor vehicle equipped with an engine compression brake device to be equipped with a muffler in good working condition to prevent excessive noise.

Response 76D:

Moving the roadway outside of the existing corridor would be cost prohibitive because of environmental impacts and right-of-way costs.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>Norwood Nedom:</td>
<td>Response 77A: Because MT-35 is a state and federal aid highway, trucks cannot be restricted from its use, nor does MDT have a mechanism to prohibit trucks from using a route. During the public input process many people suggested designating MT-35 as a scenic highway as a means to eliminate trucks from traveling the route. Designating a road as a scenic highway does open the facility to certain types of funds for signing and interpretive elements. However, it does not do anything to restrict truck use. Scenic highway designation is done by government agencies or private organizations. People interested in designating MT-35 as a scenic highway could form an organization to do so since Montana does have a state scenic-historic byways program. Implementation of the Preferred Alternative would decrease CO emissions due to decreased congestion. Page 3-29 of the Environmental Assessment addresses the issue of trucks and noise. The creation of engine compression brake restriction zones is required by law to originate through a local government request, thus, MDT does not have direct control over the creation of this type of ordinance. It should be noted that a new compression brake law requires a commercial motor vehicle equipped with an engine compression brake device to be equipped with a muffler in good working condition to prevent excessive noise. One purpose of the community entry features is to help drivers recognize that they are in a populated area and to slow down.</td>
</tr>
<tr>
<td>77A</td>
<td>1. THE EFFECT OF LARGE TRUCKS ON ENVIRONMENTAL FACTORS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The public's desire to reduce or eliminate large truck traffic on MT35 has been prominent in the public meetings and comment to date, yet the report does not specify or quantify the effect of over-increasing large truck traffic on the route and, in fact, barely mentions them at all. Page 1-1 of Chapter One Purpose and Need, refers to trucks transporting lumber products along the route but does not mention the increasing presence of these and other large trucks. Discouragement of truck use must be a primary goal of the “Preferred Alternative”. MT35 is primarily a scenic highway. The public want this feature preserved. While improvements to the roadway may be necessary and desirable they should not be designed to make the route more convenient for trucks. In addition to detracting from the scenic quality of the route, trucks negatively affect air quality, noise and vibration, runoff quality and visual aspects at a disproportionately high rate. They also harm determinations of the road bed.</td>
<td></td>
</tr>
<tr>
<td>77B</td>
<td>2. WATER QUALITY</td>
<td>MDT uses liquid deicers, such as calcium magnesium acetate, when snowplowing alone is insufficient. Drainages will be designed to adequately convey stormwater runoff. MDT will integrate appropriate water quality best management practices into final design of the project to ensure roadway and bridge runoff meets the water quality standards established by the Montana Department of Environmental Quality.</td>
</tr>
<tr>
<td></td>
<td>The larger road surface of the Preferred Alternative, especially where state turn lanes are involved, will create more polluted runoff. In the winter, the “sanding” referred to is really a euphemism for the toxic brew used. I dread the thought of more of this grime runoff. In this regard, the “continuous turn lanes” at Woods Bay should be changed to discrete, narrower and shorter turn pockets. A continuous turn lane in this area also would harm too much of the hill and affect too many trees. Further, the wide expanse of paving would be terribly unattractive. The report states that during icy conditions trucks and other vehicles “frequently” stall on the hill. I believe this to be an exaggeration and I wonder what the data, if any, shows.</td>
<td></td>
</tr>
<tr>
<td>77C</td>
<td>The Woods Bay Hill and the existing tight curve at the top has been addressed with several proposed improvements: The curve at the top of Woods Bay Hill is proposed to be flattened to improve the visibility around the curve. The super-elevation (cross-slope) is to be the minimum slope allowed for the design speed, approximately 45 mph. Configuration of turn lanes will be determined during the final design process. Roadway improvements, including bridges and retaining walls, will be designed to minimize disturbance to surrounding trees and vegetation.</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>77 (cont)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77D</td>
<td>3. ROUNDABOUTS</td>
<td>Since stalled vehicles on the hill due to icy conditions are not reported to MDT, no direct data as to the number or frequency of occurrence is available. However, this issue was raised through the public input process. Despite the frequency, the continuous left-turn lane provides a prescribed level of safety for motorists making the turning movements noted above. Retaining walls provided at isolated locations on each side of the roadway reduce the amount of cut and fill slopes otherwise required. Response 77D: While the design team recognizes your comments regarding the roundabout benefits of greater protection of the Bigfork character, and greater landscaping opportunities (see Page 2-17 of the Environmental Assessment); and while a roundabout at the location mentioned in your comment was strongly considered and evaluated; the evaluation showed that a roundabout was not preferred due to a) relocation of the bowling alley approach road, b) greater right-of-way requirements, and c) modeling indicated that a roundabout would experience periods of congestion due to different average daily traffic volumes on the approach streets as traffic increases by the year 2024 (recently updated to 2029).</td>
</tr>
<tr>
<td>77E</td>
<td>4. WILDLIFE IMPACTS</td>
<td>MDT has been addressing this issue when possible. Due to the lack of a wildlife corridor (a well defined and frequently used path of wildlife migration) on this project, there is currently no reasonable location to provide a wildlife crossing. The incorporation of increased sight distance afforded by flatter horizontal and vertical curves provides the driver with increased visibility of wildlife presence on, or near the roadway. See page 3-39 of the Environmental Assessment. Response 77E: MDT has been addressing this issue when possible. Due to the lack of a wildlife corridor (a well defined and frequently used path of wildlife migration) on this project, there is currently no reasonable location to provide a wildlife crossing. The incorporation of increased sight distance afforded by flatter horizontal and vertical curves provides the driver with increased visibility of wildlife presence on, or near the roadway. See page 3-39 of the Environmental Assessment.</td>
</tr>
<tr>
<td>77F</td>
<td>5. MITIGATION CONCEPTS INCORPORATED IN PLAN</td>
<td>Thank you for your comment.</td>
</tr>
<tr>
<td>77G</td>
<td>6. WETLAND IMPACTS</td>
<td>Wetland impacts have been minimized with the use of retaining walls. Wetland mitigation will be done in accordance with the US Army Corps of Engineers permit requirements.</td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 77 (cont) | Thank you for considering these comments. Your thoughtful consideration is more important than responding to me but if you have questions please feel free to call me at 406 837-2237.
 P.S. The black walking path is a needed convenience addition. | |
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 78 | Chris G. Moritz: | Response 78A: Thank you for your comments and consideration of the design proposal.
Response 78B: A roundabout was strongly considered and evaluated at the intersection of Grand Avenue, Holt Drive, and MT-35. However, the evaluation showed that a roundabout was not preferred due to a) relocation of the bowling alley approach road, b) greater right-of-way requirements, and c) modeling indicated that a roundabout would experience periods of congestion, due to different average daily traffic volumes on the approach streets as traffic increases by the year 2024 (recently updated to 2029).
Response 78C: Thank you for your comments and consideration of the design proposal.
Response 78D: The pathway will be designed to minimize impacts; the specific design of the pathway, including pavement material, exact location, crossings, connections, etc., will be determined during the final design process.
Response 78E: Where feasible, raised medians are being utilized. However, in certain locations the two-way left-turn lanes are necessary because of the close proximity of driveways.
Response 78F: Wetland impacts have been minimized with the use of retaining walls. Wetland mitigation will be done in accordance with the US Army Corps of Engineers permit requirements. |
<p>| 78A | | |
| 78B | | |
| 78C | | |
| 78D | | |
| 78E | | |
| 78F | | |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>Mark Bloomfield:</td>
<td>Response 79: Thank you for your consideration and review of the alternatives. The FHWA and MDT will consider all comments in the decision making process.</td>
</tr>
</tbody>
</table>

MESSAGE:

AGAINST ALTERNATIVE!

Signed:

MB
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 80 | Val Chambers:

To: Fred Bente
Co: Consultant Design, Helena, Mt. 59620
Subject: Mt-35 Bigfork, North & South
After reviewing the Alternative for Hwy 35, I cannot in all good faith, let something like that happen to Bigfork. I know what is proposed is only going to confuse the Local People and the Visitors. There is and old saying Keep It Simple! I do believe in progress but, we need to take into consideration the safety of people and their liveloods too. I know for this is not the only alternative-Not Its This Or Nothing!
As a self employed Barber at Denny's Barber Shop at Old Town Shopping Center, I hear what the people think about this Hwy alternative and their fears (not knowing how to use a round about, and many other things in this proposal. I have only heard 1 person speak in favor of this and that is Larry Yocheim. Do not force something the local people do not want! There are things just called Stop Lights.
Hersely,
Val Chambers
PO Box 1562 Bigfork, Mt. 59911 | Response 80:
There has been extensive outreach to the community through workshops and landowner and public meetings to develop the Preferred Alternative. All features in the alternative have been evaluated for safety. Inclusion of roundabouts was discussed at length with the Bigfork Advisory Committee, who supports them. Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process.
MDT will conduct a public education program about the use of roundabouts before they are implemented. |
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>Kathy Naive:</td>
<td>Response 81A: Roadway improvements, including bridges and retaining walls, will be designed to minimize disturbance to surrounding trees and vegetation. The final design of the project will minimize cuts required in order to minimize impacts to vegetation while addressing safety deficiencies. For areas disturbed during construction, a revegetation plan will be developed during final design that outlines revegetation methods, species to be used, monitoring requirements, etc. MDT will comply with the requirements of the County Noxious Weed Management Act.</td>
</tr>
<tr>
<td>81A</td>
<td>Roadway improvements, including bridges and retaining walls, will be designed to minimize disturbance to surrounding trees and vegetation. The final design of the project will minimize cuts required in order to minimize impacts to vegetation while addressing safety deficiencies. For areas disturbed during construction, a revegetation plan will be developed during final design that outlines revegetation methods, species to be used, monitoring requirements, etc. MDT will comply with the requirements of the County Noxious Weed Management Act.</td>
<td></td>
</tr>
<tr>
<td>81B</td>
<td>Drainages will be designed to adequately convey stormwater runoff. MDT will integrate appropriate water quality best management practices into final design of the project to ensure roadway and bridge runoff meets the water quality standards established by the Montana Department of Environmental Quality.</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Sharon Anderson:</td>
<td></td>
</tr>
</tbody>
</table>

MT-35 Bigfork North & South

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Sharon Anderson Date: 7/28/04
Address: PO Box 8396 Bigfork, MT 59911

Overall: The draft alternative is looking good! Keep up the good work.

Drainage and water quality: Specifically for Woods Bay Hill south of MP 27
(Summary of the Environmental Review, p.4 and p.6 and ES-8) - Concerns for run-off of debris and storm water and also potential problems for surface contaminants percolating into the water table have been acknowledged. The proposals appear to offer improvement over the existing situation and cite some standards which apparently already exist. As traffic (and paved surface) increases over time, I hope the appropriate monitoring will continue and mitigation improved, if needed.

Highway safety: (ES-8) At intersection with Yenne Point Road south of MP 27 - The Preferred Alternative is definitely an improvement. In addition to the road profile shown in the Summary of Env. Rev. p. 4, the more detailed document we saw at the presentation also provided for an added right-turn lane on Southbound Hwy 35. This will be a vast improvement in safety. What's not quite clear to us is how steep the grade will be from Yenne Point Road onto Hwy 35. The steep grade there at present presents a real problem during icy conditions.

Highway safety: (ES-8) At south intersection of Sylvan Drive and Hwy 35, just south of Bob's Market and MP 27 - The addition of a turn lane or—better yet—a "turn bay" for northbound traffic to turn onto Sylvan drive will be a dramatic improvement over the present, especially if the line of sight can be improved by some realignment of Hwy 35. The realignment was pointed out to us at the presentation. It's difficult to assess how helpful this will be from looking at a "top down" illustration but any improvement is welcome.

Highway safety: At the north end of the project, just north of MP 33, the intersection of Hwy 83 with Hwy 35 - Will this have a traffic signal added or some other design that will make it safer to turn from Westbound 83 onto Southbound 35? I forget to study this in detail at the presentation and could find nothing about it in the printed material I have in hand. At present this is an extremely dangerous maneuver; improvement is definitely needed.

Response 82A:
Drainages will be designed to adequately convey stormwater runoff. MDT will integrate appropriate water quality best management practices into final design of the project to ensure roadway and bridge runoff meets the water quality standards established by the Montana Department of Environmental Quality.

Response 82B:
Improvements to road and bridge grades will be determined during the final design process.

Response 82C:
Thank you for your comment. The curve at Sylvan Drive has been flattened to improve the sight distance and improve the safety. The sight distance for the existing roadway is approximately 76 meters (250 feet) and with the proposed alignment will be approximately 94 meters (310 feet).

Response 82D:
The intersection of Hwy 83 and MT-35 is outside of the study area, and was addressed under a separate MDT project.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>John, Patricia, Mabel Little:</td>
<td>Response 83: The purpose of raised medians is to direct turning vehicles to designated locations. Currently, the access character in the urban area of Bigfork contributes to driver confusion and potential safety problems. The medians will not restrict access but will better define the traffic movements. During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations.</td>
</tr>
</tbody>
</table>
Response 84A:
Your concerns about cost are appreciated. However, there is a real need to address a number of safety issues on the project as stated in Chapter 1, Purpose and Need, Pages 1-1 through 1-33 of the Environmental Assessment. Public comments have been received throughout the environmental process, including a great level of input from the Bigfork Advisory Committee comprised of your neighbors. Additionally, MDT recognizes the scenic qualities of the study area, and as such MDT and its consultants have gone to great lengths to involve the public and design the highway accordingly. The Preferred Alternative, again shaped with the contributions of Bigfork Advisory Committee, respects the character of the area while addressing safety and operational deficiencies. As stated in Section 3.1.4 of the Environmental Assessment, the Preferred Alternative is consistent with the land use polices for Lake and Flathead counties within the study area, and with many of the goals identified in the Flathead County Master Plan, Bigfork Area Land Use Plan, and Lake County General Plan. The improvements will not change the semi-rural and recreational lifestyles, waterfront developments, and the natural and scenic landscapes protected by those plans. Please refer to Section 3.19 of the Environmental Assessment for a discussion of visual impacts and measures that will be undertaken to mitigate those impacts. Your concerns should continue to be provided through the final design process to help address your concerns. Further design and construction of the Preferred Alternative is dependent upon available funding. The MDT will work toward final design, right-of-way acquisition, utility relocation, and construction when funding becomes available relative to all of the needs and priorities within the District. It is likely that construction of the Preferred Alternative will be phased as funding becomes available.

Response 84B:
Straightening the road through Ice Box Canyon would require a large amount of earthwork and even more retaining walls and cost. This issue was discussed during the process of developing the Preferred Alternative. It was the strong preference of many in the community not to do an extreme cut that would result in a large visual impact. So to address these concerns, retaining walls in Ice Box Canyon are proposed to limit the amount of cut excavation, reduce the number of trees cut down, limit the necessary right-of-way required, and to protect the natural viewshed. To improve the safety of the road, particularly in the winter, a center barrier will provide physical separation and prevent cross-over traffic accidents, while the entry feature will serve to slow down traffic.

Response 84C: No.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>James Johnson:</td>
<td></td>
</tr>
</tbody>
</table>
| | **MT-35 Bigfork North & South**
PUBLIC COMMENT FORM
Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document:
Name: James Johnson Date: 28 July 2023
Address: 123 Main St., Bigfork, MT 59911
Phone (if you want a phone call response to comments): (406) 555-1212
Email (if you want an email response to comments): johndoe@bigfork.com
Comment refers to document Page Number: 3

I agree with my local leaders, who support them. Roundabouts will be designed to accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process.
MDT will conduct a public education program about the use of roundabouts before they are implemented. |

Response 85:
Thank you for your review and consideration of the project alternatives and features. The inclusion of roundabouts was discussed at length with the Bigfork advisory committee, who supports them. Roundabouts will be designed to accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process.
MDT will conduct a public education program about the use of roundabouts before they are implemented.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 86 | James Poling:
| | **MT-35 Bigfork North & South**
| | **PUBLIC COMMENT FORM**
| | Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.
| | Name: James Poling
| | Address:
| | Phone:
| | Email:
| | Comment refers to document Page Number:
| | I would like to see the grade reduced as much as possible at
| | station 91+60 (Grand Ave. signal) as well as station 100+40
| | (Lake Mills Mall signal). Winter driving conditions make it
| | very difficult to get started from either signal on an up hill
| | grade. The balance of the proposed project looks great. | Response 86:
<p>| | Improvements to road and bridge grades will be determined during the final design process. |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Jerry Logan:</th>
</tr>
</thead>
<tbody>
<tr>
<td>87</td>
<td>I would like to see the grade reduced as much as possible at station 31+60 (Grand Ave. signal) as well as station 100+49 (Lake Hills Mall signal). Winter driving conditions make it very difficult to get started from either signal on an up hill grade. The balance of the proposed project looks great.</td>
</tr>
</tbody>
</table>

Response 87:
Improvements to road and bridge grades will be determined during the final design process.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>Don Nelins: Improvements to road and bridge grades will be determined during the final design process.</td>
<td>Response 88: Improvements to road and bridge grades will be determined during the final design process.</td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>89</td>
<td>Tim Hill:</td>
<td>Response 89: Improvements to road and bridge grades will be determined during the final design process.</td>
</tr>
</tbody>
</table>

MT-35 Bigfork North & South

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Tim Hill
Address:
Phone:
Email:

I would like to see the grade reduced as much as possible at station 91+60 (Grand Ave. signal) as well as station 100+40 (Lake Hills Mall signal). Winter driving conditions make it very difficult to get started from either signal on an up hill grade. The balance of the proposed project looks great.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 90 | Bill J. Capps:
Compton, Bert A.
From: Bill J. Capps
Sent: Tuesday, July 27, 2004 8:00 AM
To:
Subject: <No Subject>
| Response 90:
In Section 4 of the study corridor, a center turn lane is proposed beginning south of Ice Box Canyon as you enter Bigfork and continuing south of Peaceful Drive. South of this point, raised medians are proposed with designated lanes for left turns. During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. Landowners will continue to be involved in this process as the access management plan is developed.

From: www@earth.web-hosting.com
Sent: Tuesday, June 4, 2002 8:01 PM
To: Bigfork MT, Montana, nzebbatc-b.com; Warrell, Michael
Subject: <No Subject>

Below is the result of Feedback Form.
It was submitted on Tuesday, June 4, 2002 at 21:01:03
First Name: Bill J.
Last Name: Capps
Street Address: 205 Shawnee Dr.
City: Bigfork
State: MT
Zipcode: 59911
Email: bjcapps@bigsky.net
Other Comments: When in the design process, will there be an opportunity to request, recommend (whatever) a left turn lane in the southbound traffic of Segment 4 of the MT35 project? I own property approximately opposite of the V7W bar and would like traffic coming from Kalispell to be able to access this site without having to bypass it, turn around and return. Your response will help me to access the planning process in advance. Thankyou.
Bill J. Capps
HTTP_USER_AGENT: Mozilla/4.0 (compatible; MSIE 6.0; Windows 98; Win 9x 4.90) |
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>91A</td>
<td>Jim & Sue Tebay:</td>
<td>Response 91A: Improvements to road and bridge grades will be determined during the final design process.</td>
</tr>
<tr>
<td>91B</td>
<td>MT-35 Bigfork North & South</td>
<td>Response 91B: The specific right-of-way required for the project will be determined during the final design process. MDT will coordinate with property owners during the final design process. Property acquisition will conform with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended.</td>
</tr>
<tr>
<td>91C</td>
<td>MT-35 Bigfork North & South</td>
<td>Response 91C: MDT is aware of the drainage problems at Potato Lakes. Hydraulic analysis throughout the corridor will be fully evaluated during final design.</td>
</tr>
<tr>
<td>91D</td>
<td>MT-35 Bigfork North & South</td>
<td>Response 91D: The inclusion of the roundabouts was discussed at length with the Bigfork Advisory Committee, who supports them. Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process. MDT will conduct a public education program about the use of roundabouts before they are implemented.</td>
</tr>
<tr>
<td>91E</td>
<td>MT-35 Bigfork North & South</td>
<td>Response 91E: It is unclear which curve you are referring to, so please communicate your concern to MDT during the final design process.</td>
</tr>
</tbody>
</table>

MT-35 Bigfork North & South
PUBLIC COMMENT FORM
Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Jim & Sue Tebay
Date: 7/20/04
Address:
Phone (if you want a phone call response to comments): 406-897-4038
Email (if you want an email response to comments):
Comment refers to document page number:
- level of highway is an issue.
- steepness of access is an issue.
- don't want to loss any more property.
- level of Potato Lake is an issue.
- don't like tie roundabout.
- c+b will look at roundabout to move away from property.

FORWARD COMMENTS TO:
Montana Department of Transportation – ATTN: Fred Bente
PO Box 201001, Helena, MT 59620
FAX 406-444-5253
WEB SITE www.mdot.state.mt.us/environmental/eis-ea
Stan Bones: Compton, Bert A.

From: BigFork Montana
Sent: Thursday, July 29, 2004 2:24 AM
To: Compton, Bert A.
Subject: FW: Comment on BigFork NSEA

Response 92A:

The Preferred Alternative inherently contains a host of safety improvements as guided by the Purpose and Need of the project stated in Chapter 1.0 of the Environmental Assessments. As engineers, we label safety improvement areas as roadway deficiencies.

Our engineering evaluation of the existing roadway system against current federal and state design codes identified a number of deficiencies. A list of ten roadway deficiencies is included in Chapter 1, Section 1.7, beginning on Page 1-16 of the Environmental Assessment, and Section 1.8 identifies structural and functional deficiencies associated with the Swan River Bridge. We apologize for the confusing language, but be assured that when the term “roadway deficiencies” is used, we are talking directly to substandard safety conditions. Again, these “deficiencies” represent zones where reconstruction of the highway is necessary to improve the safety and meet roadway code requirements. Furthermore, beginning in Section 1.9 of the Environmental Assessment, additional “needs” (in other words, specific safety and operational requirements necessary to facilitate the growth in traffic volume) is specified as part of Purpose and Need for the project.

Since it is clear that you have studied the Environmental Assessment, we ask that you review again the Capacity Analysis in Section 1.2 which addresses your concern of “smooth and safe flow of traffic.” The analysis is paramount to define the appropriate roadway features necessary in the system to accommodate growth in traffic volume and provide a safe and efficiently operating system.

Response 92B:

We understand your concern. Traffic speed was a dominant issue raised during the stakeholder process. The Executive Summary describes how this issue is addressed in the Preferred Alternative. The issue of speed was addressed in several different ways:

- The community of Bigfork approached the Montana Transportation Commission with a request to lower the speed limit. The Montana Transportation Commission decided to lower the speed limit from 45 mph to 35 mph in Bigfork.
Several community entry treatments are included in the Preferred Alternative to alert motorists to slow down as they are entering a more urbanized area.

Roundabouts were included in the Preferred Alternative to provide improved consistency of speeds at intersections. All roundabouts will be designed to accommodate heavy trucks.

A change in the current posted speed limit is not being proposed under the Preferred Alternative. In Bigfork and Woods Bay, the current posted speed limit is 35 mph. The Preferred Alternative design is consistent with that speed. The speed limit outside of those speed zones is 50 mph. A change in that posted speed limit is also not proposed. The posted speed limit is determined by the Highway Commission and County Commissioners - not by design elements on the highway through Bigfork. To have a speed limit lowered, a request for a speed study from the local government or a petition to the Highway Commissioner from the local government is required.

Roundabouts by design promote a more continuous flow of traffic including a vehicle mix of cars to large trucks. The roundabouts were developed in coordination with several area motor carrier companies by acquiring truck turning data from each company and using that information to design the roundabouts. So far, the trucking companies have not expressed any concerns with the roundabouts. Furthermore, roundabouts have been studied around the country and found to be a safe design. All roundabouts will be designed to accommodate heavy trucks.

The inclusion of the roundabouts was discussed at length with the Bigfork Advisory Committee, who supports them. Please consider the operational and safety advantages as outlined under Section 2.4.2, Page 2-21 of the Environmental Assessment, which reads:

- It eliminates the need for a left-turn lane from the north, thereby reducing the overall width on the constrained embankment section;
- It serves as an identification to the motorist that they are in the populated area of Bigfork or Woods Bay;
- It creates an environment that will encourage motorists to travel at slower speeds. This is an area that has been the focus of many complaints about high vehicle speed; and
- The elongation of the roundabout will discourage trucks from accessing Bigfork Village via Bridge Street, and instead encourage their access through the signalized intersection at Grand Avenue.

All intersections, including roundabouts, will be designed to accommodate heavy trucks.

<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>Heights and 35 - Highways 82 and 83 at the Little Brown Church. These intersections do not encourage the controlled flow of the thru traffic and trying to force a significant portion of intersecting traffic out of control because of reversed super. I thank you again for the opportunity to comment. This segment of highway needs work, some instances badly. Let’s not in short sightedness solve only a few problems while creating new ones. Stan Jones PO Box 372, Bigfork MT 59911</td>
<td>- Several community entry treatments are included in the Preferred Alternative to alert motorists to slow down as they are entering a more urbanized area. - Roundabouts were included in the Preferred Alternative to provide improved consistency of speeds at intersections. All roundabouts will be designed to accommodate heavy trucks. - A change in the current posted speed limit is not being proposed under the Preferred Alternative. In Bigfork and Woods Bay, the current posted speed limit is 35 mph. The Preferred Alternative design is consistent with that speed. The speed limit outside of those speed zones is 50 mph. A change in that posted speed limit is also not proposed. The posted speed limit is determined by the Highway Commission and County Commissioners - not by design elements on the highway through Bigfork. To have a speed limit lowered, a request for a speed study from the local government or a petition to the Highway Commissioner from the local government is required. Roundabouts by design promote a more continuous flow of traffic including a vehicle mix of cars to large trucks. The roundabouts were developed in coordination with several area motor carrier companies by acquiring truck turning data from each company and using that information to design the roundabouts. So far, the trucking companies have not expressed any concerns with the roundabouts. Furthermore, roundabouts have been studied around the country and found to be a safe design. All roundabouts will be designed to accommodate heavy trucks. The inclusion of the roundabouts was discussed at length with the Bigfork Advisory Committee, who supports them. Please consider the operational and safety advantages as outlined under Section 2.4.2, Page 2-21 of the Environmental Assessment, which reads: - It eliminates the need for a left-turn lane from the north, thereby reducing the overall width on the constrained embankment section; - It serves as an identification to the motorist that they are in the populated area of Bigfork or Woods Bay; - It creates an environment that will encourage motorists to travel at slower speeds. This is an area that has been the focus of many complaints about high vehicle speed; and - The elongation of the roundabout will discourage trucks from accessing Bigfork Village via Bridge Street, and instead encourage their access through the signalized intersection at Grand Avenue. All intersections, including roundabouts, will be designed to accommodate heavy trucks.</td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>92 (cont)</td>
<td>MDT will conduct a public education program about the use of roundabouts before they are implemented. Finally, to respond to your comment about reverse superelevation at MT-35 and other intersections outside of the Bigfork project limit, it appears that your concern for the roundabouts is the reverse superelevation employed to create positive drainage away from the center. This is a critical design feature to remove surface water and reduce icing conditions. Roundabouts inherently are a slow speed roadway design feature, quite unlike the higher speed intersections referenced. Be assured that the design will comply with the Montana Roadway Design Standards and the federal design codes to provide the safest roundabout intersection possible. All roundabouts will be designed to accommodate heavy trucks. One final point, please be aware that as vehicles negotiate left turns through traditionally designed, signalized intersections, those vehicles also experience a small reverse superelevation once they pass over the roadway centerline.</td>
<td></td>
</tr>
</tbody>
</table>
Finding of No Significant Impact

Appendix B

<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
</tr>
</thead>
</table>
| 93 | **Bonnie K. Ellis, Flathead Lake Biological Station:**
 Compton, Bart A. |
 From: Bonnie Ellis (bonnie.ellis@umontana.edu)
 Sent: Friday, July 13, 2004 9:46 PM
 To: barthom@umontana.edu, Compton, Bart A.
 Subject: Comment on Bigfork NS EA
 Date: July 14, 2004
 Cartier & Burescu, Inc.
 420 East South Temple
 Salt Lake City, Utah 84111
 RE: Environmental Assessment and Programmatic Section 4(f) Evaluation for Bigfork North & South STPP 52-1 (18) 27
 Dear Mr. Ellis:
 I would like to bring to your attention the historical, educational and biological importance of Daphne Pond to the University of Montana Flathead Lake Biological Station and the potential impacts to the Pond environment as you move forward in your assessment of the preferred alternative. I will also address concerns about reducing non-point pollution on the Swan Bridge and in the Woods Bay area of the proposed highway improvement project.
 The faculty and students of the Flathead Lake Biological Station have utilized Daphne Pond as a research and teaching resource for over 100 years. The close proximity of this unique wetland to the Flathead Lake Biological Station has resulted in the training of a century of students in a myriad of fields. Students from many different disciplines have utilized this natural classroom to study bird ecology and behavior, aquatic plant distributions, water chemistry, wetland biophysical processes, the predatory behavior of macroinvertebrate fauna, zooplankton phototaxis and diurnal migrations, to name just a few areas of investigation.
 Dr. Morton J. Eldred, the first Director of the Flathead Lake Biological Station, likely named Daphne Pond after a very large zooplankton, Daphnia magna, that resides there. This species of zooplankton is of particular importance because it is very vulnerable to fish predation as it is easily observed with the naked eye. Another large predatory aquatic insect known as the phantom midge, Chaoborus, occurs in Daphnia Pond and its biology provides lessons in behavioral and morphological adaptation to predation for aspiring biologists. These lessons are easily and closely observed in this unique environment. Many lakes and ponds all over the world have had fish introduced and thus species such as these are no longer found in many of their original habitats. In fact it has been estimated that most streams and lakes in the eastern U.S. have had 1 or more introduced species (Moyle 1999). Thus, this tunnel pond is a unique valuable resource for everyone, including the Flathead Lake Biological Station.
 Our examination of aerial photographs from 1940 and 1998 indicates that during that period approximately 0.18 acres of fill occurred on the east side of Bay 13, thereby reducing the wetland habitat of Daphne Pond. This figure is based upon a digitization of aerial photographs and does not include the fill that is not visible below the water's surface. Thus, the basin of Daphne Pond impacted by filling may be much greater. I would like to take this opportunity to ask if an environmental assessment took place prior to placement of this fill and what mitigation occurred for the wetland losses?
 The preferred alternative proposed indicates that an additional 0.1 acres of Daphnia Pond will be affected. Is any additional fill planned for Daphnia Pond? Alteration of this wetland by filling has reduced available litoral area for many species, including Daphnia magna. Filling of wetlands diminishes wetland function and hampers the establishment of the open water community by the terrestrial community. Daphnia Pond should be afforded the same considerations that the wetlands of the Ninepipe Refuge will receive during the reconstruction of Highway 91, including restoration of... |

<table>
<thead>
<tr>
<th></th>
<th>Response</th>
</tr>
</thead>
</table>
| 93A | **Response 93A:**
 The project team is aware of the biological uniqueness of Daphne Pond. The Preferred Alternative was developed to avoid impacts to the pond. The Environmental Assessment states there would be an estimated 0.04 hectare (0.1 acre) of impact at Wetland #5 (where Daphne Pond is located). The 0.1 acre of impact was associated partly with highway widening and partly with the multi-purpose path that was assumed to be located along the east side of Daphne Pond. Because of concerns voiced about impacts to Daphne Pond, the multi-purpose path will now be located adjacent to the highway, on the west side of Daphne Pond. This change will not alter the acreage of wetland impact; however, it will reduce impacts to higher quality pond edge wetlands east of the pond. This will preserve their function for ongoing educational and natural resource protection purposes. Wetland impacts and associated mitigation will be determined during the final design process for the highway and path.
 Currently there are no requirements to re-establish wetlands that were filled in by previous construction activities. The avoidance and mitigation commitments required by the US Army Corps of Engineers (USACE) for the project regarding wetlands and Waters of the US are: prudent and feasible measures to mitigate, minimize, and/or avoid wetland losses associated with the project will be implemented in the design of the Preferred Alternative. The USACE requires a delineation of all waters of the US that will be permanently or temporarily impacted by the project. The initial mitigation strategy will be the development of available on-site mitigation to compensate for unavoidable wetland losses. If on-site mitigation opportunities are unavailable for regulated wetland sites, losses will be mitigated at an established MDT Wetland Mitigation Reserve within the watershed. Specific compensatory mitigation plans must be included with the Section 404 permit application, with a recommendation of prior coordination with the USACE prior to submittal.
 Response 93B: Please refer to response 93A. |

| 93B | **Response 93B:** Please refer to response 93A. |
No.	Comment	Response
93C | degraded wetlands. I do not envision the possibility of off-site mitigation for degraded ponds because of its unique characteristics. The second matter of concern is the potential for increased non-point source transport of nutrients and other pollutants to Flathead Lake. Special efforts could be taken to provide for a buffer or method of treating runoff from the increased pavement area in the vicinity where the road is close to the lake. Such special efforts are listed in the mitigation section of the proposed alternative. Perhaps a storm water collection system could be constructed whereby runoff was transported to a swale for pretreatment prior to discharge. Water quality in Flathead Lake is declining and we know that nitrogen and phosphorus stimulate the production of algae in the lake. Increased impervious surface area will increase the non-point load of nitrogen and phosphorus from the road and urbanized areas. Higher loads of these nutrients are expected to drain the Swan River and fish species. MDT will review and employ appropriate water quality best management practices as a part of the final design. | Response 93C: Your suggestions can be considered further during final design. As you know, water quality runoff is dictated by state and federal regulation. Drainages will be designed to adequately convey stormwater runoff. MDT will integrate appropriate water quality best management practices into final design of the project to ensure roadway and bridge runoff meets the water quality standards established by the Montana Department of Environmental Quality.

93D | Bridges are a direct source of nutrient and pollution runoff to the lake. Are there no designs or technologies currently developed which channel runoff from bridges to the shoreline for some pretreatment? In addition to design modifications, nutrient runoff from bridges could be greatly reduced by using sand instead of gravel or by requiring gravel with the lowest possible levels of nutrients and other pollutants, such as those in use in the Missoula area to protect groundwater. A comparison of the potential nutrient and pollutant impacts from using sand versus gravel on bridges in regions where the road is in close proximity to the lake (including Woods Bay) warrants further investigation and resolution. Overall, mitigation of the water quality impacts to Flathead Lake in this Environmental Assessment was inadequately addressed. | Response 93D: The design team focused on avoidance of point discharge locations throughout the corridor during the Environmental Assessment development based on community input to avoid curb and gutter and other concentration of discharge. The roadway over the bridge will collect water along the bridge rails. However, the sensitivities of the Swan River and fish species there are understood, and MDT will continue to review and employ appropriate water quality best management practices as a part of the final design.

Sincerely,

Bonnie A. Ellis
Senior Research Scientist
Flathead Lake Biological Station
771 Big Sky Lane
Polson, MT 59860
c. Flathead Basin Commission

Reference:
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>Wayne Krahe:</td>
<td>Response 94: Improvements to road and bridge grades will be determined during the final design process. During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. The project team will continue to work with landowners during final design.</td>
</tr>
</tbody>
</table>

MT-35 Bigfork North & South

PUBLIC COMMENT FORM

Please use the space below to express your comments/concerns about the Preferred Alternative or the Environmental Assessment in general. Comments gathered during the 30-day public comment period will be officially recorded and responded to in the final environmental document.

Name: Wayne Krahe Date: 7-21-07
Address: Community Lane
Phone (If you want a phone call response to comments): ___________
Email (If you want a email response to comments): ___________

Comment refers to document Page Number: B-1

Concerned about any grade/elevation change to roadway. I know it will affect driveway.

Like idea of the walkway.

Wants to be kept involved.

VIA TELEPHONE

FORWARD COMMENTS TO:

POSTAL Montana Department of Transportation –ATTN: Fred Bente PO Box 201001, Helena, MT 59620

FAX 406-444-6253

WEB SITE www.mdt.state.mt.us/environmental/eis-ea

Montana Department of Transportation 141
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>John Zupich:
Compton, Bert A.</td>
<td>Response 95A:
The issue of truck traffic has been a great concern of many residents in the area. Restricting trucks from using MT-35 is not an option because the road is a state and federal aid highway. Improvements included in the Preferred Alternative are not anticipated to increase truck traffic, but rather improve safety and traffic flow. All intersections, including roundabouts, will be designed to accommodate heavy trucks.</td>
</tr>
<tr>
<td></td>
<td>From: John Zupich [jzupichh@turn.com]
Sent: Monday, July 12, 2004 3:23 FM
To: montolocomment@abilene.mt.us
Cc: Compton, Bert A.
Subject: Comment on Bigfork NS EA - 7 Questions</td>
<td>Response 95B:
Unfortunately, MDT is unable to predict the economic future of trucking operations, and therefore its relationship to the proposed roadway improvements, to precisely answer your question. That being said, MDT does employ growth factors for vehicles to calculate expected future traffic volumes of trucks and cars, as explained in Section 1.3 of the Environmental Assessment. The traffic analysis was updated in November-December 2009. MDT 2008 data showed that the vehicle mix in the project area consists of 92% passenger vehicle, 3% light trucks, and 5% heavy trucks. Between 1988 and 2007, MT-35 reflected an annual traffic growth rate of 2.1% south of SH 209, and 3.0% north of SH 209. Therefore with this information alone, an increase in vehicles of every type can be expected in the coming years.</td>
</tr>
<tr>
<td></td>
<td>1. Does the project mitigate or facilitate heavy truck traffic? How isn't all traffic on Highway 35 where it belongs?</td>
<td>Response 95C:
Some comments have suggested designating the highway as a scenic byway as a means to eliminate truck traffic. While designating a road as a scenic highway opens the facility to certain types of funds for signing and interpretive elements, it does not restrict truck use. Also, trucks cannot be restricted from using MT-35 because it is a state and federal aid highway. In addition, MDT does not have the authority to designate the highway as a scenic byway. Such a designation is undertaken by other government agencies or private organizations. Individuals interested in designating MT-35 as a scenic highway could form an organization to do so. Montana does have a state scenic-historic byways program.</td>
</tr>
<tr>
<td></td>
<td>2. Is this the 'noise of the canes' in the tent' that will lead to the rural road below Woods Bay Hill becoming a permanent major thoroughfare for heavy commercial truck traffic? This would eventually dramatically alter traffic volumes.</td>
<td>Response 95D:
Page 3-29 of the Environmental Assessment addresses the issue of trucks and noise. Safety issues have been addressed by flattening the curvy to meet design standards and improving sight distance with the wider roadway section, and providing continuous as well as designated turn lanes within the Woods Bay area, but not outside of the project limits. During final design, the geometric constraints and roadway tapers as the improved roadway transitions to the existing roadway will be evaluated to ensure driver safety according to all federal and MDT design standards, including determination of potential hazards beyond the tie-in point. The Preferred Alternative includes features to address speed issues, such as entry treatments and roundabouts. A purpose of the entry features is to help drivers recognize that they are approaching a populated area and slower speeds are appropriate. Roundabouts were included to provide improved consistency of speeds at intersections. All roundabouts will be designed to accommodate heavy trucks. The creation of engine compression brake restriction zones is required by law to originate through a local government request, thus, MDT does not have direct control over the creation of this type of ordinance. It should be noted that a new compression brake law requires a commercial motor vehicle equipped with an engine compression brake device to be equipped with a muffler in good working condition to prevent excessive noise.</td>
</tr>
<tr>
<td></td>
<td>3. Do you expect that this heavy trucking traffic will lessen or increase as a result of the MDT improvement?</td>
<td>Response 95E:
The fact is that these heavy trucks are often rolling downhill at an excessive speed, and the drivers use noisy ‘Jake’ brakes to slow down. A Friday or Saturday night visit to the busy area by the Sitting Duck clearly shows how dangerous this heavy truck traffic is to people near the road. We are concerned that eventually 'The Big One' (accident) will happen there with many people hurt. Thank you for hearing all my concerns and await your response.</td>
</tr>
<tr>
<td></td>
<td>4. Do you expect that the improved cutoff from MT35 to U.S. 2 is going to Bigfork will reduce current heavy truck traffic?</td>
<td>John Zupich
35552 East Shore Route, Bigfork</td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Tina M. Gillman:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response 96: Water quality runoff is dictated by state and federal regulation. The use of roadside ditches increases natural filtration and sedimentation functions before stormwater reaches the receiving waters. In addition, other best management practices will be implemented during construction and maintenance operations to ensure roadway runoff meets the water quality standards established by the Montana Department of Environmental Quality. The project team is aware of the biological uniqueness of Daphne Pond. The Environmental Assessment states there would be an estimated 0.04 hectare (0.1 acre) of impact at Wetland #5 (where Daphne Pond is located). The 0.1 acre of impact was associated partly with highway widening and partly with the multi-purpose path that was assumed to be located along the east side of Daphne Pond. Because of concerns voiced about impacts to Daphne Pond, the multi-purpose path will now be located adjacent to the highway, on the west side of Daphne Pond. This change will not alter the acreage of wetland impact; however, it will reduce impacts to higher quality pond edge wetlands east of the pond. This will preserve their function for ongoing educational and natural resource protection purposes. Wetland impacts and associated mitigation will be determined during the final design process for the highway and path.</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 97 | **George Darrow:**
Memo
July 5, 2004
To: Public Comment File
From: Mike Worrall
Subject: Bigfork – North & South
STPP 02-1 (18) 27
CN 4635

Caller: George Darrow
Phone #: (406) 832-4422
Comment:
George Darrow called to set up an appointment for a Landowner Meeting. He would like to meet with Mike Worrall at this meeting and also pass on the following information before the meeting: He is the President of Crossbow Corporation, and owns 4 acres of the Southeast corner of the intersection of Grand and Hwy 35. Currently it is a vacant lot, however, major development is planned at this location that should be taken into consideration with this project. He made a suggestion earlier in the process that he feels is still valid: the street that turns off Grand and goes north toward the Medical Clinic and Fire Hall was once a connection to Hwy 35. With the new plans for development please consider re-establishing that connection as a northbound exit onto Hwy 35.

Also Bigfork has experienced an explosion in real estate sales over the last year. In the immediate vicinity of Bigfork there is new developments planned that will double the home ownership in Bigfork. Bigfork is changing over night from a sleepy little village to major township. By the time this highway is built, the highway plans will be obsolete because of the growth.

Response:
Sent to Mike Worrall and Bert Compton for response. (Annali)

Response 97:
New development has occurred in several locations along the project, as was confirmed during a March 2008 and November 2009 field visit. A summary of the field visit findings was distributed to the MDT/FHWA coordination team and is included in the FONSI. Those visits also included coordination with the Bigfork Advisory Committee, Dale Lauman (Flathead County Commissioner), Jerry Bygren at Flathead Bank, the engineering firm of Thomas Dean & Hoskins of Kalispell, comparison of recent aerial photography and several conversations with local residents including the maintenance supervisor of Marina Cay. In a phone discussion with you on February 11, 2010, you indicated that you plan to build two 4-story office towers and associated parking on the five-acre property, and due to the recent economic downturn, you have not identified a specific timeframe for the development. Close coordination will be necessary with you during the final design process to address your concerns.

During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
</tr>
</thead>
</table>
| 98 | Carlene Williams:
---Original Message---
From: Mike Williams
Sent: Thursday, July 08, 2004 5:56 PM
To: mdot
Cc: m.,I
Subject: Comment on BigFork I-5 EA |
| 98A | Dear MDT Personnel: I have had a chance to do a preliminary review of the plans for MT HWY 35 through Bigfork, MT and have the following comments:
1. The Roundabouts: First of all, I don't believe that they are needed at all, much less that 2 of them are needed within the short distance proposed for them. The "Adverse Comments" about them should truly be considered i.e. Driver unfamiliarity with them, hazards for pedestrians, extra expense for snow removal, etc. Some things that weren't mentioned about them are:
 1. Compatibility with the high volume of large log and chip trucks, often 2 trailers in length, and how do they affect traffic in the circle?
 2. The continuous flow of traffic through them. Granted, this makes for a steady flow of traffic. However, as the situation evolves, the only way to make ANY kind of left turn into or out of local businesses is to wait for the right turner granted by the stop light at Hell Drive to hold back traffic long enough to let 2-4 cars make that maneuver.
 3. Drivers wanting to "beat the circle" will likely be a cause of increased accidents.
 4. Landscaping the medians of the circles will lessen the already vulnerable visibility in the circle and lead to more accidents. In short, forget the roundabouts and keep with standard signal lights with designated left turn signals in all directions. | Response 98A:
The inclusion of the roundabouts was discussed at length with the Bigfork Advisory Committee, who supports them. Please consider the operational and safety advantages as outlined under Section 2.4.2, Page 2-21 of the Environmental Assessment which states:
1) It eliminates the need for a left-turn lane from the north, thereby reducing the overall width on the constrained embankment section.
2) It serves as an identification to the motorist that they are in the populated area of Bigfork.
3) It creates an environment that will encourage motorists to travel at slower speeds. This is an area that has been the focus of many complaints about high vehicle speed.
4) The elongation of the roundabout will discourage trucks from accessing Bigfork Village via Bridge Street, and instead encourage their access through the signalized intersection at Grand Avenue.
During the process coordination occurred with several area motor carrier companies. The roundabouts were developed in coordination with those companies by acquiring truck turning data from each company and using that information to design the roundabouts. So far, the trucking companies have not expressed any concerns with the roundabouts. Furthermore, roundabouts have been studied around the country and found to be a safe design.
Roundabouts will be designed to safely accommodate large vehicles/heavy trucks, snowplowing, pedestrian crossings, etc. These design considerations, as well as permanent signage, etc., will be addressed during the final design process.
MDT will conduct a public education program about the use of roundabouts before they are implemented. |}

| 98B |
2. Overall Plan Falls Short: To end the project at Chapman Hill Drive is a very short sighted. The IMMEDIATE need for Bigfork NOW is a second signal light, with designated left turn signals, at the intersection of HWY 35 and HWY 83. This is a VERY DANGEROUS INTERSECTION! Again, the signal light at Hell Drive affects this intersection also. Without relief of a signal here, drivers coming from HWY 83 are trying to cross both North and South bound traffic without any control on that intersection. This intersection also needs to be re-engineered as it is not banked correctly - turning South from HWY 83 onto HWY 35 needs corrections to avoid oversteering into the outside (west) shoulder edge of the highway. There may also be a need for some control or sequenced signals at the intersection of HWY 35 and HWY 85 to enhance the flow of traffic into and out of Bigfork. Any and all signals though Bigfork need to be sequenced to allow for smooth flow but also opportunities for safe turns in and out of businesses and flow though traffic.
I will be reviewing the plans in more detail and plan to attend the meeting for the Public Hearing on July 14. Until then, my comments will stand as I have outlined.
You may contact me at the e-mail address listed.
Respectfully,
Carlene Williams | Response 98B:
The intersection of Hwy 83 and MT-35 is outside of the study area, and was addressed under a separate MDT project. |
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 99 | Grant & Diane Compton:
 From: Grant or Diane Compton [mailto:dgcomp@digisys.net]
 Sent: Sunday, July 18, 2004 2:43 PM
 To: cstrizich@state.mt.us
 Subject: Highway 35 Reconstruction, Bigfork, Montana

 Carol Strizich,

 In regards to the upcoming reconstruction of Highway 35 between Bigfork and Woods Bay,

 After reviewing the proposed plan of this project, I would like to suggest an addition to
 this plan. Between the Swan River Bridge and the intersection of Sunset Drive and
 Highway 35, I would like to see a pedestrian tunnel built. This tunnel would provide a
 very safe access for approximately 50 home owners and all of Wayfarers State Park to
 the Village of Bigfork. As it now stands, we as bicyclists and pedestrians have to
 navigate a very busy and dangerous intersection at Sunset Drive and Highway 35 to get
 into Bigfork. Please send me an e-mail or call me at 406-837-0926 and let me know what
 you think of this idea.

 PS

 Are there other people at MDT that I could contact with this idea?

 Thanks,

 Grant Compton |

 Response 99:
 A pedestrian underpass between Wayfarers State Park and the Flathead Lake Lodge road is part of the Preferred Alternative. During preliminary design, it was found to be the only feasible crossing location that meets Americans With Disabilities (ADA) standards. This will allow safe access across the roadway.
 The pathway will be designed to minimize impacts; the specific design of the pathway, including pavement material, exact location, crossings, connections, etc., will be determined during the final design process. |
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Jerry L. Agen:
Response 100: Your concerns and appreciation of the community and special qualities inherent to the eastern shore of the Flathead are appreciated. Your comments are heard, and your comments are used to shape the project within the greater good of all concerned, as well as within the feasible and practical constraints under which MDT must operate. Your comments are documented in the environmental process and taken into further consideration during the next design phase. We agree that there is a certain dynamic of competing interests within the community, which has been thoroughly considered and balanced by the Bigfork Advisory Committee in crafting the Preferred Alternative. The Preferred Alternative has not been fashioned according to a habitual or fixed process that ignores public input. MDT recognizes the scenic qualities of the study area, and as such, MDT and its consultants went to great lengths to involve the public and design the highway accordingly. The Preferred Alternative, again shaped with the contributions of Bigfork Advisory Committee, respects the character of the area. As stated in Section 3.1.4 of the Environmental Assessment, the Preferred Alternative is consistent with the land use policies for Lake and Flathead counties within the study area, and with many of the goals identified in the Flathead County Master Plan, Bigfork Area Land Use Plan, and Lake County General Plan. The improvements will not change the semi-rural and recreational lifestyles, waterfront developments, and the natural and scenic landscapes protected by those plans. Please refer to Section 3.19 of the Environmental Assessment for a discussion of visual impacts and measures that will be undertaken to mitigate those impacts. Your concerns should continue to be provided through the final design process to help ensure they are addressed. Some comments have suggested designating the highway as a scenic byway as a means to eliminate truck traffic. While designating a road as a scenic highway opens the facility to certain types of funds for signing and interpretive elements, it does not restrict truck use. Also, trucks cannot be restricted from using MT-35 because it is a state and federal aid highway. In addition, MDT does not have the authority to designate the highway as a scenic byway. Such a designation is undertaken by other government agencies or private organizations. Individuals interested in designating MT-35 as a scenic highway could form an organization to do so. Montana does have a state scenic-historic byways program.</td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>100</td>
<td>If you had considered the unique character and scenic beauty of MT-35 you might not now be proposing to rebuild the highway wider and straighter. You might instead be giving consideration to a "no-build option" of adding bike and pedestrian lanes, more scenic vistas pull-offs and improving traffic/speed management with proper maintenance (records will show that MT-35 has not been adequately maintained for years probably in an effort to justify reconstruction).</td>
</tr>
<tr>
<td></td>
<td>Not a shovel of earth should be turned, until you have identified the unique character of MT-35 from Bigfork to Polson. To do otherwise chances delaying this project with lengthy political and legal battles. No area is better able to sustain these battles should they become necessary.</td>
</tr>
<tr>
<td></td>
<td>Now is definitely a watershed point. Your "Preferred Alternative Plan" is about to be submitted to the Federal Government for their approval and funding. If you present your "preferred alternative" without first identifying the unique character of all of MT-33, you will have missed an opportunity to preserve a unique Montana treasure, for which history will judge you most poorly.</td>
</tr>
<tr>
<td></td>
<td>So far, there is no indication that the Montana Department of Transportation will step out of the box and exercise foresight and vision. It seems most likely that the Department will just roll on, with consultants in tow, and try to reconstruct the northern end of MT-35 without even knowing or considering the unique character of the entire highway and the importance it holds to the communities it serves.</td>
</tr>
<tr>
<td></td>
<td>If this happens, what a tragedy this will be for all generations.</td>
</tr>
</tbody>
</table>

Respectfully,

Judy L. Anam
26146 East Lake Shore Rd.
Bigfork, MT 59911

CC:
Judy Martz – Governor of the State of Montana
Senator Max Baucus
Senator Conrad R. Burns
Representative Dennis Rehberg
"The Daily Interlake"
"Polson Leader"
"Bigfork Eagle"
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 101 | **Russell W. Rocheford, U.S. Army Corps of Engineers:**
 Regulatory Branch
 Subject: Corps File Number 2004-90-493
 Bigfork North & South, MDT Control Number 4035
 Comments on Environmental Assessment
 August 3, 2004

 We are in receipt of your June 30, 2004 letter providing a copy of the Bigfork North & South Environmental Assessment, STPP 52-1(18)27, Control No. 4035. Comments from the US Army Corps of Engineers include the following:
 1. A Department of the Army Section 404 permit will be required for the project.
 2. A designation of all waters of the United States to be permanently or temporarily impacted will be required.
 3. Compensatory mitigation will be required for unavoidable impacts to the aquatic environment. The US Army Corps of Engineers typically requires permanent legal protection for any compensatory mitigation site. It is allowable to use available credit from an established MDT Wetland Mitigation Reserve within the watershed. Specific compensatory mitigation plans must be included with the permit application. It is suggested that the Corps review the mitigation plans prior to submittal of an application to ensure that it is acceptable and adequate.
 4. All bridges and culverts in waters of the United States should be designed so that they have no more than minimal effect on the hydraulic flow characteristics of the streams.
 5. A copy of the Mitigation Ratios used by the Montana Regulatory Program is enclosed. | **Response 101:**
 These measures have been incorporated into the project mitigation commitments required as part of the Section 404 permit application approval process. |
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 101 (cont) | If you have any questions, feel free to contact Todd Tillinger of our Helena Regulatory Office at (406) 441-1375. Please reference Corps File Number 2004-90-493.
 Sincerely,
 [Signature]
 Russell M. Rochford
 Chief, Public Support & Administration
 Regulatory Branch, Operations Division
 Enclosure
 Copy Furnished, with enclosure:
 Michael S. DallSoglio
 MDT - Consultant Design
 PO Box 201001
 Helena, MT 59602-1001 |
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 102 | Ann Johnson:
July 10, 2004
Marise Johnson
From: Marise Johnson, mjohnson@bigsky.net
Sent: Monday, July 12, 2004 9:14 AM
To: color@bigsky.net
Subject: Ann Bigfork ESQ July 10 000

July 10, 2004

Ann Johnson, Ph.D.
Research Building
Yellowstone National Park
Mammoth Hot Springs, Wyoming 82190

To MDOT/Carter Burgess Engineering
RE: Environmental Assessment and Programmatic Section 4(f) Evaluation for Bigfork North & South STPP 52-1 (18) 27
Control No. 4035

Dear Sir,

We were surprised to hear at the beginning of July 2004 that there was a final draft EA out for the highway improvements: Bigfork North and South. My sisters (Ellen Johnson and Marise Johnson) and I own slightly more than 20 acres that are more or less evenly split by the highway south of Bigfork. We have significant attachment to this property and have tried to be good stewards. Also, because we all have degrees (bachelors and masters) in various fields of biology, we have known about the important and uniqueness of Daphne pond. Thus it is surprising to us that others apparently did not.

Some years ago, my mother and I spoke with a Carter Burgess planner in Bigfork during initial scoping. There was a general question about bike paths. Well, we in general like bike paths and have supported developing one near our house just outside of the Kalispell city limits. There were no details about where a bike path would go along the

Response 102A:
We apologize that you were not directly notified about the Environmental Assessment. Your name appears in the project mailing list with a Kalispell address, and public notices were posted in the *Bigfork Eagle* and *Kalispell Daily Inte Lake* on June 30, 2004.

Thank you for providing your input on the project and informing the project team about your concerns. Because you have commented on the Environmental Assessment during the formal review process, your needs and concerns are documented and considered in the decision making process. MDT is committed to coordinating with property owners as the project moves into final design, as well as minimizing impacts to private property and its access.

Response 102B:
The project team is aware of the biological uniqueness of Daphne Pond. The Preferred Alternative was developed to avoid impacts to the pond. Efforts will be made to protect the integrity of the pond. The Environmental Assessment states there would be an estimated 0.04 hectare (0.1 acre) of impact at Wetland #5 (where Daphne Pond is located). The 0.1 acre of impact was associated partly with highway widening and partly with the multi-purpose path that was assumed to be located along the east side of Daphne Pond. Because of concerns voiced about impacts to Daphne Pond, the multi-purpose path will now be located adjacent to the highway, on the west side of Daphne Pond. This change will not alter the acreage of wetland impact; however, it will reduce impacts to higher quality pond edge wetlands east of the pond. This will preserve their function for ongoing educational and natural resource protection purposes. Wetland impacts and associated mitigation will be determined during the final design process for the highway and path. MDT will work closely with landowners during that process.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>102 (cont)</td>
<td>July 10, 2004</td>
<td>Page 2 of 5</td>
</tr>
<tr>
<td>102C</td>
<td>The Environmental Assessment addressed the issue of mitigating vegetation impacts in Section 3.14. Revegetation of all areas disturbed by construction will occur in a timely fashion in order to establish desirable species and reduce noxious weed infestations. MDT will comply with the requirements of the County Noxious Weed Management Act.</td>
<td></td>
</tr>
<tr>
<td>102A</td>
<td>As mentioned above, several years ago, we received a notice in the mail of initial scoping for this project and my mother and I met with a Carter Burgess representative. How could we not have been notified of other meetings and the availability of the draft EA? Now that we are aware, we have an intense interest in the project as it goes through our property and we would have had constructive comments during the project development.</td>
<td></td>
</tr>
<tr>
<td>102D</td>
<td>The avoidance and mitigation commitments required by the US Army Corps of Engineers (USACE) for the project regarding wetlands and Waters of the US are: prudent and feasible measures to mitigate, minimize, and/or avoid wetland losses associated with the project will be implemented in the design of the Preferred Alternative. The USACE requires a delineation of all waters of the US that will be permanently or temporarily impacted by the project. The initial mitigation strategy will be the development of available on-site mitigation to compensate for unavoidable wetland losses. If on-site mitigation opportunities are unavailable for regulated wetland sites, losses will be mitigated at an established MDT Wetland Mitigation Reserve within the watershed. Specific compensatory mitigation plans must be included with the Section 404 permit application, with a recommendation of prior coordination with the USACE prior to submittal.</td>
<td></td>
</tr>
<tr>
<td>102C</td>
<td>For each segment of the project, several design options were developed and screened considering factors such as traffic operations, safety, pedestrian and bicycle concerns, community support, environmental impacts, operations and maintenance, and cost and construction impacts. These were presented and input received at the various public meetings and workshops held throughout the process. While only the Preferred Alternative and No-Action Alternative were carried forward in the Environmental Assessment for detailed analysis, the other options were given consideration in the alternatives development process.</td>
<td></td>
</tr>
<tr>
<td>102C</td>
<td>My sister Marie has written an extensive letter to you regarding this project and I will supplement it with only a few thoughts. The EA is flawed in terms of wetlands, public scoping, weeds, failure to develop an adequate number of alternatives, and perhaps in other areas. The EA lumps Daphne Pond in with all other wetlands with permanent water and the planners have completely missed that this is a unique pond with great scientific value. Please note that the Biological Station at Yellow Bay has more than 40 years of annual research and they were not included in the scoping. The EA has not assessed affects to this important resource. We were shocked several years ago when fill was placed on the east side of the highway in the pond (again without any mention to us) and I am emphatically against any action that would result in additional fill being placed in the pond. This is a rare, valuable resource and it should be protected. Please add information about the wetlands mitigation that you will be doing.</td>
<td></td>
</tr>
<tr>
<td>07/12/2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>102 (cont)</td>
<td>Daphne Pond, just drive the east lakeshore road and notice the plentiful knapsweed is the highway right-of-way.</td>
<td>Response 102F: Vehicle/animal collision: To minimize impact to wildlife species using the lakefront area, all vegetation and tree removal will be restricted to the minimum area necessary to accommodate the planned reconstruction activities and improvements. This measure will help ensure that the Preferred Alternative does not deter wildlife movement along the lakefront. Wildlife impacts are discussed in Section 3.13 of the Environmental Assessment. A wildlife crossing was not included in the Preferred Alternative because wildlife crosses the highway throughout the corridor and not at one single location. This being said, however, two grade-separated crossings are included in the Preferred Alternative. An overpass will be located near RP 29.9 primarily for pedestrian, bicycle, and equestrian use. It is unknown if it will be effective for wildlife; however, it is proposed to be wide enough to allow for wildlife use. An underpass is proposed at about RP 30.5 primarily for pedestrian and bicyclist use. It is not expected to be used by wildlife.</td>
</tr>
<tr>
<td>102F</td>
<td>The EA suggests that widening the right-of-way may decrease animal deaths because this will improve line of sight. I have experience with rehabilitation of National Park highways and can unequivocally state that straightening and widening road and leads to increased animal deaths. In Yellowstone National Park where the vast majority of the road system has a maximum of 45 MPH, over 340 large animals are killed every year. The Bigfork highway will have a greater posted speed limit and car-animal/deer collisions can be reasonably expected to increase. I have heard that the community wants to retain its feeling but these “improvements” will not have that result.</td>
<td></td>
</tr>
<tr>
<td>102G</td>
<td>I note that an equestrian crossing is included. I predict that it is only a matter of time before there is a horse/vehicle collision. This will likely be a result of increased speed on the highway. Again, I have knowledge of how horse rides cross roads in Yellowstone and Glacier National Parks where speeds are suppose to be well below that permitted on the Bigfork South highway.</td>
<td>Response 102G: Please note that the Preferred Alternative includes a grade-separated (overhead) equestrian crossing in recognition of the safety issues surrounding the current at-grade (i.e., on the road) equestrian crossing. Placing horses and vehicles on different levels removes the potential for a collision.</td>
</tr>
<tr>
<td>102E</td>
<td>The EA has only the preferred alternative and the no action alternative for the segment past Daphne Pond. Having only two alternatives is sufficient only when there are no other achievable possibilities. In this case, the bike path could follow the same route as the horse trail around Daphne Pond or it could go along the road with more cut into the western hillsides. There also may be other alternative routes for the bike path but the EA is flawed for not considering and developing them.</td>
<td></td>
</tr>
<tr>
<td>102B</td>
<td>Because we own property on both sides of the highway, we are twice impacted and should have been invited to participate. We have loved this land for over 40 years and have had great enjoyment out of it. We raise ducks and muskrats and have enjoyed being able to have the University of Montana Biological Staff carry out research at our pond. Looking towards the future, we have always looked to preserve Daphne Pond and, for the terrestrial portion of our property, we have discussed and planned for a variety of uses ranging from a retirement home to putting our nephews through college and graduate school. We believe the current preferred alternative as presently designed will severely impact our future options and its monetary value. It is pretty amazing to think Carter Burgess and the Montana DOT could get this far along without asking us what we thought.</td>
<td>Response 102H: Meetings were held throughout the project with private landowners. We apologize that you were not involved at that time. However, as you have commented on the Environmental Assessment during the formal Environmental Assessment review process, your needs and concerns are documented and considered in the decision making process. MDT is committed to continue coordination with property owners as the project moves into final design, as well as minimize impacts to private property and its access.</td>
</tr>
<tr>
<td>102H</td>
<td>Briefly, we believe the cut section on the west side of the highway may</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>102</td>
<td>(cont)</td>
<td></td>
</tr>
<tr>
<td>102B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102J</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Response 102J: Each property owner has rights for access to their property. However, if access is available from other roadways, access is not required to be directly from the property to the highway. During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. Landowners will be involved in this process.

During right-of-way acquisition, an independent appraiser evaluates the total value of each property before the desired right-of-way take and the value after the desired right-of-way take. Compensation to the landowner is based on the difference of the before and after value of the entire property, not just the value of the right-of-way area.

Marise Johnson’s letter was received and is included as Comment 103; please refer to responses to her comment letter.

Response 102K:
We apologize for the difficulties you experienced in downloading the signed version of the Environmental Assessment. Thank you for informing us of the problem; it will help us to ensure future electronic postings will have easier access.

In response to your comment, two hard copies of the Environmental Assessment were mailed to you and Marise Johnson. In addition, a complete copy of the Environmental Assessment has been included as Appendix D in this document.

Impacts are determined in environmental assessments based on a preliminary level of design, which provides sufficient information to assess environmental impacts of the various alternatives to determine a preferred alternative. The specific project impacts are determined during the final design process, and landowners will be involved in that process.

Response 102L:
Please refer to previous responses to your comments summarized here.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>102B</td>
<td>I strongly urge that the bike path along the eastern side of Daphne Pond and any additional impacts to Daphne Pond be dropped. The process in developing this EA has sufficient flaws that I believe a court would not support its conclusions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sincerely,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ann M. Johnson, Ph.D.</td>
<td></td>
</tr>
</tbody>
</table>
Comment by Marise K. Johnson:

July 10, 2004

Marise K. Johnson, M.D.
3803 Barnes Way
Kalispell, Montana 59901

To: Montana Department of Transportation
RE: Environmental Assessment and Programmatic Section (f)
Evaluation for Bigfork North & South STPP 52-1 (18) 37
Control No. 4035
Prepared by Carter Burgess Engineering

Dear Sirs:

NEPA obligates that the Environmental Assessment study the area to be constructed and its impacts, that property owners have sufficient notice, and that damages be mitigated. It is no where required that the least expensive option be chosen, but that all reasonable alternatives with fewer impacts be reasonably considered.

This letter is to serve notice that the process is seriously flawed in all of these assumptions. NEPA does not require the least expensive alternative, but rather that all reasonable alternatives be explored, particularly those with the fewest impacts.

My sisters (Aan Johnson of Yellowtane Park and Kalispell, Ellen Johnson of Portland, Oregon and myself of Kalispell) are the current owners of 20.5 acres south of Bigfork, transected by HW 35, which includes the northern end of Daphnia Pond on the east. Imagine our anxiety learning less than a week ago, the EAS is in its final draft, with confiscatory plans for our property and no one has even spoken to us?

This property has been in our family for three generations. Brought to our attention by my Great Uncle Fred, it was first owned by my parents, Ed and Rita Johnson of Kalispell, and now by my sisters and I, and was intended to go to my nephews, now of age. It has memories and ties to family, links to Michigan where my father was born, went to medical school and after serving in WW2, did his surgical residency. It is full of memories and has been the object of our future plans and dreams.

My mother and my sister, Aan Johnson, attended a public meeting in Posisu, Montana, I believe just last year, at which Aan spoke of her concerns, of MDT’s past neglect of wetland mitigation, prior notice, and noxious weed control affecting our property. None of us were ever approached by the “local” committee currently viewing placement of a bike path through the middle of our property as their ideal solution.

In attempting to download the draft EAS from the internet, despite
Response 103C:
We apologize for the difficulties you experienced in downloading the signed version of the Environmental Assessment. Thank you for informing us of the problem; it will help us to ensure future electronic postings will have easier access.

In response to your comment, two hard copies of the Environmental Assessment were mailed to you and Ann Johnson. In addition, a complete copy of the Environmental Assessment has been included as Appendix D in this document. Because you have commented on the Environmental Assessment during the formal review process, your needs and concerns are documented and considered in the decision making process. MDT is committed to coordinating with property owners as the project moves into final design, as well as minimizing impacts to private property and its access.

Response 103D:
Thank you for disclosing your concerns related to the bike path and your private property. The Environmental Assessment states there would be an estimated 0.04 hectare (0.1 acre) of impact at Wetland #5 (where Daphne Pond is located). The 0.1 acre of impact was associated partly with highway widening and partly with the multi-purpose path that was assumed to be located along the east side of Daphne Pond. Because of concerns voiced about impacts to Daphne Pond, the multi-purpose path will now be located adjacent to the highway, on the west side of Daphne Pond. This change will not alter the acreage of wetland impact; however, it will reduce impacts to higher quality pond edge wetlands east of the pond. This will preserve their function for ongoing educational and natural resource protection purposes. Wetland impacts and associated mitigation will be determined during the final design process for the highway and path.

The specific right-of-way required for the project will be determined during the final design process. MDT will coordinate with property owners during the final design process. Property acquisition will conform with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended.
<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>103 (cont)</td>
<td>confronted with their trespassing. We would be forced to allow any member of the public to transit on the “public bike path” through our property, no matter how undesirable (such as IV drug users and prostitutes). Two of the owners are single women in their nineties; we have no desire to police our property in unpleasant and possibly dangerous circumstances, nor would future purchasers. The water feature itself adds to the value of the property, and is at risk, through its fragility, to people wanting to mess around in it. It is swampy, the ground around the border is musky and the pond bed is full of easily disturbed sediment. I believe it requires no stretch of imagination, to see that hot and sweaty people, full of energy and high jinks will want to get into or to the water, thinking that it is a public body of water, which it is not. It is part of our described property borders, we have always paid the taxes on it, and Public School teachers and the Researchers at the Yellow Bay Biological Station have always asked permission to access and study it. There are hazards in the water, the border line between us and the adjacent property owner is the south is marked by a barbed wire stretching East to West fore sample, some of which is under water. We the owners know this, foolish visitors will not. We do not feel we should be saddled with this liability.</td>
<td>Response 103E: It is not the intent of the project to create public access or use of your property and amenities. The sensitive nature and historical biological and ecological qualities of Daphne Pond are documented in the project files, and the project team is aware of the biological uniqueness of the Pond. Please refer to Comment 103D response regarding pathway relocation and impacts to the wetland at Daphne Pond. The avoidance and mitigation commitments required by the US Army Corps of Engineers (USACE) for the project regarding wetlands and Waters of the US are: prudent and feasible measures to mitigate, minimize, and/or avoid wetland losses associated with the project will be implemented in the design of the Preferred Alternative. The USACE requires a delineation of all waters of the US that will be permanently or temporarily impacted by the project. The initial mitigation strategy will be the development of available on-site mitigation to compensate for unavoidable wetland losses. If on-site mitigation opportunities are unavailable for regulated wetland sites, losses will be mitigated at an established MDT Wetland Mitigation Reserve within the watershed. Specific compensatory mitigation plans must be included with the Section 404 permit application, with a recommendation of prior coordination with the USACE prior to submittal.</td>
</tr>
</tbody>
</table>

Daphnia Pond, I seem from your EAS, seems as just another ordinary pond a.k.a, generic wetland. This above the failure of your scholarship and what you have lost by not even asking us what we knew about our own property. To quote Bonnie Ellis, Senior Research Scientist at Yellow Bay Biological Station (University of Montana) from her e-mail last week:

Daphnia magna is a very large copepod, a cladoceran that is abundant in Daphnia Pond. In some sense, I am not certain, but would guess that the first director of the Flathead Lake Biological Station, Dr. Morton Elton, probably named this pond in the early 1950’s. The Flathead Lake Biological Station has a long history of utilizing Daphnia Pond in our teaching and research programs. Even as I write this email, there is a young man from Montana University at Daphnia Pond studying the behavior of nutrient-bogged Crayfish. Every year students in lake Ecology study the physical and chemical history of this unique pond. In close proximity to the Biological Station resides an ideal site for measuring chemical changes in dissolved oxygen, pH and other physicochemical parameters.

Daphnia magna is a cladoceran that is abundant in Daphnia Pond. It is an excellent example of a sensitive pond that has not been impacted by FEL. So many large ponds have had fish introductions that have altered the food web making in the estimation of large predatory copepods and other invertebrates, like Daphnia magna and Chironomus (the phantom midge). It is a wetland species that still dominates many wetlands. The initial construction of the road likely impacted the pond initially and we have witnessed continued encroachment over the years. There should be a record of this at DFL. For example, just recently (maybe a few years ago) they placed quite a lot of fill on the pond when they laid fiber optics along the roadway. We were surprised to see that the cable was placed on the pond side of the road rather than the west side.

Daphnia magna is a cladoceran that is abundant in Daphnia Pond. It is an excellent example of a sensitive pond that has not been impacted by FEL. So many large ponds have had fish introductions that have altered the food web making in the estimation of large predatory copepods and other invertebrates, like Daphnia magna and Chironomus (the phantom midge). It is a wetland species that still dominates many wetlands.
Finding of No Significant Impact

Appendix B

<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>My sisters, and I feel, that with at least half a century of continuous research or more, of this rather stunning example of a unique pond that is probably one of a kind, that Daphnia Pond has an inestimable value for science and the state of Montana. We shared the surprise of learning with no notice that the cable had been placed with infill on the pond side of the highway. When my sister Ann, inspired as to the plans for mitigation and native weed control for the new Knappweed population, she was told “false” by the individual she talked to at the DOT, that “we’re the government, we don’t have to do wetland mitigation” and despite your assurance in the current EAS, they (MDOT) do not bother themselves with controlling the Knappweed they introduced either. Daphnia Pond, if you put the bike path along its eastern border is in obvious danger of being unalterably changed by any thoughtless bucket biologist who can visualize himself fishing from the bike path, for wide mouth bass or other fish, as so many have introduced to other montana bodies of water, with blatant disregard for the native ecology.</td>
<td></td>
</tr>
<tr>
<td>103E</td>
<td>In addition, the planned wide cut of the western cliff to be completed with a major retaining wall, will destroy any hope of this family’s building a road to access the stunning cliff top property with its million dollar view, unobstructed to the south, the west and north coast of Flathead Lake. We currently own a neighbor’s private road, whose verbal permission or any future owners can be withdrawn at anytime, necessitating a new access. We have talked about selective logging if needed to help finance the education of my two nephews who are both extraordinarily bright and deserve all the chance we can afford. We have often talked with each other about building a home(s) for retirement and what they would be like, where we would put them, the best site, the best view, what kind of features, etc. With my sister, Ann, viewing retirement in a possible 2 ½ years, this has been more and more of a reality than a pipe dream. The current neighborhood plan allows for 1 house per 5 acres, but without access the opportunity to develop this property would be gone forever. More importantly in the current development climate of Flathead County, fostered by property rights advocates, the County Commissioners, and the current Planning Board, there is no reason to believe that we could not petition to build apartments, a motel, a water view restaurant, or a casino on the eastside over looking Daphnia Pond with appropriate provisions. As it is, we turned down a proposition to place a conservation easement on the property, to gift development rights to the Flathead Land Trust or Yellow Bay Research Station, the tax credits of which would have been of not insignificant benefit to us, because we realized that we could someday have circumstances in the family that would require us to develop the property, the value which would only increase over time, with its size and proximity to Bigfork and Flathead Lake.</td>
<td></td>
</tr>
<tr>
<td>103F</td>
<td>Revegetate all areas (disturbed by construction) outside of the paved roadway and within the right-of-way in a timely fashion to establish desirable species and reduce noxious weed infestations. Comply with the requirements of the County Noxious Weed Management Act Title 7 Chapter 22 Part 21.</td>
<td></td>
</tr>
<tr>
<td>103G</td>
<td>Each property owner has rights for access to their property. During the final design process, an access management plan will be developed by MDT that identifies specific access locations, changes, and configurations. Landowners will be involved in this process.</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| 103 | have enjoyed our property for its undeveloped qualities and have been and intend to be good stewards of its unique properties that it has always been an investment for future needs as well. I have three boron discus in my neck (due to an unfortunate episode of lifting a Christmas ham I was gifts to a local church for a free Christmas community dinner). I am at risk for progressive disability and the loss of the use of my right upper extremity and potentially worse, while suffering ongoing chronic pain, as have scaled back my practice hours and accordingly lost income. I face the possibility of extensive and difficult surgery in the near future if I have an unfortunate fall occur accident, as well as in the later future if I am lucky and this progresses slowly. In additions, I am unable to obtain long term care of nursing home insurance and will have trouble obtaining new medical insurance should I loose my current policy. My sister, Ann, has a congenital bad back and her first surgery took over 3 hours with a complication requiring repeat surgery two weeks after the first. She also has chronic pain and is not eligible for private disability insurance and would have "pre-existing condition" disqualifying her for a new medical insurance and lack term care coverage. My sister, Ellen, also has chronic back pain, with spinal stenosis, and faces similar circumstances. Our parents are in their mid 80's and are progressively frail in health. They were turned down for an expensive long-term care insurance policy, despite the insurance agent's assurance that they would qualify. They would like to live out their lives in their home, a progressively expensive proposition this day and age. Do you really think that the public need of the unincorporated community of Bigfork to put a bike path on the east side of Daphnia Pond and a major car and retaining wall on the cliff side of our property, cutting us off from all reasonable access to the public use and future development of the property exceeds other possible alternatives with fewer impacts which could avoid unreasonable financial hardship for our family? I know that the MDOT and the good people of Bigfork will not be promising to subsidize our medical care or other needs for funds. | Response 103H:
Please refer to previous responses to your comments summarized here.
In summary, we the owners of the north end of Daphnia Pond with 26.5 acres straddling HW 35 south of Bigfork, feel that the current EAS does not meet its legal obligation for fully studying Daphnia Pond’s uniqueness, exploring and complying with mitigating options. That reasonable notice was not afforded to us as landowners and that the draft’s current preferred plans create a de facto taking of all current an future use of our property. Implementation of the current plan will create extraordinary financial hardships for which we will seek legal counsel and require full adherence to the law and full compensation.
Sincerely,
Marie K. Johnson, M.D., F.A.C.P. |
APPENDIX C
Biological Opinion
Biological Assessment Addendum
U.S. Fish and Wildlife Service Concurrence
ENDangered species act section 7 consultation

Biological opinion

For the effects to the threatened Columbia River basin population of bull trout (Salvelinus confluentus) from the reconstruction of Montana Highway 35 north and south of Bigfork, in Flathead County, Montana

Project: Bigfork - North & South
STPP 52-1(18)27; Control Number 4035

Agency: Federal Highway Administration
Montana Division
Helena, Montana

Consultation Conducted by: U.S. Fish and Wildlife Service
Montana Field Office
Helena, Montana

February 9, 2006
Table of Contents

BIOLOGICAL OPINION

I. Description of proposed action... 1
II. Status of the species and critical habitat.. 4
 Species description... 4
 Life history .. 6
 Population dynamics.. 9
 Status and distribution... 12
 Analysis of the species and critical habitat likely to be affected............... 29
 Other listed species .. 29
III. Environmental baseline.. 30
 Status of the species within the action area ... 30
 Factors affecting species environment within the action area 33
IV. Effects of the action.. 37
 General effects of transportation projects on bull trout............................ 37
 Project specific effects on bull trout .. 39
V. Cumulative effects.. 43
VI. Conclusion... 44
 Jeopardy analysis for bull trout ... 44

INCIDENTAL TAKE STATEMENT

 Amount or extent of take anticipated.. 46
 Effect of the take .. 47
 Reasonable and prudent measures ... 48
 Terms and conditions ... 48

CONSERVATION RECOMMENDATIONS.. 48

REINITIATION NOTICE.. 49

REFERENCES CITED.. 50
I. Description of proposed action

The Montana Department of Transportation (Department, MDT) and the Federal Highway Administration (Administration) are jointly proposing improvements to Montana Highway 35 north and south of the town of Bigfork in Flathead County, Montana (Project No. STPP 52-1(18)27; Control No. 4035). The proposed work would include an 11.2-kilometer (km) (7.0 miles) section of Highway 35 extending from Woods Bay on the south, through Bigfork, to the Chapman Hill Road intersection north of Bigfork. The project would include replacement of the bridge across the Swan River, a major tributary to Flathead Lake. The project area would be located within existing or new MDT right-of-way (MDT 2005).

The project area lies within the Flathead Basin and is located between the north end of the Mission Mountains and the east shore of Flathead Lake. The basin includes Flathead Lake, the main stem Flathead River upstream of Kerr Dam, and major tributaries including the Swan River, Whitefish River and Stillwater River drainages, and the North, Middle, and South Forks of the Flathead River and their tributaries. Kerr Dam is located at the southern end of Flathead Lake, approximately 7.5 km (4.3 miles) downstream from the natural lake outlet. Other dams in the basin include the Bigfork Dam, located on the Swan River approximately 1.9 km (1.2 miles) above Flathead Lake, and Hungry Horse Dam, located on the South Fork approximately 8.5 km (5.3 miles) upstream from the confluence with the Flathead River. The basin drains an area of approximately 18,400 km² (7,104 mi²) on the western slope of the continental divide. From Flathead Lake, water flows into the lower Flathead River, which joins the Clark Fork River. This water eventually joins the Columbia River by way of the Pend d'Oreille River (MDT 2005).

The Bigfork – North & South project corridor is oriented south to north, roughly paralleling the shoreline of Flathead Lake, and runs among foothills that form a transition between the nearby benches and the steeper gradients of the mountains. The mean elevation of the corridor’s lightly rolling topography is approximately 915 meters (3,000 feet), which, along with the lake’s influence, results in a relatively temperate climate receiving about 50 centimeters (20 inches) of annual precipitation (MDT 2005).

The project is intended to provide treatment for a number of operational, safety and capacity concerns along this route. Inherent design deficiencies and increasing traffic volumes over the years created higher than expected accident rates and other related operational problems. These basic problems are exacerbated during the summer tourist season when traffic volumes are high and during winter conditions when traffic volumes are lower but slick pavement conditions are common. Along with summertime traffic volume, an accompanying increase in pedestrian and bicycle traffic competes with vehicular traffic for the limited pavement space. Safety concerns, together with the deteriorating pavement conditions and increasing truck and conventional traffic volumes have lead to the development of this project (MDT 2005).
Specifically, the proposed project would address the following issues and provide treatment for the following concerns:

- Widening of the roadway on Woods Bay hill to provide additional space for stalled trucks in slick conditions, and to accommodate left turning vehicles;

- Provide increased shoulder width throughout the project to allow vehicles to pull out of through traffic;

- Provide facilities for non-motorized travel separate from vehicular traffic throughout the project;

- Correct horizontal and vertical sight distance deficiencies between Woods Bay and Bigfork;

- Upgrade various intersections throughout the project to improve turning movement safety;

- Reconstruct the roadway pavement throughout the project to extend pavement life;

- Provide a combination of two-way left-turn and raised medians in urbanized Bigfork to better manage turning movement and access safety;

- Implement access management strategies to reduce and better delineate driveway access through the project;

- Enhance landscaping of the roadway through Bigfork and other project areas; and

- Replace the Swan River bridge to address numerous structural and functional deficiencies (MDT 2005).

The proposed new bridge over the Swan River would have a single span over the water with two short end spans. There would be no piers in the water. The bridge would be approximately 66.0 meters long and 15.2 meters wide. Current riprap would remain and the final overall cross-section would not change. However, some riprap would be disturbed during construction and would be restored. Construction of the new bridge would take approximately seven to eight months (MDT 2005).

Although the project corridor runs parallel to the shore of Flathead Lake, the roadway is separated from the lake by an average distance of 0.4 km (0.25 mile). This existing natural buffer prevents most road runoff from adversely affecting water quality in the lake. Areas within the project corridor where there is little or no natural buffer between water bodies and the highway include the Swan River bridge and Woods Bay, where the roadway closely parallels waterways for a total of approximately 305 meters (1,000 feet). To minimize potential effects to aquatic resources from project-related activities, the
following conservation measures would be adhered to during the performance of the proposed work:

a) All waste fuels, lubricating fluids, herbicides, and other chemicals will be collected and disposed of in a manner that ensures minimal environmental impact will occur. Construction equipment will be inspected daily (during work days) to ensure hydraulic, fuel and lubrication systems are in good condition and free of leaks to prevent these materials from entering any stream. Vehicle servicing and refueling areas, fuel storage areas, and construction staging and materials storage areas will be sited at a minimum 15 meters from the ordinary high water mark and contained properly to ensure that spilled fluids or stored materials do not enter any stream.

b) Upon locating dead, injured or sick bull trout (Salvelinus confluentus), notification must be made within 24 hours to the U.S. Fish and Wildlife Service’s (Service, USFWS) Montana Field Office at (406)449-5225. Record information relative to the date, time and location of dead or injured bull trout when found, and possible cause of injury or death of each fish. Provide this information to the Service.

c) Reclaim disturbed areas outside of the roadway prism as soon as practicable following construction.

d) Instream work will be kept to the minimum. This work includes, but is not limited to, construction and removal of any coffer dams that may be needed for bridge abutment construction, removal of old bridge support structures, the driving and removal of pilings for any temporary support structures that may be necessary, and riprap placement below the ordinary high water mark. Instream construction work will be completed in the shortest amount of time feasible.

e) Instream work conducted within any stream or wetland area will be kept to the limits shown on plan sheets. This includes the Swan River. No construction equipment will be allowed to operate within the active channel of any stream unless otherwise permitted to do so. Instream construction activities will be scheduled such that as many of the necessary construction activities as the Department determines feasible occur “in the dry.”

f) Materials excavated from inside any coffer dams will not enter any stream or lake. Construction activities can occur within dewatered coffer dams at any time, provided that all water from inside the coffer dams is pumped to contained settling ponds on the river bank.

g) To the extent feasible, the existing bridge will be disassembled and removed without large debris falling into the Swan River. If portions of the old bridge six inches in diameter or greater do fall into the Swan River during demolition, they will be removed without dragging the material along the streambed. Any blasting
required for pier or footing removal will be contained to the maximum extent possible using some type of containment or shielding device to attenuate the blast’s pressure wave in the water and to prevent debris from entering the stream.

h) A section 402 Montana Pollutant Discharge Elimination System permit from the Montana Department of Environmental Quality’s (DEQ) Permitting and Compliance Division will be required. A Notice of Intent for Stormwater Discharges under the Montana Pollutant Discharge Elimination System and a General Permit (MTR 100000; effective June 8, 2002) will be required from DEQ for the control of water pollution from both specific and non-point sources. An approved Stormwater Pollution Prevention Plan will be designed and implemented. Additional practices for erosion control will include:

- quickly reseed and revegetate all disturbed areas with desirable or native vegetation, including embankments and borrow ditches, and adding a woody vegetation component to the riparian revegetation plans;
- use bank stabilization measures for disturbed channel banks; and
- maintain and protect riparian vegetation to the maximum extent possible within the construction zone.

i) Structures designed to minimize sediment and pollutant runoff from sensitive areas such as settling ponds, vehicle and fuel storage areas, hazardous materials storage sites, erosion control structures, and coffer dams will be visually monitored daily during work days, or any time following precipitation events to ensure these structures are functioning properly.

j) The construction zones within coffer dams will be visually checked during dewatering activities to ensure bull trout are not trapped. In the unlikely event a bull trout is found within a coffer dam, it will immediately be returned to the stream (MDT 2005).

II. Status of the species and critical habitat

Species description

Prior to 1980, bull trout and Dolly Varden (Salvelinus malma Girard) were considered a single species, the Dolly Varden (Salvelinus malma Walbaum). In 1980, the American Fisheries Society recognized bull trout and Dolly Varden as distinct species (see Cavender 1978). Bull trout are found mostly inland and Dolly Varden occupy primarily coastal drainages. Though identification may be difficult, genetic analysis in recent years has supported the distinctiveness of these species. Bull trout have an elongated body, somewhat rounded and slightly compressed laterally, and covered with cycloid scales numbering 190-240 along the lateral line. The mouth is large with the maxilla extending beyond the eye and with well-developed teeth on both jaws and head of the vomer (none on the shaft). Bull trout have 11 dorsal fin rays, 9 anal fin rays, and the caudal fin is slightly forked. Although they are often olive green to brown with paler sides, color is variable with locality and habitat. Their spotting pattern is easily recognizable, showing
pale yellow spots on the back, and pale yellow, orange, pink, or red spots on the sides. Bull trout fins are often tinged with yellow or orange, while the pelvic, pectoral, and anal fins have white margins. Bull trout have no black or dark markings on the dorsal fin and no halos around their spots, which is useful in distinguishing them from brook trout (*Salvelinus fontinalis*).

Listing history

In September 1985, bull trout in the coterminous United States were designated as a category 2 candidate for listing, in the Animal Notice of Review (USDI 1997). Category 2 candidates show some evidence of vulnerability but not enough information is available to support a listing of the species (USDI 1997). Their status changed in May 1993 when the Service placed bull trout in category 1 of the candidate species list (USDI 1997). The listing of category 1 species was justified, but precluded due to other higher priority listing actions (USDI 1997).

In June 1998, the Service published the final rule listing the Klamath River and Columbia River distinct population segments (DPS) as threatened (USDI 1998c), with an effective date of July 10, 1998. This initial listing rule for the Klamath and Columbia described 141 subpopulations of bull trout in the Columbia River DPS. A subpopulation was considered to be “a reproductively isolated group of bull trout that spawns within a particular area of a river system.” In November 1999, the Service published a rule listing bull trout in the Coastal Puget Sound, Jarbidge River, and St. Mary - Belly Rivers and concluded that all populations of bull trout are threatened throughout the entire range of this species in the coterminous United States (USDI 1999), with an effective date of December 1, 1999. This coterminous listing effectively eliminated the five separate DPS designations within the United States in the 1998 final rule. However, the 1999 final rule states that, “for the purpose of consultation and recovery the separate population segments are recognized as interim recovery units,” which are referred to in this document as populations (USDI 1999).

Current known range

Bull trout are found throughout the northwestern United States and in British Columbia in western Canada (Rieman and McIntyre 1993; USDI 2002a). Within Montana and Alberta, Canada bull trout also exist in the headwaters of the South Saskatchewan River basin and further north in drainages along the east side of the continental divide. In the Klamath River basin, only isolated, resident bull trout are found in higher elevation headwater streams of the Upper Klamath Lake, Sprague River, and Sycan River watersheds (Goetz 1989; Light et al. 1996). In the state of Washington, bull trout are found in coastal drainages of the Olympic Peninsula and in streams surrounding Puget Sound (USDI 2004). In Montana, bull trout occur in the headwaters of the Columbia River basin in the Clark Fork and the Kootenai subbasins (USDI 2002b).
Life history

Life history forms

Two distinct life-history types, migratory and resident, occur throughout the range of bull trout (Pratt 1992; Rieman and McIntyre 1993). Migratory bull trout rear in natal tributaries for several years before moving to larger rivers (fluvial form), lakes (adfluvial form), or the ocean (amphidromous) to mature (USDI 2002b). Migratory forms return to natal tributaries to spawn (USDI 2002b). Migratory bull trout may use a wide range of habitats ranging from first to sixth order streams and varying by season and life stage. Resident populations often live in small headwater streams where they spend their entire lives (Thurow 1987; Goetz 1989).

Most bull trout spawning occurs between late August and early November (Pratt 1992; USDI 2002b). They may spawn each year or in alternate years (Fraley and Shepard 1989). Hatching occurs in winter or early spring, and alevins may stay in the gravel for extended periods, typically emerging from the gravel in April. Growth is variable with different environments, but first spawning is usually noted after age 4, and the fish may live 10 or more years (Pratt 1992; Rieman and McIntyre 1993). Although spawning typically occurs in second to fifth order streams, juveniles may move upstream or downstream of reaches used by adults for spawning, presumably to forage in other accessible waters (Fraley and Shepard 1989; Ratliff 1992). Seasonal movements by adult bull trout may range up to 300 kilometers as migratory fish move from spawning and rearing areas into over-winter habitat in large lakes or rivers in the downstream reaches of large basins (Bjornn and Mallet 1964; Fraley and Shepard 1989).

Habitat requirements

Bull trout are sensitive to environmental disturbance at all life stages, and have very specific habitat requirements. Bull trout growth, survival, and long-term population persistence appear to be dependent upon five habitat characteristics: water temperature, substrate composition, migratory corridors, channel stability and cover (Rieman and McIntyre 1993). Cover includes undercut banks, large woody debris, boulders, and pools that are used as rearing, foraging and resting habitat, and protection from predators (Fraley and Shepard 1989; Watson and Hillman 1997). Deep pools also help moderate stream temperatures, offering refuge from warmer water temperatures during summer low-flow conditions. Stream temperatures and substrate types are especially important to bull trout.

Temperature: Like other char species, bull trout are relatively intolerant of warm water and are typically associated with the coldest stream reaches within basins they inhabit (Craig 2001; Seleng et al. 2001). The most heavily populated reaches in several Oregon streams seldom exceed 15°C (Buckman et al. 1992; Ratliff 1992; Ziller 1992). Cold water temperatures are required for successful bull trout spawning. Many studies report water temperatures near 9° or 10°C during the onset of spawning (Riehle et al. 1997; Chandler et al. 2001). Bull trout spawning typically occurs in areas influenced by
groundwater (Allan 1980; Shepard et al. 1982; Fraley and Shepard 1989; Ratliff 1992). In Montana's Swan River drainage, bull trout spawning site selection occurred primarily in stream reaches directly influenced by groundwater upwelling or directly downstream from upwelling reaches (Baxter et al. 1999; Baxter and Hauer 2000). Cold water upwellings may moderate warmer summer stream temperatures (Bonneau and Scarnecchia 1996; Adams and Bjorn 1997) and extreme winter cold temperatures, which can result in anchor ice.

Cold water temperature also influences the development of embryos and the distribution of juveniles (Fraley and Shepard 1989; Saffel and Scarnecchia 1995; Dunham and Chandler 2001). Selong et al. (2001) report the predicted ultimate upper incipient lethal temperature for age-0 bull trout during 60-day lab trials to be 20.9°C and peak growth to occur at 13.2°C. Goetz (1994) reports juvenile bull trout in the Cascade Mountains were not found in water temperatures above 12°C.

Substrate composition: Bull trout are more strongly oriented to the stream bottom and substrate than most other salmonids (Pratt 1992). Substrate composition has been repeatedly correlated with bull trout occurrence and abundance (Rieman and McIntyre 1993; Watson and Hillman 1997; Earle and McKenzie 2001) as well as selection of spawning sites (Graham et al. 1981; Boag and Hvenegaard 1997). Bull trout are more often found in areas with boulder and cobble substrate rather than areas of finer bed material (Watson and Hillman 1997).

Preferred spawning habitat includes low gradient reaches of mountain valley streams with loose, clean gravel and cobble substrate (Fraley and Shepard 1989; Reiser et al. 1997; Montana Bull Trout Scientific Group (MBTSG) 1998; USDI 2002b). Fine sediments fill spaces between the gravel needed by incubating eggs and fry, lowering incubation survival and emergence success (Everest et al. 1987, USDI 2002a). If fine sediment is deposited into interstitial spaces during incubation, it can impede the movement of water through the gravel, lowering the levels of dissolved oxygen as well as inhibiting the removal of metabolic waste (MBTSG 1998). Because bull trout eggs incubate about seven months (e.g., mid-September to mid-April) in the gravel, they are especially vulnerable to fine sediment accumulation and water quality degradation (Fraley and Shepard 1989). Some embryos can incubate and develop successfully but emerging fry can be trapped by fine sediment and entombed (MBTSG 1998).

Juveniles are similarly affected, as they also live on or within the streambed cobble (Pratt 1984). The accumulation of sediment leads to a reduction in pool depth and interstitial spaces, as well as causing channel braiding or dewatering (Shepard et al. 1984; Everest et al. 1987). Substrate interstices also provide important overwintering cover (Goetz 1994; Jakober 1995). Sub adults and adults tend to occupy deep pools with boulder-rubble substrate and abundant cover (MBTSG 1998).

Migratory corridors: Migratory bull trout ensure regular interchange of genetic material between local populations within core areas (USDI 2002a), and sometimes facilitating genetic interchange among core areas on an evolutionary time scale, thereby
promoting genetic variability. Intact migratory corridors also allow for the potential reestablishment of extirpated local populations (USDI 2002b). Many populations of migratory bull trout have been restricted or eliminated due to stream habitat alterations, including seasonal or permanent obstructions, detrimental changes in water quality, increased temperatures, and the alteration of natural stream flow patterns. Migratory corridors tie seasonal foraging, migrating and overwintering habitat (USDI 2002a, 2002b) to spawning and rearing habitat (USDI 2002a, 2002b) for anadromous, adfluvial, and fluvial forms. Such corridors could potentially allow for dispersal of resident forms for recolonization of recovering habitats (Rieman and McIntyre 1993), though evidence indicates that resident fish are naturally less likely to disperse. Dam and reservoir construction and operation have altered major portions of migratory bull trout habitat throughout the Columbia River Basin (USDI 2002a, 2002b, 2005). Dams without fish passage create barriers to fluvial and adfluvial bull trout which isolates populations, and dams and reservoirs alter the natural hydrograph, thereby affecting forage, water temperature, and water quality (USDI 1999). In addition, reservoirs sometimes do not contain suitable bull trout habitat during certain portions of the year when temperature or other factors may be limiting (USDI 2002b, 2005).

Channel Stability and Stream Flow: Bull trout are exceptionally sensitive to activities that directly or indirectly affect stream channel integrity. Juvenile and adult bull trout frequently inhabit areas of reduced water velocity, such as side channels, stream margins, and pools. These areas can be eliminated or degraded by management activities (Rieman and McIntyre 1993). Bull trout also are sensitive to activities that alter stream flow. Incubation to emergence may take up to 200 days during winter and early spring. The fall spawning period and strong association of juvenile fish with stream channel substrates make bull trout vulnerable to flow pattern changes and associated channel instability (Fraley and Shepard 1989; Pratt 1992; Pratt and Huston 1993; Rieman and McIntyre 1993).

Patterns of stream flow and the frequency of extreme flow events that influence substrate are important factors in population dynamics (Rieman and McIntyre 1993). Embryo and juvenile bull trout, closely associated with the substrate, may be particularly vulnerable to flooding and channel scour associated with rain-on-snow events common in some parts of the range (Rieman and McIntyre 1993). Channel dewatering and bed aggradation also can block access for spawning fish.

Cover: All life history stages of bull trout are associated with complex forms of cover, including large woody debris, undercut banks, boulders and pools (Fraley and Shepard 1989; Goetz 1989; USDI 2002a). Young-of-the-year bull trout tend to use areas of low velocity such as side channels, staying close to substrate and submerged debris (Rieman and McIntyre 1993). Juveniles live close to undercut banks, coarse rock substrate and woody debris in the channel (Pratt 1984; Goetz 1991; Pratt 1992). Adult fish use deep pools with boulder-rubble substrate, undercut banks and areas with large woody debris (Pratt 1984, 1985; MBTSG 1998; USDI 2002a and 2002b). Cover also plays an important role to spawning bull trout by protecting the adults from disturbance or predation as well as providing security (MBTSG 1998). Large migratory bull trout
typically spawn in small streams during low flow periods, the combination making them exceptionally vulnerable to humans and other predators. Jakober (1993) observed bull trout over-wintering in deep beaver ponds and pools containing large woody debris in the Bitterroot River drainage, and suggested that suitable winter habitat may be more restrictive than summer habitat.

Population dynamics

Population size

Bull trout have declined in overall range and numbers of fish. Though still widespread, there have been numerous local extirpations reported throughout the Columbia River basin (Thomas 1992; Goetz 1994; USDI 2002b). According to the Bull Trout Draft Recovery Plan (USDI 2002b), the Service recognizes 121 bull trout core areas within the coterminous U.S. range. The ensuing baseline and effects analysis uses the “core area” and its component local populations as the unit of biological organization (USDI 2002b) to demonstrate the influences of human activities on bull trout population persistence at several scales.

The concept of establishing core areas "that contain bull trout populations with the demographic characteristics needed to ensure their persistence and with the habitat needed to sustain those characteristics" (Rieman and McIntyre 1993) for the purposes of bull trout conservation is reflected in the scientific literature (e.g., Rieman and McIntyre (1993); MBTSG (1998); Frissel (1993)). Further, specific information on bull trout presence, population status, migratory behavior, spawning behavior, and habitat relationships has been developed since the 1998 listing action (USDI 2002b, 2005, Whitesel et al. 2004).

As a result of the availability of this new information, as well as a reconsideration of the scientific literature in light of the new information, the draft recovery plan (USDI 2002b) abandoned the subpopulation concept/definition used in the 1998 final rule (USDI 1998c). The draft recovery plan defined population units more appropriate for the purposes of assessing the current status of bull trout and tracking progress towards recovery. The population terminology in the remainder of this document will no longer refer to the subpopulations as described at the time of listing.

The following definitions are from the draft recovery plan (USDI 2002b):

Local population: A group of bull trout that spawn within a particular stream or portion of a stream system. Multiple local populations may exist within a core area. A local population is considered to be the smallest group of fish that is known to represent an interacting reproductive unit. In most areas a local population is represented by a single headwater tributary or complex of headwater tributaries where spawning occurs. Gene flow may occur between local populations (e.g., those within a core population), but is assumed to be infrequent compared with that among individuals within a local population.
Core area: The combination of core habitat (i.e., habitat that could supply all elements for the long-term security of bull trout) and a core population (a group of one or more local bull trout populations that exist within core habitat) constitutes the basic unit on which to gauge recovery. Core areas require both habitat and bull trout to function, and the number (replication) and characteristics of local populations inhabiting a core area provide a relative indication of the core area’s likelihood to persist. A core area represents the closest approximation of a biologically functioning unit for bull trout. Local populations within a core area have the potential to interact because of connected aquatic habitat.

Recovery / Management unit: Recovery units are the major units for managing recovery efforts and were described in separate chapters in the draft recovery plan (USDI 2002b). Most recovery units, as proposed, consist of one or more major river basins. Several factors were considered in identifying recovery units; biological and genetic factors, political boundaries, and ongoing conservation efforts. In some instances, recovery unit boundaries were modified to maximize efficiency of established watershed groups, encompass areas of common threats, or accommodate other logistic concerns. Some proposed recovery units included portions of mainstem rivers (e.g., Columbia and Snake rivers) when biological evidence warranted such inclusion.

Public comment on the draft recovery plan for the Klamath River and Columbia River populations (USDI 2002b) closed on February 27, 2003. Public comment for the Jarbridge and Coastal-Puget Sound populations closed on October 29, 2004. Peer review was also conducted on all of the draft recovery plan documents in approximately the same respective time periods. Although suggestions to more accurately identify the delineation of specific local populations and their relationships to identified core areas were received, no issues were raised relative to the general concept of the local population/core area definitions or relationships. There were, however, substantial concerns with the definition of "recovery unit." As a result, the Service’s current draft of the draft recovery plan for all populations of bull trout has substituted the term "management unit" for "recovery unit" (i.e., because "recovery unit" is a unique term relative to Service consultation and listing programs with a biological threshold that these units do not consistently meet). We acknowledge that the existing management units have no consistent biological significance across the range, but they do provide an orderly avenue for management and coordination with other stakeholders. The final resolution of how recovery units will be described has not been fully completed. Pending completion of the current bull trout five-year review and decisions forthcoming from that process, additional resolution of the recovery unit structure is anticipated. Regardless, we do not anticipate that the basic structure of core areas and local populations will be modified, except in response to new biological information that causes refinement within individual core areas.

To evaluate the current status of bull trout distribution and abundance for the five-year review, the Service analyzed the most recent information on bull trout relative to core areas and local populations (USDI 2005).
Some core areas are considered at inherently higher risk of extirpation from naturally occurring or human-caused events, especially where the core areas are:

1. Unlikely to be reestablished by individuals from another core area (i.e., functionally or geographically isolated from other core areas);

2. Limited to a single spawning area (i.e., spatially restricted); and either

3. Characterized by low individual or spawning numbers; or

For example, a core area that is isolated in a small watershed upstream of an impassable waterfall (e.g., several of those found in Glacier National Park) would be considered at elevated risk of extirpation from naturally occurring events, especially if the core area had low numbers of fish that spawn in a restricted area. In such cases, an event such as a fire or flood affecting the spawning area could eliminate bull trout from the core area, and the impassable waterfall would prevent reestablishment from fish downstream.

However, a core area residing downstream of the waterfall might not be considered at the same level of risk of extirpation from naturally occurring events because there would be potential for immigration of fish from adjacent core areas either upstream or downstream. Because resident bull trout may exhibit limited downstream movement, the potential for reestablishment of extirpated core areas under such conditions may be limited.

In the process of reviewing information relative to the bull trout listing process, the status of subpopulations was based on modified criteria of Rieman et al. (1997), including the abundance, trends in abundance, and the presence of life-history forms of bull trout. In the listing, the Service considered a subpopulation “strong” if 5,000 individuals or 500 spawners likely occurred in the subpopulation, abundance appeared stable or increasing, and life-history forms were likely to persist. The Service considered a subpopulation “depressed” if less than 5,000 individuals or 500 spawners likely occurred in the subpopulation, abundance appeared to be declining, or a life-history form historically present had been lost. The complete review of this evaluation is found in a status summary compiled by the Service (USDI 1998d).

Based on abundance, trends in abundance, and the presence of life-history forms, bull trout were considered strong in 13 percent of the occupied range in the interior Columbia River basin (Quigley and Arbelbide 1997). Using various estimates of bull trout range, Rieman et al. (1997) estimated that bull trout populations were strong in six percent of the subwatersheds in the Columbia River basin. Bull trout declines have been attributed to the effects of land and water management activities, including forest management and road building, mining, agricultural practices, livestock grazing (Meehan 1991; Frissell 1993), isolation and habitat fragmentation from dams and agricultural diversions (Rode 1990; Jakober 1995), fisheries management practices, poaching and the introduction of

Population variability

Distribution of existing bull trout populations is often patchy even where numbers are still strong and habitat is in good condition (Rieman and McIntyre 1993, 1995). It is unlikely bull trout historically occupied all of the accessible streams within the range at any one time. The number of bull trout within a population can vary dramatically both spatially and temporally. Redd counts are commonly used to assess population trends. Existing long-term redd count data indicate a high degree of variability within and between populations (Rieman and McIntyre 1996, USDI 2002b, USDI 2005). Habitat preferences or selection is likely important (Rieman and McIntyre 1995; Dambacher and Jones 1997; Baxter and Hauer 2000), but more stochastic extirpation and colonization processes may influence distribution even within suitable habitats (Rieman and McIntyre 1995).

Population stability

The draft recovery plan (USDI 2002b) defined core areas as groups of partially isolated local populations of bull trout with some degree of gene flow occurring between them. Based on this definition, core areas can be considered metapopulations. A metapopulation is an interacting network of local populations with varying frequencies of migration and gene flow among them (Meffe and Carroll 1997). In theory, bull trout metapopulations (core areas) can be composed of two or more local populations, but it has been suggested that for a bull trout metapopulation to function effectively, at a minimum between five and 10 local populations are required. Bull trout core areas with fewer than five local populations are at increased risk of local extirpation, core areas with between five and 10 local populations are at intermediate risk, and core areas with more than 10 local interconnected local populations are at diminished risk (USDI 2002b).

The best available information indicates that bull trout are in widespread decline across their historic range and are restricted to numerous reproductively isolated units in the Columbia River basin with many recent local extirpations (Rieman et al. 1997; USDI 1998d). The largest contiguous areas supporting bull trout are central Idaho and western Montana. Many bull trout units in the Columbia River population are characterized by declining trends.

Status and distribution

Historic and current distribution

The historic range of bull trout was restricted to North America (Cavender 1978; Haas and McPhail 1991). Bull trout were historically recorded from the McCloud River in northern California, the Klamath River basin in Oregon and throughout the Columbia
River basin in much of interior Oregon, Washington, Idaho, northern Nevada, and western Montana. They also occurred in coastal and interior British Columbia, extending along the east slopes of the Rockies in Alberta and including a small area in northern Montana (Rieman et al. 1997).

Bull trout may be a glacial relict and their broad distribution has probably contracted and expanded periodically with natural climate change (Williams et al. 1997). Genetic variation suggests an extended and evolutionarily important isolation between populations in the Klamath basin and those in the Columbia River basin (Leary et al. 1993). Populations within the Columbia River basin are more closely allied and are thought to have expanded from at least two common glacial refugias in recent geologic time (Williams et al. 1997; Haas and McPhail 2001, Whitesel et al. 2004).

Despite occurring widely across a major portion of the historic potential range, many areas support only remnant populations of bull trout. Bull trout were reported present in 36 percent and unknown or unclassified in 28 percent of the subwatersheds within the potential historic range. Strong populations were estimated to occur in only six percent of the potential historic range (Rieman et al. 1997). Bull trout are now extirpated in California and only remnant populations are found in portions of Oregon (Ratliff and Howell 1992). A small population still exists in the headwaters of the Arbidge River, Nevada, which represents the present southern limit of the species’ range.

Though bull trout may move throughout entire river basins seasonally, spawning and juvenile rearing appear to be restricted to the coldest streams or stream reaches. The downstream limits of habitat used by bull trout are strongly associated with gradients in elevation, longitude, and latitude, which likely approximate a gradient in climate across the basin (Goetz 1994). The patterns indicate that spatial and temporal variation in climate may strongly influence habitat available to bull trout. While temperatures are probably suitable throughout much of the northern and mountainous portions of the range, predicted spawning and rearing habitat are restricted to increasingly isolated high elevation or headwater “islands” toward the south (Goetz 1994; Rieman and McIntyre 1995).

Status of bull trout in the Columbia River basin

Range-wide, local populations of bull trout within their respective core areas are often isolated and remnant. Migratory life histories have been lost or limited throughout major portions of the range (Ratliff and Howell 1992; Pratt and Huston 1993; Rieman and McIntyre 1993, 1995; Goetz 1994; Jakober 1995; MBTSG 1998; USDI 2002b; USDI 2005) and fluvial bull trout populations in portions of the upper Columbia River basin appear to be nearly extirpated (USDI 2002b, 2005). Resident populations existing in headwater tributary reaches are isolated and generally low in abundance (Thomas 1992).

The Service recognizes 121 bull trout core areas rangewide in Idaho, Montana, Oregon, Nevada and Washington (USDI 2002b). Core areas were previously defined as approximating interacting biological units for bull trout. Within the Columbia River
basin, a total of 98 core areas are described (USDI 2002b). Bull trout are threatened by habitat loss and degradation, passage restrictions at dams, and competition from non-native species, especially brook trout and lake trout. The American Fisheries Society listed bull trout as a species of concern in all of its range (California, Idaho, Montana, Nevada, Oregon, Washington, Alberta, and British Columbia) except Alaska, because of present or threatened destruction, modification, or curtailment of its habitat or range and introduction of exotic species (Williams et al. 1989). Bull trout have been categorized as an indicator species of forest and ecosystem health as they are particularly sensitive to environmental change (Rieman and McIntyre 1993).

Generally, where status is known and population data exists, bull trout populations throughout the Columbia River basin are at best stable and more often declining (Thomas 1992; Schill 1992; Pratt and Huston 1993; USDI 2005). Presently, bull trout in the Columbia basin occupy about 45 percent of their estimated historic range (Quigley and Arbelâde 1997). Many of the bull trout core areas occur as isolated watersheds in headwater tributaries, or in tributaries where the migratory corridors have been lost or restricted. Few bull trout core areas are considered strong in terms of relative abundance and core area stability (USDI 1998d; USDI 2005). Strong core areas are generally associated with large areas of contiguous habitat.

Whitesel et al. (2004) noted that although there are multiple resources that contribute to the subject, Spruell et al. (2003) best summarized genetic information on bull trout population structure. Spruell et al. (2003) analyzed 1,847 bull trout from 65 sampling locations, four located in three coastal drainages (Klamath, Queets, and Skagit Rivers), one in the Saskatchewan River drainage (Belly River), and 60 scattered throughout the Columbia River Basin. They concluded that there is a consistent pattern among genetic studies of bull trout, regardless of whether examining allozymes, mitochondrial DNA, or most recently microsatellite loci. Typically, the genetic pattern shows relatively little genetic variation within populations, but substantial divergence between populations. Microsatellite loci analysis supports the existence of at least three major genetically differentiated groups (or lineages) of bull trout (Spruell et al. 2003). They were characterized as:

- **"Coastal"**, including the Deschutes River and all of the Columbia River drainage downstream, as well as most coastal streams in Washington, Oregon, and British Columbia. A compelling case also exists that the Klamath Basin represents a unique evolutionary lineage within the coastal group.

- **"Snake River"**, which also included the John Day, Umatilla, and Walla Walla Rivers. Despite close proximity of the John Day and Deschutes Rivers, a striking level of divergence between bull trout in these two systems was observed.

- **"Upper Columbia River"** which includes the entire basin in Montana and northern Idaho. A tentative assignment was made by Spruell et al. (2003) of the Saskatchewan River drainage populations (east of the continental divide), grouping them with the upper Columbia River group.
Spruell et al. (2003) noted that within the major assemblages, populations were further subdivided, primarily at the level of major river basins. Taylor et al. (1999) surveyed bull trout populations, primarily from Canada, and found a major divergence between inland and coastal populations. Costello et al. (2003) suggested the patterns reflected the existence of two glacial refugia, consistent with the conclusions of Spruell and the biogeographic analysis of Haas and McPhail (2001). Both Taylor et al. (1999) and Spruell et al. (2003) concluded that the Deschutes River represented the most upstream limit of the Coastal lineage in the Columbia River Basin.

Status of the Clark Fork River subbasin: Within the upper portions of the Columbia River basin in Montana and northern Idaho, upstream of the impassable barrier Albeni Falls Dam on the outlet of Lake Pend Oreille, bull trout are found in 38 core areas within the Clark Fork River drainage (USDI 2002c). At least 152 local populations of bull trout have been identified associated within these core areas (USDI 2002b).

The Service considers many of the core areas in the Clark Fork River drainage to be at risk of extirpation due in part to natural isolation, single life-history form, and low abundance. Expansion of nonnative lake trout into headwater lakes is the single largest human-caused threat in most of the 31 primarily adfluvial core areas, and dams and degraded habitat have contributed significantly to bull trout declines in the seven core areas centered primarily in fluvial habitat in the Clark Fork subbasin.

A discussion of bull trout status in major watersheds of the Clark Fork subbasin follows. The purpose of this discussion is to describe bull trout status at a smaller spatial scale than the larger subbasin (generally by core areas) and to put the proposed project into proper spatial context. The proposed action is located within the Flathead Lake core area.

Core areas within the Clark Fork subbasin are described in the following upstream order, beginning at Albeni Falls Dam on the Pend Oreille River, which is located downstream of the natural outlet of Lake Pend Oreille. Current status is taken from the template analysis produced for the bull trout 5-year review (USDI 2005). For core area descriptions, see USDI (2002b).

Lake Pend Oreille: The Lake Pend Oreille watershed is one of the largest, most complex, and best-documented bull trout core areas in the upper Columbia River watershed, encompassing 95,000-acre Lake Pend Oreille (the largest and deepest natural lake in Idaho) and extending into western Montana. An extensive redd count monitoring program was devised by Idaho Department of Fish and Game and has been in place since 1983 (USDI 2005). These redd counts accurately reflect the population trend. Data is collected from six index tributary streams: two in the lower Clark Fork River (downstream of Cabinet Gorge Dam), and four other systems tributary to the lake. Index counts average about two-thirds to three-fourths of the known spawning in the contiguous Pend Oreille basin. Bull trout index redd counts have ranged from about 300-700 throughout the 22-year period of record (averaging 505). In the seven years post-listing (1998-2004), index redd counts have ranged between 462 and 691, averaging 582. There
is some indication that numbers have been more robust since 1998. The status and trend of bull trout in this core area was considered "depressed" and "declining" based on information available at the time of listing (USDI 1998c). Based on recent analysis, there are as many as 5,000 adult bull trout in this core area and the recent trend is considered stable or increasing. These findings reflect improved monitoring and expanded knowledge about population demographics in this core area as much or more than recent population response. The potential for increased bull trout recruitment to this core area from the Clark Fork River watershed as a result of artificial upstream passage of spawning bull trout over the dams is promising, but untested. The range of this core area has also been expanded to include the lower portions of the Priest River watershed, based on results of bull trout radio telemetry studies. The precarious status of kokanee salmon (*Oncorhynchus nerka*) (the primary forage fish) and apparent expansion of the lake trout population, which may currently exceed bull trout abundance in Lake Pend Oreille, are the biggest threats to recovery and the magnitude and imminence of the nonnative species threat remains high.

Priest Lakes: The status and trend of bull trout in this core area was considered "depressed" and "declining" based on information available at the time of listing (USDI 1998c). Based on recent analysis, there are fewer than 100 adult bull trout in this core area and the recent trend is considered stable at best, more probably declining (USDI 2005). The range of this core area has declined as the lower portions of the Priest River watershed, based on results of bull trout radio telemetry studies, are now considered part of the Lake Pend Oreille core area. In addition, former local populations of bull trout in the main basin of Priest Lake are increasingly weak and fragmented. Annual efforts to remove lake trout from Upper Priest Lake are, at best, a stopgap measure. The precarious status of kokanee (a primary forage fish) and continuing expansion of the lake trout population are the biggest threats to recovery and the magnitude and imminence of the nonnative species threat, including brook trout, remains high. The conclusion that bull trout in this core area are threatened with extirpation is inescapable.

Cabinet Gorge Reservoir: A large amount of recent data has been collected, characterizing both bull trout abundance and demographics in this core area since the Avista Native Salmonid Restoration Program began conducting surveys in 2000 (USDI 2005). Prior to that there was only limited and partial monitoring of bull trout in this core area. Results of redds counts since 2000 indicate approximately 10-50 redds per year have been constructed in portions of the Bull River drainage (Lockard et al. 2002; Moran 2004, Montana Fish, Wildlife and Parks (MFWP) 2004). Additional limited spawning is thought to occur in Rock Creek, though identification of redds has been problematic (Moran 2004). Passage of transmitted fish over Cabinet Gorge Dam has contributed to the total since 2003. Extensive radio tracking of fish has led to many important observations of timing and movement patterns related to spawning. Preliminary conclusions are that the abundance of adult bull trout in Cabinet Gorge Reservoir is around 100 fish. The determination is complicated by movement patterns over two dams (Cabinet Gorge and Noxon Rapids) that sandwich the core area and the influx and egress of adult bull trout that has been documented to occur in this core area. There is insufficient data to reveal any trend indication, though it is known that the trap and
transport program has enhanced the number of bull trout spawning in the core area. Spruell et al. (2000) reported on the findings of a scientific panel that investigated the genetic structure of bull trout in the Lake Pend Oreille – Lower Clark Fork system, with particular attention to strategies for retaining genetic connectivity of bull trout in Lake Pend Oreille with upstream portions of the Clark Fork River drainage in Montana, including local populations isolated in Cabinet Gorge Reservoir. The panel endorsed strategies, which would restore connectivity (including trap and transfer of migratory bull trout over dams) to allow the full expression of bull trout life histories and maximize the potential for natural gene flow. Genetic data supported the hypothesis that bull trout migrating to the base of Cabinet Gorge Dam were individuals that hatched in upstream tributaries, reared in Pend Oreille, and were blocked by the dams from returning to their natal tributaries to spawn (Neraas and Spruell 2001). More recent work has lent credibility to the use of genetic markers as an accurate indicator of which source populations fish are derived from, allowing managers to transport individual trapped fish to the general vicinity of their stream of origin. The findings to date support previous conclusions that upstream and downstream connectivity to this core area should be restored so that under recovered conditions it should function as part of a larger core area complex (USDI 2002b).

Many of the actions conducted under the Avista Fish Passage and Native Salmonid Restoration Plan of the Clark Fork FERC Settlement Agreement have been directed at transporting bull trout upstream and downstream over Cabinet Gorge and Noxon Rapids Dams, with a goal of establishing functional connectivity for migratory bull trout between Lake Pend Oreille and upstream watersheds blocked by the dams. In 2002, a total of 416 juvenile bull trout were captured in fish traps while migrating downstream in Rock Creek, Bull River, Graves Creek and the Vermilion River (Lockard et al. 2003). Of that total, about 40 percent (167 fish) were transported to Idaho and released in the Clark Fork River below Cabinet Gorge Dam. All were marked for future identification. In 2003, 221 juvenile bull trout were captured migrating downstream and 88 were successfully transported below Cabinet Gorge Dam (Lockard et al. 2004). A second phase of the Avista Native Salmonid Restoration Program involves capture and transfer of adult bull trout migrating to the base of Cabinet Gorge Dam. In 2003, a total of 42 adult bull trout were captured and transferred from the Clark Fork River into Cabinet Gorge Reservoir (Lockard et al. 2004). Seven of those were fish that had been captured and transported over the dam in previous years (2001 or 2002). Of 36 bull trout that were that were implanted with transmitters and radio tracked in 2003, upstream movements of 20 were detected in the Bull River drainage, two were detected in the Rock Creek drainage, and 14 staged below Noxon Rapids Dam, the next upstream barrier on the Clark Fork River (Lockard et al. 2004). Tracking of bull trout to the spawning areas, combined with redd counts, led to the conclusion that most (73-89 percent) of the potential bull trout egg deposition in the Bull River drainage in 2003 was from migratory fish transported over Cabinet Gorge Dam. Additional information gathered from radio tracked fish in 2003 and 2004 has also supported the hypothesis that Rock Creek, despite its chronically dewatered condition, continues to support migratory bull trout (Lockard, Carlson and Hintz 2003).
Extensive information is being collected on the overlap with and potential superimposition of brown trout redds in important bull trout drainages (Moran 2004). Studies are ongoing related to concerns that northern pike negatively interact with bull trout and predate on juvenile bull trout in Cabinet Gorge Reservoir (Bernall and Moran 2004). There are also concerns about negative interactions with high densities of brook trout in many watersheds and the potential for an increasing population of recently illegally introduced walleye that are reproducing in Noxon Reservoir. To date, control actions on these species have not been initiated, pending further analysis.

In 1997 and 1998 a total of 780 fish were collected among nine sites in Montana above Cabinet Gorge Dam and 384 fish from four sites in Idaho below the dam for pathogen surveys. Only one fish was a bull trout, but the study was conducted in response to concerns that transport of bull trout over the dam might introduce new fish pathogens upstream. The soluble antigen of *R. salmoninarum*, the causative agent for bacterial kidney disease, was detected in fish from all sample sites across the study area, though no clinical cases of the disease were found. *F. psychrophilum*, the bacterium that causes cold water disease, was isolated from samples below the dam, but not above. However, the pathogen is generally regarded as a widely distributed organism and because it’s ubiquitous it was not determined to be an agent of concern for the fish transport program. IPN virus was also isolated from brook trout in the Mosquito Creek drainage, but previous cases had already occurred in the drainage and this pathogen was also known from upstream waters in Montana. No evidence of *M. cerebralis*, the parasite that causes whirling disease, was detected in any of the samples. With these findings, the fish transport program moved forward.

The status and trend of bull trout in this core area was considered “depressed” and “unknown” based on information available at the time of listing (USDI 1998c). Since that time, intensively focused monitoring and research efforts have occurred in this core area as part of the Avista Native Salmonid Restoration Program. Based on that recent analysis, we conclude that the abundance of adult bull trout in Cabinet Gorge Reservoir is around 100 fish. The determination is complicated by movement patterns over two dams (Cabinet Gorge and Noxon Rapids) that sandwich the core area and the influx and egress of adult bull trout that has been documented to occur in this core area. There is insufficient data to reveal any trend indication, though it is known that the trap and transport program has enhanced the number of bull trout spawning in the core area. The potential for increased bull trout recruitment to this core area from the Clark Fork River watershed as a result of artificial upstream passage of spawning bull trout over the dams is promising, but untested. Suitability of the reservoir habitat for adult bull trout remains limiting, thus the emphasis on connectivity to restore this core area as a functioning portion of a larger complex of core areas. This core area cannot stand alone as a functioning unit for bull trout recovery. The current approach of restoring functional connectivity to allow upstream and downstream migration will benefit the entire Lake Pend Oreille/Lower Clark Fork ecosystem, though obstacles remain to achieving that goal and it will require a focused and long-term effort.
Noxon Rapids Reservoir: The status and trend of bull trout in this core area was considered “depressed” and “unknown” based on information available at the time of listing (USDI 1998c). Since that time, intensively focused monitoring and research efforts have occurred in this core area as part of the Avista Native Salmonid Restoration Program (USDI 2005). Based on that recent analysis, we conclude that the abundance of adult bull trout in Noxon Reservoir is greater than 100 fish. The determination is complicated by movement patterns over two dams (Noxon Rapids and Thompson Falls) that sandwich the core area and the influx and egress of adult bull trout that has been documented to occur in this core area. There is insufficient data to reveal any trend indication, though it is anticipated that expansion of the trap and transport program will further enhance the number of bull trout spawning in the core area. The potential for increased bull trout recruitment to this core area from the Clark Fork River watershed as a result of artificial upstream passage of spawning bull trout over the dams is promising, but untested. Suitability of the reservoir habitat for adult bull trout remains limiting, thus the emphasis on connectivity to restore this core area as a functioning portion of a larger complex of core areas. The establishment of a reproducing walleye population in Noxon Reservoir elevates the magnitude and imminence of that threat.

Lower Clark Fork River (Section 3 – Thompson Falls Dam to Flathead River): The status and trend of bull trout in this core area were both considered “unknown” based on information available at the time of listing (USDI 1998c). That is still largely the case, though since that time some monitoring and research efforts have occurred in the Thompson River portion of this core area, primarily as part of the Plum Creek Native Fish Habitat Conservation Plan (USDI 2005). Preliminary conclusions are that the abundance of adult bull trout in Reach 3 of the Clark Fork River is about 100 fish. The determination is complicated by losses that may occur over Thompson Falls Dam, which forms the lower bound of this reach. Additionally, if efforts to restore bull trout populations in the Jocko River watershed on the Flathead Reservation (upstream of this reach) are successful, some of those fish will use a portion of this core area as overwinter and migratory habitat. Influx and egress patterns of adult bull trout in this core area are not documented. There is insufficient data to reveal any trend indication, though it is anticipated that expansion of the trap and transport program to Thompson Falls Dam will further enhance the number of bull trout spawning in the core area. The potential for increased bull trout recruitment to this core area from the Clark Fork River watershed as a result of artificial upstream passage of spawning bull trout over the dams is promising, but untested. Suitability of the Clark Fork River habitat for adult bull trout is partially limiting, due to thermal and water quality concerns. Similarly, portions of the Thompson River watershed experience warm summer water temperatures. Thus, the emphasis has been placed on connectivity to restore this core area as a functioning portion of a larger complex of core areas.

Lower Flathead River: Kerr Dam blocks fish passage between the lower Flathead and Clark Fork Rivers and Flathead Lake. Additionally, dams constructed to create irrigation reservoirs isolate tributaries of the Jocko River drainage from the lower Flathead River. This core area is almost entirely on the Flathead Reservation of the Confederated Salish and Kootenai Tribes (CSKT). Data from Tribal monitoring programs is typically not
public information, but to our knowledge redd counts are not being routinely conducted in this core area (USDI 2005). Extensive bull trout restoration activities are occurring in the Jocko River watershed, which is where most of the bull trout habitat in this core area occurs (CSKT 2000). Information from informal discussion with Tribal representatives indicates that numbers of adult bull trout in this core area are generally low, on the order of 100 adult fish or fewer in the migratory population. We have no information on the population trend. The status and trend of bull trout in this core area were both considered “unknown” based on information available at the time of listing (USDI 1998c). That is still largely the case. The CSKT has begun an extensive effort to restore bull trout habitat in the Jocko River watershed. No trend is indicated by the short period of record of monitoring. In the isolated headwaters there is evidence that Mission Reservoir bull trout are approaching extirpation. Information from informal discussion with Tribal representatives indicates that numbers of adult bull trout in this core area are generally low, on the order of 100 adult fish or fewer in the migratory population (excluding McDonald Lake, where numbers are higher). Most local populations are well below historical levels of natural abundance, with juvenile bull trout widely distributed but at low densities. With fish passage now provided over lower Clark Fork dams and additional habitat restoration efforts, the past fragmentation of this core area is being improved. However, significant habitat limitations remain (e.g. dewatering, thermal enrichment, nonnative species, impacts of whirling disease, expanding recreational use) and full recovery of bull trout is at best an uncertain prospect. Potentially, this core area should be able to support at least several hundred migratory adult bull trout. Thus, the emphasis has been placed on connectivity to restore this core area as a functioning portion of a larger complex of core areas.

Flathead Lake: The Flathead Lake watershed is one of the largest, most complex, and best-documented bull trout core areas in the upper Columbia River watershed, encompassing 125,000-acre Flathead Lake (the largest freshwater lake in the U.S. west of the Mississippi River) and a large portion of northwest Montana extending into British Columbia, Canada. An extensive redd count monitoring program was devised by MFWP and has been in place since 1980 (MFWP 2004). These redd counts accurately reflect the population trend (USDI 2005). Based on data collected from eight index tributary streams in the North Fork and Middle Fork Flathead River (collectively representing about half the known spawning in the basin), bull trout index redd counts ranged from about 300-600 in the 1980s (averaging 392), then dropped drastically in the early 1990s, to a range of 83-243 in the seven years prior to listing (averaging 137 between 1991 and 1997). In the 5 years post-listing (1998-2002), a brief rebound was experienced (range 187-251; average 215), but the 2003 redd count was only 130 and in 2004 only 136 reds were found (MFWP 2004).

The Flathead Lake food web was significantly altered in the 1980s, with the introduction of *Mysis*, resulting in tremendous increases in lake trout and lake whitefish (*Coregonus clupeaformis*) populations in this core area and the extirpation of a formerly robust kokanee population. These changes had significant negative effects on populations of native bull trout and westslope cutthroat trout, which were already below historical levels of the early 1900s. There is uncertainty over the level of ecological balance that is

Page 20
ultimately achievable. Because bull trout appear to compete directly with lake trout, and lake trout currently outnumber bull trout by manifold in the population of fish in the lake, bull trout are not driving food web interactions.

The status and trend of bull trout in this core area was considered “depressed” and “declining” based on information available at the time of listing (USDI 1998c). Based on recent analysis, there are fewer than 1,000 adult bull trout in this core area and the redd count trend, which temporarily increased in the late 1990s from historic lows reached in 1996, has again declined by nearly half since 2000. Predation, competition, or other forms of negative interaction with lake trout is the single factor most responsible for the decline of bull trout in this core area (MFWP and CSKT 2000, USDI 2002b). The collective assessment of the extensive research and monitoring program indicates that the lake trout population has stabilized at a high level (MFWP and CSKT 2000) and that bull trout redd numbers are currently below secure levels (Deliay and Hansen 2002). The range of this core area is stable, but threatens to decline if some weak local populations are extirpated. The magnitude and imminence of the nonnative species threat remains high.

Upstream of Flathead Lake, in the headwaters of the North and Middle Forks of the Flathead River drainage, there are numerous smaller bull trout core areas. These include the watersheds of Whitefish Lake, Upper Whitefish Lake, Upper Stillwater Lake, Cyclone Lake, Frozen Lake, Kintla Lake, Upper Kintla Lake, Upper Quartz Lakes, Lower Quartz Lake, Akokala Lake, Logging Lake, Bowman Lake, Arrow Lake, Trout Lake, Isabel Lakes, Harrison Lake, Lake McDonald, and Lincoln Lake; including 21 lakes in all. Some of these lakes, primarily those at high elevation and under 100 acres in size, have been isolated from two-way fish passage by natural barriers for thousands of years. Sizes range from 23 acres to nearly 7,000 acres. Most are in protected habitat in Glacier National Park or the Great Bear Wilderness Area. Collectively, these lakes support an important aspect of the evolutionary legacy of the adfluvial form of bull trout. Of the 21 lakes, at least eight are currently occupied by expanding lake trout populations, including all five lakes that are over 1,000 acres. The incompatibility of bull trout with invading lake trout in these waters (Fredenberg 2002) is currently considered a very high risk, likely to result in eventual extirpation of bull trout because no strategies exist to remove lake trout once they become established. Several more lakes appear to be at risk of invasion.

Swan Lake (Holland lake, Lindbergh Lake): Historically bull trout in Flathead Lake had access to the Swan River drainage and were widely distributed in the Swan River drainage. Completion of the Bigfork Dam in 1902 severed this connection. Bull trout from Flathead Lake no longer have access to the Swan River. The status of bull trout in this core area was considered “stable” and trend was “increasing” based on information available at the time of listing (USDI 1998c). The current status of the species in this core area is amongst the strongest in the entire range, though numerically redd counts are down about 30 percent since the peak level recorded in 1998, so the trend is no longer considered increasing (USDI 2005). Continuous redd count history dating to 1982 is available for four index streams (MFWP 2004). An increasing trend in bull trout was
indicated between 1982 and 1998 (approximately 200 redds in index streams in early 1980's, rising to approximately 600 redds in 1998). Since 1998, redd counts have stabilized at a slightly lower level, with about 425-435 index redds each year in 2002-2004. Bull trout may have reached equilibrium in this system at a population level of about 2,000 adults and the current trend appears stable.

In 1998 through 2003, a total of 11 lake trout (20 to 30 inches long) were reported caught by anglers from Swan Lake and the Swan River. These were the first documented reports of lake trout in the drainage (MFWP file records). In September 2003, the first evidence of lake trout reproduction was recorded with a gill net catch of a 9-inch specimen. In the fall of 2004, seven more juvenile lake trout were caught in a single gill net at the same location (MFWP file records). The MBTSG, in their Swan Lake Status Report (1996), concluded: "Swan Lake supports an introduced Mysis shrimp population and, if lake trout were also introduced, it is likely they would rapidly become the dominant fish species." The Service concurs with that assessment and considers nonnative lake trout to be the single greatest threat to bull trout in this core area (USDI 2002b). In other ecosystems within the Flathead River drainage lake trout invasion or introduction has resulted in the collapse of bull trout populations within a brief 25-30 year period (Fredenberg 2002). In ecosystems with established food chains that can support high rates of lake trout expansion and survival, particularly those such as Swan Lake where Mysis and kokanee are present, resulting collapse of bull trout has been profound and (to date) irreversible. If newly identified lake trout expansion in Swan Lake (perhaps exacerbated by the undetermined effects of whirling disease) cannot be halted or mitigated, it is expected that bull trout abundance in this core area will experience steep declines within the next 10-25 years.

Two additional core areas are located in the headwaters of this drainage in Holland and Lindbergh Lakes. Both of those lakes support non-native rainbow trout (Oncorhynchus mykiss) and kokanee populations and it is feared the potential for lake trout to move upstream from Swan Lake is high. Lake trout invasion is considered a high risk for these systems, which both appear to have low, but stable numbers of bull trout.

South Fork Flathead River (Hungry Horse Reservoir, Big Salmon Lake, Doctor Lake): Hungry Horse Dam, completed in 1954, isolates the South Fork Flathead River drainage from its' former connectivity with Flathead Lake. The status and trend of bull trout in this core area was considered "strong" and "stable" based on information available at the time of listing (USDI 1998c). This was the only Montana core area accorded that combination of attributes. Based on recent analysis, the numbers remain stable. The entire upper watershed is within the Bob Marshall Wilderness. Hungry Horse Reservoir and the South Fork Flathead is the largest bull trout habitat in the northwest with a mostly native fish species assemblage. MFWP has recognized the importance of that and is proposing measures to systematically remove nonnative salmonids in the limited headwater basins where they occur (as a result of historical stocking programs with rainbow trout and Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri). The core area is protected from downstream invasion by the impassable concrete structure of Hungry Horse Dam and will likely remain so. Two headwater core
areas in this drainage, in 800-acre Big Salmon Lake and 80-acre Doctor Lake, are both within the Bob Marshall Wilderness. Both appear to have long-term security, so long as the integrity of the Hungry Horse Reservoir species complex is protected.

An extensive redd count monitoring program was devised by MFWP and has been in place since 1993 (MFWP 2004). These redd counts accurately reflect the population trend. Based on data collected from eight index tributary streams, four each that are direct tributaries to either the reservoir or the upper watershed in the Bob Marshall Wilderness, bull trout index redd counts ranged from about 210-453, averaging 278 in the five-year period prior to listing (1993-1997). Approximately 20-25 percent of the total was in the four reservoir tributaries, with most of the spawning occurring in the upper South Fork watershed. In the period since 1998, redd counts in the eight index tributaries were conducted three times (1999, 2001 & 2004). Numbers were remarkably consistent, with 470-483 redds totaled in the eight streams, which represent up to 85 percent of the total basinwide spawning of bull trout. Recent redd counts may indicate an adult bull trout population base of about 2,500-3,000 fish. Because this is a reservoir that inundated a portion of the previous migratory corridor for fish from Flathead Lake, there was no established previous record of natural carrying capacity for this portion of the system in isolation. Rather, this core area incorporated about 38 percent of the spawning and rearing habitat for the Flathead Lake core area (Zubik and Fraley 1987). The loss statement for the Hungry Horse Mitigation program concluded that the dam construction eliminated between 1,840 and 2,089 adult bull trout from the Flathead Lake population (Zubik and Fraley 1987). Based on that analysis, we can conclude that the adult bull trout population occupying this core area (estimated 2,500-3,000 fish) is similar in size to natural carrying capacity of the area when it was still attached to Flathead Lake. MFWP concluded that the bull trout population had expanded after harvest was eliminated and has stabilized around a higher level of equilibrium since 1995 (MFWP 2002). This analysis was used in part as the basis for proposing reestablishment of an experimental bull trout sport fishery in the reservoir, which was permitted by the Service beginning in 2004.

Operations of the Federal Columbia River Power system have led to extreme variability in the pool of Hungry Horse Reservoir, at times being drawn down over 200 feet from full. While drawdowns of that magnitude have been eliminated in recent years, the State of Montana continues to express concern over the effect of water level fluctuation on native fish and recreation. Despite these variable pools, bull trout populations have not shown any measurable negative response. This core area is an important refuge of protecting the native gene pool of Flathead bull trout. Extensive Bonneville Power Administration-funded monitoring efforts have continued and problem areas for fish passage and habitat have been restored as a result of this program. Since the entire core area is on the National Forest, and most of the upper watershed is in wilderness, the habitat trend is relatively stable, although recent high-intensity forest fires may present some new concerns. Information generated from the experimental bull trout fishery will be used to further refine management of that resource.
Middle Clark Fork River (Section 2 – Flathead River to Milltown Dam): More intensive bull trout surveys have been conducted in recent years, primarily by MFWP, in this portion of the Clark Fork River drainage. Local spawning populations in Cedar Creek, Fish Creek, Rattlesnake Creek, and the Saint Regis River have been monitored sporadically (MFWP 2004). The surveys have identified up to 17 redds in Cedar Creek (2002), 20 redds in Fish Creek (2003), 33 redds in Rattlesnake Creek (2003), and 18 redds in the Saint Regis River (2003). Counts in the high single digits or low double digits have also occurred in most systems. These results indicate adult bull trout numbers in this core area range from roughly 100-200 fish, although there’s uncertainty in that estimate. No trend is indicated by the short period of record. Most local populations are well below historical levels of natural abundance and inadequate to maintain long-term genetic viability.

Milltown Dam, which has blocked fish passage at the upper boundary of this core area since 1908, is slated for complete removal within the next few years. While benefits are more likely to accrue to the next core area upstream, by allowing bull trout that migrate to return to natal headwaters, tangible benefits to this core area will accrue as well. Benefits of restoring fish passage throughout the system, over four major dams as a result of both the Avista and Thompson Falls projects as well as the Milltown Dam removal, cannot be fully anticipated, nor will they be fully realized for several bull trout generations.

The status and trend of bull trout in this core area were both considered “unknown” based on information available at the time of listing (USDI 1998c). That is still largely the case, though since that time MFWP has conducted extensive monitoring efforts in significant portions of this core area. Preliminary conclusions are that the abundance of adult bull trout in Reach 2 of the Clark Fork River ranges from roughly 100-200 fish, although there’s uncertainty in that estimate. No trend is indicated by the short period of record. Most local populations are well below historical levels of natural abundance, with juvenile bull trout widely distributed but at low densities. With fish passage now provided at Rattlesnake Dam (Missoulian in litt. 05/16/02) and the pending removal of Milltown Dam and additional efforts, past fragmentation of this core area is being improved. However, significant habitat limitations remain (e.g., dewatering, thermal enrichment, nonnative species, impacts of whirling disease, expanding recreational use) and full recovery of bull trout is at best an uncertain prospect. Potentially, this core area should be able to support 1,000 or more adult bull trout. Thus, the emphasis has been placed on connectivity to restore this core area as a functioning portion of a larger complex of core areas.

Bitterroot River: This is a complex core area containing a mixture of fluvial and resident populations of bull trout. Nine local populations were identified, but bull trout occupancy occurs at some level in many more tributaries. The high frequency of resident bull trout populations in this drainage makes interpretation of status and trend information difficult. The strong presence of resident populations suggests that fragmentation has eliminated much of the former migratory component (Nelson et al. 2002). Regular redd count monitoring has been conducted since 1994, with data
available for only three local populations (upper East and West Forks of the Bitterroot River and Skalkaho Creek). In general, the counts indicate that as few as 43 and as many as 104 redds were constructed annually in the monitored reaches of those watersheds, indicating adult abundance of at least 200 migratory adult fish may remain in this drainage (MFWP 2004). Trend information is difficult to interpret, due to missing counts and other factors, and no trend is discernible from the sparse data. Additional years of more intensive monitoring will be required to accurately interpret trends in redd counts.

The Bitterroot River has been considered an example of a watershed where systematic decline of the migratory life history form of bull trout has resulted in the increased prominence of isolated and fragmented populations of resident fish. Nelson et al. (2002) used extensive trapping of migrating fish in three drainages (Sweathouse, Skalkaho, and Sleeping Child Creeks) of the Bitterroot River watershed to evaluate the persistence of migratory bull trout life history forms. They observed that by 1996-1997, the migratory form which was historically much more common was now rare or absent in two of the tributaries, but still present at a low level in the third. They determined that in the drainages they studied there were not physical barriers to migratory fish, indicating that other downstream mortality factors such as predation or temperature played a bigger role in the extirpation of those stocks. It was suggested that the isolated, nonmigratory remnants of the population were at increased risk of extinction, and that restoration of the migratory form was an important conservation goal. The status and trend of 26 individual resident bull trout subpopulations were originally identified in this core area. Status of all subpopulations was considered "depressed" and trend was "unknown" based on information available at the time of listing (USDI 1998c). Further consideration determined that these subpopulations were the result of extensive fragmentation and loss of the migratory form in this drainage, rather than a natural condition, so the subpopulations were combined into a single core area in the draft recovery plan (USDI 2002b). Generally, weak monitoring efforts have occurred of adult bull trout populations across this core area over the recent decade. The high frequency of resident bull trout populations in this drainage makes interpretation of status and trend information difficult. In general, the counts indicate adult abundance of at least 200 migratory adult fish may remain in this drainage (MFWP 2004), but there is no evidence these populations are increasing. Additional years of more intensive monitoring will be required to accurately interpret trends in redd counts. With the pending removal of Milltown Dam on the mainstem Clark Fork River, some migratory fish that have previously been lost downstream will have spawning access restored to this core area. The habitat trend is expected to decline in this watershed due to extremely high rates of development on private lands, complications of complex multiple ownership patterns, heavy demands for irrigation water, impacts of recent fires, and other factors. Increasing human use and angler pressure, competition with nonnative fish, and other impacts make prospects for recovery of bull trout to 1,000 or more migratory adult fish unlikely.

Upper Clark Fork River (Section 1 – Milltown dam to headwaters): Historically, bull trout were likely distributed throughout the upper Clark Fork River, as there are no major natural barriers excluding bull trout from major portions of the drainage. A century of mining and smelting has polluted streams in the upper Clark Fork River system with toxic metals and other chemicals (MBTSG 1995a). Degradation, resulting
primarily from historic mining and associated water pollution effectively extirpated migratory bull trout from much of its historic range in the upper Clark Fork River above Milltown Dam, upriver from Missoula. Monitoring of bull trout redds in two local populations (Boulder and Warm Springs Creeks) has occurred regularly since 1999. Total redd counts have ranged from 21-70, averaging 49 over the past six years (MFWP 2004). These represent a majority of the known spawning populations in this core area, indicating a total adult bull trout population of 100-200 fish. No trend is indicated by the short period of record. Most local populations are well below historical levels of natural abundance and some inadequate to maintain long-term genetic viability. Milltown Dam, which has blocked fish passage at the lower boundary of this core area since 1908 (Schmutterling and McEvoy 2000), is slated for complete removal within the next few years. Direct benefits will accrue to this core area by allowing bull trout that migrate to return to natal headwaters. Benefits of restoring fish passage throughout the system, over four major dams as a result of both the Avista and Thompson Falls projects as well as the Milltown Dam removal, cannot be fully anticipated, nor will they be fully realized for several bull trout generations. However, once Milltown Dam is removed, it will be possible for bull trout from Lake Pend Oreille to return to the headwaters of the Clark Fork River (through a combination of trap and transport as well as natural migration) for the first time in a century. The status and trend of bull trout in this core area were both considered “unknown” based on information available at the time of listing (USDI 1998c). That is still largely the case, though since that time MFWP has conducted some monitoring efforts in portions of this core area. Preliminary conclusions are that the abundance of adult bull trout in Reach 1 of the upper Clark Fork River ranges from roughly 100-200 fish, although there’s uncertainty in that estimate. No trend is indicated by the short period of record. Most local populations are well below historical levels of natural abundance, with juvenile bull trout at low densities. Within this core area, populations of bull trout are heavily fragmented. With the pending removal of Milltown Dam and additional FRIMA passage projects and other efforts, the extreme fragmentation of this core area is being improved. However, significant habitat limitations remain (e.g., dewatering, thermal enrichment, heavy metals, nonnative species) and full recovery of bull trout is an uncertain prospect. Potentially, this core area should be able to support several hundred adult bull trout. Thus, the emphasis has been placed on connectivity to restore this core area as a functioning portion of a larger complex of core areas.

Blackfoot River (Clearwater River and Lakes): Data obtained from MFWP (2004) indicates a continuous redd count history dating to 1989 on three index streams, with two additional index streams added in 1998. Generally, an increasing trend is indicated beginning about the mid-1990s (approximately 50 reds in index streams in late 1980s and early 1990s, rising to approximately 150-200 reds in 2000-2003). However, redd counts in 2004 were low in two of the most significant local populations (Monture Creek and the North Fork Blackfoot River), indicating that the increasing trend is not as strong or consistent as previously suggested. Overall, bull trout are expanding in this system, which is currently at a level of about 500-1,000 adults. Intensive efforts have been made over the past decade to reopen blocked portions of the basin through renovation of irrigation and culvert barriers as well as by providing instream flow enhancements to improve seasonal migratory deficiencies (Pierce et al. 2003). Other projects are
addressing acid mine runoff and point sources of thermal enrichment that may contribute to seasonal or migratory fragmentation. As a result of this and positive response from restrictive angling regulations, bull trout are becoming more common in formerly unoccupied or low occupancy habitat. Status of bull trout in this core area was considered “depressed” and trend was “unknown” based on information available at the time of listing (USDI 1998c). The current status of bull trout in this core area is one of the strongest among fluvial populations in the Clark Fork management unit. Generally, an increasing trend is indicated beginning in about the mid-1990s, though redds counts in 2004 were low in some significant local populations, indicating that the increasing trend may not be as strong or consistent as previously suggested. Overall, bull trout are expanding in this system, which is currently at a level of about 500-1,000 adults. Increasing recreational fishing pressure along with angler inability to distinguish bull trout from legally harvestable species of trout (e.g., brook trout) has adversely impacted bull trout in the past and continues to be a concern (MBTSG 1995b).

Due to extensive watershed-based habitat restoration efforts, spearheaded by the Blackfoot Challenge, remarkable amounts of funding and effort have been expended in the watershed over the past decade or longer. These results are contributing to increasing populations of native bull trout and westslope cutthroat trout. With the removal of Milltown Dam just downstream of the confluence of the Blackfoot with the Clark Fork River, and additional ongoing habitat-based restoration efforts, the future looks bright. However, trouble spots remain (e.g., dewatering, thermal enrichment, nonnative species, impacts of whirling disease, expanding recreational use) and full recovery of bull trout is still an uncertain prospect. Potentially, this core area should be able to support 1,000 or more adult bull trout.

The Clearwater Lakes chain is a series of fluvial and adfluvial habitats associated with a major tributary to the Blackfoot River. This core area was considered a part of the Blackfoot River subpopulation at the time of listing. The status bull trout in this core area was considered “depressed” at the time of listing and the trend was “unknown” (USDI 1998c). Based on updated information, low numbers of adult bull trout remain in this core area, with the stronghold populations increasingly restricted to the headwater lakes and upper drainage. There are no data upon which to base a recent trend analysis. The increasingly robust population of illegally introduced northern pike, established in the lacustrine habitat of most of the lakes in this core area, causes elevated magnitude and imminence of the nonnative species threat to highest levels.

Rock Creek: This is one of the most complex core areas for fluvial populations of bull trout in Montana, with 16 local populations identified. Complex movement patterns of migratory fish occur (Carnefix et al. 2001), with overlap of some resident bull trout populations, which makes interpretation of some status and trend information difficult. Regular redd count monitoring has been conducted since 1993, with some data available for about 11 local populations. In general, the counts indicate that about 100-300 redds are constructed annually in the monitored reaches, indicating adult abundance of at least 500 and as many as 1,000 or more fish (MFWP 2004). Trend information is difficult to interpret, due to missing counts and other factors, but the data indicate this core area
population may have declined since the time of listing. Total basinwide redd counts were 200-270 in 1996-1998, but only about 100-165 in 2002-2004. Some or all the decline may have been due to natural variation as a result of systemwide drought conditions in recent years. Additional years of monitoring will be required to accurately interpret the effect of the current decline in redd counts.

The status and trend of bull trout in this core area were both considered “unknown” based on information available at the time of listing (USDI 1998c). Extensive monitoring efforts have occurred across this core area over the recent decade. Redd counts indicate that about 100-300 reds are constructed annually in the monitored reaches, indicating adult abundance of at least 500 and as high as 1,000 or more fish (MFWP 2004). Trend information is difficult to interpret, due to missing counts and other factors, but the data indicate this core area population may have declined since the time of listing.

With the pending removal of Milltown Dam on the mainstem Clark Fork River some migratory fish that have previously been lost downstream will have spawning access restored to this core area. The habitat trend will improve as this watershed is highly valued for recreation and largely protected from intrusive management and development. However, due to increasing human use and angler pressure, competition with nonnative fish, and other impacts, full recovery of bull trout to 1,000 or more adult fish remains problematic.

New threats

Since listing, no substantial new threats have been identified.

Effects of projects: No new threats have been identified through section 7 consultation across the Columbia River population. Effects of projects that have been analyzed through section 7 consultation as reported in a biological opinion are summarized in this section. These effects are an important component of objectively characterizing the current status of the species. To assess the effects of these actions/projects on bull trout we reviewed all of the biological opinions received by the Service’s Region 1 and Region 6 offices, from the time of listing until August 2003; this summed to 137 biological opinions. Of these, 124 biological opinions (91 percent) applied to activities affecting bull trout in the Columbia River population, 12 biological opinions (9 percent) applied to activities affecting bull trout in the Coastal-Puget Sound population, 7 biological opinions (5 percent) applied to activities affecting bull trout in the Klamath River population, and 1 biological opinion (<1 percent) applied to activities affecting the Jarbridge and St. Mary – Belly River populations. (Note: these percentages do not add up to 100 because several biological opinions applied to more than one population). The geographic scale of these consultations varied from individual actions (e.g., construction of a bridge or pipeline) within one basin to multiple-project actions occurring across several basins.

This analysis showed that we consulted on a wide array of actions which had varying levels of effects. No actions that have undergone consultation were found to appreciably reduce the likelihood of survival and recovery of the bull trout. Furthermore no actions
that have undergone consultation were anticipated to result in the loss of any subpopulation identified during listing.

Since August 2003, Region 6 of the Service has issued an additional 22 biological opinions under section 7 for bull trout in the Montana portion of the Clark Fork management unit. After review of these opinions, the Service determined that actions that had undergone consultation were not anticipated to result in the loss of any core area or listing subpopulation of bull trout. Eighteen of the 22 biological opinions resulted in short-term adverse effects with long-term benefits. To date, in Regions 1 and 6 of the Service, no actions that have undergone section 7 consultation for adverse effects to bull trout have resulted in a jeopardy finding (i.e., an appreciable reduction in the likelihood of both the survival and recovery of bull trout). Taken in sum, the impact of all these actions adversely affected a small portion of the overall range of the species in the Clark Fork management unit.

Analysis of the species and critical habitat likely to be affected

Bull trout are listed as threatened and critical habitat has been designated under the Endangered Species Act (Act). Within this project’s action area, no critical habitat for bull trout was designated. Therefore, no further discussion of critical habitat is included in this biological opinion.

The proposed action would occur in an area that could be considered to be in both the Flathead Lake Core Area for bull trout and the Swan Lake Core Area. The Flathead Lake Core Area contains 19 local bull trout populations, and the action area for this project does not include portions of any of these local populations, as described in the draft recovery plan. The Swan Lake Core Area contains nine local bull trout populations, and this project does not include portions of any of these local populations either. The project area is more closely aligned with the Flathead Lake Core area and seems more typical of, and influenced by, Flathead Lake habitat. And, because the Bigfork Dam blocks upstream migration by fish, bull trout in the Swan River below the dam (i.e., in the project area) are considered part of the adfluvial Flathead Lake subpopulation. Therefore, for the purposes of this biological opinion, we will consider this proposed project to be located within the Flathead Lake Core Area for bull trout. The entire basin of Flathead Lake, to the high water mark, provides foraging, migratory and overwintering habitat for tributary populations of bull trout (USDI 2002a).

Other listed species

In addition to bull trout, other federally-listed species that may be present in the project area include the threatened bald eagle (*Haliaeetus leucocephalus*), threatened grizzly bear (*Ursus arctos horribilis*), endangered gray wolf (*Canis lupus*), threatened Canada lynx (*Lynx canadensis*), threatened water Howellia (*Howellia aquatilis*), and threatened Spalding’s campion (*Silene spaldingii*). Based on information provided in the BA for this project, including implementation of the stated design features and conservation measures, the Service concurs with the Administration that the proposed project may
affect, but would not be likely to adversely affect bald eagles and grizzly bears. Therefore, further consultation under the Act is not required relative to bald eagles or grizzly bears and they will not be considered further in this biological opinion. The Service acknowledges the Administration’s determination that this proposed project would have no effect on gray wolves, Canada lynx, water Howelia, or Spalding’s campion. If an occurrence of a listed species is newly discovered in the proximity of this project corridor as construction progresses, the Administration should consult with the Service regarding that new information.

III. Environmental baseline

Regulations implementing the Act, as amended (16 U.S.C. 1531 et seq.) (50 CFR 402.02) define the environmental baseline as the past and present impacts of all Federal, State, or private actions and other human activities in the action area. Also included in the environmental baseline are the anticipated impacts of all proposed Federal projects in the action area, which have already undergone section 7 consultation, and the impacts of State and private actions in the action area, which are contemporaneous with the consultation in progress. Such actions include, but are not limited to, previous timber harvest, road construction, residential development and other land management activities.

Status of the species within the action area

Action area, as defined by the Act, includes the entire area that would be affected directly or indirectly by the Federal action and not merely the immediate area involved in the action. For the purposes of this biological opinion, the action area is defined as a 0.8-km (0.5 mile) swath on either side of affected portions of Montana Highway 35.

The action area has been defined by the potential for project-generated sediment and related impacts to influence the movement, habitat use and persistence of bull trout. The action area upstream from the proposed bridge replacement site would be affected by temporary disturbance of fish passage due to instream activities (pier and piling removals, coffer dam construction and removal). The action area downstream of project activities would be affected by turbidity and sediment deposition. Downstream effects are unlikely to extend far out into Flathead Lake. The action area serves as bull trout foraging, migratory, and overwintering habitat.

Baseline conditions for bull trout habitat in the action area were assessed using information in the Section 7 Consultation Rationale for Population and Environmental Baseline Ratings: Flathead Lake Sub-basin (U.S. Department of Agriculture (USDA) 1998), the biological assessment for this project (MDT 2005), draft bull trout recovery plan (USDI 2002b), and other sources of information. Because this project’s action area occurs at a point where two bull trout core areas intersect, and because the action area does not occur within a local population of either of the core areas, relatively few data are available pertaining to bull trout within this action area. Information that does exist indicates that the Flathead Lake subpopulation is currently considered relatively stable compared to the declining bull trout abundance that occurred during the early 1990s. The current bull trout population abundance is fluctuating at lower levels than in the 1980s.
The Swan River below Bigfork Dam likely receives occasional use by bull trout from Flathead Lake for foraging, but no spawning occurs in that reach. Flathead Lake bull trout are known to spawn in tributaries of the North and Middle Forks of the Flathead River, but there are no tributaries to the Swan River below Bigfork Dam that bull trout could use for spawning. The Montana River Information System database reports that the habitat for bull trout in the Swan River from its mouth up to Bigfork Dam is rated as “limited value habitat.”

Available information also indicates that dams, timber harvest, road construction, introductions of non-native fish species, and residential development have all affected bull trout habitat and populations in the action area. The impacts from these activities are reflected in the four population and 19 habitat indicators defined in “A Framework to Assist in Making Endangered Species Act Determinations of Effect for Individual or Grouped Actions at the Bull Trout Subpopulation Watershed Scale” (USDI 1998b). An evaluation of these four population indicators and 19 habitat indicators was conducted at the sub-watershed scale to establish the environmental baseline. Table 1 displays the baseline conditions and the effects of the proposed action for the project area.

Table 1 displays the results of the “Matrix of Diagnostics / Pathways and Indicators” (matrix), the objective of which is to integrate the biological and habitat conditions to arrive at a determination of the potential effect of land management activities on a listed species. The columns in the matrix correspond to levels of condition of the indicator. There are three condition levels: “functioning appropriately,” “functioning at risk,” and “functioning at unacceptable risk.” These three categories of function are defined for each indicator in the matrix. In concept, indicators in a watershed are “functioning appropriately” when they maintain strong and significant populations that are interconnected and promote recovery of a listed species or its critical habitat to a status that will provide self-sustaining and self-regulating populations. When the indicators are “functioning at risk,” they provide for persistence of the species but in more isolated populations and may not promote recovery of a listed species or its critical habitat without active or passive restoration efforts. “Functioning at unacceptable risk” suggests the listed species continues to be absent from historical habitat, or is rare or being maintained at a low population level, although the habitat may maintain the species at this low persistence level, active restoration is needed to begin recovery of the species.

Action agencies authorizing activities within lands occupied by bull trout are mandated by the Act to consider the environmental baseline in the action area and effects to bull trout that would likely occur as a result of management actions. To that end, agency biologists use the four biological indicators and the 19 physical habitat indicators in the matrix for bull trout to assess the environmental baseline conditions and determine the likelihood of take per interagency guidance and agreement on section 7 consultations on the effects of actions to bull trout (USDI 1998a, 1998b). Take could occur as direct harm or harassment of individuals or indirectly through adverse impacts to bull trout habitat. The majority of the matrix analysis consists of specific consideration of the 19 habitat indicators. Analysis of the matrix habitat indicators relative to project effects provides a very thorough assessment of the existing habitat conditions and potential impacts to bull
Table 1: Checklist for documenting environmental baseline and project related effects on relevant indicators for bull trout in the vicinity of the Bigfork - North & South project (MDT 2005).

<table>
<thead>
<tr>
<th>INDICATORS</th>
<th>Functioning Appropriately</th>
<th>Functioning At Risk</th>
<th>Functioning at Unacceptable Risk</th>
<th>Improve</th>
<th>Maintain</th>
<th>Degrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subpopulation Char.:</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Subpopulation Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth and Survival</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Life History Diversity & Isolation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Persistence & Genetic Integrity</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Water Quality:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Temperature</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Chemical Contam./Nutrients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Habitat Access:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Physical Barriers</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habitat Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Substrate Embeddiness</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Woody Debris</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pool Frequency & Quality</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Large Pools</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Off-channel Habitats:</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Refugia</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Channel Cond. & Dynamics:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Width-to-Depth Ratio</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streambank Condition</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floodplain Connectivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow/Hydrology:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Change in Peak/Base Flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage Network Increase</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Watershed Conditions:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Road Density & Location</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disturbance History</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian Reserves</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disturbance Regime</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Integration of Species and Habitat Conditions</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

trout habitat. A description of the status of each indicator within this project area is provided in the biological assessment prepared for this project (MDT 2005).
Factors affecting species environment within the action area

The Bigfork Dam on the Swan River, built after the power plant was first installed in 1902 and later improved, probably blocked some bull trout migration from Flathead Lake into the Swan River. Hungry Horse Dam completely blocked the migration of bull trout from Flathead Lake into the South Fork Flathead River, beginning in 1953. Together, these two facilities reduced by nearly 50 percent the potential spawning and rearing habitat available to Flathead Lake bull trout (Fraley et al. 1989), although not all of that habitat was necessarily occupied (USDI 2002b).

Bigfork Dam blocked the Swan River drainage from Flathead Lake, but the ramifications of this loss to either system are not well understood. Anecdotal evidence from newspaper accounts around 1900 indicates that the mouth of the Swan River (or Big Fork as it was called then) was a very popular fishing spot in the spring (April to May), with apparent concentrations of bull trout and westslope cutthroat, and again in the fall (November), for mountain whitefish (Inter Lake, in litt., 1900). It is not clear whether those fish migrated up the Swan River, were simply drawn there because of proximity to the mouth of the Flathead River, or were drawn there for foraging opportunities or other reasons. The Flathead Recovery Subunit Team presumes that limited genetic interchange between the Swan and Flathead River drainages probably occurred naturally because of thermal regimes (USDI 2002b).

Kerr Dam, constructed downstream of the natural outlet of Flathead Lake in 1938, blocked upstream fish passage from the lower Flathead River into Flathead Lake. In early biological surveys, surveyors noted that the falls downstream of Flathead Lake were not fish barriers but "... consist simply of a series of rapids, which do not interfere in the least with the free movement of fish. From this point down the Flathead River possesses no falls or obstructions of any kind, and there is none in Clarke Fork until near Lake Pend d'Oreille" (Gilbert and Evermann 1895).

However, because of thermal conditions, routine bull trout migration probably did not occur historically between large lakes, such as Flathead Lake and upstream or downstream lakes. Bull trout are believed to be deterred from migrating upstream into relatively warm effluent waters from lakes during the fall. To date, only casual observation and genetic information support this hypothesis, but research with radio transmitters should be invaluable in further defining these migratory patterns. Regardless, historical habitat connectivity between lakes, which facilitated straying of fish, may have been important for providing genetic exchange and reestablishing extirpated populations. Downstream movement of fish through Kerr Dam, into the lower Flathead River, has been demonstrated (USDI 2002b).

Kerr Dam has substantially modified the hydrograph of Flathead Lake, resulting in a longer full pool period in the summer months followed by a more rapid drawdown in winter. This water level scenario has impacted fisheries in the lake, in part by increasing shoreline erosion, both in the lake and in the lower end of the mainstem Flathead River where it enters the lake (USDI 2002b).
Hungry Horse Dam, completed in 1953, disconnected the South Fork Flathead River drainage from the main Flathead River system. The full ramifications of this loss to Flathead Lake, as well as to the South Fork Flathead River drainage, are not currently known. Preliminary genetic information suggests that, to a great extent, local bull trout populations using the three forks of the Flathead River segregated themselves naturally (Kanda et al. 1994). Therefore, the genetic diversity of Flathead Lake bull trout may have been reduced as a result of the dam construction. The bull trout core areas remaining upstream of the dam (Hungry Horse, Big Salmon, and Doctor Lakes) probably preserved the genes of South Fork Flathead River stocks that existed there historically, though some adaptive changes could occur. Hungry Horse Dam has benefited the South Fork Flathead River in one way, creating an isolation barrier that has kept most of the South Fork Flathead River drainage free from nonnative fish species (USDI 2002b).

During recent decades, operation of Hungry Horse Dam has resulted in excessive drawdowns. MFWP has recommended a maximum drawdown of 26 meters (85 feet) based on biological considerations. Since 1988, this recommendation has been frequently exceeded, as the U.S. Bureau of Reclamation released water as required to meet the Pacific Northwest Coordinated Agreements for critical water years. Research has shown that reduced reservoir volume directly impacts the size of the aquatic environment for all organisms in the food web. Production of phytoplankton, zooplankton, and aquatic insects is reduced. And reduction in the food base reduces the prey available for predator species like bull trout. Reservoir volume can also be greatly reduced, forcing bull trout and other fish species into riverine habitats. Because of the steep slopes in the reservoir, volume is reduced by approximately 80 percent for drawdowns of 55 meters (180 feet). Biologists at MFWP are concerned that some local bull trout populations in Hungry Horse Reservoir may be damaged by continuing deep drawdowns (MFWP 1997), though to date the overall population appears to have been stable (USDI 2002b).

Past forestry practices (road construction, log skidding, riparian tree harvest, clearcutting, and splash dams) are also a major contributing cause of the decline of bull trout in the Flathead River drainage. The effects on habitat of these practices include increased sediment in streams, increased peak flows, hydrograph and thermal modifications, loss of instream woody debris and channel stability, and increased accessibility for anglers and poachers. Although the heaviest timber harvest occurred in the 1960's and 1970's, past forest practices will continue to impact bull trout because of the remaining road systems, increased water yields, and increased efficiency of water delivery to the streams that results in changes in the runoff timing. Impaired water quality as a result of silvicultural activities has been identified in 325 kilometers (202 miles) of 17 streams in the Flathead River drainage (Montana Department of Health and Environmental Sciences (MDHES) 1994).

Agriculture impacts to water quality in the Flathead Recovery Subunit occur primarily in the lower reaches of the upper Flathead River, Ashley Creek, and the Stillwater River (MBTSG 1995c). Though the latter two streams are not generally occupied by bull trout, they do contribute to the water quality degradation of the lake and river system. The MDHES states that 206 kilometers (128 miles) of streams in the Flathead River
watershed suffer impaired water quality as a result of agricultural activities (MDHES 1994). MFWP has identified 31 kilometers (19 miles) of streams that are chronically dewatered and 145 kilometers (90 miles) of streams that are periodically dewatered as a result of irrigation withdrawals (MFWP 1991). Not all of these stream segments are occupied by bull trout. The impacts of agriculture on bull trout in this watershed may have been more significant historically than they are at the present time. Current impacts to bull trout from agricultural activities in the Flathead River basin are believed to be low (USDI 2002b).

Transportation systems were a major contributor to the decline of bull trout in this recovery unit. Separating the direct effect of the roads and railroads from the development associated with their construction is difficult. Separating the effects of transportation corridors in forested habitat from the legacy effects of forest management is also difficult. Construction methods during the late 19th and early 20th century, primarily channelization and meander cutoffs, caused major impacts on many of these stream; impacts that are still being manifested. Such impacts seldom occur with new roads. However, significant problems remain and are associated with passage barriers, sediment production, unstable slopes, improper maintenance, and high road densities. All of these problems impact bull trout and can only be addressed on a site-by-site basis (USDI 2002b).

The impact of residential development will become increasingly important to bull trout recovery in the Flathead Recovery Subunit. An increasing human population has led to increased lake eutrophication because of nutrient enrichment in Flathead Lake and other large natural lakes within the basin (Flathead Basin Commission 1999). During the 1990’s, the human population in Flathead County grew by 25.8 percent, the sixth highest rate of growth among Montana’s 56 counties (Inter Lake, in lit., 2001). Recent evidence indicates that the downward trend in water quality in Flathead Lake may be leveling off, in part because of an aggressive campaign by the Flathead Basin Commission and other private and public interests. Unmanaged growth and increased development pose a serious threat to water quality in many of the lakes in the basin (MDHES 1994).

Some residential development is also ongoing in the tributaries used by spawning bull trout in the North and Middle Fork Flathead River drainages (MBTSG 1995c). Domestic sewage from these developments and changes to stream morphology caused by building in the floodplain could reduce habitat quality in the tributaries (USDI 2002b).

Golf courses often impact riparian areas, causing bank erosion and reduced water quality. Ski area development is expanding into the headwater areas of Big Creek, an important bull trout spawning stream in the North Fork Flathead River drainage (MBTSG 1995c). Downhill ski areas create permanent clear-cuts that have the potential to increase sediment loads and water yields and to change hydrologic patterns (USDI 2002b).

The human population in the Swan River Valley is also growing rapidly (MBTSG 1996). The Swan Valley is in Lake and Missoula Counties, which grew in human population by 26.0 percent and 21.8 percent, respectively, during the decade of the 1990s (Inter Lake, in
litt., 2001). Requests for State 310 permits to alter the bed and/or immediate banks of streams in the drainage are increasing. Private land in the drainage is concentrated along the Swan River and the lower portions of the tributary drainages. These reaches provide critical migratory corridors and rearing habitat. It is likely that some corporate timber holdings in the drainage may be sold in the future. Such a sale could allow development adjacent to major spawning and rearing areas, though the recent development of a Habitat Conservation Plan with Plum Creek Timber Company is designed, in part, to minimize such impacts (USDI et al. 2000).

Only a few small tracts of private land and scattered mining claims occur in the South Fork Flathead River drainage. Therefore, limited rural residential development is possible upstream of Hungry Horse Dam (MBTSG 1995d).

The introduced fish species in the lower portions of the Clark Fork River drainage in Montana include Yellowstone cutthroat trout, brook trout, brown trout, rainbow trout, lake trout, lake whitefish, largemouth bass (Micropterus salmoides), smallmouth bass (Micropterus dolomieu), black crappie (Pomoxis nigromaculatus), northern pike, yellow perch (Perca flavescens), pumpkinseed (Lepomis gibbosus), burbot (Lota lota), yellow bullhead (Ameiurus natalis), black bullhead (Ameiurus melas), fathead minnow (Pimephales promelas), and central mudminnow (Umbra limi). Brook trout are believed to be a particularly high risk in lentic environments and are present in most streams in the lower Clark Fork River drainage that are currently used by bull trout. Individual walleye, apparently from illegal transplants, have been found in several waters. To date, however, walleye are not known to have established reproducing populations (USDI 2002b).

Of all the threats to bull trout recovery, the expanding presence of nonnative species may prove to be the most intractable. In particular, expansion of congeneric lake trout and brook trout is of greatest concern for bull trout recovery in the Clark Fork Recovery Unit. Scientists currently have limited tools available to deal with these intruders, and in many cases, there is strong public opposition to controlling or eliminating other salmonids that provide sport fisheries. The impact of introductions of nonnative species may be permanent. While the status of stream habitat for bull trout in many watersheds throughout the recovery unit has had an improving trend, the effects of nonnative introductions, particularly in large lakes, may permanently reduce the capacity of these waters to support bull trout. This issue ranks as one of the highest priorities for expenditure of research, education, and enforcement dollars. Angling regulations in most waters have gone as far as they can to protect native species, short of completely closing angling to further reduce take that occurs from hooking mortality and species misidentification. A key to successful bull trout restoration is educating both anglers and the nonangling public about the value of native species. Intact native fish ecosystems are increasingly rare, and we must allocate substantial resources to protecting and restoring those that remain (USDI 2002b).

In the Flathead Lake, Swan Lake, and South Fork Flathead River (Hungry Horse Reservoir) core areas, the risk to bull trout from environmental instability is reduced due to the predominance of the migratory life form and the relatively connected habitat.
remaining for these fish (MBTSG 1995c, 1995d, 1996). If a natural or human-caused event causes bull trout to be eradicated from a small portion of the basin (local populations), other fish from within the drainage may colonize the vacant habitat. For populations in the core areas centered in smaller lakes, the risks from catastrophic events are higher because the isolation factor and restricted habitat make survival and/or recolonization less likely (MBTSG 1995c). In spite of barriers on the South Fork Flathead and Swan River that have cut off nearly half the watershed, the remaining upper Flathead River (North and Middle Forks) is one of the largest drainages (nearly 200,000 hectares [500,000 acres]) that still maintains good interconnections between spawning and rearing habitat and between the foraging, migrating, and overwintering habitat for migratory fish. There are substantial genetic differences between local populations spawning in the North Fork and Middle Fork Flathead River tributaries that should not be disrupted (Kanda et al. 1994).

In the Clark Fork Recovery Unit, the risk of core area and local population extirpation from habitat isolation and fragmentation is generally increasing as populations of bull trout decline. Major dams were the catalyst for much of this disruption, and fragmentation has continued at a finer scale because of habitat decline and introductions of nonnative species. While bull trout are present in most historical core areas, there is substantial evidence of extirpation of local populations throughout this recovery unit, and many populations are at levels low enough to seriously reduce the chances of recolonization. The threat from isolation and fragmentation is real, and as more data is gathered, we anticipate gaining a better understanding of how bull trout migrate and interact between patches (Rieman and McIntyre 1995).

IV. Effects of the action

"Effects of the action" refers to the direct and indirect effects of an action on the species or critical habitat, together with the effects of other activities that are interrelated or interdependent with that action that would be added to the environmental baseline. Direct effects are considered immediate effects of the project on the species or its habitat. Indirect effects are those caused by the proposed action and are later in time, but are still reasonably certain to occur. Interrelated actions are those that are part of a larger action and depend upon the larger action for their justification. Interdependent actions are those that have no independent utility apart from the action under consultation. The effects of the action are added to the environmental baseline to determine the future baseline and to form the basis for the determination in this opinion. Should the Federal action result in a jeopardy situation and/or adverse modification conclusion, the Service may propose reasonable and prudent alternatives that the Federal agency can take to avoid violation of section 7(a)(2). The effects discussed below are the result of direct and indirect impacts of implementing the proposed project.

General effects of transportation projects on bull trout

Effects associated with major transportation systems on rivers and lakes include sedimentation, loss of riparian habitat, channel modification, and chemical
contamination. Effects vary widely depending on factors such as number, magnitude, and proximity of the transportation system, type of water body affected, surrounding topography, and level of use of the system. Effects from transportation systems can lead to degradation of aquatic habitat. For example, channel modifications such as bank hardening, constriction, channelization, and relocation can lead to stream instability, bank erosion, sediment deposition, and lateral stream movement (MDT 2005).

The major effects from transportation systems on bull trout and their habitat include sedimentation, channelization, bank instability, and loss of riparian vegetation. These effects generally lead to degraded habitat by increasing water temperature and reducing habitat complexity, pool quality, large woody debris recruitment, and bank stability (MDT 2005).

Direct effects are impacts caused by specific projects that occur at the same time and place and have immediate effects on the species or its habitat (e.g., construction equipment destroys eggs by running across a redd in the river channel, or fill material deposited in the stream kills a fish). Transportation improvement projects can potentially have direct impacts on bull trout in five ways: 1) direct mortality of individual fish at all life stages; 2) major disturbance of fish in the project area; 3) major temporary displacement of fish species in the vicinity of the project area; 4) major elimination of supporting aquatic and/or riparian habitat in the project area (important habitat features); and 5) project activities causing substantial, long-term reductions in water quality due to excessive sedimentation and toxic substances, resulting in reduced availability of prey or increased toxicity of prey through bio-accumulation of contaminants (MDT 2004).

Indirect effects are impacts caused by or resulting from actions of specific projects that are later in time and space and are reasonably certain to occur (e.g., degradation of aquatic and riparian habitat or water quality to the point where fish survival and/or production is substantially reduced during any life stage). Indirect effects, with the exception of direct mortality of fish, can be similar to direct effects, but are less severe and immediate in observable impacts to sensitive fish species and their habitat. Indirect impacts can also manifest themselves after completion of project activities, and can change long-term human use and resource condition. Transportation improvement projects can potentially have indirect impacts on bull trout in four ways: 1) increased seasonal disturbance of fish in the project area; 2) temporary displacement of fish in the vicinity of the project area; 3) elimination of supporting vegetation in the project area; and 4) project activities causing substantial, long-term reductions to water quality and stream habitat, due to excessive sedimentation and persistent, toxic substances (MDT 2004).

Project related activities could create disturbed areas that, over the long-term, could increase sediment loads into the water body, thereby reducing availability, quality, and abundance of substrate needed for macroinvertebrate production. Also, refueling and equipment storage areas would pose risks through possible leaks of chemical contaminants into the river, which could have long-term effects on fish production by reducing egg survival and macroinvertebrate production in stream gravel (MDT 2004).
Project specific effects on bull trout

Much of the information in the following section relative to the effects of this proposed project on bull trout was excerpted from the Department’s BA for this project (MDT 2005). The Service agrees with these analyses and does not expect any effects to bull trout other than those described below.

The reconstruction of Montana Highway 35 north and south of Bigfork has the potential to affect the aquatic ecosystem in the lower reaches of the Swan River and Flathead Lake. While the project will increase the size of the transportation system in the area, the magnitude of effects will be less than construction of a new facility. Effects will be greatest where the highway crosses the Swan River and where it parallels Flathead Lake; as the distance from the highway to the lake increases, the magnitude of potential effects is expected to decrease (MDT 2005).

Potential effects on aquatic resources from the reconstruction of this stretch of Montana Highway 35 include:

- Sedimentation from construction activity;
- Potential oil/gas contamination from equipment working in or adjacent to the river and lake, and/or spills within the project area;
- Loss of riparian vegetation;
- Direct mortality of fish in the river during instream work;
- Long-term increase in runoff from an increased area of impervious surfaces;
- Long-term increase in sediment loads from increased sanding/graveling of the highway during winter months;
- Introduction of contaminants such as petroleum products from the highway during runoff events; and
- Stochastic events such as a traffic accident, resulting in stream or lake impacts (MDT 2005).

Direct effects: Direct effects from this project may include effects from sedimentation, chemical contamination, loss of riparian vegetation, and mortality of individual fish.

Sedimentation: Previous studies in the Flathead Basin have shown a direct correlation between construction of transportation systems, in particular logging roads, with the rate of deep lake sediment accumulation. Some studies have suggested that the rate of sediment deposition may increase from three to ten times normal rates during road and railroad construction (MDT 2005).

In general, the amount of sediment transported or deposited in a stream under a given set of conditions is the result of: 1) the quantity and quality of sediment brought down to a particular section of stream; and 2) the capacity of the stream to transport the sediment. Factors influencing this process include soil type and condition, magnitude, intensity, duration, distribution, and season of rainfall, vegetal cover, and surface erosion and bank cutting. Sediment from the project construction site entering either the Swan River or
Flathead Lake would depend largely on the proximity of exposed soils to the water bodies, and weather conditions such as precipitation and wind. Heavy rains and winds during construction would result in a worst-case scenario in terms of sediment washing into the river and lake. Best management practices including appropriate erosion and sediment control methods are required to help minimize sedimentation in such an event (MDT 2005).

Instream work is anticipated as part of the removal of the existing instream bridge pier in the Swan River. This work would likely include the construction, and removal, of a temporary coffer dam around the pier, and the demolition and removal of the pier structure. The existing concrete pier rests on a wooden footing. The concrete would be removed and the footing would be cut down. To perform this work, a temporary platform would likely need to be installed half-way into the river from the south bank. This would be founded on temporary pilings. This platform and piling would be removed prior to project completion. This work would likely re-suspend some existing sediment when the pilings are removed. However, this is not expected to re-suspend large amounts of sediment. Project-related sediment that does reach the Swan River or Flathead Lake would accumulate in Flathead Lake. This project would not result in the construction of any new features in the waterway, and once construction is complete, no structural features would be in the waterway. Any placement of riprap below the high water mark or the lake maintained level should occur during low water level times. Current riprap would remain and the final overall cross-section would not change. However, some riprap would be disturbed during construction and would then be restored (MDT 2005).

Due to the proximity of the project to the Swan River and Flathead Lake, actual construction of the highway would likely introduce some sediment into Flathead Lake. Assuming best management practices for construction areas and compliance with the National Pollutant Discharge Elimination System permit, State of Montana Stream Protection Act permit, and special contract provisions are maintained, construction sedimentation effects should be minimized and temporary until the project is complete and disturbed areas outside of the roadway prism are successfully reclaimed (MDT 2005).

Sedimentation has been shown to be detrimental to bull trout by filling the interstitial spaces in the gravel stream bottoms where eggs are laid and thus cutting off oxygen supplies to the eggs. High levels of sediment are also detrimental to juvenile bull trout growth and survival. Neither the lower Swan River nor Flathead Lake is used for spawning by bull trout. However, sedimentation from the project could limit foraging opportunities for bull trout in the project area. Sedimentation effects from the project should be temporary and periodic. Once the construction is complete and successful reclamation of disturbed areas outside of the roadway prism has occurred, sediment from the construction area would return to near pre-construction levels (MDT 2005).

Chemical contamination: Construction near water bodies may result in oil/gas from construction equipment directly entering the water as a result of a spill or accident. Oil
and gas contamination, as with sediment, has the potential to affect the aquatic ecosystem and may affect prey availability for bull trout in Flathead Lake and the Swan River. Petroleum products have been shown to be toxic to salmonids and aquatic invertebrates in varying concentrations and conditions. Best management practices would minimize the potential for oil and gas contamination in project area water bodies. Construction of the new bridge and demolition of the existing bridge from the adjoining banks would minimize construction equipment contact with river water. An additional potential source of chemical contamination would be the lead-based paint on the steel girders of the existing bridge. The contractor would be required to cut the concrete deck between each girder, thereby allowing the girder and deck to be lifted from the substructure. This would minimize the possibility of lead-based paint particles entering the waterway (MDT 2005).

Loss of riparian vegetation: Montana Highway 35 in the project area does not come in close proximity to the Swan River or Flathead Lake except for the Swan River crossing and the southernmost end of the project, which parallels Flathead Lake for approximately 305 meters (1,000 feet). The existing riparian vegetation near the Swan River bridge consists of primarily mixed deciduous and coniferous trees and shrubs between the existing highway and the riprap along the shore. Riparian vegetation upstream of the bridge is very limited due to development associated with the town of Bigfork (MDT 2005).

Construction of the new bridge would result in the loss of some of the riparian vegetation at either end of the bridge. The new bridge would be approximately the same length as the existing structure, but will be about 6.1 meters (20 feet) wider, so some vegetation loss would be permanent. Additional vegetation would likely be cleared in the vicinity of the bridge for work space during construction. Native woody species and other desirable vegetation would be replanted at either end of the bridge after construction has been completed (MDT 2005).

Loss of riparian vegetation affects bull trout by reducing large woody debris recruitment in bull trout habitat and by potentially increasing water temperatures because there would be less shading of the water. However, the riparian vegetation in the project area is an insignificant source of large woody debris. Furthermore, the loss of riparian vegetation would be unlikely to result in a measurable change in water temperature (MDT 2005).

Mortality: The project has the potential to cause direct mortality of individual bull trout if they occur in the area during construction. Bull trout are well documented in Flathead Lake and have been documented in the lower Swan River as well. Bull trout could be in the affected areas at all times of the year. Seasonal migrations of adult bull trout to spawning streams do occur, which would reduce the abundance of this species in the project area at certain times of the year. Generally, bull trout migrate to spawning areas from May to October. Juveniles leave spawning streams during spring runoff and migrate downstream from May to July. Bull trout abundance in the project area would be expected to be lowest during the fall period (September – November) (MDT 2005).
The possibility of construction activities causing the death of a bull trout is considered possible, but unlikely. Construction of the new bridge is expected to take place from the shore. Demolition of the old bridge will likely require instream work to remove the existing pier. Any bridge work could result in falling debris that could result in fish mortality. This could happen, in particular, during removal of the existing bridge. Falling debris would be possible when the existing concrete deck is cut and the steel girder and deck sections are lifted from the substructure. Additionally, falling debris would be possible during removal of the existing pier wall and footing (MDT 2005).

Indirect effects: Indirect effects from this project may include effects from sedimentation, runoff, and accidents or other stochastic events.

Sedimentation: Sedimentation from this project has the potential to indirectly affect bull trout in Flathead Lake by reducing food availability if it adversely affects invertebrate or fish prey supplies. Juvenile bull trout are planktivorous and insectivorous. Juvenile trout spend the first few years of their life in the spawning stream. As bull trout mature they generally move downstream and switch to a piscivorous diet. The populations of bull trout inhabiting the Swan River and Flathead Lake near the project area are most likely adult and sub-adult fluvial and adfluvial fish (MDT 2005).

For Flathead Lake bull trout, prey species include mountain whitefish, sculpins, coarsescale suckers, and other trout species. Mountain whitefish and rainbow trout are common in the lower reaches of the Swan River, and sculpins and brook, lake, and westslope cutthroat trout are present but uncommon. It is assumed that invertebrates are abundant in this area as evidenced by the variety and abundance of fish species present that utilize invertebrates as a food source (MDT 2005).

The Flathead River system carries large volumes of sediment to Flathead Lake during the spring runoff period. Sediment loads from the Swan River are likely somewhat less due to the presence of Bigfork Dam. Sedimentation effects from the project should be temporary and periodic. Once construction has been completed and successful reclamation of disturbed areas outside of the roadway prism has occurred, sediment from the construction area would return to near pre-construction levels (MDT 2005).

Runoff: Runoff from the highway would increase following construction of the project. The proposed project would increase the area impervious to water over current conditions. The amount of runoff from the highway reaching the Swan River and Flathead Lake would be subject to topographic features, but would be expected to increase as a result of this project. The overall net result would be an increase in runoff to these waterways, although it is expected that this would be periodic, nearly immeasurable given the volume of water in the river and lake, and negligible over the long-term (MDT 2005).

Because the project would increase the amount of highway in the area, the use and volume of sand/gravel/deicing salts during the winter months can be expected to increase. Sand/gravel/deicing salts applied to the highway have the potential to be deposited into
the Swan River and Flathead Lake via runoff or side casting from plowing the road and bridge. The use of sand/gravel/deicing salts on the highway would be dependent on weather and would be expected to be variable over time. After successful reclamation of the highway right-of-way has occurred, the migration of off-stream sediment (including sand/gravel/deicing salts) would be slowed. However, the overall long-term effect would be an increase in these sediments in the waterways (MDT 2005).

It is possible some petroleum products associated with vehicular traffic on the highway could enter waterways because the highway crosses the Swan River and parallels Flathead Lake. The proposed highway improvement project is not expected to directly affect the level of contaminants. However, increases in traffic on the highway may cause future contaminant levels to rise. Storm runoff from highways generally contains sediments, hydrocarbons (oil, grease, and fuel), litter, deicing salts and minerals, and heavy metals. Concentrations of these pollutants are considered insignificant on roads where average annual daily traffic counts are less than 30,000 (MDT 2005).

Accidents and stochastic events: While the project would be designed to increase highway safety, the overall increase in traffic on the road may increase the potential for traffic accidents. In the event of an accident occurring in or near the river or bridge crossing, oil/gas (or other contaminant) contamination may occur. Additionally, during the construction period, there is the potential for an oil/gas spill or accident from construction equipment entering the river. This indirect effect is considered immeasurable and the increase in highway safety should help offset the potential for this type of stochastic event affecting bull trout populations in the Swan River and Flathead Lake (MDT 2005).

V. **Cumulative effects**

Cumulative effects include the effects of future State, Tribal, local, or private actions that are reasonably certain to occur in the action area considered in this biological opinion. Future Federal actions that are unrelated to the proposed action are not considered in this section because they will require separate consultation pursuant to section 7 of the Act.

During recent years, the Flathead Valley has experienced considerable growth in population and seasonal recreation. New housing developments and property sales are common throughout the area. Depending on location, further development may contribute sediment loads to the lower Swan River and Flathead Lake. Development in the area is also resulting in conversion of agricultural lands, which can also contribute sediment to streams. The overall net effect on sediment loads in the Swan River and Flathead Lake are unknown; however, they are not expected to significantly affect bull trout because of their life forms potentially affected (i.e., migratory adfluvial and fluvial fish). Spawning streams should not be affected by development in the Flathead Valley. Ultimately, careful planning of land use and development in this area would limit potential threats from sedimentation to bull trout using this area (MDT 2005).
Additional area development would also attract future recreationists. Both winter and summer recreation occurs in the area. Flathead Lake, Swan Lake, and the Flathead National Forest attract many recreationists. Common activities include consumptive sports such as fishing and hunting, and land-based recreation such as hiking and nature watching. Recreationists have the potential to directly affect bull trout through activities such as fishing and boating. Implementation of the project would not be expected to result in increased recreation in the area, but it is designed to accommodate increased use (MDT 2005).

Other non-Federal actions that are reasonably expected to occur in the foreseeable future in the area, which may contribute to impacts to bull trout include:

- logging of state and private forests;
- future agricultural practices;
- increased sewage effluent and utilities/pipelines due to increased development; and
- increased gravel/materials mining to accommodate new development and roads (MDT 2005).

Development, logging, and agriculture may contribute sediment loads to the Swan River and Flathead Lake during runoff events. Long-term sediment loads may be expected to increase; however, it is not expected to contribute substantially to cumulative effects to bull trout in the area (MDT 2005).

VI. Conclusion

The implementing regulations for section 7 (50 CFR 402) define “jeopardize the continued existence of” as “to engage in an action that reasonably would be expected, directly or indirectly, to reduce appreciably the likelihood of both the survival and recovery of a listed species in the wild by reducing the reproduction, numbers, or distribution of that species.”

Jeopardy analysis for bull trout

After reviewing the current status of the Columbia Basin DPS of bull trout, the environmental baseline for the action area, the effects of the highway reconstruction and bridge replacement activities associated with the proposed Bigfork North and South project along Montana Highway 35 in Flathead County, Montana, and the cumulative effects, it is the Service's biological opinion that this project, as proposed, would not be likely to jeopardize the continued existence of the Columbia Basin DPS of bull trout, nor any recovery subunit thereof. No critical habitat has been designated for bull trout in the vicinity of this project, therefore none would be affected. The Service's rationale for this conclusion includes, but is not limited to, the following factors:

- The Clark Fork River recovery unit consists of major river drainages, including the Blackfoot, Clark Fork, Swan, Flathead, and Bitterroot Rivers.
• Bull trout populations are considered strong in Rock Creek of the upper Clark Fork River and in the South Fork Flathead, Blackfoot, and Swan Rivers.

• Trends in abundance of bull trout are stable in the South Fork Flathead River and increasing in the Blackfoot and Swan Rivers.

• Although the Flathead Lake recovery subunit contains several hundred miles of potentially occupied bull trout habitat, this represents only a portion of the approximately 8,000 miles of such habitat within the Clark Fork watershed, accounting for only a part of the total bull trout abundance, reproduction, and distribution in the Clark Fork River recovery unit.

• Although there would be a slight possibility that some mortality of bull trout may occur as a result of implementation of the proposed action, implementation would not be anticipated to reduce the reproduction, numbers, or distribution of bull trout within the action area to the degree that the likelihood of the Flathead Lake recovery subunit's survival or recovery would be appreciably reduced.

• The Clark Fork River watershed is only one of at least 20 major watersheds forming the Columbia River basin DPS, although it is amongst the largest.

• This demonstrates the small fraction of bull trout abundance, reproduction, and distribution of the Columbia River basin bull trout DPS represented by this subpopulation and that the probability of persistence of bull trout in the Columbia River basin bull trout DPS would not be significantly reduced by implementation of this project.

• The proposed action has a low risk of bull trout mortality as few bull trout utilize the project area. Implementation is not anticipated to reduce the reproduction, numbers, or distribution of bull trout within the action area to the degree that the likelihood of the subpopulation’s survival or recovery in the Flathead Lake core area is appreciably reduced.

Our conclusion is also based on the design of the proposed project by the Administration and the Department that includes special contract provisions for the protection of bull trout. These conservation measures are listed in the “Description of proposed action” section of this biological opinion.

Implementation of the proposed action is not likely to reduce appreciably the likelihood of survival or recovery of bull trout in the action area or any of the local populations in the Flathead Lake core area. Therefore, based on the magnitude of the project effects in relation to the listed DPS at the Columbia River basin scale, the proposed action is not likely to jeopardize the Columbia River basin bull trout DPS.
INCIDENTAL TAKE STATEMENT

Section 9 of the Act and Federal regulation pursuant to section 4(d) of the Act prohibit the take of endangered and threatened species, respectively, without special exemption. Take is defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect, or to attempt to engage in any such conduct. Harm is further defined by the Service to include significant habitat modification or degradation that results in death or injury to listed species by significantly impairing essential behavioral patterns, including breeding, feeding, or sheltering. Harass is defined by the Service as an intentional or negligent act or omission that creates the likelihood of injury to listed wildlife by annoying it to such an extent as to significantly disrupt normal behavior patterns which include, but are not limited to, breeding, feeding or sheltering. Incidental take is defined as take that is incidental to, and not the purpose of, the carrying out of an otherwise lawful activity. Under the terms of section 7(b)(4) and section 7(o)(2), taking that is incidental to and not intended as part of the agency action is not considered to be prohibited taking under the Act provided that such taking is in compliance with the terms and conditions of this Incidental Take Statement.

The measures described below are non-discretionary, and must be undertaken by the Federal Highway Administration and their designated non-Federal representative (Montana Department of Transportation) so that they become binding conditions of any grant, permit or contract issued to the construction contractors who are selected to construct this project, as appropriate, for the exemption in section 7(o)(2) to apply. The Administration has a continuing duty to regulate the activity covered by this Incidental Take Statement. If the Administration: (1) fails to assume and implement the terms and conditions; or (2) fails to require the chosen construction contractors to adhere to the terms and conditions of the Incidental Take Statement through enforceable terms that are added to the permit, grant or contract document, the protective coverage of section 7(o)(2) may lapse. In order to monitor the impact of incidental take, the Administration must report the progress of the action and its impact on the species to the Service as specified in the Incidental Take Statement [50 CFR 402.14(i)(3)].

Amount or extent of take anticipated

The Service anticipates that activities associated with the proposed Bigfork - North and South highway reconstruction and bridge replacement project would result in incidental take of bull trout in the form of harm, harassment or mortality that would result from instream activities primarily related to construction of a new bridge over the Swan River and demolition of the existing bridge at the same location. Increases in sediment to the Swan River and Flathead Lake are anticipated to adversely affect and likely result in take of bull trout life history stages by harming or impairing feeding, breeding and sheltering patterns of adult and juvenile bull trout. Direct mortality of bull trout is possible as a result of bridge construction and/or demolition activities. The amount of take that may result from implementation of the proposed action is difficult to quantify for the following reasons:
1. Identification and detection of dead or impaired individuals is unlikely;

2. Aquatic habitat modifications are often difficult to ascribe to particular sources, especially in areas already degraded by other activities and facilities;

3. Losses to bull trout in any life stage may be masked by wide seasonal fluctuations in numbers; and

4. Measures proposed by the Administration and the Department to minimize the impacts to bull trout and bull trout habitat in the action area will likely be effective to varying degrees.

For these reasons, the actual amount or extent of the anticipated incidental take is difficult to quantify. In cases such as these, the Service uses surrogate measures to determine the amount or extent of incidental take and whether the amount of take anticipated has been exceeded. In this biological opinion we use project design and project related construction techniques for these purposes. Thus, if the design and construction of the portions of this project that are expected to impact the Swan River or Flathead Lake are not implemented as indicated in the biological assessment submitted to the Service for consultation, including implementation of the conservation measures listed on pages 40-41 of the biological assessment, the level of incidental take anticipated in this biological opinion may be considered to have been exceeded. Such incidental take represents new information requiring reinitiation of consultation and review of the reasonable and prudent measures provided. The Administration must immediately provide an explanation of the causes of the taking and review with the Service the need for possible modification of the reasonable and prudent measures.

The Service anticipates that incidental take of bull trout would occur near the mouth of the Swan River in the vicinity of the Highway 35 bridge over the Swan River and downstream a short distance into Flathead Lake. These waterways are used by bull trout for foraging, migratory and overwintering habitat in this core area, and contain low densities of bull trout. Incidental take of bull trout is anticipated to occur during the period when activities associated with construction of the new Swan River bridge and demolition of the existing bridge are occurring, which is expected to extend throughout a period of approximately eight months.

Effect of the take

In the accompanying biological opinion, the Service determined the anticipated level of adverse impacts from this project would not substantially reduce the potential for persistence or recovery of the Flathead Lake recovery/management unit encompassing the action area, and thus would not be likely to result in jeopardy to the Columbia Basin DPS of bull trout. The Administration and the Department are implementing many measures which would sufficiently minimize impacts to bull trout (see the “Description of proposed action” section above).
Reasonable and prudent measures

Incidental take statements typically provide reasonable and prudent measures which are expected to reduce the amount of incidental take. Reasonable and prudent measures are those measures necessary and appropriate to minimize the incidental take resulting from the proposed action. These reasonable and prudent measures are non-discretionary and must be implemented by the Administration in order for the exemption in section 7(o)(2) to apply.

The Service believes that the conservation measures listed above in the “Description of proposed action” section, and referenced in the “Conclusion” and “Effect of the take” sections, will be sufficient to minimize impacts to bull trout and incidental take that might otherwise result from direct and indirect effects associated with improvements made to the Montana Highway 35 corridor. No additional reasonable and prudent measures are necessary.

Terms and conditions

In order to be exempt from the prohibitions of section 9 of the Act, incidental take statements typically provide terms and conditions which implement the reasonable and prudent measures and outline reporting and monitoring requirements. Terms and conditions are non-discretionary.

The Service believes that the conservation measures listed above in the “Description of proposed action” section, and referenced in the “Conclusion” and “Effect of the take” sections, will be sufficient to minimize impacts to bull trout and incidental take that might otherwise result from direct and indirect effects associated with improvements made to the Montana Highway 35 corridor. Because these measures include adequate monitoring and reporting requirements, no additional terms and conditions are necessary.

CONSERVATION RECOMMENDATIONS

Section 7(a)(1) of the Act directs Federal agencies to utilize their authorities to further the purposes of the Act by carrying out conservation programs for the benefit of endangered and threatened species. Conservation recommendations are discretionary agency activities to minimize or avoid adverse effects of a proposed action on listed species or critical habitat, to help implement recovery plans, or to develop information.

1. To assist in meeting the Administration’s responsibilities under Section 7(a)(1) of the Act, and to utilize authorities granted within the recent transportation funding laws, the Service strongly recommends that the Administration and the Department work proactively with the Service, MFWP, and others to identify and remedy impacts to salmonids, including bull trout, within the Flathead Lake recovery subunit that are the result of transportation systems. Within this area, many rivers were channelized during road and railroad construction, resulting in
shortening of stream channels, increased erosion, higher water velocities, and loss of fish habitat. In addition, there is a risk of future toxic spills occurring and materials entering these streams.

2. The Service recommends the Administration and the Department explore potential opportunities to utilize their expertise and authorities to promote innovative and non-traditional fisheries enhancement projects within the Flathead Lake watershed by partnering in some manner with other agencies or groups to share knowledge and resources to restore or enhance fisheries habitat within the Flathead Lake area that has been degraded by activities other than those related to transportation. The draft Bull Trout Recovery Plan recommends many recovery tasks that need to be accomplished to protect, restore, and maintain suitable habitat conditions for bull trout in this area. These tasks pertain to transportation and non-transportation related impacts to bull trout habitat (USDI 2002b).

In order for the Service to be kept informed of actions minimizing or avoiding adverse effects or benefiting listed species or their habitats, the Service requests notification of the implementation of any conservation recommendations.

REINITIATION NOTICE

This concludes formal consultation on the actions outlined in the request. As provided in 50 CFR 402.16, reinitiation of formal consultation is required where discretionary Federal agency involvement or control over the action has been retained (or is authorized by law) and if: (1) the amount or extent of incidental take is exceeded; (2) new information reveals effects of the agency action that may affect listed species or critical habitat in a manner or to an extent not considered in this opinion; (3) the agency action is subsequently modified in a manner that causes an effect to the listed species or critical habitat not considered in this opinion; or (4) a new species is listed or critical habitat designated that may be affected by the action. In instances where the amount or extent of incidental take is exceeded, any operations causing such take must cease pending reinitiation.

R. Mark Wilson
Field Supervisor
Montana Field Office

February 9, 2006
REFERENCES CITED

Earle, J. E., and J. S. McKenzie. 2001. Microhabitat use by juvenile bull trout in mountain streams in the C ('

MDT. 2005. Biological assessment; Bigfork North & South. Project No. STPP 52-1(18)27; Control No. 4035. Prepared for the Montana Department of Transportation, Helena. 54 pp. + appendices.

MFWP. 2002. Final environmental assessment and decision notice for bull trout sport fishery reestablishment in Hungry Horse Reservoir and South Fork Flathead River drainage. MFWP, Kalispell.

Pratt, K.L. 1984. Habitat use and species interactions of juvenile cutthroat (Salmo clarki lewisi) and bull trout (Salvelinus confluentus) in the upper Flathead River basin. M.S. thesis University of Idaho, Moscow.

USDI, Fish and Wildlife Service. 1998a. Biological opinion for the effects to bull trout from the continued implementation of land and resource management plans and resource management plans as amended by the interim strategies for managing fish producing watersheds in eastern Oregon and Washington, Idaho, western Montana and portions of Nevada (INFISH) and the interim strategy for managing anadromous fish-producing watersheds in eastern Oregon and Washington, Idaho and portions of California (PACFISH). Region 1.

USDI, Fish and Wildlife Service. 1998b. A framework to assist in making endangered species act determinations of effect for individual or grouped action at the bull trout subpopulation watershed scale. Region 1, USFWS.

October 15, 2010

To: Anne VandeHey
 US Fish and Wildlife Service
 Ecological Services F.O.
 585 Shepard Way
 Helena, MT. 59601

Subject: Bigfork North and South
 STPP 52-1(18)27
 Control Number 4035
 Submittal of Addendum to Biological Assessment for Bigfork North and South and request for Concurrence.

Dear Ms. VandeHey,

The Montana Department of Transportation in conjunction with the Federal Highway Administration is preparing a Finding of No Significant Impact (FONSI) for the Environmental Assessment prepared for the Bigfork North and South project located in Flathead County, Montana. The Service issued a Biological Opinion on February 9, 2006 for the original Biological Assessment prepared by MDT. The proposed project has not changed, however since the Service issued its biological opinion the listing status of some species has changed and the designation of critical habitat for lynx and bull trout has been finalized by the Service. Therefore, MDT is submitting an amended Biological Assessment to address the changes to listed species and/or designated critical habitat under the Endangered Species Act and request the Service's written concurrence.

In the development of the attached addendum and its determinations, MDT and it's consultant worked with your former staff member Mr. Scott Jackson through the informal consultation process to prepare this document. Since our finalization of this addendum, the Service on October 12, 2010 has announced that the proposed bull trout critical habitat from January 13, 2010 has now been formally designated. MDT requests that you accept the attached addendum and the determination of effect upon proposed bull trout critical habitat as final for designated critical habitat.

If you have questions please feel free to contact me either by phone or email at (406)-523-5872 or pbasting@mt.gov. Thank you for your time and consideration in this matter.

Sincerely

Pat Basting
MDT, Missoula District Biologist
CC: Tom Martin, MDT, Env. Serv. Bureau Chief
 Bonnie Gundrum, MDT, Resources Section Supv.
 Mike Dalsoglio, MDT, Cons. Design

CC w/attachment: Brian Hasselbach FHWA
 Susan Kilcrease, MDT, Env. Serv. Project Development Eng.
 Paul Ferry, MDT, Preconstriction
 File
Federal Highway Administration
and
Montana Department of Transportation

Addendum to the Biological Assessment
Completed for the Bigfork North and South Project

For
Project Number: STPP 52-1 (18) 27
Project Name: Bigfork North & South
Control Number 4035
In
Flathead County, Montana

August 24, 2010
TABLE OF CONTENTS

Introduction ... 1
Listed Species Update ... 1
Canada Lynx Critical Habitat .. 2
Gray or Northern Rocky Mountain Wolf .. 2
Bull Trout Critical Habitat ... 2
 Bull Trout Matrix Crosswalk ... 3
 Rationale ... 3
 Environmental Baseline ... 8
Determination of Effect to Proposed Critical Habitat ... 9
References .. 11

LIST OF TABLES
Table 1: PCEs for Bull Trout Critical Habitat and Associated Matrix Habitat Indicators 4
Table 2. Effects Matrix Checklist (Adapted from USFWS 1998b) ... 9
Addendum to the Biological Assessment
Completed for the Bigfork North and South Project

Introduction
The purpose of this addendum is to provide updated information regarding federally listed threatened and endangered species within the Bigfork North and South project area. The Biological Assessment (BA) completed for the project was released in 2005, and the U.S. Fish and Wildlife Service (USFWS) issued a Biological Opinion (BO) for effects to the Columbia River basin population of bull trout (*Salvelinus confluentus*) in 2006. Since then, several administrative changes have taken place, and the list of protected species has changed. Additionally, critical habitat for Canada lynx (*Lynx canadensis*) has changed, and on January 13, 2010, USFWS proposed to revise its 2005 designation of bull trout critical habitat.

As stated in the BO, re-initiation of formal consultation is required when “a new species is listed or critical habitat is designated that may be affected by the action”. This addendum provides updated information and a clarification of potential impacts to those species that are granted protection under the Endangered Species Act (ESA), including a discussion of impacts to potential critical habitat for the bull trout within the project area.

Listed Species Update
The proposed project takes place in Flathead and Lake Counties in Montana. The 2006 BA included analysis and effects determinations for the following species:

- Bull Trout (*Salvelinus confluentus*)
- Grizzly Bear (*Ursus arctos horribilis*)
- Gray or Northern Rocky Mountain Wolf (*Canis lupis*)
- Canada Lynx (*Lynx canadensis*)
- Bald Eagle (*Haliaeetus leucocephalus*)
- Water Howellia (*Howellia aquatilis*)
- Spalding’s Campion (*Silene spaldingii*)

Since the original analysis, the bald eagle has been de-listed. The current list of threatened and endangered species with the potential to occur in Flathead and Lake Counties are:

- Bull Trout
- Grizzly Bear
- Gray or Northern Rocky Mountain Wolf
- Spalding’s Campion
- Canada Lynx
- Water Howellia

Given that project details have not changed since the original analysis, effects determinations that were made for grizzly bear, Spalding’s campion, and water howellia...
remain the same. It was determined that implementation of the proposed action is **not likely to adversely affect** the threatened grizzly bear. It was also determined that implementation of the proposed action will have **no effect** upon Spalding’s campion or water howellia.

Canada Lynx Critical Habitat

On February 24, 2009, USFWS revised the designation of critical habitat for Canada lynx, and although the revised critical habitat includes Flathead National Forest, the forest boundary is, at a minimum, 0.89 km (0.55 mi) east of the project area. Therefore, the determination made during the original analysis, that implementation of the proposed action will have **no effect** upon the Canada lynx, critical habitat, or proposed critical habitat, remains valid.

Gray or Northern Rocky Mountain Wolf

Gray Wolves were first delisted from the USFWS Threatened and Endangered Species list on March 28, 2008. Subsequent litigation resulted in the wolves being re-listed on July 18, 2008. Gray wolves were delisted for a second time May 4, 2009 and legal challenges resumed. The State of Montana intervened in the lawsuit by supporting delisting efforts. Gray Wolves were re-listed again by order of a federal judge on August 5, 2010.

In spite of recently successful wolf recovery efforts throughout much of the west, the general project area is not known to contain wolves, nor do biologists consider it well suited for their reoccupation. Any future presence is likely to be inhibited by the dramatic habitat fragmentation that has occurred along much of the lakefront over the last several decades. This consequent lack of seclusion suggests little future area preference by gray wolves.

The nearest documented wolf pack is approximately 10 miles southeast of the project area, east of Swan lake. Newly formed in 2009, the Quintonkon wolf pack consists of five wolves, with a breeding pair among them (MFWP, 2009).

With no change in project lane configuration and a very slight increase in the proposed design speed, any future wolf numbers in the area are likely to remain unaffected. Based on the above information, the determination made during the original analysis, that implementation of the proposed action will have **no effect** upon gray wolves, remains valid.

Bull Trout Critical Habitat

In the 2006 BO for effects to bull trout, USFWS determined that the proposed action “is not likely to reduce appreciably the likelihood of survival or recovery of bull trout in the action area or any of the local populations in the Flathead Lake core area. Therefore, based on the magnitude of the project effects in relation to the listed distinct population
segments (DPS) at the Columbia River basin scale, the proposed action is not likely to jeopardize the Columbia River basin bull trout DPS.” Details regarding the potential for the incidental take of individual bull trout can be found in the 2006 BO.

At the time of the BO issuance, no critical habitat for the bull trout had been designated in the vicinity of the project and it was therefore determined that no critical habitat would be affected. On January 13, 2010, USFWS proposed to revise its 2005 designation of bull trout critical habitat, and the expanded reach of designated critical habitat would include Flathead Lake within the ordinary high water mark. As such, the following addendum to the BA presents a revised habitat indicators matrix, which is used for making determinations of the effects of the project on potential critical habitat for bull trout.

A significant change from the population and environmental baseline diagnostics as presented in the BA and the BO is the designation of proposed critical habitat within the project area. Although the segment of Swan River from Bigfork Dam to Flathead Lake was not proposed as critical habitat, the portion of the river within the project area, at the inlet to Flathead Lake, is influenced by lake level fluctuations and the bull trout that occupy this area for foraging are considered as part of the Flathead Lake subpopulation. Therefore, impacts within the stream channel should be considered as impacts to proposed critical habitat.

To assess potential impacts to proposed critical habitat, USFWS has developed a document that explains the relationship between bull trout matrix analyses and primary constituent elements (PCEs) for designated bull trout critical habitat, also known as the matrix crosswalk. This document serves to remove the need for redundant information when making an effect determination on designated or proposed critical habitat. The following section includes an explanation of the matrix crosswalk.

Bull Trout Matrix Crosswalk

Rationale

Federnally authorized funded or carried out activities require consultation, to ensure that they are not likely to destroy or adversely modify bull trout critical habitat. The Matrix of Diagnostics / Pathways and Indicators (matrix; USFWS 1998a) for bull trout is often used to evaluate and document baseline conditions and to determine the likelihood of “take” of bull trout. Matrix analysis incorporates four biological indicators and 19 physical habitat indicators. The majority of the matrix analysis consists of specific consideration of the 19 habitat indicators. Analysis of the matrix habitat indicators provides a thorough analysis of the existing baseline condition and potential impacts to bull trout habitat.

Therefore, when assessing potential effects to bull trout as a species, through use of the matrix, agency biologists concurrently provide an analysis of effects to the primary
constituent elements (PCEs) for bull trout critical habitat and related habitat indicators. Table 1 describes the eight PCEs and their related matrix habitat indicators. Information regarding analyses for each of the matrix indicators can be found in the 2005 Biological Resources Report prepared for the Bigfork North & South project.

Table 1: PCEs for Bull Trout Critical Habitat and Associated Matrix Habitat Indicators

<table>
<thead>
<tr>
<th>PCE #</th>
<th>PCE description</th>
<th>Associated matrix habitat indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Water temperatures that support bull trout use. Bull trout have been documented in streams with temperatures from 32 to 72 °F (0 to 22 °C), but are found more frequently in temperatures ranging from 36 to 59 °F (2 to 15 °C). These temperature ranges may vary depending on bull trout life history stage and form, geography, elevation, diurnal and seasonal variation, shade, such as that provided by riparian habitat, and local groundwater influence. Stream reaches with temperatures that preclude any bull trout use are specifically excluded from designation.</td>
<td>Temperature, Refugia, Average wetted width/maximum depth ratio in scour pools in a reach, Streambank condition, Change in peak/base flows, Riparian conservation areas, Floodplain connectivity</td>
</tr>
<tr>
<td>2</td>
<td>Complex stream channels with features such as woody debris, side channels, pools, and undercut banks to provide a variety of depths, velocities, and instream structures.</td>
<td>Large woody debris, Pool frequency and quality, Large pools, Off channel habitat, Refugia, Average wetted width/maximum depth ratio in scour pools in a reach, Streambank condition, Floodplain connectivity, Riparian conservation areas</td>
</tr>
<tr>
<td></td>
<td>Substrates of sufficient amount, size, and composition to ensure success of egg and embryo overwinter survival, fry emergence, and young-of-the-year and juvenile survival. This should include a minimal amount of fine substrate less than 0.25 inch (6.3 millimeters) in diameter.</td>
<td>Sediment, Substrate embeddedness, Large woody debris, Pool frequency and quality</td>
</tr>
<tr>
<td>4</td>
<td>A natural hydrograph, including peak, high, low, and base flows within historic ranges or, if regulated, currently operates under a biological opinion that addresses bull trout, or a hydrograph that demonstrates the ability to support bull trout populations by minimizing daily and day-to-day fluctuations and minimizing departures from the natural cycle of flow levels corresponding with seasonal variation.</td>
<td>Change in peak/base flows, Increase in drainage network, Disturbance history, Disturbance regime</td>
</tr>
<tr>
<td>5</td>
<td>Springs, seeps, groundwater sources, and subsurface water to contribute to water quality and quantity as a cold water source.</td>
<td>Floodplain connectivity, Change in peak/base flows, Increase in drainage network, Riparian conservation areas, Chemical contamination/nutrients</td>
</tr>
<tr>
<td>6</td>
<td>Migratory corridors with minimal physical, biological, or water</td>
<td>Life history diversity and</td>
</tr>
</tbody>
</table>
Table 1: PCEs for Bull Trout Critical Habitat and Associated Matrix Habitat Indicators

<table>
<thead>
<tr>
<th>PCE #</th>
<th>PCE description</th>
<th>Associated matrix habitat indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>quality impediments between spawning, rearing, overwintering, and foraging habitats, including intermittent or seasonal barriers induced by high water temperatures or low flows.</td>
<td>isolation ▪ Persistence and genetic integrity ▪ Temperature ▪ Chemical contamination/nutrients ▪ Physical barriers ▪ Average wetted width/maximum depth ratio in scour pools in a reach ▪ Change in peak/base flows ▪ Refugia</td>
</tr>
<tr>
<td>7</td>
<td>An abundant food base including terrestrial organisms of riparian origin, aquatic macroinvertebrates, and forage fish.</td>
<td>Growth and survival ▪ Life history diversity and isolation ▪ Riparian conservation areas ▪ Floodplain connectivity (importance of aquatic habitat condition-indirectly covered by previous 6 PCEs)</td>
</tr>
<tr>
<td>8</td>
<td>Permanent water of sufficient quantity and quality such that normal reproduction, growth, and survival are not inhibited.</td>
<td>Sediment ▪ Chemical contamination/nutrients ▪ Change in peak/base flows</td>
</tr>
</tbody>
</table>

This matrix crosswalk provides information supporting the rationale that the PCEs for bull trout critical habitat are thoroughly addressed and evaluated when the bull trout matrix analysis is utilized. It recognizes that the environmental baseline and determination of effect for bull trout consist of both biological and habitat components that are addressed in the PCEs listed in the Final Rule designating critical habitat (USFWS 2005). Below are the eight PCEs and the supporting rationale:

PCE 1. Water temperatures that support bull trout use. Bull trout have been documented in streams with temperatures from 32 to 72 °F (0 to 22 °C) but are found more frequently in temperatures ranging from 36 to 59 °F (2 to 15 °C). These temperature ranges may vary depending on bull trout life history stage and form, geography, elevation, diurnal and seasonal variation, shade, such as that provided by riparian habitat, and local groundwater influence. Stream reaches with temperatures that preclude any bull trout use are specifically excluded from designation.

This PCE is addressed directly by the analysis of *temperature*. It is addressed indirectly through consideration of *refugia*, which by definition is high quality habitat of
appropriate temperature. Important components of refugia include pool frequency and quality and large pools. *Average wetted width/maximum depth ratio in scour pools* is an indication of water volume, which indirectly indicates water temperature, (i.e., low ratios indicate deeper water, which in turn indicates possible refugia). This indicator, in conjunction with *change in peak/base flows*, is an indicator of potential temperature and refugia concerns, particularly during low flow periods. *Streambank condition, floodplain connectivity and riparian conservation areas* address the components of shade and groundwater influence, both of which are important factors of water temperature. Stable streambanks and intact riparian areas, which include part of the floodplain, typically support adequate vegetation to maintain thermal cover to streams during low flow periods.

PCE 2. Complex stream channels with features such as woody debris, side channels, pools, and undercut banks to provide a variety of depths, velocities, and instream structure.

The analysis of *large woody debris*, such as current values and sources available for recruitment, directly addresses this PCE. Large woody debris increases channel complexity and creates pools and undercut banks. *Pool frequency and quality* would also directly address this PCE, showing the number of pools per mile as well as the amount of cover and temperature of water in the pools. *Average wetted width/maximum depth ratio in scour pools in a reach* is an indicator of channel shape and pool quality. Low ratios suggest deeper, higher quality pools. *Large pools*, consisting of a wide range of water depths, velocities, substrates and cover, are typical of high quality habitat and are a key component of channel complexity (USFWS 1998b). An analysis of *off-channel habitat* would describe side-channels and other off-channel areas. *Streambank condition* would analyze the stability of the banks, including such features as undercut banks. The analysis of both *riparian conservation areas* and *floodplain connectivity* would directly address this PCE. Floodplain and riparian functions include the maintenance of habitat and channel complexity, the recruitment of large woody debris and the connectivity to off-channel habitats or side channels (USFWS 1998b). Complex habitats provide refugia for bull trout and in turn, *refugia analysis* would assess complex stream channels. All of these habitat indicators consider the numerous characteristics of instream bull trout habitat and quantify critical components that are fundamental to creating and maintaining complex instream habitat over time.

PCE 3. Substrates of sufficient amount, size, and composition to ensure success of egg and embryo overwinter survival, fry emergence, and young-of-the-year and juvenile survival. This should include a minimal amount of fine substrate less than 0.25 inch (6.3 millimeters) in diameter.

This PCE is addressed directly by analysis of *sediment* in areas of spawning and incubation and considers directly the size class composition of instream sediments, particularly fine sediments ≤6.3 mm. This PCE is also addressed directly by analysis of *substrate embeddedness* in rearing areas, which is a function of sediment size class and
bedload transport. Both of these indicators would assess substrate composition and stability in relation to the various life stages of bull trout as well as the sediment transportation and deposition. Large woody debris and pool frequency and quality affect sediment transport and redistribution within a stream and would indirectly assess substrate composition and amounts.

PCE 4. A natural hydrograph, including peak, high, low, and base flows within historic ranges or, if regulated, currently operates under a biological opinion that addresses bull trout, or a hydrograph that demonstrates the ability to support bull trout populations by minimizing daily and day-to-day fluctuations and minimizing departures from the natural cycle of flow levels corresponding with seasonal variation.

This PCE is addressed by analysis of change in peak/base flows, which considers changes in hydrograph amplitude or timing with respect to watershed size, geology, and geography. Considering increase in drainage network and disturbance history provides further information. Roads and vegetation management both have effects strongly linked to a stream’s hydrograph. Disturbance regime ties this information together to consider how a watershed reacts to disturbance and the time required to recover back to pre-disturbance conditions.

PCE 5. Springs, seeps, groundwater sources, and subsurface water to contribute to water quality and quantity as a cold water source.

This PCE is addressed by analysis of floodplain connectivity and riparian conservation areas. Floodplain connectivity considers hydrologic linkage of off-channel areas with the main channel and overbank flow maintenance of wetland function and riparian vegetation and succession. Floodplain and riparian areas provide hydrologic connectivity for springs, seeps, groundwater upwelling and wetlands and contribute to the maintenance of the water table (USFWS 1998b). The analysis of changes in peak/base flows would address subsurface water connectivity. Increase in drainage network would address potential changes to groundwater sources and subsurface water connectivity. Chemical contamination/nutrients would address concerns regarding groundwater water quality.

PCE 6. Migratory corridors with minimal physical, biological, or water quality impediments between spawning, rearing, overwintering, and foraging habitats, including intermittent or seasonal barriers induced by high water temperatures or low flows.

The biological indicator life history diversity and isolation addresses the function of migration and/or subsequent isolation with respect to the population. The biological indicator persistence and genetic integrity indirectly reflects the status of migratory corridors. Physical, biological or chemical barriers to migration are addressed directly through water quality habitat indicators, including temperature, chemical contamination/nutrients and physical barriers. The analysis of these indicators would
assess if barriers have been created due to impacts such as high temperatures, high concentrations of contaminants or physical barriers. Analysis of change in peak/base flows and average wetted width/maximum depth ratio in scour pools in a reach would assess whether changes in flow might create a seasonal barrier to migration. An analysis of refugia, which considers the habitat’s ability to support strong, well distributed, and connected populations for all life stages and forms of bull trout, would also be pertinent to this PCE.

PCE 7. An abundant food base including terrestrial organisms of riparian origin, aquatic macroinvertebrates, and forage fish.

An analysis of floodplain connectivity and riparian conservation areas would assess these contributions to the food base. Floodplain and riparian areas provide habitat to aquatic invertebrates, which in turn provides a forage base to bull trout (USFWS 1998b). This PCE is indirectly addressed through the biological indicator of growth and survival and life history diversity and isolation. Both of these indicators look at habitat quality and subpopulation condition, which provides information on food base. This PCE is a synthesis of the previous PCEs. It is addressed through the analysis of biological and habitat indicators in that, if a bull trout population either exists or could exist in a watershed, then there is an adequate forage base. A healthy habitat provides a forage base for the target species. Any potential impairment to the forage base has been addressed by way of summarizing the biological and habitat indicators.

PCE 8. Permanent water having low levels of contaminants such that normal reproduction, growth and survival are not inhibited.

Flow conditions, such as perennial or ephemeral would be analyzed through changes in peak/base flows, and addressed in consideration of current base flows. Changes in hydrograph amplitude or timing with respect to watershed size, geology, and geography would be considered. The level of contaminants is addressed directly by the analysis of chemical contamination/nutrients and sediment. Current listing under 303(d) status should be considered, as well as the causes for that listing. Sediment is considered a contaminant especially in spawning and rearing habitat and analysis would apply to this PCE.

Environmental Baseline

Based on the Flathead Lake environmental baseline of bull trout habitat conditions and their relationship to the PCEs associated with those habitat indicators described in Table 1, as well as other factors deemed necessary, PCE 3 is functioning appropriately. The remaining PCEs are in less than optimal condition.

Table 2 presents a summary of the effects matrix checklist, which includes categorical values of the suitability and functionality of baseline indicators for the bull trout subpopulation potentially affected by the proposed action. Table 2 also shows effects of
the proposed action for each baseline indicator, with a qualifier used to note that the
effects would restore, maintain, or degrade existing conditions.

Determination of Effect to Proposed Critical Habitat

Instream work is anticipated as part of the removal of the existing instream pier in the
Swan River. This work will likely include the construction, and removal, of a temporary
cofferdam around the pier and the demolition and removal of the pier structure. The
existing concrete pier rests on a wooden footing. The concrete will be removed and the
footing cut down. To perform this work, a temporary platform will likely need to be
installed half-way into the river from the south bank. This will be founded on temporary
piling. This platform and piling will be removed prior to project completion. This work
will likely re-suspend some existing sediment when the piling is removed; however this
is not expected to re-suspend large amounts of sediment. Project-related sediment that
does reach Swan River or Flathead Lake would accumulate in Flathead Lake.

There will not be construction of any new features in the waterway, and once
construction is complete no structural features will be in the waterway. Any placement of
riprap below the high water level mark or the lake maintained level should occur during
low water level times. Current riprap will remain and the final overall cross-section will
not change, however some riprap will be disturbed during construction. Disturbed riprap
will be restored. Thusly, the proposed project will result in short-term impacts to
proposed critical habitat, but habitat will be restored to pre-existing conditions.

Analysis for the proposed Bigfork North and South project found that activities
associated with this project were likely to degrade the matrix habitat indicator *Road
Density and Location*, as described in the biological assessment. *Road Density and
Location* is not a matrix habitat indicator as found in Table 1, therefore the degradation
to this indicator will have no effect on proposed critical habitat.

The proposed activity would result also impact the matrix habitat indicator for *Physical
Barriers*, as described in the Biological Assessment. This impact is anticipated to result in
a minor improvement of this habitat element and subsequently PCE 6 (Table 1). The
proposed project will result in the removal of the existing bridge pier, which is located in-
channel within the Swan River at the inlet to Flathead Lake. Although the project will result
in short-term negative impacts to proposed critical habitat and poses a risk of take to bull
trout individuals, the removal of the center pier will result in long-term improvement for bull
tROUT movement within the project area. (MDT 2005)

The overall impact associated with the proposed action is expected to be discountable or
insignificant. As such, the proposed Bigfork North and South project is not likely to
adversely affect proposed critical habitat for bull trout in Flathead Lake.

<table>
<thead>
<tr>
<th>Table 2. Effects Matrix Checklist (Adapted from USFWS 1998b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Population and Environmental Baseline</td>
</tr>
<tr>
<td>Effects of the Action(s)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Addendum to the Biological Assessment
Completed for the Bigfork North and South Project

<table>
<thead>
<tr>
<th>Diagnostics/Pathways: Indicators</th>
<th>Functioning Appropriately</th>
<th>Functioning At Risk</th>
<th>Functioning At Unacceptable Risk</th>
<th>Restore</th>
<th>Maintain</th>
<th>Degrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subpopulation Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subpopulation Size</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Growth and Survival</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Life History Diversity and Isolation</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistence and Genetic Integrity</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Habitat Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sediment</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Chemical Contamination/Nutrients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habitat Access</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Barriers</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Habitat Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrate Embeddedness</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Large Woody Debris</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pool Frequency & Quality</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Large Pools</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Off-Channel Habitat</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Refugia</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Channel Conditions and Dynamics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted Width/Max Depth Ratio</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Stream Bank Condition</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Floodplain Connectivity</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Flow & Hydrology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in Peak/Base Flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage Network Increase</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Watershed Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road Density and Location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disturbance History</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian Conservation Area</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disturbance Regime</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Integration of Species & Habitat Condition</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Critical Habitat</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
References

USFWS. 1998. A framework to assist in making ‘Endangered Species Act’ determinations of effect for individual or grouped actions at the bull trout subpopulation watershed scale (Draft).

USFWS. 2006. Biological Opinion for the effects to the threatened Columbia River basin population of bull trout (Salvelinus confluentus) from the reconstruction of Montana Highway 35 north and south of Bigfork, in Flathead County, Montana. Unpubl. Rpt.

Robert M. Lee, III
U.S. Fish and Wildlife Service
780 Creston Hatchery Road
Kalispell, MT. 59901

November 24, 2010

Subject: Updated Addendum to Biological Assessment for Bull Trout Critical Habitat
STPP 52-1(18)27
Bigfork North and South
CN 4035

Dear Robert,

In a letter dated October 15, 2010 MDT requested concurrence on an addendum to the biological assessment prepared for the Bigfork North and South project located in Flathead County, Montana. Subsequently, the Service has finalized its designation of bull trout critical habitat and slightly amended the PCE’s associated with the bull trout critical habitat crosswalk. As you indicated in your email dated November 17, 2010, another update to address the finalization of designated bull trout critical habitat and its amended PCE’s was needed. The purpose of this letter is to provide the requested information in order for the Service to finalize its concurrence.

While the 2010 final rule updating designated critical habitat has changed the order of the original 8 PCE’s, the content and analysis remains the same. Hence, the work for the original eight PCE’s submitted with the request for concurrence dated Oct. 15, 2010 is still appropriate and applicable.

The new ninth PCE addresses: “Few or no nonnative predatory (e.g., lake trout, walleye, northern pike, smallmouth bass; in breeding (e.g., brook trout); or competitive (e.g., brown trout) species present.” As noted in the MBTSG, 1995 report, competition with introduced species and hybridization are known risks to the Flathead Basin bull trout. Further, Flathead Lake has known abundant populations of introduced Lake Trout and Lake Whitefish. Other species present but at “rare” occurrence levels include Largemouth bass, Northern Pike and Rainbow trout (MFISH, 2010). Given current conditions it is determined that this PCE is “Functioning at Risk”. The proposed project will not increase nor decrease risks already present to bull trout critical habitat in the project area relative to this PCE. Therefore, it is expected that as a result of the proposed project the ninth PCE: “Few or no nonnative predatory (e.g., lake trout, walleye, northern pike,
smallmouth bass; in breeding (e.g. brook trout); or competitive (e.g. brown trout) species present”, will maintain its “Functioning at Risk” status.

It is therefore determined that the “may affect, not likely to adversely affect” determination for designated bull trout critical habitat is still warranted.

If you have further questions or need further information please feel free to contact me. Thank you for your time and consideration in this matter.

Sincerely

[Signature]

Pat Basting
MDT, Missoula District Biologist
2100 W. Broadway
Missoula, MT. 59802
pbasting@mt.gov
406-523-5872

CC: D. Moeller, Msla District Administrator
 B. Gundrum, MDT, Resources Section Supv.
 S. Kilcrease, MDT, Msla District Project Development Engineer
 A. Vandehey, USFWS, Helena, MT.
 B. Hasselbach, FHWA
 File
Pat Basting
Montana Department of Transportation
2100 W. Broadway
Missoula, MT 59802

Dear Mr. Basting,

This is in response to your request for written concurrence for an addendum to the Bigfork North and South Project Biological Opinion. This addendum addresses effects to recently designated critical habitat for Canada lynx and bull trout in the project area. The U.S. Fish and Wildlife Service (Service) received the addendum on October 19, 2010. We requested additional information concerning Principal Constituent Element 9 (PCE 9) for bull trout and received that information via email on November 24, 2010.

The Service has reviewed the addendum and the additional information for the Bigfork North and South project. We agree with your conclusions that the project effects will not change regarding grizzly bear (*Ursus arctos horriblis*) gray wolf (*Canis lupus*), water howellia (*Howellia aquatilis*) or Spalding’s campion (*Silene spaldingii*). We concur with your determination of “no effect” on Canada lynx (*Lynx canadensis*) critical habitat. We also concur with your determination of “may affect, not likely to adversely affect” on bull trout (*Salvelinus confluentis*) critical habitat. The effects analysis and terms and conditions of the original Biological Opinion remain unchanged.

We appreciate your efforts to ensure the conservation of threatened and endangered species under the Endangered Species Act, as amended. If you have questions or comments related to this correspondence, please contact Bob Lee in the Kalispell SubOffice at 406-758-6879.

Sincerely,

R. Mark Wilson
Field Supervisor

Copy To: USFWS, Kalispell, MT (Attn: Tim Bodurtha)
USFWS, Helena, MT (Attn: Anne Vandehey)
MDT, Missoula, MT (Attn: D. Moeller)
MDT, Missoula, MT (Attn: B. Gundrun)
MDT, Missoula, MT (Attn: S. Kilcrease)
MDT, Missoula, MT (Attn: M. Dalsoglio)
FHWA, Helena, MT (Attn: Brian Hasselbach)