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Background

• 20 ksi 28-day compressive 
strength 

• 1.2 ksi 28-day flexure strength 
• MDT interested in field-cast 

joints between precast bridge 
deck panels

• Cost Prohibitive
• Previous research at MSU 

developed a non-proprietary 
UHPC mix design 
– Local Materials
– Lower cost



METHODS



Mixing Procedure
• Small laboratory mixtures 

produced in an industrial 
benchtop Hobart A200 mixer in 
0.20-ft3 batches

§ Larger-scale mixes produced in an 
IMER Mortarman 360 high-shear 
horizontal mortar mixer



Mixing Procedure
• Combine fine aggregate and silica 

fume
– Mix for 5 minutes on low speed

• Add cement and fly ash to mixer
– Mix for 5 minutes on low speed

• Combine water and HRWR in 
separate container
– Mix thoroughly

• Add water & HRWR to mixing bowl
– Mix on low speed until mix becomes 

fluid  (typically around 3-6 minutes)
• Add steel fibers

– Mix for approximately 3 minutes
• Flow Test



Specimen Preparation
• 3-by-6-in compression test cylinders 

prepared for each mix
– ASTM C1856  Standard Practice for 

Fabricating and Testing Specimens of Ultra-
High Performance Concrete

• Filled with single lift and leveled
• Tops wrapped with plastic wrap to avoid 

surface drying
• Removed from molds after 48 hours 
• Diamond-blade tile saw used to remove 

uneven top surface
• Ground using an automatic cylinder end 

grinder
• Placed in temperature-controlled cure 

room at 100% humidity



Compression Testing
• ASTM C 1856 Standard Practice for 

Fabricating and Testing Specimens of 
Ultra-High Performance Concrete

• At least three 3-by-6-in cylinders 
loaded to failure

• Testmark CM Series hydraulic 
compression load frame
– 400,000-pound capacity

• Loaded at a target rate of 975-1075 
lbs/second (138-152 psi/s)

• Maximum load at failure was recorded
• Average compressive strength 

calculated from all specimens 



Flexure Testing

• ASTM C78 -- Standard Test Method 
for Flexural Strength of Concrete

• Flexural tensile strength calculated 
as the average of two 20-by-6-by-6 
inch prisms

• Steel fibers allow to carry load 
beyond the formation of an initial 
crack

• Initial cracking was determined 
from the recorded force-
deformation response of each 
specimen 
– First point at which there was a 

sudden reduction in applied load and 
a distinct reduction in stiffness



Materials

• Cement (top right)
• Silica Fume (top left)
• Fly Ash (bottom right)
• Fine Aggregate (bottom 

left)
• High Range Water 

Reducer (HRWR)
• Steel Fibers (middle)



Mix Design

Item Item Type Amount (lbs)

Water - 27.66

HRWR
CHRYSO Fluid Premia

150
5.96

Portland 
Cement

Type I/II Trident 120.32

Silica Fume BASF MasterLife SF 100 25.78
Fly Ash Trident Genesee 34.38

Fine Aggregate
O.D. BBB&T Concrete 

Sand
144.11

Steel Fibers
Bekaert Dramix OL 

13/0.20
24.34

w/c 
Ratio

HRWR/c 
Ratio

Sand/c 
Ratio

SF/FA 
Ratio

SCM/c 
Ratio

Fiber 
Content

Paste 
Content

0.28 0.05 1.40 0.75 0.50 2% 62%



SENSITIVITY TO MATERIAL 
VARIABILITY



Effect of Cement Source

• Trident cement 
– Type I/II/IV cement 
– GCC cement plant in 

Trident, MT
– Compressive strengths 

10% higher at 7 days 
and 4% higher at 28 

• Ash Grove cement 
– Type I/II cement 
– Ash Grove cement 

plant in Clancy, MT
– Delayed turnover time 

• Higher water demands

Flow 
(in.)

Compressive strength, f'c 
(ksi)

Cement Source 7-day 28-day

Trident (May 
2018) 8.50 14.7 17.5

Ash Grove 5.88 13.3 16.8



Effect of Fly Ash Source
• Coal Creek ash 

– Coal Creek power plant in 
Underwood, North Dakota

• Genesee fly ash 
– Genesee Generating Station 

near Warburg, Alberta, and 
was supplied by the GCC 
cement plant near Trident, 
MT

• Sheerness fly ash 
– Ash Grove cement plant and 

obtained from the 
Sheerness Generating 
Station in Hanna, Alberta

Flow 
(in.)

Compressive strength, f'c 
(ksi)

Fly Ash 
Source 7-day 28-day

Genesee 9 14.6 18.2

Coal Creek 10 15.2 18.2

Sheerness 11 14.9 18.1



Effect of Fine Aggregate

Fine Aggregate Source Supplier Location Flow (in)

Compressive Strength (ksi)

7-day 28-day
QUIKRETE-Masonry QUIKRETE Billings, MT 8.0 14.7 17.5

Diamond Mountain-Masonry BBB&T Frenchtown, MT 9.4 13.8 16.6
Pioneer-Masonry Pioneer Concrete & Fuel Butte, MT 8.8 15.8 18.6

S&N-Masonry S&N Concrete & Materials Anaconda, MT 8.8 15.5 18.8
Helena-Masonry Helena Sand & Gravel Helena, MT 8.4 14.2 16.9
Capital-Masonry Capital Concrete East Helena, MT 9.0 14.3 17.3
BBB&T-Concrete BBB&T Bozeman, MT 8.9 14.7 18.7
Pioneer-Concrete Pioneer Concrete & Fuel Butte, MT 8.8 13.4 15.9

S&N-Concrete S&N Concrete & Materials Anaconda, MT 8.3 14.0 17.2
Helena-Concrete Helena Sand & Gravel Helena, MT 8.5 14.7 17.3



Compressive Strengths
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Absorption Capacity

R² = 0.1542

R² = 0.0905

R² = 0.3461
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Fineness Modulus

R² = 0.0439

R² = 0.0091

R² = 0.0994
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Effect of Aggregate Moisture Content 

Moisture Target Flow (in.)
Compressive Strength, f'c (ksi)

7-day 28-day

Oven Dried 7 13.61 17.73

50% of SSD 8 13.14 16.62

100% of SSD 7.5 13.35 16.83

150% of SSD 10.5 11.28 13.14

300% of SSD 11.5 11.71 16.31

50% of SSD - MCC 8 13.25 17.75

100% of SSD - MCC 10 13.44 16.37

150% of SSD - MCC 10.5 12.33 16.36

300% of SSD - MCC 11.5 13.50 16.20

Average: 9.39 12.85 16.37

C.O.V.: 0.177 0.063 0.077



FLOWS



COMPRESSIVE STRENGTHS



Steel Fibers

Properties Nycon-SF Type I Bekaert Dramix OL 13/0.20 
Length (mm) 13 13.0

Diameter (mm) 0.2 0.2
Aspect Ratio 65 65.0

Tensile Strength (ksi) 285 399.0
Elastic Modulus (ksi) 29000 29000

Coating Copper Copper 
Flow (in.) 8.5 10.0

7-day Comp. Strength (ksi) 14.7 13.9
28-day Comp. Strength (ksi) 17.5 17.3
Initial Cracking Strength (ksi) 1.98 ?

Ultimate Flexure Strength (ksi) 3.39 2.95



SENSITIVITY TO MIXING 
VARIABILITY & FIELD CONDITIONS



Strength Gain vs. Time



Batch Size

Mix Size (cu. ft.) Flow (in.)
Compressive Strength, f'c (ksi)

7-day 28-day 56-day

2.5 9 14.90 18.01 18.71

3 9.5 17.29 18.81 18.01

3.5 7.5 16.25 15.97 19.57

4 8.5 15.38 17.73 18.24

Average: 8.63 15.95 17.63 18.63

C.O.V.: 8.6% 5.7% 5.9% 3.2%



Batch Size



Effect of Temperature

Mix Outside Temp. Material Temp. Flow (in.)
Compressive Strength, f'c (ksi)

7-day 28-day 56-day

Cold Mix 45°F 32°F 10 16.15 17.89 17.98

Lab Temp. 70°F 60°F 9 14.9 18.01 18.71

Hot Mix 75°F 90°F 6.25 14.78 16.62 17.03

Average: 8.42 15.27 17.51 17.91

C.O.V.: 18.8% 4.1% 3.6% 3.8%



Effect of Temperature



BOND STRENGTH & PULLOUT 
TESTING



Testing Setup

• Testing bar pulled out of 10 
inch tall UHPC curbs

• Curbs running transversely 
across the top of conventional 
concrete slabs

• Connected through No. 8 
Grade 60 bars
– Extend 8 in. into the UHPC 

curbs and 11.5 in. inches into 
the conventional concrete 
slabs

• Testing bar located between 
#8 bars

• UHPC curbs cure for 28 days



Testing Setup
• Hydraulic jack on steel chair 
• Testing bar pulled by hydraulic jack 

using bar chuck



Construction



Pullout Testing

• Fifty-six total pullout tests were 
conducted

• Variables tested including bar size, 
bar embedment length, bar clear 
spacing, and bar clear cover

• Validate FHWA recommendations for 
development length

• No. 4, 5, 6, and 7 Grade 60 bars 
tested within the FHWA’s 
recommended embedment, side 
cover, and bar spacing

• Each test bar was pulled beyond the 
rebar yielding limit to be sure the 
UHPC bond strength was above this 
maximum safe rebar loading



Typical Stress-Displacement Plot



Flow 
(in)

f'c, 
ksi

Bar 
Size

ld, 
in

ls, 
in

cso, 
in

csi, in
Max. Stress 

(ksi)
Failure 

Mechanism
11.0 17.34 4 4 2 1.5 3 80.79 Yielding
11.0 17.34 4 4 2 1.5 3 69.44 Yielding
11.0 17.34 4 4 2 1.5 3 92.08 Yielding
11.0 17.34 4 4 2 1.5 3 69.95 Yielding

9.5 16.59 5 5 3 1.87
5

3.187
5

77.12 Yielding

9.5 16.59 5 5 3
1.87

5
3.187

5
73.45 Yielding

9.5 16.59 5 5 3
1.87

5
3.187

5
73.37 Yielding

9.5 16.59 5 5 3
1.87

5
3.187

5
63.53 Yielding

11.0 17.34 6 6 4 2.25 3.125 77.35 Yielding
11.0 17.34 6 6 4 2.25 3.125 66.41 Yielding
11.0 17.34 6 6 4 2.25 3.125 86.34 Yielding
11.0 17.34 6 6 4 2.25 3.125 48.49 Yielding

9.5 16.59 7 7 5
2.62

5
3.062

5
76.45 Yielding

9.5 16.59 7 7 5
2.62

5
3.062

5
77.31 Yielding

9.5 16.59 7 7 5
2.62

5
3.062

5
72.8 Yielding

9.5 16.59 7 7 5
2.62

5
3.062

5
102.65 Yielding

FHWA Test Results



Conclusions
• Material Sensitivity

– Material source variations had fairly minor effects on UHPC performance
– Replacing materials sources can be admissible as long as materials with 

similar properties to the original mix constituents are used. 
– Aggregate Moisture Content effected behavior

• With increasing moisture content, UHPC performance generally decreased
• Flow generally increased with increasing moisture content and the 7- and 28-

day compressive strengths generally decreased
• Moisture content corrections only slightly helped the UHPC mixes

– Trial batches should always be completed when using different materials 
or material sources



Conclusions

• Sensitivity to Mixing Variability and Field Conditions
– Mixes obtained high early strengths, exceeding 10 ksi in the first 24 

hours
– The mixes continued to gain strength over the duration of testing, 

ultimately reaching strengths of around 20 ksi at 182 days
– Batch size was not observed to have a significant effect on flow or 

compressive strength
– Larger scale mixes required 10% more water and HRWR 
– Flow was observed to decrease with increasing temperature
– Compressive strengths for the hot mix were consistently the lowest
– Care should be given while batching and mixing UHPC mixes at higher 

temperatures



Conclusions

• Pullout and Bond Strength
– When FHWA recommendations are followed, UHPC is satisfactory for 

the purposed pullout application

• Overall
– All mixes in this study had a flow between 6 and 11 inches, and 

respective 7- and 28- day compressive strengths of at least 13 and 16 
ksi despite the wide range of mixes completed

– In terms of implementation, it is recommended doing multiple trial 
batches before use
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