FEASIBILITY OF NON-PROPRIETARY ULTRA-HIGH PERFORMANCE CONCRETE (UHPC) FOR USE IN HIGHWAY BRIDGES IN MONTANA: PHASE II FIELD APPLICATION

Michael Berry Civil Engineering Department Montana State University

Funded by Montana Department of Transportation 5/3/21

Scope

- Introduction/Background
- Literature Review
 - Non-proprietary UHPC and Bond Strength Testing
- Constituent Materials
 - Properties, Sources, Gradation, Moisture Content
- Field Application
 - Strength Gain vs. Time, Batch Size, Temperature, Mixing Time, Aggregate Moisture Content
- Rebar Bond Strength
 - FHWA Recommendations, Embedment Length, Bar Size, Bar Spacing, Bar Side Cover
- Summary & Conclusions

Background

- 20 ksi 28-day compressive strength
- 1.2 ksi 28-day flexure strength
- MDT interested in field-cast joints between precast bridge deck panels
- Cost Prohibitive
- Previous research at MSU developed a non-proprietary UHPC mix design
 - Local Materials
 - Lower cost

METHODS

Mixing Procedure

 Small laboratory mixtures produced in an industrial benchtop Hobart A200 mixer in 0.20-ft3 batches

 Larger-scale mixes produced in an IMER Mortarman 360 high-shear horizontal mortar mixer

Mixing Procedure

- Combine fine aggregate and silica fume
 - Mix for 5 minutes on low speed
- Add cement and fly ash to mixer
 - Mix for 5 minutes on low speed
- Combine water and HRWR in separate container
 - Mix thoroughly
- Add water & HRWR to mixing bowl
 - Mix on low speed until mix becomes fluid (typically around 3-6 minutes)
- Add steel fibers
 - Mix for approximately 3 minutes
- Flow Test

Specimen Preparation

- 3-by-6-in compression test cylinders prepared for each mix
 - ASTM C1856 Standard Practice for Fabricating and Testing Specimens of Ultra-High Performance Concrete
- Filled with single lift and leveled
- Tops wrapped with plastic wrap to avoid surface drying
- Removed from molds after 48 hours
- Diamond-blade tile saw used to remove uneven top surface
- Ground using an automatic cylinder end grinder
- Placed in temperature-controlled cure room at 100% humidity

Compression Testing

- ASTM C 1856 Standard Practice for Fabricating and Testing Specimens of Ultra-High Performance Concrete
- At least three 3-by-6-in cylinders loaded to failure
- Testmark CM Series hydraulic compression load frame
 - 400,000-pound capacity
- Loaded at a target rate of 975-1075 lbs/second (138-152 psi/s)
- Maximum load at failure was recorded
- Average compressive strength calculated from all specimens

Flexure Testing

- ASTM C78 -- Standard Test Method for Flexural Strength of Concrete
- Flexural tensile strength calculated as the average of two 20-by-6-by-6 inch prisms
- Steel fibers allow to carry load beyond the formation of an initial crack
- Initial cracking was determined from the recorded forcedeformation response of each specimen
 - First point at which there was a sudden reduction in applied load and a distinct reduction in stiffness

<u>Materials</u>

- Cement (top right)
- Silica Fume (top left)
- Fly Ash (bottom right)
- Fine Aggregate (bottom left)
- High Range Water Reducer (HRWR)
- Steel Fibers (middle)

Mix Design

w/c	HRWR/c	Sand/c	SF/FA	SCM/c	Fiber	Paste
Ratio	Ratio	Ratio	Ratio	Ratio	Content	Content
0.28	0.05	1.40	0.75	0.50	2%	62%

ltem	Item Type	Amount (lbs)
Water	-	27.66
HRWR	CHRYSO Fluid Premia 150	5.96
Portland Cement	Type I/II Trident	120.32
Silica Fume	BASF MasterLife SF 100	25.78
Fly Ash	Trident Genesee	34.38
Fine Aggregate	O.D. BBB&T Concrete Sand	144.11
Steel Fibers	Bekaert Dramix OL 13/0.20	24.34

SENSITIVITY TO MATERIAL VARIABILITY

Effect of Cement Source

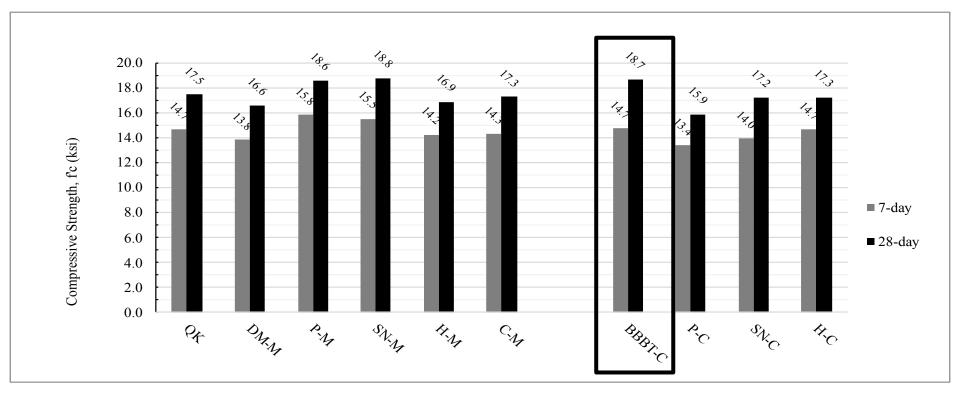
- Trident cement
 - Type I/II/IV cement
 - GCC cement plant in Trident, MT
 - Compressive strengths 10% higher at 7 days and 4% higher at 28
- Ash Grove cement
 - Type I/II cement
 - Ash Grove cement plant in Clancy, MT
 - Delayed turnover time
 - Higher water demands

	Flow -	Compressive strength, f'c (ksi)		
Cement Source	(in.)	7-day	28-day	
Trident (May 2018)	8.50	14.7	17.5	
Ash Grove	5.88	13.3	16.8	

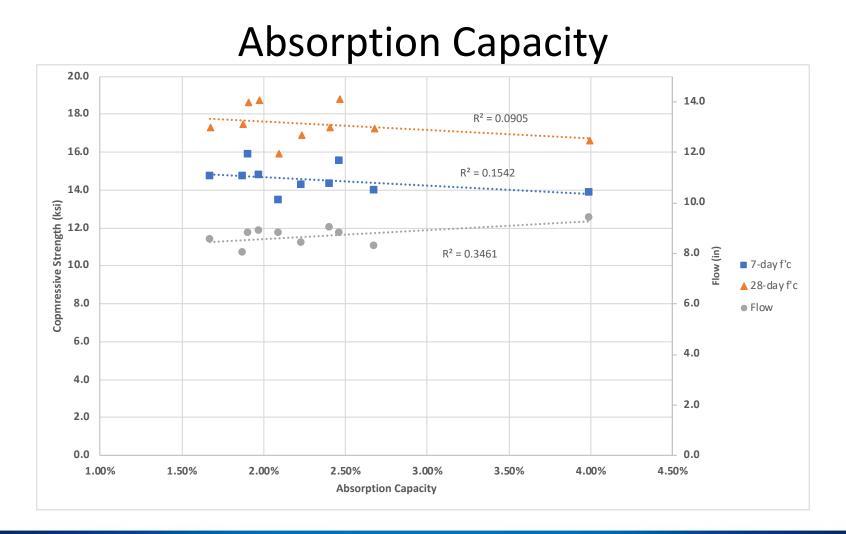
Effect of Fly Ash Source

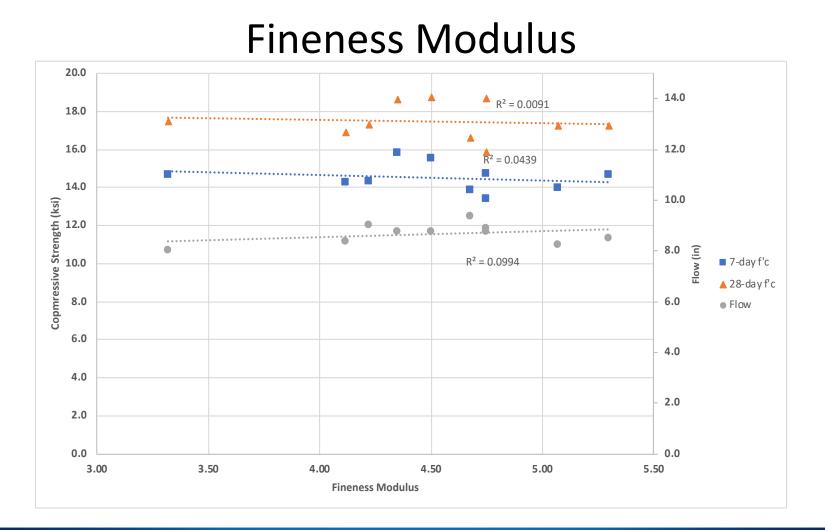
- Coal Creek ash
 - Coal Creek power plant in Underwood, North Dakota
- Genesee fly ash
 - Genesee Generating Station near Warburg, Alberta, and was supplied by the GCC cement plant near Trident, MT
- Sheerness fly ash
 - Ash Grove cement plant and obtained from the Sheerness Generating Station in Hanna, Alberta

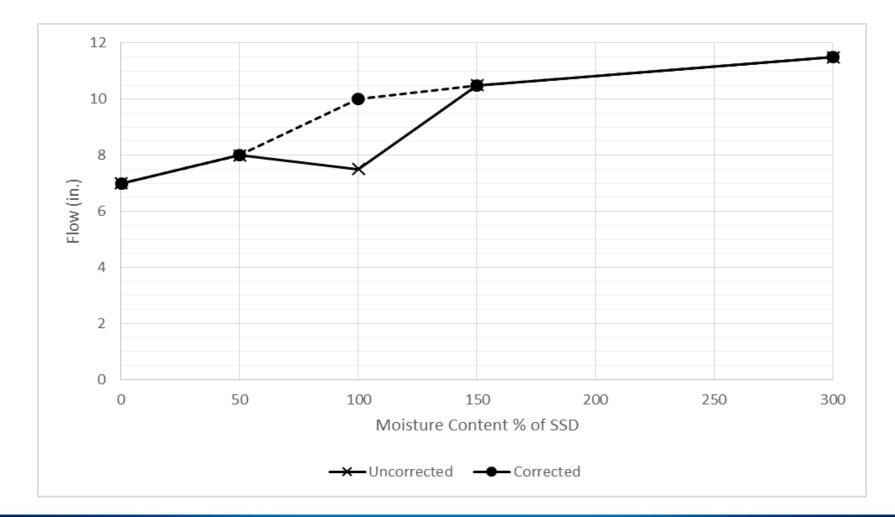
		Compressive strength, f'c (ksi)				
Fly Ash	Flow		7		20 da.	_
Source	(in.)		7-day		<u>28-dav</u>	
Genesee	9		14.6		18.2	
Coal Creek	10		15.2		18.2	
Sheerness	11		14.9		18.1	ļ



Effect of Fine Aggregate

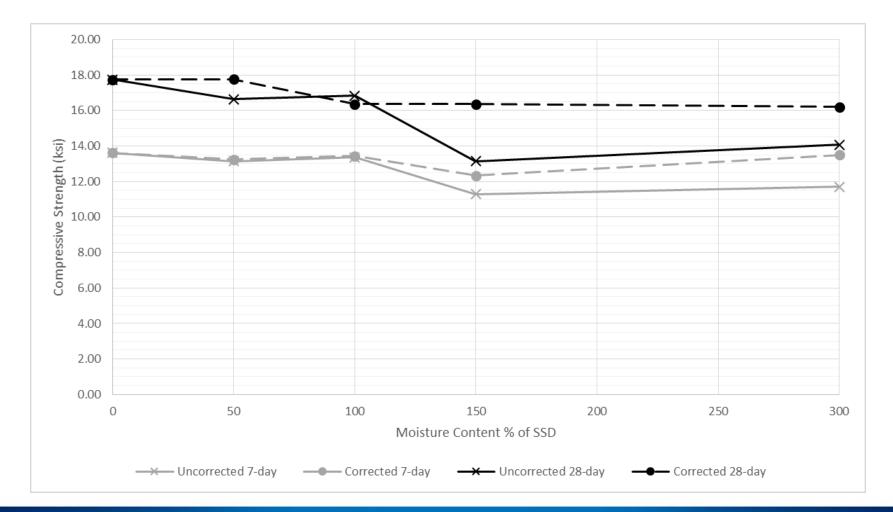

				Compressive	Strength (ksi)
Fine Aggregate Source	Supplier	Location	<u>Flow (in)</u>	7-day	28-day
QUIKRETE-Masonry	QUIKRETE	Billings, MT	8.0	14.7	17.5
Diamond Mountain-Masonry	BBB&T	Frenchtown, MT	9.4	13.8	16.6
Pioneer-Masonry	Pioneer Concrete & Fuel	Butte, MT	8.8	15.8	18.6
S&N-Masonry	S&N Concrete & Materials	Anaconda, MT	8.8	15.5	18.8
Helena-Masonry	Helena Sand & Gravel	Helena, MT	8.4	14.2	16.9
Capital-Masonry	Capital Concrete	East Helena, MT	9.0	14.3	17.3
BBB&T-Concrete	BBB&T	Bozeman, MT	8.9	14.7	18.7
Pioneer-Concrete	Pioneer Concrete & Fuel	Butte, MT	8.8	13.4	15.9
S&N-Concrete	S&N Concrete & Materials	Anaconda, MT	8.3	14.0	17.2
Helena-Concrete	Helena Sand & Gravel	Helena, MT	8.5	14.7	17.3


Compressive Strengths



Effect of Aggregate Moisture Content

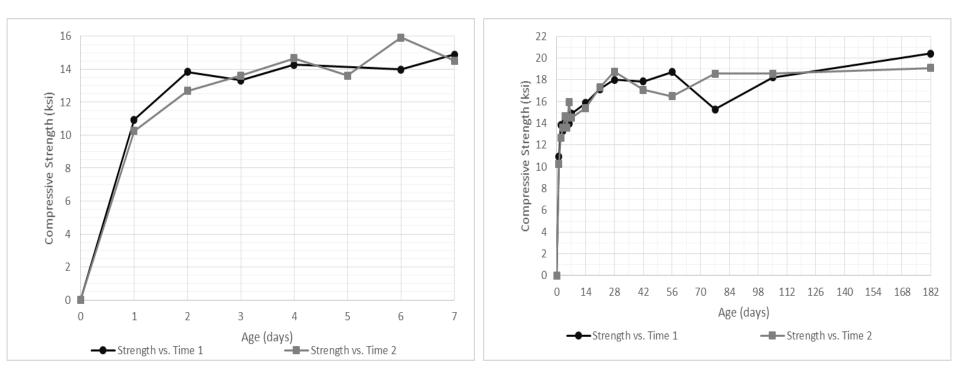
Moisturo Torgot	Elow (in)	Compressive S	Strength, f'c (ksi)
Moisture Target	Flow (in.)	7-day	28-day
Oven Dried	7	13.61	17.73
50% of SSD	8	13.14	16.62
100% of SSD	7.5	13.35	16.83
150% of SSD	10.5	11.28	13.14
300% of SSD	11.5	11.71	16.31
50% of SSD - MCC	8	13.25	17.75
100% of SSD - MCC	10	13.44	16.37
150% of SSD - MCC	10.5	12.33	16.36
300% of SSD - MCC	11.5	13.50	16.20
Average:	9.39	12.85	16.37
C.O.V.:	0.177	0.063	0.077



FLOWS

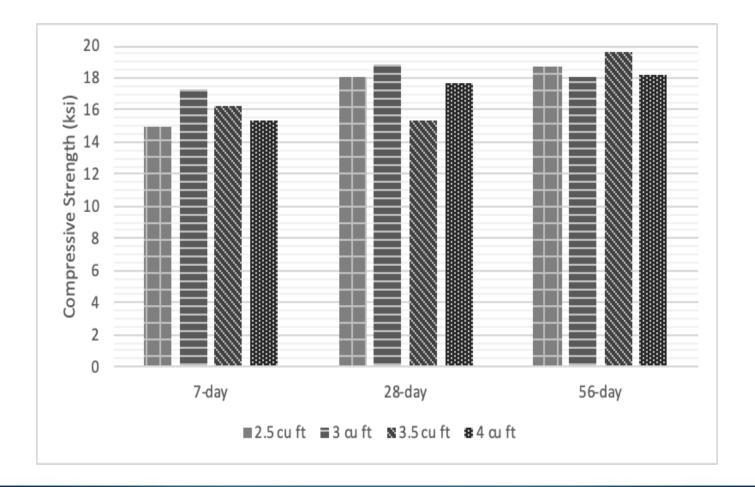
COMPRESSIVE STRENGTHS

Steel Fibers


Properties	Nycon-SF Type I	Bekaert Dramix OL 13/0.20		
Length (mm)	13	13.0		
Diameter (mm)	0.2	0.2		
Aspect Ratio	65	65.0		
Tensile Strength (ksi)	285	399.0		
Elastic Modulus (ksi)	29000	29000		
Coating	Copper	Copper		
Flow (in.)	8.5	10.0		
7-day Comp. Strength (ksi)	14.7	13.9		
28-day Comp. Strength (ksi)	17.5	17.3		
Initial Cracking Strength (ksi)	1.98	?		
Ultimate Flexure Strength (ksi)	3.39	2.95		

SENSITIVITY TO MIXING VARIABILITY & FIELD CONDITIONS

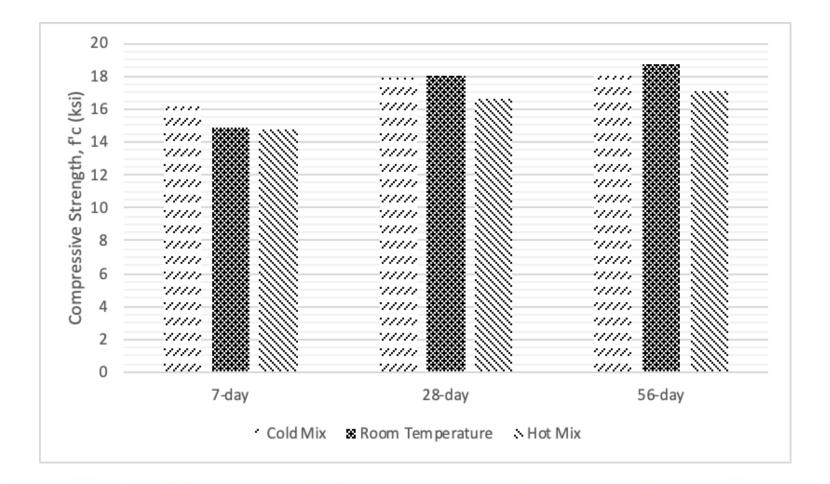
Strength Gain vs. Time



Batch Size

NAix Size (ou ft.)	Flow (in.) —		Compressive Strength, f'c (ksi)					
Mix Size (cu. ft.)			7-day		28-day		56-day	
2.5	9		14.90		18.01		18.71	
3	9.5		17.29		18.81		18.01	
3.5	7.5		16.25		15.97		19.57	
4	8.5		15.38		17.73		18.24	
Average:	8.63		15.95		17.63		18.63	
C.O.V.:	8.6%		5.7%		5.9%		3.2%	

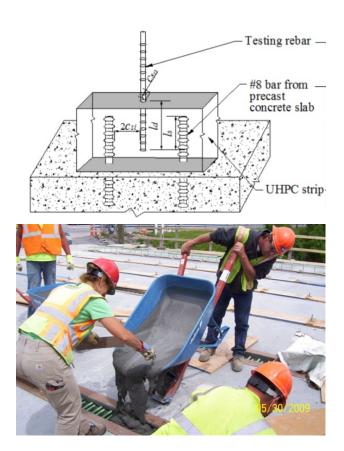
Batch Size



Effect of Temperature

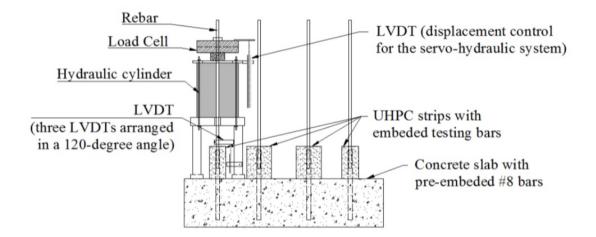
Mix	Outside Temp.	Material Temp.	Flow (in.) -	Compres	Compressive Strength, f'c (ksi)			
	Outside lemp.	Material lemp.		7-day	28-day	56-day		
Cold Mix	45°F	32°F	10	16.15	17.89	17.98		
Lab Temp.	70°F	60°F	9	14.9	18.01	18.71		
Hot Mix	75°F	90°F	6.25	14.78	16.62	17.03		
		Average:	8.42	15.27	17.51	17.91		
		C.O.V.:	18.8%	4.1%	3.6%	3.8%		

Effect of Temperature



BOND STRENGTH & PULLOUT TESTING

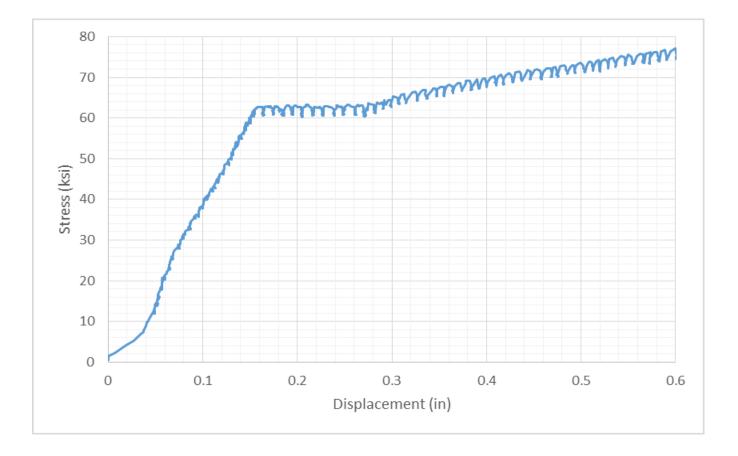
Testing Setup


- Testing bar pulled out of 10 inch tall UHPC curbs
- Curbs running transversely across the top of conventional concrete slabs
- Connected through No. 8 Grade 60 bars
 - Extend 8 in. into the UHPC curbs and 11.5 in. inches into the conventional concrete slabs
- Testing bar located between #8 bars
- UHPC curbs cure for 28 days

Testing Setup

- Hydraulic jack on steel chair
- Testing bar pulled by hydraulic jack using bar chuck

Construction


Pullout Testing

- Fifty-six total pullout tests were conducted
- Variables tested including bar size, bar embedment length, bar clear spacing, and bar clear cover
- Validate FHWA recommendations for development length
- No. 4, 5, 6, and 7 Grade 60 bars tested within the FHWA's recommended embedment, side cover, and bar spacing
- Each test bar was pulled beyond the rebar yielding limit to be sure the UHPC bond strength was above this maximum safe rebar loading

Typical Stress-Displacement Plot

FHWA Test Results

Flow	f'c,	Bar	l _d ,	ls,	c _{so} ,	c _{si} , in	Max. Stress	Failure
(in)	ksi	Size	in	in	in		(ksi)	Mechanism
11.0	17.34	4	4	2	1.5	3	80.79	Yielding
11.0	17.34	4	4	2	1.5	3	69.44	Yielding
11.0	17.34	4	4	2	1.5	3	92.08	Yielding
11.0	17.34	4	4	2	1.5	3	69.95	Yielding
9.5	16.59	5	5	3	1.87 5	3.187 5	77.12	Yielding
9.5	16.59	5	5	3	1.87 5	3.187 5	73.45	Yielding
9.5	16.59	5	5	3	1.87 5	3.187 5	73.37	Yielding
9.5	16.59	5	5	3	1.87 5	3.187 5	63.53	Yielding
11.0	17.34	6	6	4	2.25	3.125	77.35	Yielding
11.0	17.34	6	6	4	2.25	3.125	66.41	Yielding
11.0	17.34	6	6	4	2.25	3.125	86.34	Yielding
11.0	17.34	6	6	4	2.25	3.125	48.49	Yielding
9.5	16.59	7	7	5	2.62 5	3.062 5	76.45	Yielding
9.5	16.59	7	7	5	2.62 5	3.062 5	77.31	Yielding
9.5	16.59	7	7	5	2.62 5	3.062 5	72.8	Yielding
9.5	16.59	7	7	5	2.62 5	3.062 5	102.65	Yielding

Conclusions

- Material Sensitivity
 - Material source variations had fairly minor effects on UHPC performance
 - Replacing materials sources can be admissible as long as materials with similar properties to the original mix constituents are used.
 - Aggregate Moisture Content effected behavior
 - With increasing moisture content, UHPC performance generally decreased
 - Flow generally increased with increasing moisture content and the 7- and 28day compressive strengths generally decreased
 - Moisture content corrections only slightly helped the UHPC mixes
 - Trial batches should always be completed when using different materials or material sources

Conclusions

- Sensitivity to Mixing Variability and Field Conditions
 - Mixes obtained high early strengths, exceeding 10 ksi in the first 24 hours
 - The mixes continued to gain strength over the duration of testing, ultimately reaching strengths of around 20 ksi at 182 days
 - Batch size was not observed to have a significant effect on flow or compressive strength
 - Larger scale mixes required 10% more water and HRWR
 - Flow was observed to decrease with increasing temperature
 - Compressive strengths for the hot mix were consistently the lowest
 - Care should be given while batching and mixing UHPC mixes at higher temperatures

Conclusions

- Pullout and Bond Strength
 - When FHWA recommendations are followed, UHPC is satisfactory for the purposed pullout application
- Overall
 - All mixes in this study had a flow between 6 and 11 inches, and respective 7- and 28- day compressive strengths of at least 13 and 16 ksi despite the wide range of mixes completed
 - In terms of implementation, it is recommended doing multiple trial batches before use

Acknowledgements

- Financial support for this project was provided by the Montana Department of Transportation (MDT)
- Thanks to the MDT Research Section and the technical panel for their participation in this project
- This research would also not have been possible without the support of several other undergraduate and graduate student researchers
 - Camylle Wood
 - Keo Jamieson
 - Jessi Ellingsen
 - Kate Leeuwenburg
 - Ashton Siegner
- Would also like to thank Dr. Benjamin Graybeal with the FHWA, and Dr. Rob Shogren with Lafarge/Holcim for their insight throughout this project

