Guide Specification for Gravel Road Surfacing

The following six pages in this document contain a user guide and specification for gravel road surfacing that will provide better gravel for low volume road agencies. The user guide covers background information and the intent of each of the pertinent clauses so that more intelligent editing can be done by users to fit their project situations. This specification is normally edited annually after user feedback is received and processed. A word version of this document is available that will reduce editing effort.

Please share your edits and questions by contacting the following individual.

Stephen Monlux, PE
stevemonlux@gmail.com
406-544-1919
LVR Consultants LLC
Missoula MT
2019 GUIDE SPEC FOR CRUSHING GRAVEL ROAD SURFACING AGGREGATE
(3-30-2019)

Please delete the first two pages of this document (the user note) prior to putting the spec into a contract

Specification User Note: This three-page gravel crushing spec is intended to produce gravel that will develop a good road crust, resist raveling and wash boarding and also retain chloride and other dust abatement materials. Additional edits to this spec are likely needed even though it was written in collaboration with three county road departments, two consulting firms, five crushing contractors and was used in numerous contracts. For additional information or feedback, please contact stevemonlux@gmail.com or 406-544-1919.

Critical elements of this specification include the following:

Subsection 2.2A
a. Gradation curves for three of the six Pay Adjustment Factors are shown at right.
b. The pay adjustment factor improves gradation results and reduces disputes when materials are out of specification. For the pay adjustment to be effective there must be a 10% limitation on the mobilization bid item to prevent unbalanced bidding.
c. Gradation, fracture and plasticity index test requirements must be tailored to materials sources that are owned by counties or local commercial sources. Prior to contract advertisement, sample and test designated sources, and then change Table 1 requirements to make sure spec limits are realistic. For example - the 5/8” minus gradations shown in Table 1 was selected because materials sources in Eastern Montana & North Dakota have small rock and % fracture is difficult to obtain. Another example – if you know the designated source contains the right amount of clay and has large rock, delete percent fracture and PI requirements. Deleting the plasticity requirements will reduce bids and is suggested when (1) clay in source is known to be adequate or (2) two percent bentonite or four percent stockpiled clay is specified – be aware that although deleting requirements lowers bids, there are risks – it is safer to keep the requirements in the spec to be sure you get the desired end product. Yet another strategy is to figure out how much clay is needed prior to crushing, and make adding clay while crushing an additive bid item – then decide if bids for adding clay while crushing are lower cost than adding clay on the road with your road crew.

Subsection 2.2B. Basing acceptance on the average of all acceptance test results will lower bids and better represents gravel placed on the road since mixing occurs while loading out stockpiles. If hauling and placing gravel on the road during crushing, change acceptance and payment to individual composite sample test results – make edits to sentence in Subsection 4.2 (A)(1) and (2).
Subsection 2.2C. Since contractor testing controls the quality of gravel, the splitting of samples and testing must be done correctly. The County consultant lab is the most qualified party to check out the Contractor’s test procedures and equipment. This checking process builds relationships between the two parties ahead of disputes over test results that are always counterproductive. Maximum allowable differences between test results are shown in parenthesis in the first column of Table 1.

Subsection 2.3A. The composite sample process will normally produce an adequate number of samples and helps avoid bias in sampling by taking five large bucket loader samples that form a composite sample that represents about 1000 tons as opposed to the typical “snapshot” belt sample. The total number of acceptance samples can be adjusted by changing the 1000-ton quantity or having one acceptance sample per day – many options exist.

Subsection 2.3B. Having the contractor test a split of the acceptance sample helps ensure the contractor testing is on track by comparing results with the Consultant lab, so the owner knows that crushing adjustments are based on reliable information.

Subsection 3.1A. The stockpile floor requirements are included where Counties do not have the resources or time to prepare a proper floor. The four inch layer of crushed aggregate on the floor may not be necessary when a stable
pit run floor is available. Normally at the start of crushing, some crushed aggregate is out of spec and is used to build the floor and reduces the chance for contamination.

Subsection 3.1B. The intent of this subsection is to reduce segregation.

Subsection 3.2A. Selecting one of the five options for clay binder in the gravel really depends on the materials source and how much you want to pay to achieve a gradation that builds a good road crust that reduces gravel loss, raveling and wash boarding. If the gravel source is non-plastic, adding 2% bentonite or 4% bank run clay is normally safe – overdosing will build a good road crust, but will cause slippery roads and possibly rutting in the spring. Change requirements in Table 1 to be consistent with the option selected. Option V can be cost effective if you spread gravel more than 2 inches thick, and want to add clay in-place on the road with your own road crew. Commercial sources of Bentonite are listed in the 2016 Bentonite Sources and Pricing pdf – please contact me for more info.

Subsection 3.2C. This paragraph contains the typical disclaimer language needed when a county source is designated. Normally, if good source investigation methods are used and specs are tailored to the source, problems noted above will be avoided.

Subsection 3.3A. The best of all worlds is for the owner to make the source meet MSHA requirements. Periodic digital photos of the high wall will help document source quality which can help resolve disputes. These photos can also be used during the next crushing contract to give prospective bidders some idea how to bid on your contract.

Subsection 4.1A. The cubic yard payment has several advantages. Accurate survey equipment now exists to make this practical and avoids quantity assurance problems verifying quantities from belt or loader scales. In addition, the Cubic Yard reconciliation process is less problematic than using tons during internal audits.

Subsection 4.1B. The 90 to 110 percent range for acceptable quantity was established to reduce bidding contingencies associated with the Contractor not getting paid for the quantity that was actually crushed.

Subsection 4.2A. The payment adjustment factor may be the most important part of this specification for both the County and the Contractor. Marginally qualified Contractors or those that traditionally bid low and submit numerous claims will typically bid higher because the payment process for out of spec gravel is not negotiable.

Subsection 4.2B. The five percent bonus for good stockpiling techniques and equipment was added to reflect the benefits of reduced segregation.

Spec Subsection references that refer to the drawings:

Subsection 3.1A. Pit plan drawings should show stockpile locations for top soil, overburden and crushed aggregate.

Subsection 3.2A, C & D. Pit plan drawings should include the following: mining area boundaries, vertical and horizontal excavation limits, clay or other additive stockpile location (if applicable), cross sections through each test pit hole location and test data, as well as stripping depths for top soil and overburden that will ensure the project quantities and County source utilization objectives will be met.

Subsection 3.3: Pit reclamation requirements- indicate if high wall is to be removed or left in place for later removal and reclamation by County. If desired, include complete pit reclamation (spreading topsoil, etc) as a separate bid item in the last crushing contract.
PART 1: GENERAL

1.1 DESCRIPTION
A. This work is the crushing and stockpiling of gravel road surfacing aggregate composed of crushed gravel, stone or other similar materials meeting the gradation and other quality criteria specified herein.

1.2 REFERENCES
AASHTO T2/ASTM D75 Section 5.3.3.1 Sampling of Aggregates
AASHTO T11 Amount Finer than No 200 (0.075mm) Sieve in Aggregate
AASHTO T27 Sieve Analysis of Fine and Coarse Aggregates
AASHTO T89 Determining Liquid Limit of Soils
AASHTO T90 Determining the Plastic Limit and Plasticity Index of Soils
AASHTO T146 Wet Sample Preparation (Required when clay balls encountered)
AASHTO T248 Reducing Samples of Aggregate to Testing Size
ASTM D5821 Determining the Percentage of Fractured Particles in Coarse Aggregate

PART 2: PRODUCT

2.1 CRUSHED SURFACE MATERIAL QUALITY
A. Furnish crushed aggregate that meets requirements in TABLE 1 Section 2.2A.
B. Provide fine and coarse fragments of crushed stone or crushed gravel and/or natural gravel, and when approved, blended with sand or clay, finely crushed stone, crusher screenings, recycled concrete and/or asphalt or other similar materials.
C. Use crushed stone or gravel consisting of hard, durable particles or fragments of stone, free of excess flat, elongated, soft or disintegrated pieces, or other deleterious matter.

2.2 GRADATION, PLASTICITY AND PERCENT FRACTURE
A. Furnish material meeting requirements in TABLE 1 below

<table>
<thead>
<tr>
<th>TABLE 1 REQUIREMENTS. GRADATION, % FRACTURE AND PLASTICITY INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pay Adjustment Factor</td>
</tr>
<tr>
<td>Sieve Size</td>
</tr>
<tr>
<td>5/8 inch</td>
</tr>
<tr>
<td>3/8 inch (8)</td>
</tr>
<tr>
<td>No. 4 (6)</td>
</tr>
<tr>
<td>No. 16 (4)</td>
</tr>
<tr>
<td>No. 40 (3)</td>
</tr>
<tr>
<td>No. 200 (2)</td>
</tr>
<tr>
<td>% Fracture, one face, min (15)</td>
</tr>
<tr>
<td>Plasticity Index (5)</td>
</tr>
</tbody>
</table>

Values within parenthesis are maximum allowable differences between Consultant and Contractor Test results.
B. Acceptance of aggregate is based on the average test result from acceptance samples obtained during crushing.
C. Prior to crushing, demonstrate all sampling, splitting and testing to be done on site. Provide contact information for any testing to be done by consultants off-site.

2.3 SAMPLING, SAMPLE PREPARATION AND TESTING

A. Build acceptance sample stockpiles by taking full bucket load samples with a front end loader for every 200 tons crushed. Follow ASTM D75 Section 5.3.3.1. procedures. Sample from fixed rotary stacking conveyors by sampling from the fresh pile face between the coarse and fine sides of the pile. Sample from telescoping rotary stacking conveyors by diverting the stream to fill up a loader bucket. When stockpiling with hauling vehicles, take bucket loads from the surge pile or by filling the bucket from the surge bin. After the acceptance sample stockpile contains 5 or more bucket loads mix the sampling stockpile with a front-end loader, and then flatten to a 12 to 15-inch-thick layer by back dragging the bucket cutting edge. Make a composite acceptance sample from eight to ten random locations on the flattened surface such that a sample of at least 150 lbs. is available for splitting to testing size. If a County Representative is not present during sampling, take a photo of the flattened stockpile sampling area with a camera that is programmed to record date and time of day photo was taken. Email this photo to the Representative.

B. Provide and utilize on-site sampling and testing equipment for running tests on quality control samples. Split acceptance samples in accordance with AASHTO T248 to testing size using a mechanical splitter. Provide two sample splits to the County for acceptance testing in containers meeting AASHTO T2 requirements. Test one of the other sample splits immediately so that timely adjustments can be made to the crushing operation, source utilization, etc. to ensure future materials are within specification limits. Save at least two sample splits until final payment for “retesting” if that becomes necessary. Label each sample with sample number, date and time sample was taken and tonnage from belt scale totalizer (if available).

C. Stop crushing and submit a written plan detailing operational changes when the following occurs:
 a. Pay adjustment factor becomes less than 1.0
 b. Contractor and County Consultant test results are not within maximum allowable differences shown in parenthesis in Table 1.

PART 3: EXECUTION

3.1 STOCKPILE SITE PREPARATION AND STOCKPILING

A. Strip top soil and overburden and stockpile separately unless otherwise indicated on the drawings. Clear stockpile sites of weeds, roots, stumps, large rock and other contaminating matter. Dispose of this material as directed. Make the stockpile floor firm, smooth, well drained, uniform in cross-section, and able to support the stockpile. Water and compact the stockpile floor to prevent rutting and settlement and where filling is necessary, place and compact material in layers no greater than in eight inch depths. Place a four-inch-thick layer of one inch minus crushed aggregate on the floor to reduce stockpile contamination. Contact the County representative prior to crushing gravel for payment.
B. Stockpile with equipment and by methods that control segregation, degradation and contamination. If using a traditional rotary stacking conveyor, do not let drop height exceed five feet after the initial conical pile is built. If using trucks or front end loaders to stockpile do not dump or push material over the stockpile sides.

3.2 CRUSHING.

A. (Option I – for pits with no clay): Uniformly add material containing clay in the amount needed during crushing to meet requirements in Table 1. Clay may need to be pulverized such that the crushed gravel has no more than two percent clay lumps retained on the No. 4 sieve. The plasticity index requirement can also be achieved by adding processed clay or bentonite from private offsite sources.

A. (Option II – for gravel sources where the amount of clay is unknown): If necessary, add offsite clay or processed bentonite to meet plasticity index specifications in Table 1. Clay may need to be pulverized such that the crushed gravel has no more than two percent clay lumps retained on the No. 4 sieve.

A. (Option III – where the Agency provides a stockpile of clay): While crushing and stockpiling aggregate, load, haul and uniformly add stockpiled clay shown on the drawings in the amount needed during crushing to meet requirements in Table 1. Clay may need to be pulverized such that the crushed gravel has no more than two percent clay lumps retained on the No. 4 sieve.

A. (Option IV – where the Agency designates a clay source and specifies a by weight percentage to add to the aggregate – plasticity index requirement in Table 1 is deleted): Add clay from the designated source in the percent by weight of aggregate indicated on the drawings or in the schedule of items.

A. (Option V – where the Agency knows clay is present in the desired amount in the source or the Agency plans to add clay to the stockpile or to gravel on the road after placement): Delete this Subsection and also delete requirements for plasticity index in Table 1.

B. Utilize necessary methods and equipment to meet gradation and percent fracture requirements such as reducing production rates, tertiary stage crushing, additional screening capacity, etc.

C. The quality of material in provided sources is acceptable in general, but may contain layers or pockets of unacceptable materials. It is not feasible to ascertain from test hole samples the quality of materials for an entire deposit, and variations should be expected. Materials source investigation data is available upon request, including sample site locations, depth of samples, and test results. The contractor must determine the quantity and type of equipment and work necessary to produce acceptable materials. Private off-site gravel sources or additive materials may be used to meet specifications provided the crushed gravel is stockpiled at location(s) indicated in the contract documents.

D. Stay within the mining area staked on the ground and cross sections shown on the drawings for agency provided sources. Comply with all mining area requirements shown on the drawings and in applicable regulations.

E. Calculate pay adjustment factors immediately after receiving acceptance sample test results.

3.3 PIT RECLAMATION.
A. Unless noted otherwise on the drawings reclaim pit and remove high wall under the direction of a County representative. Prearrange date(s) for reclamation so that the County representative can be onsite.

PART 4: MEASUREMENT AND PAYMENT

4.1 MEASUREMENT
A. Determine cubic yard quantities of crushed aggregate by conducting measurements before and after stockpiles are built by employing a licensed surveyor to conduct measurements via a 3D or 2.5D reconstruction. Determine volume using unmanned aerial vehicle photogrammetric processes that capture a ground sample distance (GSD) of no more than 5 cm. Adequate ground control points (GCP) and check points (CP) must be incorporated whereby all points are collected according to industry-standard survey practices. Provide all survey data to the County for verification.

B. Cubic Yard quantities between 90 and 110 percent of the specified quantities will be paid for according to the quantities determined as indicated above. No payment will be made for quantities exceeding 110 percent of the specified quantity.

4.2 PAYMENT.
A. Payment is determined by multiplying the lowest payment adjustment factor (See Table 1 in Subsection 2.2) times the unit price times the total cubic yard quantity determined under Subsection 4.1 MEASUREMENT. The lowest payment adjustment factor is determined by (1) averaging all of the composite acceptance sample test results, (2) determining the pay adjustment factor for each of the requirements in Table 1 and (3) selecting the lowest pay adjustment factor from Step 2.

B. Final payment will be increased by five percent when: (a) telescoping rotary stacking conveyors (“Telestacker®” by Superior Industries or equal) are used for stockpiling, or (b) stockpiles are built in three or more layers of relatively similar depth.