MONTANA DEPARTMENT OF TRANSPORTATION WETLAND MITIGATION MONITORING REPORT

JTX – TUNNICLIFF RANCH MITIGATION SITE BIG HORN COUNTY, MONTANA

PROJECT COMPLETED: 2015

MONITORING REPORT #3: DECEMBER 2018

Prepared for:

2701 Prospect Avenue Helena, Montana 59620

Prepared by:

820 North Montana Ave, Suite A Helena, Montana 59601

Montana Department of Transportation Wetland Mitigation Monitoring Report: Year 2018

JTX – TUNNICLIFF RANCH MITIGATION SITE BIG HORN COUNTY, MONTANA INITIAL CONSTRUCTION: 2015

MDT Project Number STPX STWS (056) Control Number 7286

USACE: NWO-2010-01938-MTH

prepared for

Montana Department of Transportation 2701 Prospect Avenue Helena, Montana 59620

prepared by

RESPEC 820 North Montana Avenue, Suite A Helena, Montana 59601

December 2018

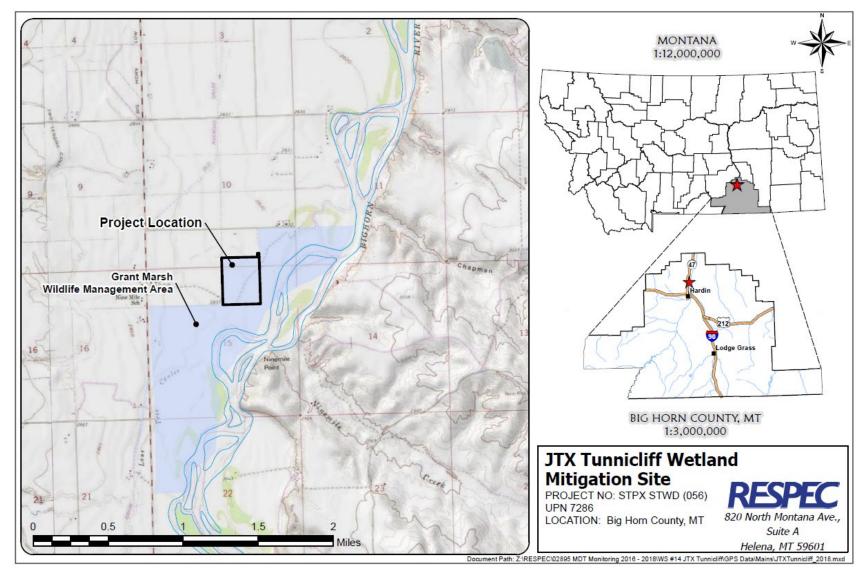
"MDT attempts to provide accommodations for any known disability that may interfere with a person participating in any service, program, or activity of the Department of Transportation. Alternative accessible formats of this information will be provided upon request. For further information, call 406-444-7228, TTY at 800-335-7592, or Montana Relay at 711."

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
2.0	ME	THODS	6
3.0	RES	SULTS	6
	3.1	HYDROLOGY	6
	3.2	VEGETATION	7
	3.3	SOIL	14
	3.4	WETLAND DELINEATION	15
	3.5	WILDLIFE	15
	3.6	FUNCTIONAL ASSESSMENT	15
	3.7	PHOTOGRAPHIC DOCUMENTATION	16
	3.8	MAINTENANCE NEEDS	16
	3.9	CURRENT CREDIT SUMMARY	17
4.0	REF	FERENCES	21
LI		OF TABLES	AGE
1	-1 '	Wetland Credit Determination for the JTX – Tunnicliff Ranch Site	3
	-1	Vegetation Species Observed From 2016 Through 2018 at the JTX – Tunnicliff Ranch Site	8
3	-2	Data Summary for T-1 From 2016 Through 2018 at the JTX – Tunnicliff Ranch Site	10
3	-3	Data Summary for T-2 From 2016 Through 2018 at the JTX – Tunnicliff Ranch Site	12
3	-4	Woody Planting Survival at the JTX – Tunnicliff Ranch Site From 2016 Through 2018	14
3	-5	Wildlife Species Observed in 2018 at the JTX – Tunnicliff Ranch Site	16
3		Montana Wetland Assessment Method Summary for the JTX – Tunnicliff Ranch Site From 2017 Through 2018	17
3	-7	Wetland Mitigation Credits Estimated for the JTX – Tunnicliff Ranch Site in 2018	19
3		Summary of Performance Standards and Success Criteria Compared to Existing Site Conditions	20
LI	ST	OF FIGURES	
FIG	URE	P	AGE
1	-1	Project Location of the JTX – Tunnicliff Ranch Site	2

LIST OF CHARTS

ART PAG	ЭE
1 Transect Map Showing Community Types on T-1 From 2016 Through 2018 From Start (0 Feet) to Finish (792 Feet) at the JTX – Tunnicliff Ranch Site	11
2 Length of Habitat Types Within T-1 From 2016 Through 2018 at the JTX – Tunnicliff Ranch Site	11
3 Transect Map Showing Community Types on T-2 From 2016 Through 2018 From Start (0 Feet) to Finish (900 Feet) at the JTX – Tunnicliff Ranch Site	12
4 Length of Habitat Types Within T-2 From 2016 Through 2018 at the JTX – Tunnicliff Ranch Site	13
ST OF APPENDICES	
PENDIX A. PROJECT AREA MAPS	۹-1
PENDIX B. MONITORING FORMS	3-1
PENDIX C. PROJECT AREA PHOTOGRAPHS	C-1
PENDIX D. PROJECT PLAN SHEETS	D-1


Cover: View looking northwest from Photo-Point 1.

1.0 INTRODUCTION

The JTX – Tunnicliff Ranch 2018 Wetland Mitigation Monitoring Report presents the results of the third year of post-construction monitoring at the JTX – Tunnicliff Ranch mitigation area after project construction in 2015. This Montana Department of Transportation (MDT) wetland mitigation project is located in Sections 10 and 15, Township 1 North, Range 33 East, Big Horn County, Montana. The site is approximately 4.8 miles north of Hardin, Montana, and was purchased by Montana Fish, Wildlife, and Parks (MFWP) in 2017 as an addition to the Grant Marsh Wildlife Management Area (WMA) and Fishing Access Site (FAS) along the Bighorn River, as illustrated in Figure 1-1. The site is intended to provide 29.60 acres of compensatory wetland mitigation credits for wetland impacts associated with the proposed Hardin North project and to serve as a mitigation bank for future transportation projects in Watershed #14 – Middle Yellowstone. The US Army Corps of Engineers (USACE) permit #NWO-2010-01938-MTH approved the JTX – Tunnicliff project and proposed crediting that was presented in the *JTX-Tunnicliff Final Wetland Mitigation Plan, Watershed #14 – Middle Yellowstone River Basin, Big Horn County, Montana* [MDT, 2015]. The objectives of this project include establishing (creating) emergent and scrub/shrub wetlands, riparian floodplain habitat, and a 100-foot-wide upland buffer.

The JTX – Tunnicliff Ranch site is a 50-acre parcel of land within the larger JTX – Tunnicliff Ranch property that was purchased by MFWP in 2017. In 2011, the landowner contacted MDT with an interest in using a portion of his ranch to serve as a compensatory wetland mitigation site. MDT staff met with the landowner in the fall of 2011. MDT staff then conducted some on-site field investigations in the spring of 2012 with the staff from the USACE's Billings office to assess the potential for developing a wetland mitigation site on the ranch. This proposed mitigation area is approximately 50 acres in size; topographically, the property was previously graded for agricultural production, and a series of irrigation and lateral ditches had been constructed across the site. Three irrigation supply ditches formerly ran through the site before construction along with as many as nine lateral distribution ditches. The entire parcel, which is now owned and managed by MFWP, is fenced and has access gates in the northeastern and southeastern corners of the site.

This project is meant to create and restore the site similar to a riparian floodplain wetland ecosystem that has relic river channel depressional wetlands and woody riparian buffer habitat found within the Bighorn River valley. Specifically, the wetland project was designed to restore the riparian wetland habitat that had been converted to farmland; improve wildlife habitat diversity within the property; increase potential flood and stormwater retention within the Bighorn River floodplain; and increase the wetland/riparian floodplain habitats within the Bighorn River Watershed.

Figure 1-1. Project Location of the JTX – Tunnicliff Ranch Site.

The project objectives as described in the *JTX-Tunnicliff Final Wetland Mitigation Plan, Watershed #14 – Middle Yellowstone River Basin, Big Horn County, Montana* include creating the following:

- 26.85 acres of depressional emergent and scrub/shrub wetlands that will be seasonally inundated by groundwater and flood events from the adjacent Bighorn River. Thirteen small, excavated depressions, which range in surface area from 0.33 to 1.50 acres, were designed to mimic relic river/flood channels that are found along many natural riverine systems. The average water depths within these excavated depressions are anticipated to be between 0.0 and 1.0 foot, with some, small 1.0- to 2.0-foot pools. A variety of emergent hydrophytes is expected to establish in these depressions and along the seasonally inundated and saturated margins adjacent to the depressions.
- 2.73 acres of scrub/shrub wetland and riparian habitat is anticipated to develop around the
 drier perimeter of these excavated depressions that will be subject to seasonal high-water
 levels in the spring (because of late-summer irrigation) and during flood events along the
 Bighorn River. As part of the project, eight woody plant enclosures are planned for areas
 adjacent to the created wetlands cells in an effort to promote woody plant development within
 the site.
- 10.98 acres of upland buffer will be developed along the entire perimeter of the site; this area will also be planted with native herbaceous species commonly found within the riparian areas in the Bighorn River Valley.

Table 1-1 provides the compensatory credits by mitigation type and includes a brief description of each credit type, approved mitigation ratios, and anticipated mitigation credits, assuming that the site develops to full potential. A maximum of 29.60 mitigation credits would be anticipated at the JTX – Tunnicliff Ranch site.

Table 1-1. Wetland Credit Determination for the JTX - Tunnicliff Ranch Site

Compensatory Mitigation Type	Mitigation Area Description	Proposed Wetland Type ^(a)	Mitigation Surface Area (acres)	USACE- Approved Mitigation Ratios	Anticipated Mitigation Credit (acres)
		Base Bid Cred	its		
Creation (Establishment)	Depressional wetland	Palustrine emergent and palustrine scrub/shrub	26.85	1:1	26.85
Creation (Reestablishment)	Woody plant enclosures	Palustrine scrub/shrub	2.73	5:1	0.55
Upland buffer	100-foot wide perimeter	N/A	10.98	5:1	2.20
Preservation	Pre-project wetlands	Palustrine emergent	0.03	1:1	0.03
Temporary impacts	N/A	N/A	0.00	None	0.00
	29.63				

⁽a) Cowardin et al. [1979].

Project construction began in the fall of 2015 and finished in the winter of 2016. Revegetation efforts were completed in the spring of 2016. Project construction consisted of excavating a series of 13 cells that range in size from 0.33 to 1.50 acres. Eight woody plant enclosures were constructed around the periphery of excavated cells to establish scrub/shrub wetland and riparian habitat in these areas. Approximately 1,650 containerized woody plantings were planted within the eight enclosures.

The USACE-approved performance standards for the JTX – Tunnicliff Ranch wetland mitigation site are listed below.

- 1. Wetland Characteristics for all of the restored, created, enhanced, and preserved wetlands within the project limits will meet the three parameter criteria for hydrology, vegetation, and soils established for determining wetland areas as outlined in the 1987 Corps of Engineers Wetland Delineation Manual (1987 Wetland Manual) [Environmental Laboratory, 1987] and the 2010 Regional Supplement to the Corps of Engineers Manual: Great Plains Region (Version 2.0) (2010 GP Regional Supplement) [USACE, 2010]. The 1987 Wetland Manual's methodology was used to establish baseline wetland conditions on the site.
 - a. Wetland Hydrology Success will be achieved where wetland hydrology is present as per the technical guidelines in the 1987 Wetland Manual and the 2010 GP Regional Supplement. Wetland hydrology will be confirmed by periodically observing surface water across the site and saturated soil conditions during the annual mid-season monitoring event. Soil saturation will be determined based on primary and secondary hydrology indicators as provided in Table 10 of Chapter 4 of the 2010 GP Regional Supplement. The presence of primary indicators observed during fieldwork will be used to make a formal determination as to hydrologic success within the established wetland.
 - b. Hydric Soil Success will be achieved where hydric soil conditions are present (per the most recent Natural Resource Conservation Service [NRCS] definitions for hydric soil) or appear to be forming, the soil is sufficiently stable to prevent erosion, and the soil is able to support plant cover. Soil sampling will be conducted during the course of the monitoring period to determine if wetland areas are exhibiting characteristics of hydric soils per the 1987 Wetland Manual. Because typical hydric soil indicators may require long periods to form, a lack of distinctive hydric soil features will not be considered a failure if hydrologic and vegetation success is achieved.
 - c. Hydrophytic Vegetation Success will be determined by delineating the developing wetlands by using the technical guidelines established in the 1987 Wetland Manual and the 2010 GP Regional Supplement. Hydrophytic vegetation success will be achieved where combined relative aerial cover of facultative or wetter species is 70 percent or greater and state-listed noxious weeds do not exceed 5 percent cover. The hydrophytic vegetation indicator procedures established in the 2010 GP Regional Supplement will be used to determine dominance. These procedures will be applied during future routine wetland determinations in the created/restored wetlands and results will be documented on the Wetland Determination Data forms (Appendix B). Vegetation communities will be identified according to their strata (i.e., trees, sapling/shrub, herbaceous, and woody

- vine), and the percent aerial coverage of each plant species within those stratum will be recorded.
- d. Woody Plants will be considered successful where they exceed 50 percent survival after 5 years. Natural colonization of woody plant species from nearby sources is anticipated after construction activities are complete. The rate and extent of natural woody plant colonization will depend on factors such as planting locations, habitat availability, animal activity, seed sources, and other natural selection factors. The site must possess the potential to support the species that will be initially planted and in the planned enclosure locations. This site will not be considered a failure if the hydrology changes and/or if the planted woody species are subject to excessive saturation or drying that reduces their numbers.
- Open-Water Areas are intended to be provided by the project to provide seasonal open water during the spring and early summer within excavated depressions. Open water will, therefore, be considered successful and creditable as wetland vegetation establishes in the form of either emergent, floating, and/or submerged hydrophytes.
- 3. Upland Buffer success will be achieved when noxious weeds do not exceed 5 percent cover within the buffer area on the site. Any area within the creditable buffer area that is disturbed by project construction must have at least 50 percent aerial cover of non-noxious weed species by the end of the monitoring period.
- 4. Weed Control will be implemented based on annual monitoring of the site to determine weed species and the degree of infestation within the site. Control measures based on the monitoring results will be implemented by MDT to minimize and/or eliminate the intrusion of state-listed noxious weed species within the site. Success will be achieved where less than 5 percent absolute cover of noxious weed species occurs across the site.
- 5. Fencing on the proposed mitigation site has been installed along the easement boundaries to protect the integrity of the wetland from disturbance that may be detrimental to the site. Fencing installed along the southern and eastern perimeter of the site has been designed to be wildlife-friendly to allow for wildlife movement into and out of the wetland complex. Fence along the northern and western side of the property are not wildlife-friendly at the landowner's request.
- 6. Monitoring for this MDT site will be based on the MDT standard monitoring protocols that are used for all of the MDT sites for a minimum period of 5 years (or longer as determined by the USACE Montana Regulatory Office's review of annual monitoring reports for the site and whether or not the site has met the wetland success criteria). The site will be monitored annually beginning with the first full growing season after construction.

Figures A-2 and A-3 (Appendix A) of this report show the site monitoring activity locations and mapped site features, respectively, and Figure A-4 (Appendix A) shows the 2018 wetland delineation boundaries compared to the pre-project wetland boundaries. The MDT Wetland Mitigation Site Monitoring form, USACE Wetland Determination Data forms [USACE, 2010], and the 2008 MDT Montana Wetland Assessment Method (MWAM) forms [Berglund and McEldowney, 2008] are included in Appendix B. Project area photographs are included in Appendix C, and the MDT plan sheets for the JTX – Tunnicliff Ranch site are provided in Appendix D.

2.0 METHODS

An initial site visit with MDT staff was completed on June 15, 2016. During this site visit, the vegetation transects and photo-point locations were established for the first time. The third year of monitoring was conducted on July 12, 2018. Information for the Wetland Mitigation Site Monitoring form and Wetland Determination Data forms was recorded in the field during the site investigation (Appendix B). Monitoring activity sites were located with a global positioning system (GPS) and are illustrated on Figure A-2 (Appendix A). Data-collection activities included a wetland delineation, vegetation community mapping, vegetation transect monitoring, soil and hydrology data collection, bird- and wildlife-use documentation, photographic documentation, functional assessment, and a non-engineering examination of the infrastructure established within the mitigation project area. Monitoring methods have remained relatively consistent at this site since the onset of monitoring. The initial 2016 JTX — Tunnicliff monitoring report [RESPEC, 2016] provides a more detailed description of monitoring methods at this site. The 2016 monitoring report for this MDT mitigation site can be found online (https://www.mdt.mt.gov/other/webdata/external/planning/wetlands/2016_REPORTS/JTX Tunnicliff.pdf).

3.0 RESULTS

3.1 HYDROLOGY

Climate data from the meteorological station at Hardin, Montana (243915) [Western Regional Climate Center, 2018], which is located approximately 8 miles south of the site, recorded an average annual precipitation rate of 12.70 inches from 1948 to 2017. Annual precipitation in recent years was 15.3 inches (2013), 11.7 inches (2014),12.06 inches (2015), 18.68 inches in 2016, and 15.18 inches in 2017. These data indicate that 2014 and 2015 were below the long-term average for precipitation, and 2013, 2016, and 2017 were above average. Precipitation in 2018 from January through August totaled 16.62 inches at the Hardin, Montana (243915) meteorological station. This 8-month total is approximately 7.65 inches above the long-term average (8.97 inches) recorded at the Hardin, Montana (243915) meteorological station.

Groundwater is expected to be the primary hydrologic source for wetland development across the site, with precipitation and periodic overbank flooding from the nearby Bighorn River supplementing hydrology at the site. Groundwater monitoring that was completed by the US Geological Survey (USGS) in 2018 shows groundwater levels at or above the design wetland cell elevation of 2,832 feet from early March through early August, or most of the growing season. Groundwater levels have continued to improve at the site since groundwater monitoring began in 2016, and each successive year has had more favorable groundwater levels than the previous year.

During the July 12, 2018, site visit, standing surface water was noted within all 13 excavated wetland cells. The water depth ranged from 1 inch around the periphery of each cell to 12 inches near the center of each excavation. For comparison, the 2017 survey conducted on July 25, 2018, recorded no standing surface water at any of the 13 wetland cells. As previously noted, precipitation for this region was substantially higher in 2018 than the long-term average from January through July, and

the highest-ever groundwater levels were recorded on the site during the 2018 growing season. Favorable hydrology at the site in 2018 allowed for wetland expansion and development within excavated cells across the site.

Two data points were established at the site in 2017 and two additional data points in 2018 to monitor wetland development at the site. DP-1W is located in a low spot within excavated Cell 4, and DP-1U is located on the upland slope adjacent to Cell 4 while DP-2W is located within excavated Cell 11 and DP-2U on the upland slope adjacent to Cell 11. As shown in the photographs in Appendix C, standing surface water was observed at DP-1W and DP-2W during the field survey, while soils associated with DP-1U and DP-2U were dry at the time of the survey.

3.2 VEGETATION

Monitoring year 2018 marked the third year of monitoring at the JTX – Tunnicliff Ranch site. A total of 57 plant species have been identified at the site in the 3 years of monitoring. Two new species were observed in 2018 and are bolded in Table 3-1. Common spike-rush (*Eleocharis palustris*) and hard-stem club-rush (*Schoenoplectus acutus*), which are both obligate wetland species, were identified for the first time in 2018 in developing wetland cells. Six upland community types and two wetland community types were identified and mapped at the site in 2018 (Figure A-3, Appendix A). Three very small wetlands were identified within the monitoring area before site development but are not described below as their own community type because of their small size (total 0.03 acre). Dominant plant species that were observed within each community are listed on the Wetland Mitigation Site Monitoring form (Appendix B). The vegetation community types identified on the site in 2018 include the following:

- Upland Type 6 Pascopyrum smithii/Poa pratensis
- Upland Type 7 Schedonorus pratensis
- Upland Type 8 Thinopyrum intermedium
- Wetland Type 9 Schoenoplectus spp./Typha latifolia
- Upland Type 12 Elaeagnus angustifolia/Thinopyrum intermedium
- Wetland Type 13 Open-water transitional wetland.

Upland Type 6 – *Pascopyrum smithii/Poa pratensis* was mapped across 1.44 acres of the project area in the southeastern corner of the mitigation site. This edge area was formerly overgrazed pasture and is dominated by western wheatgrass (*Pascopyrum smithii*) and field brome (*Bromus arvensis*). This area was left undisturbed during site construction and is expected to remain as an upland community.

Upland Type 7 – *Schedonorus pratensis* (false meadow rye) community is located along the southwest boundary of the mitigation site and includes Russian knapweed (*Acriptilon repens*) and Kentucky bluegrass (*Poa pratensis*). This community type covers 2.19 acres of preexisting upland grassland that remained relatively undisturbed during the 2015–2016 construction.

Table 3-1. Vegetation Species Observed From 2016 Through 2018 at the JTX – Tunnicliff Ranch Site (Page 1 of 2)

Scientific Name	Common Name	GP Indicator Status ^(a)
Acer negundo	Box Elder	FAC
Acroptilon repens	Russian Knapweed	NL
Agropyron cristatum	Crested Wheatgrass	NL
Alopecurus arundinaceus	Creeping Meadow Foxtail	FACW
Arctium lappa	Greater Burdock	NL
Asclepias speciosa	Showy Milkweed	FAC
Bassia scoparia	Mexican-Fireweed	FACU
Brassica sp.		
Bromus arvensis (aponicas)	Field Brome	FACU
Bromus inermis	Smooth Brome	UPL
Carex sp.	Sedge	
Chenopodium album	Lamb's-Quarters	FACU
Cirsium arvense	Canada Thistle	FACU
Convolvulus arvensis	Field Bindweed	NL
Crataegus douglasii	Douglas Hawthorne	FAC
Cynoglossum officinale	Gypsy-Flower	FACU
Dactylis glomerata	Orchardgrass	FACU
Distichlis spicata	Coastal Salt Grass	FACW
Echinocystis lobata	Wild Cucumber	FAC
Elaeagnus angustifolia	Russian Olive	FACU
Elaeagnus commutata	Silverberry	UPL
Eleocharis palustris	Common Spike-Rush	OBL
Elymus repens	Creeping Wild Rye	FACU
Elymus trachycaulus	Slender Wild Rye	FACU
Equisetum arvense	Field Horsetail	FAC
Fraxinus pennsylvanica	Green Ash	FAC
Glycyrrhiza lepidota	American Licorice	FACU
Hordeum jubatum	Foxtail Barley	FACW
lva axillaris	Deer-Root	FAC
Juncus balticus	Baltic Rush	FACW
Lepidium perfoliatum	Clasping Pepperwort	FAC
Leymus cinereus	Great Basin Lyme Grass	UPL
Medicago lupulina	Black Medick	FACU
Medicago sativa	Alfalfa	UPL
Melilotis albus	White Sweet Clover	NL
Melilotis officinalis	Yellow Sweet Clover	FACU
Pascopyrum smithii	Western Wheatgrass	FACU
Poa secunda	Curly Bluegrass	FACU
Prunus virginiana	Common Chokecherry	FACU

Table 3-1. Vegetation Species Observed From 2016 Through 2018 at the JTX – Tunnicliff Ranch Site (Page 2 of 2)

Scientific Name	Common Name	GP Indicator Status ^(a)
Populus deltoides	Eastern Cottonwood	FAC
Puccinellia nuttaliana	Nutall's Alkali Grass	OBL
Quercus macrocarpa	Bur Oak	FACU
Rosa woodsii	Wood's Rose	FACU
Rumex crispus	Curly Dock	FAC
Schedonorus pratensis	False Meadow Rye	FACU
Schoenoplectus acutus	Hard-Stem Club-Rush	OBL
Schoenoplectus americanus.	Chairmaker's Club-rush	OBL
Schoenoplectus maritimus	Saltmarsh Club-Rush	OBL
Schoenoplectus pungens	Three-Square	OBL
Shepherdia argentea	Silver Buffalo-Berry	UPL
Sporobolus airoides	Alkali-Sacaton	FAC
Symphoricarpos albus	Common Snowberry	UPL
Taraxacum officinale	Common Dandelion	FACU
Thinopyrum intermedium	Intermediate Wheatgrass	NL
Tragopogon dubius	Meadow Goat's-Beard	NL
Trifolium fragiferum	Strawberry-Head Clover	FAC
Trifolium repens	White Clover	FACU
Typha latifolia	Broad-Leaf Cattail	OBL

⁽a) 2016 NWPL [Lichvar et al., 2016] New species identified in 2018 are bolded.

Upland Type 8 – Intermediate wheatgrass (*Thinopyrum intermedium*) is the dominant vegetation community within the mitigation site covering 34.74 acres. Percent cover of the intermediate wheatgrass is nearly 100 percent throughout most of this community type.

Wetland Type 9 – *Schoenoplectus* spp. (5.45 acres) was mapped in excavated cells that are developing wetland characteristics: Cells 4, 5, 6, 7, 8, 9, 11, 12, and 13 include a dominant Type 9 community. Cell 1 includes a very small developing wetland less than 100 square feet. Rush species observed in this community type include saltmarsh club-rush (*Schoenoplectus maritimus*) three-square (*Schoenoplectus pungens*), and chairmaker's club-rush (Schoenoplectus americanus).

Upland Type 12 – *Elaeagnus angustifolia/Thinopyrum intermedium* (3.46 acres) includes the Russian olive (*Elaeagnus angustifolia*) riparian upland area in the southeastern corner and southern boundary of the mitigation site. Three very small emergent wetlands in the bottom of two existing ditches were mapped by MDT before construction and were confirmed in the first year of monitoring. Because of the very small size of these wetlands (< 0.02 acre), they were not broken out as their own community but rather included in Type 12. Species associated with these small wetlands include creeping meadow foxtail (*Alopecurus arundinaceus*) and sedge (*Carex* sp.). These small wetland areas were checked in 2018 and continue to persist in these areas.

Wetland Type 13 – Open-water transitional wetland (2.86 acres) was mapped in excavated Cells 1, 2, 3, and 10. These areas contained open standing water in 2018 but had not yet developed stands of wetland vegetation. These cells mainly contained dead and dying upland vegetation from the previous growing season but also contained individual wetland plants. Species observed scattered across these sites include saltmarsh club-rush and foxtail barley (*Hordeum jubatum*). With continued inundation, these excavations are expected to develop into wetland Type 9.

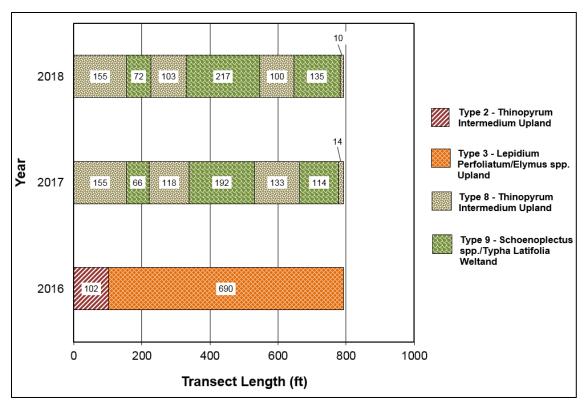
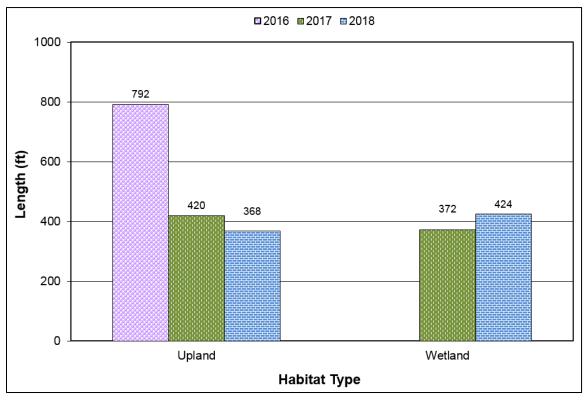

Vegetation cover was measured along two transects (T-1 and T-2) at the JTX – Tunnicliff Ranch site during the 2018 monitoring event (Figure A-2, Appendix A). Photographs of the transect end points are provided in Appendix C. Table 3-2 and Charts 3-1 and 3-2 summarize the data for T-1 (Wetland Mitigation Site Monitoring form, Appendix B). T-1 is 792 feet long and intersected upland vegetation community Type 8 – *Thinopyrum intermedium* and wetland community Type 9 – *Schoenoplectus* spp.; 53 percent of the transect crossed wetland habitat, which is a 6 percent increase since 2017.

Table 3-2. Data Summary for T-1 From 2016 Through 2018 at the JTX – Tunnicliff Ranch Site


Monitoring Year Transect Length (feet)	2016 792	2017 792	2018 792
Vegetation Community Transitions Along Transect	1	6	6
Vegetation Communities Along Transect	2	2	2
Hydrophytic Vegetation Communities Along Transect	0	1	1
Total Vegetative Species	10	21	21
Total Hydrophytic Species	2	8	9
Total Upland Species	8	13	12
Estimated % Total Vegetative Cover	75	60	75
Estimated % Unvegetated	25	40	25
% Transect Length Comprising Hydrophytic Vegetation Communities	0	47	53
% Transect Length Comprising Upland Vegetation Communities	100	53	47
% Transect Length Comprising Unvegetated Open Water	0	0	0
% Transect Length Comprising Mudflat	0	0	0

Data collected on T-2 (Wetland Mitigation Site Monitoring form, Appendix B) are summarized in tabular and graphical formats in Table 3-3 and Charts 3-3 and 3-4, respectively. T-2 is 900 feet long and intersects upland community Type 8 and wetland community Type 9 and 13; 14 percent of the transect crossed wetland habitat in 2018, while 53 percent crossed open-water transitional wetland habitat (CT 13). The open-water transitional wetland described above mainly consists of dead and dying upland vegetation and scattered individual wetland plants.

Four infestations of state-listed Priority 2B noxious weeds were identified and mapped at the JTX – Tunnicliff Ranch site in 2018 (Figure A-3, Appendix A). Noxious species observed in 2018 include Canada thistle (*Cirsium arvense*) and Russian knapweed (*Acroptilon repens*) and did not exceed 5 percent cover site-wide. Noxious weed infestations have decreased since 2016.

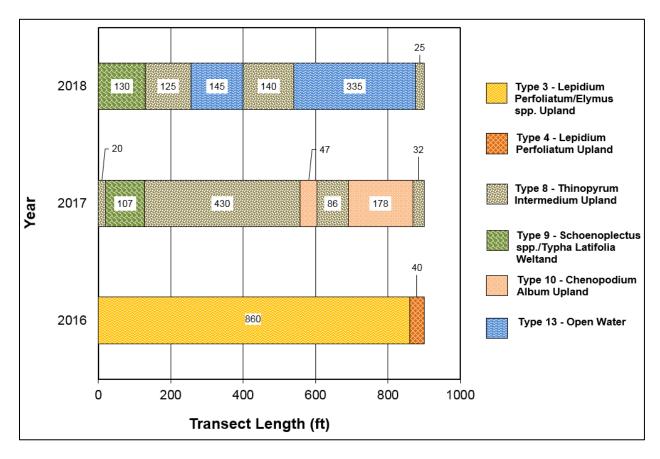

Chart 3-1. Transect Map Showing Community Types on T-1 From 2016 Through 2018 From Start (0 Feet) to Finish (792 Feet) at the JTX – Tunnicliff Ranch Site.

Chart 3-2. Length of Habitat Types Within T-1 From 2016 Through 2018 at the JTX – Tunnicliff Ranch Site.

Table 3-3. Data Summary for T-2 From 2016 Through 2018 at the JTX – Tunnicliff Ranch Site

Monitoring Year	2016	2017	2018
Transect Length (feet)	900	900	900
Vegetation Community Transitions Along Transect	1	6	5
Vegetation Communities Along Transect	2	3	3
Hydrophytic Vegetation Communities Along Transect	0	1	2
Total Vegetative Species	12	11	11
Total Hydrophytic Species	0	5	6
Total Upland Species	12	6	5
Estimated % Total Vegetative Cover	60	60	65
Estimated % Unvegetated	40	40	35
% Transect Length Comprising Hydrophytic Vegetation Communities	0	12	14
% Transect Length Comprising Upland Vegetation Communities	100	88	33
% Transect Length Comprising Open Water Transitional Wetland	0	0	53
% Transect Length Comprising Mudflat	0	0	0

Chart 3-3. Transect Map Showing Community Types on T-2 From 2016 Through 2018 From Start (0 Feet) to Finish (900 Feet) at the JTX – Tunnicliff Ranch Site.

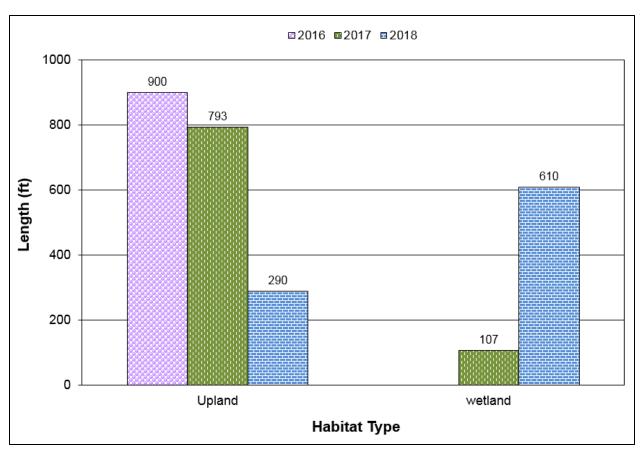


Chart 3-4. Length of Habitat Types Within T-2 From 2016 Through 2018 at the JTX – Tunnicliff Ranch Site.

Eight woody plant enclosures (PE-1 through PE-8) are shown on Figure A-3 (Appendix A) and were monitored for woody plant survival in 2018. Each PE was walked while recording live woody stems. A total of 1,650 containerized woody plants were installed in the eight plant enclosures in 2016. Woody species planted at the site include silver buffalo-berry (*Sheperdia argentea*), Douglas hawthorne (*Crataegus douglasii*), silverberry (*Elaeaganus commutata*), common chokecherry (*Prunus virginiana*), plains cottonwood (*Populus deltoids*), box elder (*Acer negundo*), and bur oak (*Quercus macrocarpa*). All plantings were in 1-gallon containers except for cottonwood, which were in 5-gallon containers. Table 3-4 lists each PE, the number of alive stems counted each year of monitoring, and percent survival. An individual planting was considered dead if no live leaves were observed on the stem and no re-sprouting from the base was observed.

A total of 41 live stems were counted, and the overall survival has decreased to an estimated 2 percent. Wildlife fencing around each enclosure was effective in keeping deer away from plantings; no other signs of browse from rabbits or other small mammals was noted. Despite the weed fabric that was installed around each woody plant, various grasses and forbs were outcompeting most of the plantings. The largest number of live plants was observed in PE-6 (20) where a small clump of 10 cottonwoods had taken hold. In addition to cottonwood, survey crews identified individual silver buffalo-berry, silverberry, and chokecherry plants in the various enclosures. A lack of irrigation in

Year 1 and competition from grasses are the likely causes of mortality at the site. In 2018, several Russian olive (*Elaeagnus angustifolia*) plants were noted to be volunteering across the site.

Table 3-4. Woody Planting Survival at the JTX – Tunnicliff Ranch Site From 2016 Through 2018

Planting Area	Number of Live Stems in 2016	Number of Live Stems in 2017	Number of Live Stems in 2018
PE-1	12	0	0
PE-2	35	14	0
PE-3	21	13	0
PE-4	70	35	4
PE-5	91	65	1
PE-6	78	77	20
PE-7	41	17	9
PE-8	100	31	7
Total	448	252	41
Percent Survival ^(a)	27	15	2

⁽a) Percent Survival = number of live stems divided by 1,650 plantings.

3.3 SOIL

The Web Soil Survey for Big Horn County [US Department of Agriculture, 2016] indicates two soil series occurring within the project site. These soil complexes are identified as the Halverson-Lohmiller soils, wet (Hh), and Kyle Clay, saline (Kw) soils. The Haverson and Lohmiller series is a well-drained soil, while the Kyle Clay is rated as moderately well-drained. Undisturbed soil profiles in the project area typically are represented by a shallow surface organic layer underlain by sand, silt, clay, and gravels/cobbles several feet below the surface. The entire wetland development area was disturbed during construction with excavated wetland cells that had bottom elevations several feet below the surrounding terrain. In excavated areas, gypsum crystals are common in the soil, which is precipitated out at the surface because of seasonally elevated groundwater in the area.

Soil test pits were excavated at four locations (Figure A-2). DP-1U and DP-1W were located adjacent to and within excavated Cell 4, respectively. Cell 4 is located in an area mapped in the Kyle Clay, saline (Kw) series. The soil profile at DP-1W, which is located in Cell 4, revealed a dark gray (10YR 4/1), clay/loam down to 16 inches, with a hydrogen sulfide odor. The soil in this area was saturated to the surface during the July monitoring event. Wetland vegetation has developed in Cell 4. The soil profile at DP-1U revealed a brown (7.5 YR 4/3), silt loam to a depth of 10 inches where hardpan conditions were encountered. No hydric soil indicators were observed for DP-1U.

DP-2U and DP-2W were located adjacent to and within excavated Cell 11, respectively. Cell 11 is located in an area mapped in the Kyle Clay, saline (Kw) series. The soil profile at DP-2W, which is located in Cell 11, revealed a dark brown (10YR 3/2), clay/loam with faint yellowish brown (10YR 5/6) mottles from the surface to a depth of approximately 16 inches. The soil in this area was saturated to the surface during the July monitoring event. Wetland vegetation has developed in

Cell 11. The soil profile at DP-2U revealed a brown (10 YR 3/1), silt loam to a depth of 6 inches and clay/loam from 6-14 inches. No hydric soil indicators were observed for DP-2U.

3.4 WETLAND DELINEATION

During the July monitoring event, all of the excavated wetland cells and graded areas that connect the cells were surveyed for developing wetland habitat. In 2018, a total of 5.45 acres of emergent wetland was delineated within wetland Cells 4, 5, 6, 7, 8, 9, 11, 12, and 13. Wetland Cells 1, 2, 3, and 10 were flooded in 2018 and contained primarily dead and dying upland vegetation with a few scattered wetland plants that are beginning to be established. These open-water transitional wetland areas accounted for 2.86 acres at the site in 2018. Aquatic habitat, including emergent wetland and transitional wetland areas, totaled 8.31 acres, which is a 4.45-acre increase since 2017. Additional wetland habitat is expected to develop in low-lying areas between the cells but largely depends on seasonally high groundwater.

Before construction, MDT had identified two small palustrine emergent wetlands in the southeastern corner of the site and a smaller palustrine emergent wetland along the eastern boundary, which altogether totaled 0.03 acre. These small wetlands were identified and mapped during the 2018 monitoring event, and no changes noted during the first three years of monitoring (Figure A-3, Appendix A).

3.5 WILDLIFE

A comprehensive list of wildlife species that have been directly or indirectly observed since monitoring began in 2016 is presented in Table 3-5 and noted on the Wetland Mitigation Site Monitoring form (Appendix B). Eight bird species, which are bolded in Table 3-5, were identified in 2018. None of the seven bird boxes that had been installed around the perimeter of the site were obviously being used in 2018. All of the boxes appeared to be full of nesting materials and were in good condition. In addition to the eight bird species, northern leopard frogs (*Lithobates pipiens*) were also observed within many of the excavated wetland cells. Few deer tracks were noted across the site.

3.6 FUNCTIONAL ASSESSMENT

The 2018 results of the functional assessments are summarized in Table 3-6. The completed JTX – Tunnicliff Ranch Site MWAM form is provided in Appendix B. The site was evaluated as one AA and encompassed 8.31 acres. This site achieved 59 percent of the possible score in 2018 which is 15 percent higher than 2017 and 49.1 functional units in 2018, which is an increase of 33.8 functional units from 2017. The increased score is a result of the site being rated for Sediment/Shoreline Stabilization for the first time in 2018 because of open water in several wetland cells and from an increased score for MTNHP species habitat (S2 burr oak occurs at the site). The increased functional units result from the higher score and increased wetland acreage at the site. As deep-rooted wetland vegetation continues to develop, ratings are expected to increase from moderate to high for several of the function and value variables.

Table 3-5. Wildlife Species Observed in 2018 at the JTX – Tunnicliff Ranch Site

Common Name	Scientific Name					
Amphibians						
Northern Leopard Frog	Lithobates pipiens					
Bi	rds					
American Goldfinch	Spinus tristus					
American Kestrel	Falco sparverius					
American Robin	Turdus migratorius					
Brown Thrasher	Toxostoma rufum					
Eastern Kingbird	Tyrannus tyrannus					
European Starling	Sturnus vulgaris					
Great Blue Heron	Ardea herodias					
House Wren	Troglodytes aedon					
Killdeer	Charadrius vociferus					
Lazuli Bunting	Passerina amoena					
Mallard	Anas platyrhynchos					
Mourning Dove	Zenaida macroura					
Red-breasted Nuthatch	Sitta canadensis					
Red-tailed Hawk	Buteo jamaicensis					
Red-winged Blackbird	Agelaius phoeniceus					
Ring-necked Pheasant	Phasianus colchicus					
Tree Swallow	Tachycineta bicolor					
Western Kingbird	Tyrannus verticalis					
Western Meadowlark	Sturnella neglecta					
Wilson's Snipe	Gallinago delicata					
Yellow Warbler	Dendroica petechia					
Man	nmals					
Coyote (tracks)	Canis latrans					
Deer (tracks)	Odocoileus sp.					
Striped Skunk	Mephitis mephitis					

Species that were identified in 2018 are bolded.

3.7 PHOTOGRAPHIC DOCUMENTATION

Photographs that were taken at Photo-Points 1–4 (PP1 to PP4), transect endpoints, and data points are provided in Appendix C.

3.8 MAINTENANCE NEEDS

No man-made water-control structures were installed within the JTX – Tunnicliff Ranch site. The perimeter fence that was installed around the site was in good condition at the time of the 2018 investigation. Seven bluebird boxes were installed on the site, and all appeared to be in good condition but could benefit from being cleaned out before the 2019 nesting season.

As noted in the vegetation section of this report, four infestations of state-listed Priority 2B noxious weeds were mapped at the JTX – Tunnicliff Ranch site (Figure A-3, Appendix A). MDT has an ongoing weed-control program for their mitigation sites that includes an annual assessment of weeds that were identified at each location and treatment to contain and control identified populations. The number of noxious weed species and cover has decreased since 2016 because of weed-control measures conducted by the MDT.

Table 3-6. Montana Wetland Assessment Method Summary for the JTX – Tunnicliff Ranch Site From 2017 Through 2018

Function and Value Parameters From the 2008 Montana Wetland Assessment Method	2017	2018
Listed/Proposed Threatened & Endangered (T&E) Species Habitat	Low (0.0)	Low (0.0)
Montana Natural Heritage Program (MTNHP) Species Habitat	Low (0.1)	Mod (0.6)
General Wildlife Habitat	Mod (0.4)	Mod (0.7)
General Fish/Aquatic Habitat	N/A	N/A
Flood Attenuation	Mod (0.5)	Mod (0.6)
Short- and Long-Term, Surface-Water Storage	Mod (0.6)	High (0.9)
Sediment/Nutrient/Toxicant Removal	Mod (0.7)	Mod (0.7)
Sediment/Shoreline Stabilization	N/A	Mod (0.6)
Production Export/Food Chain Support	Mod (0.4)	Mod (0.5)
Groundwater Discharge/Recharge	Mod (0.7)	Mod (0.7)
Uniqueness	Mod (0.4)	Mod (0.4)
Recreation/Education Potential (bonus points)	High (0.2)	High (0.2)
Actual Points/Possible Points	4.0/9	5.9/10
% of Possible Score Achieved	44%	59%
Overall Category	III	III
Total Acreage of Assessed Wetlands Within Site Boundaries	3.86	8.31
Functional Units (acreage × actual points)	15.3	49.1

3.9 CURRENT CREDIT SUMMARY

As of July 2018 the JTX – Tunnicliff Ranch site had developed 5.45 acres of emergent wetland within 9 of the 13 excavated cells and 2.86 acres of open-water transitional wetland within 4 excavated cells for a total of 8.31 acres of aquatic habitat. Credited at 1:1, the site is currently receiving 8.31 acres of credit for wetland development. Wetlands are expected to continue to develop across the site. Planted woody species survival is estimated at 2 percent in the 8 PEs across the site as of the July 2018 monitoring event. The original mitigation credit strategy called for the eight woody plant enclosures to be credited at 5:1, if the enclosures were successful in producing scrub/shrub habitat across the site. With just 2 percent of the woody plants surviving in 2018, this metric is not being met and credits at this time are zero. Additional credits from the site include 0.03 acre for preservation of existing wetlands on the site before construction and 2.66 acres

of upland buffer credit. Total credits for the site in 2018 are 11.00 acres, which is a 4-acre increase from 2017. Table 3-7 summarizes the current estimated wetland credits based on the USACE-approved credit ratios [USACE, 2005] and the wetland delineation that was completed in July 2018.

Table 3-8 provides a summary of the site conditions in relation to the established performance standards and success criteria. All of the performance standards and success criteria will continue to be monitored annually.

Table 3-7. Wetland Mitigation Credits Estimated for the JTX – Tunnicliff Ranch Site in 2018

Compensatory Mitigation Type	Mitigation Area Description	Wetland Type ^(a)	Anticipated Mitigation Surface Area (acres)	USACE- Approved Mitigation Ratios	Anticipated Mitigation Credit (acres)	2016 Delineated Acres	2016 Mitigation Credit (acres)	2017 Delineate d Acres	2017 Mitigation Credit (acres)	2018 Delineated Acres	2018 Mitigation Credit (acres)
Creation (Establishment)	Depressional wetlands	Palustrine emergent and palustrine scrub/shrub	26.85	1:1	26.85	0.0	0.0	3.86	3.86	8.31	8.31
Creation (Reestablishment)	Woody plant enclosures	Palustrine scrub/shrub	2.73	5:1	0.55	2.33	0.5	2.33	0.47	0	0
Preservation	Pre-project Wetlands	Palustrine Emergent	0.03	1:1	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Upland Buffer	100-foot wide upland perimeter	N/A	10.98	5:1	2.2	0.0	0.0	13.32	2.66	13.32	2.66
Totals			40.6		29.63	2.3	0.5	19.51	7.02	21.66	11.00

⁽a) Cowardin et al. [1979]

Table 3-8. Summary of Performance Standards and Success Criteria Compared to Existing Site Conditions

Performance Standards	Success Criteria	Criteria Achieved Y/N	Discussion
Wetland Characteristics	The three parameter criteria for hydrology, vegetation, and soils are met as outlined in the 1987 Wetland Manual and 2010 GP Regional Supplement.	Y	Nine of the thirteen excavated cells have developed a dominant wetland community with the other 4 cells transitioning to wetland. 8.31 acres of wetland and openwater transitional wetland had developed at the site at the time of the 2018 monitoring event.
Wetland Hydrology	Soil saturation is present for at least 12.5 percent of the growing season.	Y	All 13 excavated cells were flooded during the 2018 monitoring event and soil saturation was present. This metric was met in 2018.
	Hydric soil conditions are present or appear to be forming.	Y	Excavated cells within the recently constructed mitigation site are beginning to exhibit some hydric soil development (e.g., sulfidic odor and faint mottles).
Hydric Soil	Soil is sufficiently stable to prevent erosion.	Y	Disturbed soil is stable and does not exhibit signs of erosion.
	Soil is able to support plant cover.	Y	Plant cover has continued to develop across disturbed soils.
	Wetlands are delineated as hydrophytic by using technical guidelines.	Y	Nine of the 13 excavated cells had developed wetlands as of the 2018 monitoring event. A very small wetland area is also developing in Cell 1. The remaining cells were flooded in 2018 and showed signs of a declining upland vegetation cover because of a high-water table.
Hydrophytic Vegetation	Noxious weeds do not exceed 5 percent cover.	Y	Noxious weeds were identified in 4 locations in 2018 across the site but do not exceed 5 percent cover in the excavation areas or the surrounding undisturbed habitat in 2018.
	Hydrophytic vegetation success will include achieving a minimum overall vegetation cover of 80 percent in created wetland areas within 5 years after site construction.	N	A dominant wetland community Type 9 has developed in excavated Cells 4, 5, 6, 7, 8, 9, 11, 12, and 13. A very small wetland area (<100 square feet) has developed in Cell 1.Vegetative cover within developing wetlands ranged from 10 to 80 percent in 2018. This performance measure is trending in a positive direction.
Woody Plants	Plantings exceed 50 percent survival after 5 years.	N	Approximately 27 percent of the woody plantings observed appeared alive in 2016; that percentage dropped to 15 percent in 2017 and 2 percent in 2018, which does not meet the 50 percent survival criteria. Woody plants were stressed following planting in the spring of 2016.
	Noxious weeds do not exceed 5 percent cover within the buffer areas on the site.	Y	Noxious weed cover did not exceed 5 percent cover in the upland buffer in 2018. MDT has implemented a weed-control program and has a contractor who sprayed the site in 2018.
Upland Buffer	Any disturbed area within the creditable buffer zone must have at least 50 percent aerial cover of nonweed species by the end of the monitoring period.	Y	Upland buffers that surround the developing wetland areas within the site exhibited greater than 50 percent aerial cover of nonweed species.
Fencing	Wildlife-friendly fencing is installed along the easement boundaries.	Y	Wildlife-friendly fencing has been installed around the easement boundaries and is in good condition.

4.0 REFERENCES

Berglund, J. and R. McEldowney, 2008. *MDT Montana Wetland Assessment Method,* PBS&J Project B43075.00, prepared by Post, Buckley, Schuh, & Jernigan, Helena, MT, for the Montana Department of Transportation, Helena, MT.

Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe, 1979. Classification of Wetlands and Deepwater Habitats of the United States, FWS/OBS-79-31, prepared by the US Department of the Interior, Fish and Wildlife Service, Washington, DC.

Environmental Laboratory, 1987. Corps of Engineers Wetlands Delineation Manual, Program Technical Report Y-87-1, prepared by Environmental Laboratory, Department of the Army, Waterways Experiment Station, Corps of Engineers, Vicksburg, MS, for the Department of the Army, US Army Corps of Engineers, Washington, DC.

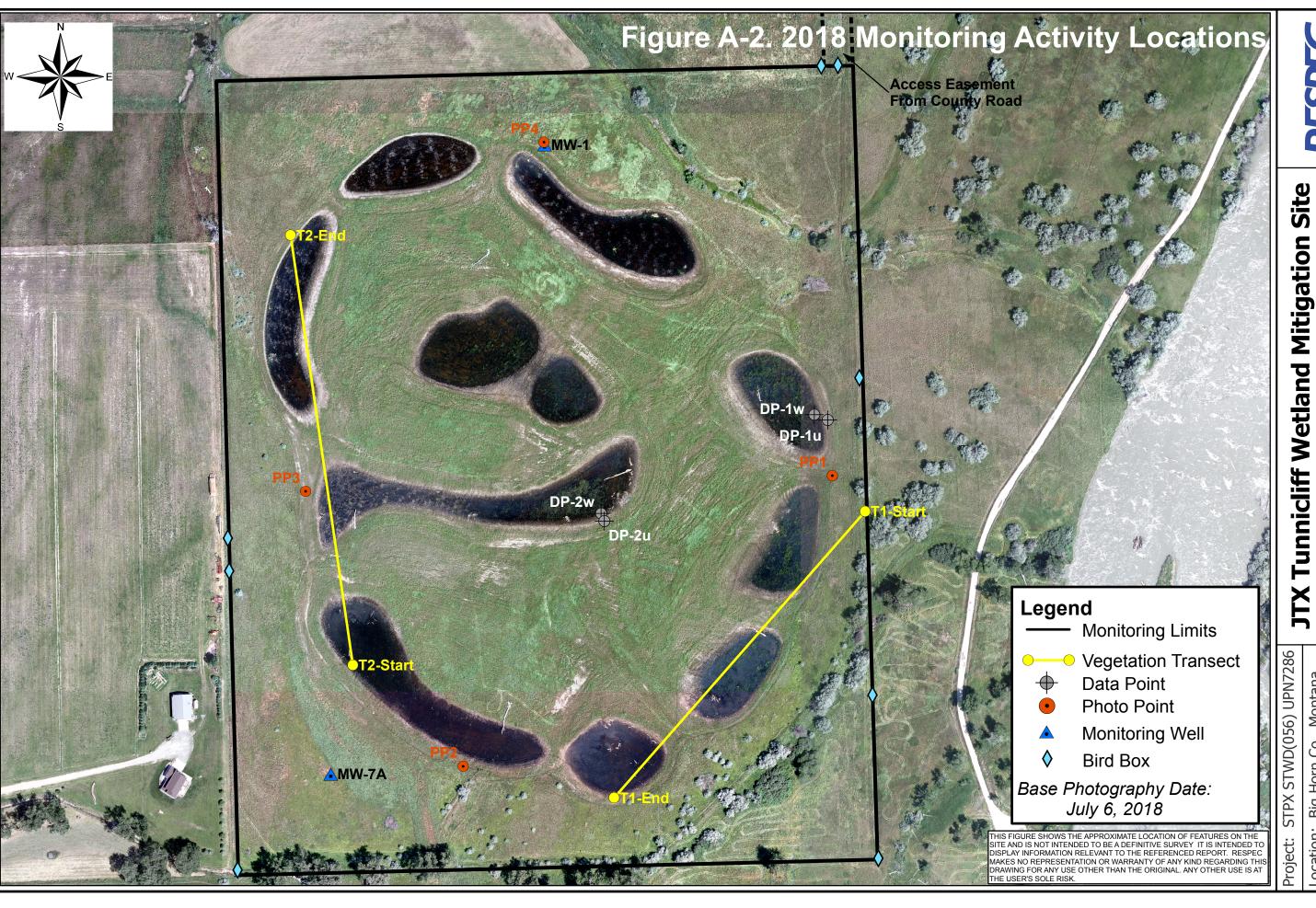
Lichvar, R. W., D. L. Banks, W. N. Kirchner, and N. C. Melvin, 2016. "The National Wetland Plant List: 2016 Wetland Ratings," *Phytoneuron*, Vol. 2016-30, No. 1–17.

Montana Department of Transportation, 2015. *JTX-Tunnicliff Final Wetland Mitigation Plan, Watershed #14 – Middle Yellowstone River Basin, Big Horn County, Montana*, prepared by the Montana Department of Transportation, Helena, MT.

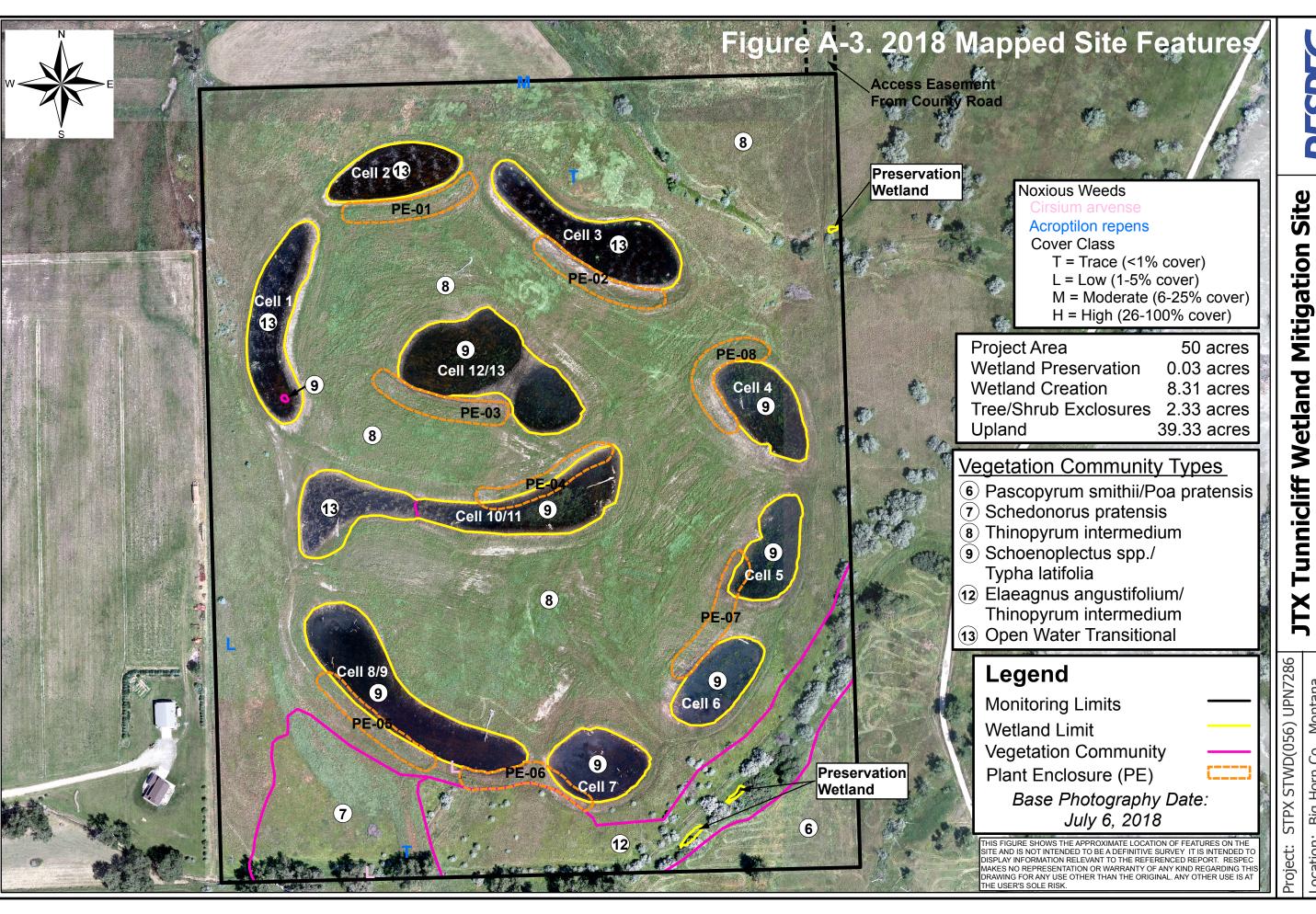
RESPEC, 2016. *Montana Department of Transportation Wetland Mitigation Monitoring Report: Year 2016, JTX Tunnicliff Ranch Mitigation Site, Big Horn County, Montana, RSI-2636, prepared by RESPEC, Helena, MT, for the Montana Department of Transportation, Helena, MT.*

US Army Corps of Engineers, 2005. "Montana Mitigation Information," *army.mil*, retrieved October 10, 2016 from *http://www.nwo.usace.army.mil/Missions/Regulatory-Program/Montana/Mitigation/*

US Army Corps of Engineers, 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual, Great Plains Region (Version 2.0), ERDC/EI TR-10-3, J. S. Wakely, R. W. Lichvar, and C. V. Noble (eds.), prepared by the US Army Corps of Engineers, US Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS.

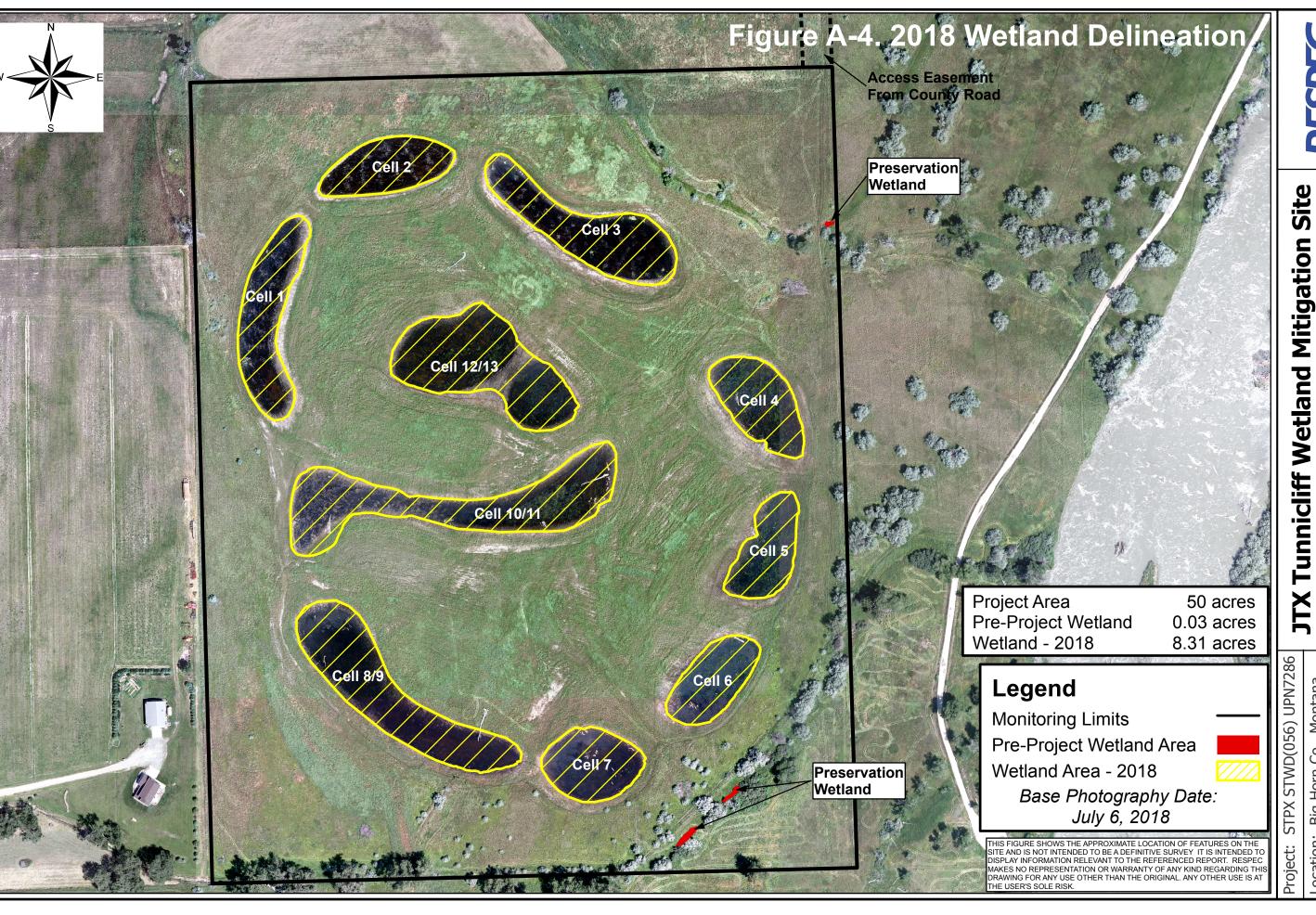

US Climate Data, 2016. "Climate Hardin – Montana," *usclimatedata.com*, retrieved December 30, 2016, from http://www.usclimatedata.com/climate/hardin/montana/united-states/usmt0153/2016/6

US Department of Agriculture, 2016. "Web Soil Survey for Big Horn County, Montana," *usda.gov,* retrieved June 20, 2016, from *http://websoilsurvey.nrcs.usda.gov/app/*


Western Regional Climate Center, 2018. "Monthly Sum Precipitation at Hardin, Montana (243915)" *dri.edu*, retrieved October 1, 2018, from *http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?mt0802*

APPENDIX A PROJECT AREA MAPS

MDT Wetland Mitigation Monitoring JTX – Tunnicliff Ranch Big Horn County, Montana



2018 Monitoring Activity Locations

Site Features

2018 Mapped

2018 Wetland Delineation

APPENDIX B MONITORING FORMS

MDT Wetland Mitigation Monitoring JTX – Tunnicliff Ranch Big Horn County, Montana

RESPEC/MDT WETLAND MITIGATION SITE MONITORING FORM

KES	FEC/NID I	WEILAND WI	HIGAHO	N SITE MONI	IONING FU	INIVI
Project Name: <u>JT</u> Assessment Date: Location: <u>Hardin</u> Legal Description: Weather Condition Initial Evaluation Size of evaluation <u>Horn River Flood</u>	July 12, 20 T 1N ns: 90 degra Date: June area: 50 ac	Pe M R 33E Sees, sunny 15, 2016	IDT District ection <u>10</u> Monit	T 1N Time of Day: 9 Foring Year: 3	ssment: M. T Milep R 33E 9:00 AM-12:0 # Visits in Ye	raxler oost: Section 15 00 PM
		Н	YDROLO	GY		
Surface Water Sou Inundation: Present Percent of assessment of assessment area Other evidence of Officer of Management of Water Months (Management of Water Months)	nent area un vegetation is not inun- hydrology	Average Depth: query inder inundation: <pre> -open water boundated then are the on the site (ex other)</pre> Ils: Present	s <u>1%</u> dary: <u>0.5 fe</u> e soils satura drift lines, e	ted within 12 in	ches of surfac	
Well Number	Depth	Well Number	Depth	Well Number	Depth	
1	3.73]
7A	4.47					
						_
Observe extent	vegetation- t of surface ft lines, ero	open water bound water during each sion, vegetation s	h site visit a taining, etc.	nd look for evide	ence of past s	urface water
COMMENTS / P						
*** 11 1 1 1						
well readings list monitoring event	ted above a	re from USGS r			one week af	ter the

VEGETATION COMMUNITIES

Community Number: 6 Community Title (main spp): Pascopyrum smithii/Poa pratensis

Dominant Species	% Cover	Dominant Species	% Cover
Poa pratensis	4 = 21-50%		
Thinopyrum intermedium	1 = 1-5%		
Bromus arvense	3 = 11-20%		
Acroptilon repens	2 = 6-10%		
Pascopyrum smithii	4 = 21-50%		

Comments / Problems: _____

Community Number: 7 Community Title (main spp): Schedonorus pratensis

eminum of twinters. The eminum of the contract of the provided as				
Dominant Species	% Cover	Dominant Species	% Cover	
Schedonorus pratensis	5 = > 50%	Bromus inermis	+=<1%	
Dactylis glomerata	1 = 1-5%	Medicago sativa	+=<1%	
Thinopyrum intermedium	+=<1%	Melilotis officinalis	+=<1%	
Poa pratensis	1 = 1-5%	Glycerrhiza lepidota	+=<1%	
Bromus arvensis	+=<1%	Trifolium fragiferum	+=<1%	
Elaeagnus angustifolia	+=<1%	Arctium lappa	+=<1%	

Comments / Problems: _____

Community Number: **8** Community Title (main spp): **Thinopyrum intermedium**

Dominant Species	% Cover	Dominant Species	% Cover
Thinopyrum intermedium	5 = > 50%	Glycerrhiza lepidota	1 = 1-5%
Iva axillaris	1 = 1-5%	Sporobolus airoides	1 = 1-5%
Acroptilon repens	1 = 1-5%	Lepidium perfoliatum	1 = 1-5%
Bromus arvensis	1 = 1-5%	Asclepias speciosa	+=<1%
Elymus repens	1 = 1-5%	Chenopodium album	+=<1%
Schedonorus pratensis	1 = 1-5%	Melilotus albus	1 = 1-5%

Comments / Problems: <u>Distichlis spicata-<1</u>; <u>Poa pratensis-1</u>; <u>Hordeum jubatum-<1</u>

Community Number: 9 Community Title (main spp): Schoenoplectus spp./Typha latifolia

Dominant Species	% Cover	Dominant Species	% Cover
Schoenoplectus maritimus		Schoenoplectus pungens	+=<1%
Thinopyrum intermedium	+=<1%	Beckmannia syzigachne	+=<1%
Juneus balticus	1 = 1-5%	Schoenoplectus americanus	+=<1%
Thinopyrum intermedium	+=<1%	Open Water	4 = 21-50%
Chenopodium album	1 = 1-5%	Typha latifolia	3 = 11-20%
Hordeum jubatum	+=<1%		

Comments / Problems: CT-9 is a PEM wetland community.

VEGETATION COMMUNITIES (continued)

Community Number: 13 Community Title (main spp): Open Water/Transitional

Dominant Species	% Cover	Dominant Species	% Cover
Open Water	5 = > 50%		
Schoenoplectus maritimus	+=<1%		
Elymus repens	+=<1%		
Hordeum jubatum	1 = 1-5%		
Distichlis spicata	+=<1%		

Comments / Problems: Standing dead THIINT >50% (drown-out).

Community Number: 12 Community Title (main spp): Elaeagnus angustifolium/Thinopyrum

intermedium

Dominant Species	% Cover	Dominant Species	% Cover	
Elaeagnus angustifolia	3 = 11-20%	Fraxinus pennsylvanica	1 = 1-5%	
Bromus inermis	1 = 1-5%	Carex sp.	1 = 1-5%	
Symphoricarpos albus	1 = 1-5%	Alopecurus arundinaceus	1 = 1-5%	
Thinopyrum intermedium	5 = > 50%	Salix fragilis	1 = 1-5%	
Sheperdia argentea	2 = 6-10%	Echinocystis lobata	1 = 1-5%	
Cynoglossum officinale	+=<1%	Acroptilon repens	1 = 1-5%	

Comments / Problems: ____

Community Number: ___ Community Title (main spp): ____

Dominant Species	% Cover	Dominant Species	% Cover

Comments / Problems:

Community Number: ___ Community Title (main spp): ____

Dominant Species	% Cover	Dominant Species	% Cover

Comments / Problems:

PLANTED WOODY VEGETATION SURVIVAL

Plant Species	Number Originally Planted	Number LIVE Observed	Mortality Causes
PA-1		0	All PA: grass and weedy forb competition and lack of
PA-2		0	irrigation
PA-3		0	
PA-4		4	
PA-5		1	
PA-6		20	10 cottonwood, 10 other (many volunteer Russian
PA-7		9	olive)
PA-8		7	
TOTAL LIVE		41	2% Survival (of original 1650 stems planted)

Plant Species	Number Originally Planted
Sheperdia argentea	400
Crataegus douglasii	400
Elaeaganus commutate	400
Prunus virginiana	400
Populus deltoids	25
Acer negundo	10
Quercus macrocarpa	15

Comments / Problems: 1,650 containerized woody plants were installed in the 8 planting areas.

All planting were in 1 gallon containers except for cottonwood which were in 5 gallon containers.

Grasses out-competed virtually all plantings (2% remain). Volunteer Russian olives are showing up across the site, including several in PA-6. All protective fencing was in good condition.

MDT WETLAND MONITORING – VEGETATION TRANSECT

Site: <u>Tunnicliff</u> Date: <u>July 12, 2018</u> Examiner: <u>Mark Traxler</u>

Transect Number: 1 Approximate Transect Length: 792 feet Compass Direction from Start: 200° Note:

Transect Interval Length: 155 feet (Station 0-155)		
Vegetation Community Type: 8 - Thinopyrum intermediu	ım	
Plant Species	Cover	
Thinopyrum intermedium	5 = > 50%	
Schedonorus pratensis	+=<1%	
Taraxacum officinale	+=<1%	
Medicago lupulina	+=<1%	
Bare Ground	+=<1%	
Melilotus albus	1 = 1-5%	
Poa pratensis	2 = 6-10%	
Bromus inermis	1 = 1-5%	
Melilotus officinalis	1 = 1-5%	
Convulvulus arvensis	+=<1%	
Equisetum arvense	+=<1%	
Total Vegetative Cover:	90%	

Transect Interval Length: 72 feet (Station 155-227)	
Vegetation Community Type: 9 – Schoenoplectus spp./Typha latifolia	
Plant Species	Cover
Juneus balticus	1 = 1-5%
Schoenoplectus maritimus	1 = 1-5%
Typha latifolia	5 = > 50%
Bare Ground (mud and standing dead THIINT)	2 = 6-10%
Total Vegetative Cover:	80%

Transect Interval Length: 103 feet (Station 227-330)	
Vegetation Community Type: 8 - Thinopyrum intermedium	
Plant Species	Cover
Thinopyrum intermedium	5 = > 50%
Medicago sativa	+=<1%
Bromus arvense	+=<1%
Schedonorous pratensis	+=<1%
Bare Ground	1 = 1-5%
Melilotus albus	1 = 1-5%
Poa pratensis	1 = 1-5%
Bromus inermis	+=<1%
Melilotus officinalis	+=<1%
Total Vegetative Cover:	90%

Transect Interval Length: 217 feet (Station 330-547)	
Vegetation Community Type: 9 – Schoenoplectus spp./Typha latifolia	
Plant Species	Cover
Schoenoplectus maritimus	3 = 11-20%
Typha latifolia	4 = 21-50%
Rumex crispus	+=<1%
Thinopyrum intermedium	+=<1%
Schoenoplectus acutus	3 = 11-20%
Hordeum jubatum	+=<1%
Beckmannia syzigachne	+=<1%
Bare Ground (mud)	1 = 1-5%
Total Vegetative Cover:	50%

MDT WETLAND MONITORING – VEGETATION TRANSECT

Site: <u>Tunnicliff</u> Date: <u>July 12, 2018</u> Examiner: <u>Mark Traxler</u>

Transect Number: 1 Approximate Transect Length: 792 feet Compass Direction from Start: 200° Note:

Transect Interval Length: 100 feet (Station 547-647)	
Vegetation Community Type: 8 - Thinopyrum intermedium	
Plant Species	Cover
Thinopyrum intermedium	5 = > 50%
Schedonorus pratensis	+=<1%
Taraxacum officinale	+=<1%
Medicago lupulina	+=<1%
Bare Ground	1 = 1-5%
Melilotus albus	1 = 1-5%
Poa pratensis	+=<1%
Bromus inermis	+=<1%
Melilotus officinalis	+=<1%
Hordeum jubatum	1 = 1-5%
Trifolium repens	1 = 1-5%
Total Vegetative Cover:	95%

Transect Interval Length: 135 feet (Station 647-782)	
Vegetation Community Type: 9 – Schoenoplectus spp./Typha latifolia	
Plant Species	Cover
Juneus balticus	1 = 1-5%
Schoenoplectus maritimus	4 = 21-50%
Typha latifolia	+=<1%
Hordeum jubatum	1 = 1-5%
Schoenoplectus acutus	1 = 1-5%
Bare Ground	5 = > 50%
Total Vegetative Cover:	50%

Transect Interval Length: 10 feet (Station 782-792)	
Vegetation Community Type: 8 - Thinopyrum intermedium	
Plant Species	Cover
Thinopyrum intermedium	5 = > 50%
Trifolium repens	+=<1%
Hordeum jubatum	+=<1%
Schedonorous pratensis	+=<1%
Bare Ground	3 = 11-20%
Total Vegetative Cover:	85%

Transect Interval Length:	
Vegetation Community Type:	
Plant Species	Cover
Total Vegetative Cover:	%

MDT WETLAND MONITORING – VEGETATION TRANSECT

Date: <u>July 12, 2018</u> Examiner: <u>Mark Traxler</u> Site: **Tunnicliff**

Transect Number: 2 Approximate Transect Length: 900 feet Compass Direction from Start: 330° Note:

Transect Interval Length: 130 feet (Station 0-130)		
Vegetation Community Type: 9 – Schoenoplectus spp./Typha latifolia		
Plant Species	Cover	
Schoenoplectus maritimus	1 = 1-5%	
Rumex crispus	+=<1%	
Open Water	5 = > 50%	
Alopecurus arundinaceus	+=<1%	
Typha latifolia	1 = 1-5%	
Schoenoplectus acutus	1 = 1-5%	
Total Vegetative Cover:	50%	

Plant Species	Cover
Schoenoplectus maritimus	1 = 1-5%
Rumex crispus	+=<1%
Open Water	5 = > 50%
Alopecurus arundinaceus	+=<1%
Typha latifolia	1 = 1-5%
Schoenoplectus acutus	1 = 1-5%
Total Vegetative Cover:	50%
Transect Interval Length: 145 feet (Station 255-400)	
Vegetation Community Type: 13 - Open Water	

Transect Interval Length: 145 feet (Station 255-400)		
Vegetation Community Type: 13 - Open Water		
Plant Species	Cover	
Hordeum jubatum	1 = 1-5%	
Schoenoplectus maritimus	+=<1%	
Open Water	5 = > 50%	
Elymus Repens	+=<1%	
Total Vegetative Cover:	50%	

Transect Interval Length: 125 feet (Station 130-255)	
Vegetation Community Type: 8 - Thinopyrum intermedium	
Plant Species	Cover
Thinopyrum intermedium	5 = > 50%
Hordeum jubatum	2 = 6-10%
Trifolium sp.	1 = 1-5%
Bare Ground	1 = 1-5%
Total Vegetative Cover:	90%

Transect Interval Length: 140 feet (Station 400-540)	
Vegetation Community Type: 8 - Thinopyrum/Schedonorus	
Plant Species	Cover
Thinopyrum intermedium	5 = > 50%
Chenopodium album	2 = 6-10%
Bare Ground	1 = 1-5%
Total Vegetative Cover:	95%

MDT WETLAND MONITORING – VEGETATION TRANSECT

Site: <u>Tunnicliff</u> Date: <u>July 12, 2018</u> Examiner: <u>Mark Traxler</u>

Transect Number: <u>2</u> Approximate Transect Length: <u>900 feet</u> Compass Direction from Start: <u>330°</u> Note: _____

Transect Interval Length: 335 feet (Station 540-875)	
Vegetation Community Type: 13 - Open Water	
Plant Species	Cover
Chenopodium album	5 = > 50%
Hordeum jubatum	+=<1%
Schoenoplectus maritimus	2 = 6-10%
Open Water (Dead Veg)	5 = > 50%
Total Vegetative Cover:	20%

Transect Interval Length: 25 feet (Station 875-900)		
Vegetation Community Type: 8 - Thinopyrum intermedium		
Plant Species	Cover	
Bromus arvense	1 = 1-5%	
Lepidium perfoliatum	+=<1%	
Thinopyrum intermedium	5 = > 50%	
Chenopodium album	+=<1%	
Melilotus albus	+=<1%	
Bare Ground (litter)	1 = 1-5%	
	_	
Total Vegetative Cover:	90%	

Transect Interval Length:	
Vegetation Community Type:	
Plant Species	Cover
Total Vegetative Cover:	%

Transect Interval Length:	
Vegetation Community Type:	
Plant Species	Cover
Total Vegetative Cover:	%

MDT WETLAND MONITORING - VEGETATION TRANSECT

Cover EstimateIndicator ClassSource+ = < 1%3 = 11-10%+ = ObligateP = Planted1 = 1-5%4 = 21-50%- = Facultative/WetV = Volunteer2 = 6-10%5 = > 50%0 = Facultative

Percent of perimeter developing wetland vegetation (excluding dam/berm structures): ____%

Establish transects perpendicular to the shoreline (or saturated perimeter). The transect should begin in the upland area. Permanently mark this location with a standard metal fencepost. Extend the imaginary transect line towards the center of the wetland, ending at the 3 foot depth (in open water), or at the point where water depths or saturation are maximized. Mark this location with another metal fencepost.

Estimate cover within a 10 foot wide "belt" along the transect length. At a minimum, establish a transect at the windward and leeward sides of the wetland. Remember that the purpose of this sampling is to monitor, not inventory, representative portions of the wetland site.

Comments:

PHOTOGRAPHS

Take photographs of the following permanent reference points listed in the check list below. Record the direction of the photograph using a compass. When at the site for the first time, establish a permanent reference point by setting a ½ inch rebar or fencepost extending 2-3 feet above ground. Survey the location with a resource grade GPS and mark the location on the aerial photograph.

Photograph Checklist:
One photograph for each of the four cardinal directions surrounding the wetland.
At least one photograph showing upland use surrounding the wetland. If more than one uplan
exists then take additional photographs.
At least one photograph showing the buffer surrounding the wetland.
One photograph from each end of the vegetation transect, showing the transect.

Location	Photograph Frame #	Photograph Description & Lat/Long	Compass Reading (°)
PP-1		Photo Point 1, Photo 1: 45.83945617/-107.5966157	320
PP-1		Photo Point 1, Photo 2: 45.83945617/-107.5966157	270
PP-1		Photo Point 1, Photo 3: 45.83945617/-107.5966157	220
PP-1		Photo Point 1 (Pano): 45.83945617/-107.5966157	
PP-2		Photo Point 2, Photo 1: 45.83785325/-107.5996803	315
PP-2		Photo Point 2, Photo 2: 45.83785325/-107.5996803	0
PP-2		Photo Point 2, Photo 3: 45.83785325/-107.5996803	45
PP-2		Photo Point 2 (Pano): 45.83785325/-107.5996803	
PP-3		Photo Point 3, Photo 1: 45.83943906/-107.6009084	140
PP-3		Photo Point 3, Photo 2: 45.83943906/-107.6009084	100
PP-3		Photo Point 3, Photo 3: 45.83943906/-107.6009084	45
PP-3		Photo Point 3 (Pano): 45.83943906/-107.6009084	
PP-4		Photo Point 4, Photo 1: 45.84139478/-107.5988983	105
PP-4		Photo Point 4, Photo 2: 45.84139478/-107.5988983	160
PP-4		Photo Point 4, Photo 3: 45.84139478/-107.5988983	240
PP-4		Photo Point 4 (Pano): 45.84139478/-107.5988983	
T-1 start		Transect 1 start: 45.8392488/-107.5963573	200
T-1 end		Transect 1 end: 45.83765226/-107.5984577	50
T-2 start		Transect 2 start: 45.83844422/-107.6005579	330
T-2 end		Transect 2 end: 45.84089981/-107.6009804	160
DP-1W		Wetland soil pit #1: 45.839807/-107.569752	
DP-1U		Upland soil pit #1: 45.839775/-107.596643	
DP-2W		Wetland soil pit #2: 45.839274/-107.598507	
DP-2U		Upland soil pit #2: 45.83923/-107.598482	

Comments / Problems:	•
----------------------	---

GPS SURVEYING

Comments / Problems:

WILDLIFE

Birds

Were man-made nesting structures installed? <u>Yes</u> If yes, type of structure: <u>box</u> How many? <u>7</u> Are the nesting structures being used? <u>Yes</u> Do the nesting structures need repairs? <u>No</u>

Mammals and Herptiles

Mammal and Harntila Species	Number		Indir	ect Indicatio	on of Use
Mammal and Herptile Species	Observed	Tracks	Scat	Burrows	Other
Deer sp.		\boxtimes			
Northern Leopard Frog	20				

Additional Activities Checklist:

NA Macroinvertebrate Sampling (if required)

Comments / Problems: No boxes obviously used in 2018. Boxes appeared full of nesting material from previous years.

BIRD SURVEY - FIELD DATA SHEET

Site: <u>Tunnicliff</u> Date: <u>7/12/18</u> Survey Time: <u>9:00</u> am to <u>12:00</u> pm

Bird Species	#	Behavior	Habitat	Bird Species	#	Behavior	Habitat
Mallard	7	F	OW				
Wilson's Snipe	2	F FO	UP OW				
Eastern Kingbird	3	F FO	UP MA				
Western Meadowlark	4	FO L	UP MA				
Red-winged Blackbird	9	FO L	UP MA				
Great Blue Heron	1	FO	UP MA				
Killdeer	1	F	MF				
Mourning Dove	2	FO	UP				
		_					

BEHAVIOR CODES

BP = One of a breeding pair **BD** = Breeding display

F = Foraging FO = Flyover L = Loafing N = Nesting

Weather: **90 degrees, sunny**

No	ites:	

HABITAT CODES

AB = Aquatic bed SS = Scrub/Shrub UP = Upland buffer I = Island WM = Wet meadow MA = Marsh US = Unconsolidated shore

MF = Mud Flat OW = Open Water

WETLAND DETERMINATION DATA FORM - Great Plains Region

Project/Site: JTX - Tunnicliff		c	ity/County: Ha	rdin/Big Horn	Samp	ling Date: 12-Jul-18
pplicant/Owner: MDT				State: _MT	Sampling Point:	DP-1U
nvestigator(s): Mark Traxler			Section, Town	ship, Range: S 34	T _7N	R 39E
Landform (hillslope, terrace, etc.):	: Depression		Local relief (co	ncave, convex, none)): concave	Slope: 0.0% 0.0
ubregion (LRR): LRR G		Lat.: 45.	839775	Long.: -107	7.596643	Datum: WGS84
il Map Unit Name: Kye clay, saline	- (Kw)				NWI classification:	Not Manned
climatic/hydrologic conditions or		nis time of year?	Yes •		explain in Remarks	
Are Vegetation , Soil	, or Hydrology	significantly of		Are "Normal Circum	-	Yes No
					•	
Are Vegetation, Soil	, or Hydrology	naturally prol		(If needed, explain	-	•
ummary of Findings - A lydrophytic Vegetation Present?	Yes O No •	nowing sa	mpling poli	nt locations, tr	ansects, impo	rtant features, etc
Hydric Soil Present?	Yes O No •			mpled Area		
•	Yes O No •		within a	Wetland? Yes 🔾 N	No •	
Vetland Hydrology Present? Remarks:						
DP-1U on slope above depression. /EGETATION - Use scier		olants	Dominant F	WS Region: GP		
(2)	-1 D - 1' -)		Rel.Strat. In	u.caco.	Test worksheet:	
<u>Tree Stratum</u> (Plot size: 30 Foo		<u>% Cover</u>	Cover St		ominant Species	
1			<u> </u>	That are OBL	_, FACW, or FAC:	(A)
2			<u> </u>		er of Dominant	
3. 4.				Species Acros	ss All Strata:	(B)
·			= Total Cover		dominant Species	0.00((1/0)
Sapling/Shrub Stratum (Plot size:	: 15 Foot Radius)			That Are Of	BL, FACW, or FAC:	0.0% (A/B)
1				Prevalence 2	Index worksheet:	
2				Total	% Cover of: N	lultiply by:
3				OBL specie	es <u>0</u> x	1 =
4 5.				FACW speci	ies <u>0</u> x	2 = 0
J			= Total Cover	FAC specie	es <u>3</u> x	3 = 9
Herb Stratum (Plot size: 5 Foot	Radius)	0	- Total Cover	FACU speci	les <u>32</u> x	4 = 128
1		25	✓ 41.7% U	UPL specie	es <u>25</u> x	5 = <u>125</u>
_				1 -		
		15	✓ 25.0% F/	ACU Column Tot	tals: <u>60</u> (A) <u>262</u> (B)
3 P		10		ACU	tals: <u>60</u> (ence Index = B/A =	A) <u>262</u> (B) _4.367_
3. Bromus arvensis4. Bromus ciliatus		10	16.7% F/	ACU Prevale	ence Index = B/A =	4.367
 Bromus arvensis Bromus ciliatus Chenopodium album 		10	16.7% F/	ACU Prevale AC Hydrophytic	ence Index = B/A =	
 Bromus arvensis Bromus ciliatus Chenopodium album Melilotus officinale 		10 3 2 5	16.7% F/ 5.0% F/ 3.3% F/ 8.3% F/	ACU Prevale ACU Hydrophytic ACU 1 - Rapi	ence Index = B/A = c Vegetation Indicat id Test for Hydroph	4.367_ ors: ytic Vegetation
 Bromus arvensis Bromus ciliatus Chenopodium album Melilotus officinale 7. 		10 3 2 5 0	16.7% F/ 5.0% F/ 3.3% F/ 8.3% F/ 0.0%	ACU Prevale ACU Hydrophytic ACU 1 - Rapi	ence Index = B/A = c Vegetation Indicat id Test for Hydroph ninance Test is > 50	4.367 ors: ytic Vegetation %
3. Bromus arvensis 4. Bromus ciliatus 5. Chenopodium album 6. Melilotus officinale 7. 8.		10 3 2 5 0	16.7% F/ 5.0% F/ 3.3% F/ 8.3% F/ 0.0%	ACU	ence Index = B/A = c Vegetation Indicat id Test for Hydrophy ninance Test is > 50 valence Index is ≤ 3.	4.367_ ors: ytic Vegetation % 0 1
 3. Bromus arvensis 4. Bromus ciliatus 5. Chenopodium album 6. Melilotus officinale 7. 8. 9. 		10 3 2 5 0 0	16.7% F/ 5.0% F/ 3.3% F/ 8.3% F/ 0.0%	ACU Prevale ACU Hydrophytic ACU 1 - Rap	ence Index = B/A = c Vegetation Indicat id Test for Hydrophy ninance Test is > 50 valence Index is ≤ 3.	4.367_ ors: ytic Vegetation % 0¹ ons¹(Provide supporting
 3. Bromus arvensis 4. Bromus ciliatus 5. Chenopodium album 6. Melilotus officinale 7. 8. 9. 		10 3 2 5 0	16.7% F/ 5.0% F/ 3.3% F/ 8.3% F/ 0.0% 0.0%	ACU Prevale ACU Hydrophytic ACU 1 - Rapi 2 - Dom 3 - Prevale 4 - Mor data i	ence Index = B/A = c Vegetation Indicat id Test for Hydroph ninance Test is > 50 valence Index is ≤3. phological Adaptation in Remarks or on a second	4.367_ ors: ytic Vegetation % 0¹ ons¹(Provide supporting
3. Bromus arvensis 4. Bromus ciliatus 5. Chenopodium album 6. Melilotus officinale 7. 8. 9. 10. Woody Vine Stratum (Plot size:	30 Foot Radius)	10 3 2 5 0 0 0 0	16.7% F/ 5.0% F/ 3.3% F/ 8.3% F/ 0.0% 0.0% 0.0%	ACU	ence Index = B/A = c Vegetation Indicat id Test for Hydrophy ninance Test is > 50 valence Index is ≤3. phological Adaptation in Remarks or on a sematic Hydrophytic V es of hydric soil and	4.367_ ors: ytic Vegetation % 0¹ ons¹(Provide supporting separate sheet) egetation¹(Explain)
3. Bromus arvensis 4. Bromus ciliatus 5. Chenopodium album 6. Melilotus officinale 7. 8. 9. 10. Woody Vine Stratum (Plot size:	30 Foot Radius)	10 3 2 5 0 0 0 0 60	16.7% F/ 5.0% F/ 3.3% F/ 8.3% F/ 0.0% 0.0% 0.0%	ACU	ence Index = B/A = c Vegetation Indicat id Test for Hydrophy ninance Test is > 50 valence Index is ≤3. phological Adaptation in Remarks or on a sematic Hydrophytic V es of hydric soil and	4.367_ ors: ytic Vegetation % 0¹ ons¹(Provide supporting separate sheet) egetation¹(Explain)
3. Bromus arvensis 4. Bromus ciliatus 5. Chenopodium album 6. Melilotus officinale 7. 8. 9. 10. Woody Vine Stratum (Plot size:	2 30 Foot Radius)	10 3 2 5 0 0 0 0 60	16.7% F/ 5.0% F/ 3.3% F/ 8.3% F/ 0.0% 0.0% 0.0%	ACU	ence Index = B/A = c Vegetation Indicate id Test for Hydrophy ninance Test is > 50 valence Index is ≤3. phological Adaptation in Remarks or on a sematic Hydrophytic V es of hydric soil and	
3. Bromus arvensis 4. Bromus ciliatus 5. Chenopodium album 6. Melilotus officinale 7. 8. 9. 10. Plot size: 1	30 Foot Radius)	10 3 2 5 0 0 0 0 60	16.7% F/ 5.0% F/ 3.3% F/ 8.3% F/ 0.0% 0.0% 0.0%	ACU	ence Index = B/A = c Vegetation Indicate id Test for Hydrophy ninance Test is > 50 valence Index is ≤ 3. phological Adaptation in Remarks or on a sematic Hydrophytic V rs of hydric soil and	

US Army Corps of Engineers

^{*}Indicator suffix = National status or professional decision assigned because Regional status not defined by FWS.

B-15

Soil Sampling Point: DP-1U

	-	the depth nee				onfirm the	absence of indicators.)	
Depth (inches)	Matrix Color (moist)	%	Color (moist)	ox Featu %	Tvpe 1	Loc ²	Texture	Remarks
0-10	7.5YR 4/3	100					Silty Clay Loam	
				-			P .	
			'					
				-				
1Type: C=Co	ncentration. D=Depletion	n RM-Reduced	Matrix CS-Covere	ed or Coat	ed Sand Gr	ains 21 oca	 ntion: PL=Pore Lining. M=Matr	iv
J 1	Indicators: (Applical					anis Loca	Indicators for Problem	
Histosol		ore to an Entre	Sandy Gleyed		,		1 cm Muck (A9) (LRR	•
	ipedon (A2)		Sandy Redox (Coastal Prairie Redox	· •
Black His	tic (A3)		Stripped Matri	x (S6)			Dark Surface (S7) (LF	
	n Sulfide (A4)		Loamy Mucky	Mineral (F	1)		High Plains Depression	ons (F16)
	Layers (A5) (LRR F)		Loamy Gleyed	•	2)		(LRR H outside o	f MLRA 72 and 73)
	ck (A9) (LRR F,G,H)	11)	Depleted Matr	. ,			Reduced Vertic (F18)	
	Below Dark Surface (A1 rk Surface (A12)	11)	Redox Dark Su Depleted Dark				Red Parent Material (• •
	uck Mineral (S1)		Redox depress		17)		Very Shallow Dark Su	` '
	lucky Peat or Peat (S2)	(LRR G. H)	High Plains De	` ,	(F16)		Other (Explain in Rer	•
	cky Peat or Peat (S3) (LI		(MLRA 72	•	` '		³ Indicators of hydrophytic hydrology must be presen	vegetation and wetiand t, unless disturbed or problematic.
Restrictive L	ayer (if present):						<u> </u>	•
Type:	шус. (р. сосо).							
Depth (inc	thes):						Hydric Soil Present?	Yes ○ No ●
Remarks:	· ·						•	
No hydric soi	Lindicators present to	o 10" Hardoa	n-like conditions	encounte	ered at 10'	' No hydr	ology at this height above	excavated area
	· ····ai·outoro procesii t	o io i iiaiapo		0.100 4.11.	o. ou u o		ology at time holyin above t	
Hydrolog	У							
Wetland Hyd	drology Indicators:						Secondary Indicator	rs (minimum of two required)
Primary Ind	icators (minimum of	one required;	check all that app	oly)			Surface Soil Cra	icks (B6)
Surface \	Water (A1)		Salt Crust (B	11)			Sparsely Vegeta	ated Concave Surface (B8)
High Wa	ter Table (A2)		Aquatic Inve	rtebrates	(B13)		☐ Drainage Patter	rns (B10)
Saturation	on (A3)		Hydrogen Su	ılfide Odo	r (C1)		Oxidized Rhizos	spheres on Living Roots (C3)
	arks (B1)		Dry Season	Water Tab	ole (C2)		(where til	led)
	t Deposits (B2)		Oxidized Rhi	zospheres	s on Living F	Roots (C3)	Crayfish Burrow	/s (C8)
☐ Drift dep	osits (B3)		(where	not tilled)		Saturation Visib	ole on Aerial Imagery (C9)
	t or Crust (B4)		Presence of	Reduced I	Iron (C4)		Geomorphic Po	sition (D2)
☐ Iron Dep	oosits (B5)		Thin Muck S	urface (C7	7)		FAC-neutral Tes	, ,
Inundati	on Visible on Aerial Ima	gery (B7)	Other (Expla	in in Rem	arks)		Frost Heave Hu	mmocks (D7) (LRR F)
Water-St	ained Leaves (B9)							
Field Observ		0 0						
Surface Water			Depth (inc	hes):		_		
Water Table F	Present? Yes	O No 💿	Depth (inc	hes):				
Saturation Pre	esent? Yes	○ No ●	Depth (inc	hos).		Wetla	and Hydrology Present?	Yes ○ No •
(includes capi	nary minge)							
Describe Re	corded Data (stream	gauge, monito	or well, aerial pho	tos, prev	vious inspe	ections), if	available:	
Dame								
Remarks:								
No hydrolog	y indicators present.							

US Army Corps of Engineers Great Plains - Version 2.0

WETLAND DETERMINATION DATA FORM - Great Plains Region

			City/County: Hard	n/Big Horn		ling Date: 12-Jul-18
pplicant/Owner: MDT				State: MT	Sampling Point:	DP-1W
vestigator(s): Mark Traxler			Section, Townsh	ip, Range: S 34	T _7N	R 39E
andform (hillslope, terrace, etc.):	Depression		Local relief (cond	cave, convex, none): CC	oncave	Slope: 0.0% (
oregion (LRR): LRR G		Lat.: 45	.839807	Long.: -107.56	9752	Datum: WGS84
Map Unit Name: Kye clay, saline	e (Kw)			NW1	Classification:	 Not Mapped
climatic/hydrologic conditions on		s time of vear?	Yes •		- Dlain in Remarks	
re Vegetation , Soil	, or Hydrology	significantly	disturbed? A	are "Normal Circumsta	nces" present?	Yes No
are Vegetation, Soil	, or Hydrology	naturally pro		If needed, explain any	•	aarke)
	_					•
Immary of Findings - At	Yes No	nowing sa	mpling point	t locations, trans	sects, impo	rtant reatures, e
	Yes No		Is the Sam			
Hydric Soil Present?	Yes No		within a W	etland? Yes 💿 No 🤇	\supset	
etland Hydrology Present?	res © NO C					
e new construction, as expected a		lants	_Species?	'S Region: GP		
Tree Stratum (Plot size: 30 Foo	ot Radius)	Absolute % Cover		cator Dominance Tes		
1.		-		Number of Domir That are OBL, FA		2 (A)
2.						
3		0		Total Number of Species Across Al		3 (B)
1		0				
apling/Shrub Stratum (Plot size:	: 15 Foot Radius)	0	= Total Cover	Percent of dom That Are OBL,		66.7% (A/B
						-
	·	0		Prevalence Indo		
1				Prevalence Inde	ex worksheet:	lultiply by:
1 2				Prevalence Indo	ex worksheet: Cover of: N	
1		0		Total % (ex worksheet: Cover of: N 32 x	_
1		0		Total % (ex worksheet: Cover of: 32 0 x	1 = 32
1		0 0	= Total Cover	Total % (OBL species FACW species	Ex worksheet: Cover of: M	1 = <u>32</u> 2 = <u>0</u>
1		0 0 0 0		Total % (OBL species FACW species FAC species FACU species UPL species	Sex worksheet: Cover of: M	1 = <u>32</u> 2 = <u>0</u> 3 = <u>6</u>
1	Radius)	0 0 0 0 0 0	✓ 22.7% UPL	Total % (OBL species FACW species FAC species FACU species UPL species Column Total	Cover of: M	1 = <u>32</u> 2 = <u>0</u> 3 = <u>6</u> 4 = <u>0</u>
1	Radius)	0 0 0 0 0 0	✓ 22.7% UPL ✓ 22.7% OBL	Total % (OBL species FACW species FACU species UPL species Column Total:	ex worksheet: Cover of:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1	Radius)	0 0 0 0 0 0	✓ 22.7% UPL	Total % (OBL species FACW species FACU species UPL species Column Total:	Sex worksheet: Cover of: M 32 x	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Herb Stratum (Plot size: 5 Foot Agropyron intermedium Schoenoplectus maritimus Beckmannia syzigachne Lepidium perfoliatum	Radius)	0 0 0 0 0 0	✓ 22.7% UPL ✓ 22.7% OBL 4.5% OBL	Total % (OBL species FACW species FACU species UPL species Column Total: Prevalence Hydrophytic Ve	Sex worksheet: Cover of: M 32	1 = 32 2 = 0 3 = 6 4 = 0 5 = 50 A) 88 (B)
Herb Stratum (Plot size: 5 Foot Agropyron intermedium Schoenoplectus maritimus Beckmannia syzigachne Lepidium perfoliatum Typha latifolia	Radius)	0 0 0 0 0 0	✓ 22.7% UPL ✓ 22.7% OBL	Total % (OBL species FACW species FACU species UPL species Column Total: Prevalence Hydrophytic Ve	Sex worksheet: Cover of: M	1 = 32 2 = 0 3 = 6 4 = 0 5 = 50 A) 88 (B)
1	Radius)	0 0 0 0 0 0 10 10 2 2 2 20 0	✓ 22.7% UPL ✓ 22.7% OBL	Total % (OBL species FACW species FACU species UPL species Column Total: Prevalence Hydrophytic Ve	2	1 = 32 2 = 0 3 = 6 4 = 0 5 = 50 A) 88 (B) 2 ors: ytic Vegetation
1	Radius)	0 0 0 0 0 0 0 10 10 2 2 2 20 0	✓ 22.7% UPL ✓ 22.7% OBL	Total % (0 OBL species FACW species FACU species UPL species Column Total: Prevalence Hydrophytic Ve 1 - Rapid T 2 - Domina 3 - Prevale	ex worksheet: 32	1 = 32 2 = 0 3 = 6 4 = 0 5 = 50 A) 88 (B) 2 ors: vtic Vegetation % 01
1	Radius)	0 0 0 0 0 0 10 10 2 2 2 20 0 0	✓ 22.7% UPL ✓ 22.7% OBL	Total % (OBL species FACW species FACU species UPL species Column Total: Prevalence Hydrophytic Ve 1 - Rapid T 2 - Domina 2 3 - Prevale 4 - Morpho	ex worksheet: 32	1 = 32 2 = 0 3 = 6 4 = 0 5 = 50 A) 88 (B) 2 ors: vtic Vegetation % 01 ons ¹ (Provide supportin
1	Radius)	0 0 0 0 0 0 0 10 10 2 2 2 20 0 0 0	✓ 22.7% UPL ✓ 22.7% OBL	Total % (0 OBL species FACW species FAC species FACU species UPL species Column Total: Prevalence Hydrophytic Ve 1 - Rapid T 2 - Domina 3 - Prevale 4 - Morphodata in R	ex worksheet: Cover of: 32 0 x 0 x 10 x 10 x s: 44 cest for Hydrophynice Test is > 50 nce Index is ≤3. clogical Adaptaticemarks or on a second context.	1 = 32 2 = 0 3 = 6 4 = 0 5 = 50 A) 88 (B) 2 ors: vtic Vegetation % 01 ons ¹ (Provide supportin
1	Radius)	0 0 0 0 0 0 10 10 2 2 2 20 0 0	✓ 22.7% UPL ✓ 22.7% OBL	Total % (OBL species FACW species FACU species UPL species Column Total: Prevalence Hydrophytic Ve 1 - Rapid T 2 - Domina 2 3 - Prevale 4 - Morpho data in R Problemati	ex worksheet: Cover of: M 32 X 0 X 0 X 10 X 10 X s: 44 (Index = B/A = getation Indicate est for Hydrophy nnce Test is > 50 nce Index is ≤3. clogical Adaptatic emarks or on a second context of the contex	1 = 32 2 = 0 3 = 6 4 = 0 5 = 50 A) 88 (B) 2 ors: vtic Vegetation % 0¹ cons¹(Provide supporting separate sheet)
1	Radius) 30 Foot Radius)	0 0 0 0 0 0 10 10 2 2 2 20 0 0 0	✓ 22.7% UPL ✓ 22.7% OBL	Total % (OBL species FACW species FACU species UPL species Column Total: Prevalence Hydrophytic Ve 1 - Rapid T 2 - Domina 2 3 - Prevale 4 - Morphodata in R Problemati	ex worksheet: Cover of: M 32 X 0 X 0 X 10 X 10 X s: 44 (Index = B/A = getation Indicate est for Hydrophy nnce Test is > 50 nce Index is ≤3. clogical Adaptatic emarks or on a second context of the contex	1 = 32 2 = 0 3 = 6 4 = 0 5 = 50 A) 88 (B) 2 ors: vtic Vegetation % 0¹ cons¹(Provide supporting separate sheet) segetation¹ (Explain)
1	Radius)	0 0 0 0 0 0 0 10 10 2 2 2 20 0 0 0 0	✓ 22.7% UPL ✓ 22.7% OBL	Total % (OBL species FACW species FACU species UPL species Column Total: Prevalence Hydrophytic Ve 1 - Rapid T 2 - Domina 3 - Prevale 4 - Morpho data in R Problemati 1 Indicators of be present.	ex worksheet: Cover of: M 32 X 0 X 0 X 10 X 10 X s: 44 (Index = B/A = getation Indicate est for Hydrophy nnce Test is > 50 nce Index is ≤3. clogical Adaptatic emarks or on a second context of the contex	1 = 32 2 = 0 3 = 6 4 = 0 5 = 50 A) 88 (B) 2 ors: vtic Vegetation % 0¹ cons¹(Provide supporting separate sheet) segetation¹ (Explain)
1	Radius)	0 0 0 0 0 0 0 10 10 2 2 2 20 0 0 0 0	✓ 22.7% UPL ✓ 22.7% OBL	Total % (OBL species FACW species FACU species UPL species Column Total: Prevalence Hydrophytic Ve 1 - Rapid T 2 - Domina 2 3 - Prevale 4 - Morpho data in R Problemati	ex worksheet: Cover of: M 32 X 0 X 0 X 10 X 10 X s: 44 (Index = B/A = getation Indicate est for Hydrophy nnce Test is > 50 nce Index is ≤3. clogical Adaptatic emarks or on a second context of the contex	1 = 32 2 = 0 3 = 6 4 = 0 5 = 50 A) 88 (B) 2 ors: ytic Vegetation % 01 ons¹(Provide supporting separate sheet) egetation¹ (Explain) wetland hydrology must

US Army Corps of Engineers

^{*}Indicator suffix = National status or professional decision assigned because Regional status not defined by FWS.

B-17

Soil Sampling Point: DP-1W

			e depth ne				onfirm the	absence of indicators.)
Depth (inches)	Color (n	Matrix noist)	%	Red Color (moist)	ox Featu %	res	Loc2	Texture Remarks
0-2	10YR	2/1	100	COIOI (IIIOISL)	-70	IVDE	LUC-	Clay Loam
2-16	10YR		100					Clay Loam
2-10	- IUTK	4/ 1						Giay LUdiii
								·
* '				ed Matrix, CS=Covere			ains ² Loca	ation: PL=Pore Lining. M=Matrix
		(Applicable	e to all LRR	s, unless otherwis)		Indicators for Problematic Hydric Soils 3:
Histosol				Sandy Gleyed				1 cm Muck (A9) (LRR I, J)
Black His	ipedon (A2)			Sandy Redox (Stripped Matri				Coastal Prairie Redox (A16) (LRR F, G, H)
	n Sulfide (A4)			Loamy Mucky		1)		Dark Surface (S7) (LRR G) High Plains Depressions (F16)
	l Layers (A5) (L	.RR F)		Loamy Gleyed				(LRR H outside of MLRA 72 and 73)
	ck (A9) (LRR F,			Depleted Matr		-,		Reduced Vertic (F18)
	Below Dark Su)	Redox Dark Su				Red Parent Material (TF2)
	rk Surface (A12			Depleted Dark	, ,			 ☐ Red Parent Material (1F2) ☐ Very Shallow Dark Surface (TF12)
Sandy M	uck Mineral (S1)		Redox depress				✓ Other (Explain in Remarks)
2.5 cm N	Mucky Peat or P	eat (S2) (L	RR G, H)	High Plains De	pressions	(F16)		³ Indicators of hydrophytic vegetation and wetland
5 cm Mu	cky Peat or Pea	at (S3) (LRF	? F)	(MLRA 72	and 73 o	f LRR H)		hydrology must be present, unless disturbed or problematic.
Restrictive I	Layer (if pres	ent):						
Type:								
Depth (in	ches):							Hydric Soil Present? Yes ● No ○
Remarks:								
New constru	ction do not	evnect to	see any hw	dric soil indicators	for sever	al vears · s	nil saturat	ted to surface and dominant hydrophitic veg in
excavated ar		cxpcct to	Sec any my	aric 3011 maicator3	TOT SCVCI	ai years, s	on saturat	ted to surface and dominant rigar opinite veg in
Hydrolog	ıy							
Wetland Hy	drology Indic	ators:						Secondary Indicators (minimum of two required)
Primary Ind	licators (mini	mum of o	ne required	; check all that app	oly)			Surface Soil Cracks (B6)
	Water (A1)			Salt Crust (E				Sparsely Vegetated Concave Surface (B8)
	ater Table (A2)			Aquatic Inve	•	(B13)		Drainage Patterns (B10)
✓ Saturation	` ,			Hydrogen Su				Oxidized Rhizospheres on Living Roots (C3)
	larks (B1)			Dry Season				(where tilled)
	nt Deposits (B2))		Oxidized Rhi			Roots (C3)	Crayfish Burrows (C8)
	posits (B3)	,			not tilled)	Ü	(00)	Saturation Visible on Aerial Imagery (C9)
l —	nt or Crust (B4)			Presence of				Geomorphic Position (D2)
	n of clast (B4) posits (B5)							FAC-neutral Test (D5)
		orial Image	.m. (D7)	☐ Thin Muck S	•	•		
	ion Visible on A	-	ery (B7)	Other (Expla	in in Rem	arks)		Frost Heave Hummocks (D7) (LRR F)
	tained Leaves ((89)						
Field Observ		Yes (No O	5 "				
Surface Wate	r Present?			Depth (inc	nes):	3	_	
Water Table I	Present?	Yes 🤄	No 🔾	Depth (inc	hes):	0		
Saturation Pro		Yes 🤄	No O	Depth (inc	hes):	0	Wetla	and Hydrology Present? Yes $lacktriangle$ No $lacktriangle$
(includes capi							ections) if	available:
Describe Re	ecorded Data	(stream g	auge, moni	tor well, aerial pho	itos, prev	nous mspe	ections), ii	available:
Remarks:								
	l had a inch-	of ctond	na watar b	ocause of alayets d	around.	vator level	e across st	ito in the summer of 2019
vvetiand cel	i nau 3 inches	s or standi	ng water be	ecause or elevated	groundv	vater rever	s across si	ite in the summer of 2018.

US Army Corps of Engineers Great Plains - Version 2.0

WETLAND DETERMINATION DATA FORM - Great Plains Region

Project/Site: _JTX - Tunnicliff			City/County:	Hardin/Big I	Horn	Samp	ling Date: 12-Jul-	·18
Applicant/Owner: MDT				State:	: <u>MT</u>	Sampling Point:	DP-2	U
Investigator(s): Mark Traxler			Section, To	wnship, Ra	inge: S 34	T _7N	R 39E	
Landform (hillslope, terrace, etc.): Dep	pression		Local relief	(concave, c	convex, none): _co	oncave	Slope: 0.0%	0.0 °
Subregion (LRR): LRR G		Lat.: 45	5.83923		Long.: -107.5	598482	Datum: W	GS84
oil Map Unit Name: Kye clay, saline (Ky	w)				Nw	/I classification:	Not Mapped	
e climatic/hydrologic conditions on the	e site typical for this	time of year?	? Yes	s • No	(If no, ex	plain in Remarks	.)	
Are Vegetation, Soil,	, or Hydrology	significantly (disturbed?	Are "N	ormal Circumsta	ances" present?	Yes No	\bigcirc
Are Vegetation, Soil,	, or Hydrology 🗌	naturally pro	blematic?	(If ne	eded, explain any	y answers in Ren	narks.)	
Summary of Findings - Atta	ch site map sh	nowing sa	mpling p	oint loc	ations, tran	ısects, impo	rtant featur	es, etc.
Hydrophytic Vegetation Present? Y	res ○ No •		Is the	Sampled A				
Hydric Soil Present?	∕es ○ No ●			-	rea _{1?} Yes O No	(•)		
Wetland Hydrology Present? Y	∕es ○ No •		Within	i a Wetiand	? 163 \(\) 140			
Remarks: Plot located upslope from WL-02. VEGETATION - Use scientif	ic names of pl	ants	Dominant	FWS Re	gion: GP			
			Species? Rel.Strat.	Indicator	Dominance Tes	st worksheet:		
<u>Tree Stratum</u> (Plot size: 30 Foot Ra		% Cover	Cover	Status	Number of Domi	inant Species		
1				- —	That are OBL, FA	ACW, or FAC:	0	(A)
2					Total Number of			
3. 4.					Species Across A	All Strata:	1	(B)
		0	= Total Co	ver		minant Species	2 204	>
Sapling/Shrub Stratum (Plot size: 15	Foot Radius)			• .	That Are OBL,	FACW, or FAC:	0.0%	(A/B)
1		0			Prevalence Ind	dex worksheet:		-
2		_			Total %	Cover of: N	Multiply by:	_
3					OBL species	x	1 = 0	
4 5.			<u> </u>		FACW species	<u> </u>	2 = <u>10</u>	
J			= Total Co		FAC species		3 = 0	
Herb Stratum (Plot size: 5 Foot Radi	ius)	0	= 10tai Co	Ver	FACU species		4 = 0	
1		75	✓ 93.8%	UPL	UPL species	<u>75</u> x	5 = <u>375</u>	
Agropyron intermediam Hordeum jubatum			6.3%	FACW	Column Total	s: <u>80</u> ((A) <u>385</u>	(B)
3		0	0.0%		Prevalence	e Index = B/A =	4.813	
4.		0	0.0%		Hydrophytic Ve	egetation Indicat	ors:	-
5.			0.0%			-		
6. 7.		0_	0.0%			Test for Hydrophy	_	
8.			0.0%			ance Test is > 50 ence Index is ≤3.		
9.			0.0%					
10.			0.0%			ological Adaptation Remarks or on a s		porting
		80	= Total Co	ver	Problemat	tic Hydrophytic V	egetation ¹ (Expla	in)
Woody Vine Stratum (Plot size: 30					¹ Indicators o be present.	of hydric soil and	wetland hydrolog	gy must
1			Ц		•			
2					Hydrophytic			
% Bare Ground in Herb Stratum)	0	= Total Co	ver	Vegetation Present?	Yes O No	•	
Remarks:		-	-	-	+			-
Dominance of upland grasses								

US Army Corps of Engineers

Soil Sampling Point: DP-2U

			depth nee				nfirm the	absence of indicators.)
Depth (inches)	Ma	atrix	%	Red Color (moist)	ox Featu _%	res Tvpe 1	Loc2	TextureRemarks
0-6	10YR	3/1	100	COIOI (IIIOISE)	70	TVDE	LUC	Silt Loam
6-14	10YR	4/2	100					Clay Loam
					-			
14-20	5YR	4/4	100					Clay Loam
1Type: C=Co	oncentration. D=	Depletion.	RM=Reduce	d Matrix, CS=Covere	ed or Coat	ed Sand Gra	ins ² Loca	ation: PL=Pore Lining. M=Matrix
J.				s, unless otherwis				Indicators for Problematic Hydric Soils ³ :
Histosol				Sandy Gleyed I		•		1 cm Muck (A9) (LRR I, J)
Histic Epi	ipedon (A2)			Sandy Redox (Coastal Prairie Redox (A16) (LRR F, G, H)
Black His				Stripped Matrix				Dark Surface (S7) (LRR G)
	n Sulfide (A4)			Loamy Mucky I	Mineral (F	1)		High Plains Depressions (F16)
	Layers (A5) (LRI			Loamy Gleyed	•	2)		(LRR H outside of MLRA 72 and 73)
	ck (A9) (LRR F,G	•		Depleted Matri	` '	`		Reduced Vertic (F18)
= .	Below Dark Surf rk Surface (A12)	ace (ATT)		Redox Dark Su Depleted Dark				Red Parent Material (TF2)
	uck Mineral (S1)			Redox depress		F7)		Very Shallow Dark Surface (TF12)
= '	lucky Peat or Pea	t (S2) (LDI	эс н)	High Plains De		(F16)		U Other (Explain in Remarks)
	cky Peat or Peat			(MLRA 72	•	` '		³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problema
	ayer (if preser			•		•		, ,
Type:	uyer (ii presei	,.						
Depth (inc	ches):							Hydric Soil Present? Yes ○ No •
Remarks:								1
No hydric soi	Il indicators pre	sent						
	ii iiididatora pro	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Hydrolog	y							
Wetland Hyd	drology Indicat	tors:						Secondary Indicators (minimum of two require
Primary Ind	icators (minim	um of one	e required;	check all that app	ly)			Surface Soil Cracks (B6)
Surface \	Water (A1)			Salt Crust (B	11)			Sparsely Vegetated Concave Surface (B8)
High Wa	ter Table (A2)			Aquatic Inve	rtebrates	(B13)		Drainage Patterns (B10)
Saturation	on (A3)			Hydrogen Su	lfide Odo	r (C1)		Oxidized Rhizospheres on Living Roots (C3)
Water M	arks (B1)			Dry Season \	Nater Tab	ole (C2)		(where tilled)
Sedimen	t Deposits (B2)			Oxidized Rhi	zospheres	s on Living R	oots (C3)	Crayfish Burrows (C8)
Drift dep	oosits (B3)			(where i	not tilled)		Saturation Visible on Aerial Imagery (C9)
Algal Ma	t or Crust (B4)			Presence of I	Reduced	Iron (C4)		Geomorphic Position (D2)
Iron Dep	oosits (B5)			Thin Muck Su	urface (C7	7)		FAC-neutral Test (D5)
Inundati	on Visible on Aer	ial Imager	y (B7)	Other (Expla	in in Rem	arks)		Frost Heave Hummocks (D7) (LRR F)
Water-St	tained Leaves (B	9)						
Field Observ	ations:							
Surface Water	r Present?	Yes \bigcirc	No 🗨	Depth (incl	nes):			
Water Table F	Present?	Yes \bigcirc	No 💿	Depth (incl	nes):			
Saturation Pre		Yes 〇	No 💿	Depth (incl	nes):		Wetla	and Hydrology Present? Yes \bigcirc No $lacktriangle$
(includes capi				or well, aerial pho	-	vinus insna	ctions) if	available:
POSCIDE KE	ooraca Data (S	a cam ya	ago, mont	or won, acriai pilo	105, pie	чова паре	otiona), II	aranasio.
Remarks:								
	y indicators pro	esent.						
, 0109	,							

US Army Corps of Engineers Great Plains - Version 2.0

WETLAND DETERMINATION DATA FORM - Great Plains Region

roject/Site: JTX - Tunnicliff		c	ity/County: Hardin/Big	Horn Samp	oling Date: 12-Jul-18
pplicant/Owner: MDT			State	: _MT Sampling Point:	DP-2W
nvestigator(s): Mark Traxler			Section, Township, Ra	ange: S 34 T 7N	R 39E
Landform (hillslope, terrace, etc.): Dep	ression		Local relief (concave,	convex, none): concave	Slope: 0.0% 0.0
ubregion (LRR): LRR G		Lat.: 45.	839274	Long.: -107.598507	Datum: WGS84
il Map Unit Name: Kye clay, saline (Kw	<i>γ</i>)			NWI classification:	
climatic/hydrologic conditions on the		s time of vear?	Yes No		
	or Hydrology	significantly o		lormal Circumstances" present?	Yes No
				•	
Are Vegetation, Soil,	or Hydrology	naturally prol	olematic? (If ne	eded, explain any answers in Re	marks.)
ummary of Findings - Attac	ch site map sl	howing sa	mpling point loc	cations, transects, impo	ortant features, et
lydrophytic Vegetation Present? Ye	es No				
Hydric Soil Present? Ye	es • No O		Is the Sampled A		
•	es No		within a Wetland	_{d?} Yes • No •	
Remarks:					
Data point located in Cell 11.					
EGETATION - Use scientifi	c names of p	lants	Dominant FWS Re -Species?	gion: GP	
- (Plot size) 20 Foot Pag	dius \		Rel.Strat. Indicator	Dominance Test worksheet:	
Tree Stratum (Plot size: 30 Foot Rac		_ % Cover _ 0	Cover Status	Number of Dominant Species	. (1)
1				That are OBL, FACW, or FAC:	(A)
3.				Total Number of Dominant	(D)
4.				Species Across All Strata:	(B)
			= Total Cover	Percent of dominant Species	400.00/ (4/0)
Sapling/Shrub Stratum (Plot size: 15 I	Foot Radius)			That Are OBL, FACW, or FAC:	100.0% (A/B)
1		0		Prevalence Index worksheet:	
				Prevalence findex worksheet.	
2					Multiply by:
2		0 0		Total % Cover of:	Multiply by: x 1 =45
2		0 0			_
2		0 0	= Total Cover	Total % Cover of: M OBL species 45 3 FACW species 0 3 FAC species 0 3	$x \ 1 = 45$ $x \ 2 = 0$ $x \ 3 = 0$
2		0 0	= Total Cover	Total % Cover of: M OBL species 45 3 FACW species 0 3 FAC species 0 3 FACU species 0 3	$\mathbf{x} \ 1 = \underline{45}$ $\mathbf{x} \ 2 = \underline{0}$ $\mathbf{x} \ 3 = \underline{0}$ $\mathbf{x} \ 4 = \underline{0}$
2. 3. 4. 5. Please Stratum (Plot size: 5 Foot Radiu	nz)	0 0 0 0 0		Total % Cover of: OBL species 45 FACW species 0 FAC species 0 FACU species 0	x 1 = 45 x 2 = 0 x 3 = 0
2	us)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	= Total Cover ✓ 44.4% OBL ✓ 44.4% OBL	Total % Cover of: M OBL species 45 3 FACW species 0 3 FACU species 0 3 FACU species 0 3 UPL species 0 3	x 1 = 45 x 2 = 0 x 3 = 0 x 4 = 0
2. 3. 4. 5. Per Stratum (Plot size: 5 Foot Radiu 1. Typha latifolia 2. Schoenoplectus maritimus 3. Eleocharis palustris	us)	0 0 0 0 0 0	✓ 44.4% OBL	Total % Cover of: M OBL species 45 3 FACW species 0 3 FACU species 0 3 UPL species 0 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2. 3. 4. 5. Foot Radiu 1. Typha latifolia 2. Schoenoplectus maritimus 3. Eleocharis palustris 4.	us)	0 0 0 0 0 0	✓ 44.4% OBL ✓ 44.4% OBL ☐ 11.1% OBL ☐ 0.0%	Total % Cover of: M OBL species 45 3 FACW species 0 3 FACU species 0 3 UPL species 0 3 Column Totals: 45	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2	us)	0 0 0 0 0 0	✓ 44.4% OBL ✓ 44.4% OBL ☐ 11.1% OBL ☐ 0.0% ☐ 0.0%	Total % Cover of: Notation Notation	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2	us)	0 0 0 0 0 0	✓ 44.4% OBL ✓ 44.4% OBL □ 11.1% OBL □ 0.0% □ 0.0%	Total % Cover of: OBL species 45 FACW species 0 FAC species 0 FACU species 0 UPL species 0 Column Totals: 45 Prevalence Index = B/A = Hydrophytic Vegetation Indica	x 1 =45 x 2 =0 x 3 =0 x 4 =0 x 5 =0 (A)45 (B) 1 tors:
2. 3. 4. 5. Foot Radiu (Plot size: 5 Foot Radiu 1. Typha latifolia 2. Schoenoplectus maritimus 3. Eleocharis palustris 4. 5. 6. 7. 8.	us)		✓ 44.4% OBL ✓ 44.4% OBL ☐ 11.1% OBL ☐ 0.0% ☐ 0.0%	Total % Cover of: Notation Notation	x 1 = 45 x 2 = 0 x 3 = 0 x 4 = 0 x 5 = 0 (A) 45 (B) 1 tors:
2. 3. 4. 5.	us)		✓ 44.4% OBL ✓ 44.4% OBL □ 11.1% OBL □ 0.0% □ 0.0% □ 0.0%	Total % Cover of: OBL species 45 FACW species 0 FAC species 0 FACU species 0 UPL species 0 Column Total s: 45 Prevalence Index = B/A = Hydrophytic Vegetation Indication 1 - Rapid Test for Hydroph 2 - Dominance Test is > 56 3 - Prevalence Index is ≤ 3	x 1 = 45 x 2 = 0 x 3 = 0 x 4 = 0 x 5 = 0 (A) 45 (B) 1 tors: ytic Vegetation
2. 3. 4. 5.	us)		✓ 44.4% OBL ✓ 44.4% OBL 11.1% OBL 0.0% 0.0% 0.0% 0.0% 0.0%	Total % Cover of: OBL species 45 FACW species 0 FAC species 0 FACU species 0 UPL species 0 Column Totals: 45 Prevalence Index = B/A = Hydrophytic Vegetation Indica ✓ 1 - Rapid Test for Hydroph ✓ 2 - Dominance Test is > 56	x 1 = 45 x 2 = 0 x 3 = 0 x 4 = 0 x 5 = 0 (A) 45 (B) 1 tors: cytic Vegetation
2	us)		✓ 44.4% OBL ✓ 44.4% OBL □ 11.1% OBL □ 0.0% □ 0.0% □ 0.0% □ 0.0% □ 0.0% □ 0.0%	Total % Cover of: OBL species 45 FACW species 0 FAC species 0 FACU species 0 UPL species 45 Column Total s: 45 Prevalence Index = B/A = Hydrophytic Vegetation Indicator ✓ 1 - Rapid Test for Hydroph ✓ 2 - Dominance Test is > 50 ✓ 3 - Prevalence Index is ≤3 — 4 - Morphological Adaptati	x = 45 $x = 0$ $x =$
2	us_)	0 0 0 0 0 0 20 20 5 0 0 0 0	✓ 44.4% OBL ✓ 44.4% OBL ☐ 11.1% OBL ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0%	Total % Cover of: OBL species 45 FACW species 0 FAC species 0 FACU species 0 UPL species 0 Column Total s: 45 Prevalence Index = B/A = Hydrophytic Vegetation Indica ✓ 1 - Rapid Test for Hydroph ✓ 2 - Dominance Test is > 56 ✓ 3 - Prevalence Index is ≤ 3 4 - Morphological Adaptatic data in Remarks or on a □ Problematic Hydrophytic Vegetation Indicators of hydric soil and	x = 45 $x = 0$ $x =$
2. 3. 4. 5. Ferritary (Plot size: 5 Foot Radius) 1. Typha latifolia 2. Schoenoplectus maritimus 3. Eleocharis palustris 4. 5. 6. 7. 8. 9. 110.	oot Radius_)	0 0 0 0 0 20 5 0 0 0 0 0 0	✓ 44.4% OBL ✓ 44.4% OBL ☐ 11.1% OBL ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0%	Total % Cover of: OBL species 45 FACW species 0 FAC species 0 FACU species 0 UPL species 0 Column Total s: 45 Prevalence Index = B/A = Hydrophytic Vegetation Indica ✓ 1 - Rapid Test for Hydroph ✓ 2 - Dominance Test is > 56 ✓ 3 - Prevalence Index is ≤ 3 4 - Morphological Adaptatic data in Remarks or on a Problematic Hydrophytic Vegetation Indical	x = 45 $x = 0$ $x =$
2. 3. 4. 5.	os_)	0 0 0 0 0 0 20 20 5 0 0 0 0 0 0	✓ 44.4% OBL ✓ 44.4% OBL ☐ 11.1% OBL ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0%	Total % Cover of: OBL species 45 FACW species 0 FAC species 0 FACU species 0 UPL species 0 Column Total s: 45 Prevalence Index = B/A = Hydrophytic Vegetation Indica ✓ 1 - Rapid Test for Hydroph ✓ 2 - Dominance Test is > 56 ✓ 3 - Prevalence Index is ≤ 3 4 - Morphological Adaptatic data in Remarks or on a □ Problematic Hydrophytic Vegetation Indicators of hydric soil and	x = 45 $x = 0$ $x =$
2. 3. 4. 5.	os_)	0 0 0 0 0 0 20 20 5 0 0 0 0 0 0	✓ 44.4% OBL ✓ 44.4% OBL ☐ 11.1% OBL ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0% ☐ 0.0%	Total % Cover of: OBL species 45 FACW species 0 FAC species 0 FACU species 0 UPL species 45 Prevalence Index = B/A = Hydrophytic Vegetation Indica ✓ 1 - Rapid Test for Hydroph ✓ 2 - Dominance Test is > 50 ✓ 3 - Prevalence Index is ≤ 3 — 4 - Morphological Adaptatic data in Remarks or on a — Problematic Hydrophytic Vegetation 1 Indicators of hydric soil and be present.	x 1 = 45 x 2 = 0 x 3 = 0 x 4 = 0 x 5 = 0 (A) 45 (B) 1 tors: tytic Vegetation 0% 0.01 closs 1 (Provide supporting separate sheet) Vegetation 1 (Explain) wetland hydrology must
2. 3. 4. 5.	os_)	0 0 0 0 0 0 20 20 5 0 0 0 0 0 0 45	✓ 44.4% OBL ✓ 44.4% OBL 11.1% OBL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% ■ 0.0% ■ Total Cover	Total % Cover of: OBL species 45 FACW species 0 FAC species 0 FACU species 0 UPL species 0 Column Total s: 45 Prevalence Index = B/A = Hydrophytic Vegetation Indica ✓ 1 - Rapid Test for Hydroph ✓ 2 - Dominance Test is > 56 ✓ 3 - Prevalence Index is ≤ 3 4 - Morphological Adaptatic data in Remarks or on a □ Problematic Hydrophytic Vegetation Indicators of hydric soil and be present.	x = 45 $x = 0$ $x =$

US Army Corps of Engineers

^{*}Indicator suffix = National status or professional decision assigned because Regional status not defined by FWS.

B-21

Soil Sampling Point: DP-2W

Profile Desc	Matrix			ox Featu	roc			•
Depth (inches)	Color (moist)	%	Color (moist)	ox reatu <u>%</u>	_Tvpe ¹	Loc ²	Texture	Remarks
0-16	10YR 3/2	95	10YR 5/6	5	D		Clay Loam	mottles
				-			N-	
	-			-			-	
1Type: C=Co	ncentration. D=Depletio	n. RM=Redu	ced Matrix, CS=Covere	ed or Coat	ed Sand Gra	ins ² Loca	ation: PL=Pore Lining.	M=Matrix
<u> </u>	Indicators: (Applicab	le to all LR		_)		Indicators for P	roblematic Hydric Soils ³ :
Histosol (Sandy Gleyed					A9) (LRR I, J)
Histic Epi Black His	pedon (A2)		Sandy Redox (Stripped Matrix					ie Redox (A16) (LRR F, G, H)
=	n Sulfide (A4)		Loamy Mucky		1)		=	e (S7) (LRR G) Depressions (F16)
	Layers (A5) (LRR F)		Loamy Gleyed				-	utside of MLRA 72 and 73)
	k (A9) (LRR F,G,H)		Depleted Matri		-,		Reduced Ver	· ·
Depleted	Below Dark Surface (A1	1)	Redox Dark Su	ırface (F6)			_	Material (TF2)
Thick Dar	k Surface (A12)		Depleted Dark		7)			Dark Surface (TF12)
_ ´	ıck Mineral (S1)		Redox depress	. ,				in in Remarks)
	ucky Peat or Peat (S2) (High Plains De	•				rophytic vegetation and wetland
5 cm Mud	ky Peat or Peat (S3) (LF	RR F)	(MLRA 72	and 73 o	f LRR H)		hydrology must be	e present, unless disturbed or problem
estrictive L	ayer (if present):							
Туре:								
Depth (inc	hes):						Hydric Soil Prese	nt? Yes • No O
Depth (inc	hes):						Hydric Soil Prese	nt? Yes • No O
Depth (inc	ping hydric soil.						Hydric Soil Prese	nt? Yes • No O
Depth (inc Remarks:							Hydric Soil Prese	nt? Yes • No O
Depth (ind Remarks: ewly develo	ping hydric soil.						Hydric Soil Prese	nt? Yes • No O
Depth (ind Remarks: ewly develo	ping hydric soil.						Hydric Soil Prese	nt? Yes ● No ○
Depth (inc Remarks: ewly develo	ping hydric soil.							nt? Yes No
Depth (inc Remarks: ewly develor ydrolog Vetland Hyd	ping hydric soil.	one required	d; check all that app	oly)			_Secondary I	
Depth (inc Remarks: ewly develor ydrolog Vetland Hyd Primary Ind	ping hydric soil. Y Irology Indicators:	one required	d; check all that app				Secondary I	ndicators (minimum of two requir
Depth (inc Remarks: ewly develor ydrolog Vetland Hyd Primary Indi Surface N	ping hydric soil. Y Irology Indicators: icators (minimum of o	one required		11)	(B13)		Secondary II Surface Sparse	ndicators (minimum of two require e Soil Cracks (B6)
Depth (inc Remarks: ewly develor ydrolog Vetland Hyc Primary Ind Surface V	y Irology Indicators: icators (minimum of of Water (A1) ter Table (A2)	one required	Salt Crust (B	11) rtebrates			Secondary II Surface Sparsel	ndicators (minimum of two require e Soil Cracks (B6) ly Vegetated Concave Surface (B8)
Depth (inc Remarks: ewly develor ydrolog Vetland Hyc Primary Ind Surface V	y Irology Indicators: icators (minimum of of Mater (A1) ter Table (A2) in (A3)	one required	Salt Crust (B	11) rtebrates ılfide Odoı	(C1)		Secondary II Surface Sparsel Drainag Oxidize	ndicators (minimum of two require e Soil Cracks (B6) ly Vegetated Concave Surface (B8) ge Patterns (B10)
Depth (inc Remarks: ewly develor ydrolog Vetland Hyc Primary Indi Surface V High Wa Saturatio Water Mi	y Irology Indicators: icators (minimum of of Mater (A1) ter Table (A2) in (A3)	one required	Salt Crust (B Aquatic Inve	11) rtebrates ılfide Odoı Water Tab	(C1) le (C2)	oots (C3)	Secondary II Surface Sparsel Drainag Oxidize	ndicators (minimum of two require e Soil Cracks (B6) ly Vegetated Concave Surface (B8) ge Patterns (B10) ed Rhizospheres on Living Roots (C3)
Depth (inc Remarks: ewly develor lydrolog Vetland Hyd Primary Indi Surface V High Wa Saturatio Water M: Sedimen	y Irology Indicators: icators (minimum of of Mater (A1) ter Table (A2) in (A3) arks (B1)	one required	Salt Crust (B Aquatic Inve Hydrogen Su Dry Season V Oxidized Rhi	11) rtebrates ılfide Odoı Water Tab	(C1) le (C2) on Living R	oots (C3)	Secondary II Surface Sparsel Drainag Oxidize	ndicators (minimum of two requires Soil Cracks (B6) by Vegetated Concave Surface (B8) ge Patterns (B10) and Rhizospheres on Living Roots (C3) where tilled)
Depth (inc Remarks: ewly develor ydrolog Vetland Hyc Primary Ind Surface V High Wa Saturation Water Ma Sedimen Drift dep	y Irology Indicators: icators (minimum of of Nater (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2)	one required	Salt Crust (B Aquatic Inve Hydrogen Su Dry Season V Oxidized Rhi	11) rtebrates ilfide Odoi Water Tab zospheres not tilled)	(C1) le (C2) on Living R	oots (C3)	Secondary II Surface Sparsel Drainag Oxidize (W Crayfisi	ndicators (minimum of two requires Soil Cracks (B6) by Vegetated Concave Surface (B8) ge Patterns (B10) ad Rhizospheres on Living Roots (C3) by Where tilled) h Burrows (C8)
Depth (inc Remarks: ewly develor lydrolog Vetland Hyc Primary Ind V Surface V V High Wa V Saturatio Water M: Sedimen Drift dep Algal Ma	y Irology Indicators: icators (minimum of of Nater (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3)	one required	Salt Crust (B Aquatic Inve Hydrogen Su Dry Season V Oxidized Rhi (where	11) rtebrates ulfide Odor Water Tab zospheres not tilled) Reduced I	(C1) le (C2) on Living R	oots (C3)	Secondary II Surface Sparsel Drainae Oxidize (W Crayfist Saturat Geomo	ndicators (minimum of two requires Soil Cracks (B6) by Vegetated Concave Surface (B8) ge Patterns (B10) bd Rhizospheres on Living Roots (C3) buthere tilled) b Burrows (C8) bition Visible on Aerial Imagery (C9)
Depth (inc Remarks: ewly develor lydrolog Vetland Hyc Primary Ind Surface V High Wa Saturatio Water Management Sedimen Drift dep Algal Management	y Irology Indicators: icators (minimum of of Mater (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4)		Salt Crust (B Aquatic Inve Hydrogen Su Dry Season V Oxidized Rhi (where I Presence of	11) rtebrates ulfide Odor Water Tab zospheres not tilled) Reduced I urface (C7	r (C1) le (C2) on Living R ron (C4)	oots (C3)	Secondary II Surface Sparsel Drainae Oxidize (W Crayfist Saturat Geomo	ndicators (minimum of two requires Soil Cracks (B6) by Vegetated Concave Surface (B8) ge Patterns (B10) but Rhizospheres on Living Roots (C3) buthere tilled) buth Burrows (C8) buthere to Aerial Imagery (C9) buthere Position (D2)
Depth (inc Remarks: ewly develor ydrolog Vetland Hyc Primary Indi Surface V V High Wa Saturatio Water M: Sedimen Drift dep Algal Ma Iron Dep Inundatio	y Irology Indicators: icators (minimum of of Mater (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5)		Salt Crust (B Aquatic Inve Hydrogen Su Dry Season N Oxidized Rhi (where to Presence of Thin Muck St	11) rtebrates ulfide Odor Water Tab zospheres not tilled) Reduced I urface (C7	r (C1) le (C2) on Living R ron (C4)	oots (C3)	Secondary II Surface Sparsel Drainae Oxidize (W Crayfist Saturat Geomo	ndicators (minimum of two requires Soil Cracks (B6) by Vegetated Concave Surface (B8) ge Patterns (B10) ed Rhizospheres on Living Roots (C3) where tilled) h Burrows (C8) tion Visible on Aerial Imagery (C9) surphic Position (D2)
Depth (inc Remarks: ewly develor Vetland Hyc Primary Ind V Surface V V High Wa V Saturatio Sedimen Drift dep Algal Ma Iron Dep Inundatio Water-St	y Irology Indicators: icators (minimum of of Mater (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Visible on Aerial Imagained Leaves (B9)		Salt Crust (B Aquatic Inve Hydrogen Su Dry Season N Oxidized Rhi (where to Presence of Thin Muck St	11) rtebrates ulfide Odor Water Tab zospheres not tilled) Reduced I urface (C7	r (C1) le (C2) on Living R ron (C4)	oots (C3)	Secondary II Surface Sparsel Drainae Oxidize (W Crayfist Saturat Geomo	ndicators (minimum of two requires Soil Cracks (B6) by Vegetated Concave Surface (B8) ge Patterns (B10) ed Rhizospheres on Living Roots (C3) where tilled) h Burrows (C8) tion Visible on Aerial Imagery (C9) surphic Position (D2)
Depth (incomments) Remarks: ewly develor lydrolog Vetland Hyc Primary Indi Surface N High Wa Saturation Water Ma Sedimen Drift dep Algal Ma Iron Dep Inundation Water-St Field Observ	y Irology Indicators: icators (minimum of of Mater (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Visible on Aerial Imagained Leaves (B9)	gery (B7)	Salt Crust (B Aquatic Inve Hydrogen Su Dry Season V Oxidized Rhi (where I Presence of Thin Muck Si Other (Expla	ntebrates ulfide Odor Water Tab zospheres not tilled) Reduced I urface (C7 in in Rem.	r (C1) le (C2) on Living R ron (C4)) arks)	oots (C3)	Secondary II Surface Sparsel Drainae Oxidize (W Crayfist Saturat Geomo	ndicators (minimum of two requires Soil Cracks (B6) by Vegetated Concave Surface (B8) ge Patterns (B10) ed Rhizospheres on Living Roots (C3) where tilled) h Burrows (C8) tion Visible on Aerial Imagery (C9) surphic Position (D2)
Depth (incomments) Remarks: ewly develop Vetland Hyc Primary Indi Surface V High Wa Saturation Water Ma Sedimen Drift dep Algal Ma Iron Dep Inundation Water-St Field Observ Surface Water	y Irology Indicators: icators (minimum of of Mater (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Visible on Aerial Imagained Leaves (B9) rations: Present? Yes	gery (B7) • No	Salt Crust (B Aquatic Inve Hydrogen Su Dry Season (Oxidized Rhi (where i Presence of Thin Muck Si Other (Expla	11) rtebrates ilfide Odor Water Tab zospheres not tilled) Reduced I urface (C7 in in Rem.	r (C1) le (C2) on Living R ron (C4)) arks)	oots (C3)	Secondary II Surface Sparsel Drainae Oxidize (W Crayfist Saturat Geomo	ndicators (minimum of two requires Soil Cracks (B6) by Vegetated Concave Surface (B8) ge Patterns (B10) ed Rhizospheres on Living Roots (C3) where tilled) h Burrows (C8) tion Visible on Aerial Imagery (C9) surphic Position (D2)
Depth (inc Remarks: ewly develor lydrolog Vetland Hyc Primary Indi Surface V High Wa Saturatio Water M: Sedimen Drift dep Algal Ma: Iron Dep Inundatio Water-St Field Observ Surface Water Water Table P	y Irology Indicators: icators (minimum of of Nater (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Visible on Aerial Imagained Leaves (B9) rations: Present? Yes	gery (B7) No C No C	Salt Crust (B Aquatic Inve Hydrogen Su Dry Season V Oxidized Rhi (where I Presence of Thin Muck Si Other (Expla	11) rtebrates ilfide Odor Water Tab zospheres not tilled) Reduced I urface (C7 in in Rem.	r (C1) le (C2) on Living R ron (C4)) arks)	-	Secondary II Surface Sparsel Drainae Oxidize (w Crayfist Saturat Geomo FAC-ne Frost H	ndicators (minimum of two requires Soil Cracks (B6) by Vegetated Concave Surface (B8) ge Patterns (B10) ed Rhizospheres on Living Roots (C3) where tilled) h Burrows (C8) etion Visible on Aerial Imagery (C9) erphic Position (D2) eutral Test (D5) leave Hummocks (D7) (LRR F)
Depth (inc Remarks: lewly develor lydrolog Wetland Hyc Primary Ind Surface N Sedimen Drift dep Algal Ma Iron Dep Inundatic Water-St Field Observ Surface Water Water Table P Saturation Pres	y Irology Indicators: icators (minimum of of Nater (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Visible on Aerial Imagained Leaves (B9) rations: Present? Yes ivesent? Yes	gery (B7) No C No C	Salt Crust (B Aquatic Inve Hydrogen Su Dry Season V Oxidized Rhi (where I Presence of Thin Muck Si Other (Expla	ntebrates alfide Odor Water Tab zospheres not tilled) Reduced I urface (C7 in in Rem.	r (C1) le (C2) on Living R ron (C4)) arks)	-	Secondary II Surface Sparsel Drainae Oxidize (W Crayfist Saturat Geomo	ndicators (minimum of two requires Soil Cracks (B6) by Vegetated Concave Surface (B8) ge Patterns (B10) ed Rhizospheres on Living Roots (C3) where tilled) h Burrows (C8) tion Visible on Aerial Imagery (C9) eutral Test (D5) leave Hummocks (D7) (LRR F)
Depth (inc Remarks: ewly develor Iydrolog Vetland Hyc Primary Indi Surface V High Wa Saturatio Water M: Sedimen Drift dep Algal Ma: Iron Dep Inundatio Water-St Field Observ Surface Water Vater Table P Saturation Presincludes capil	y Irology Indicators: icators (minimum of of Nater (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Visible on Aerial Imagained Leaves (B9) rations: Present? Yes ivesent? Yes	e No C No C No C	Salt Crust (B Aquatic Inve Hydrogen Su Dry Season (Oxidized Rhi (where i Presence of Thin Muck Si Other (Expla	11) rtebrates ilfide Odor Water Tab zospheres not tilled) Reduced I urface (C7 in in Rem.	(C1) le (C2) on Living R ron (C4)) aarks) 0	Wetl	Secondary II Surface Sparsel Drainag Oxidize (W Crayfisi Saturat Geomo FAC-ne Frost H	ndicators (minimum of two requires Soil Cracks (B6) by Vegetated Concave Surface (B8) ge Patterns (B10) ed Rhizospheres on Living Roots (C3) where tilled) h Burrows (C8) etion Visible on Aerial Imagery (C9) erphic Position (D2) eutral Test (D5) leave Hummocks (D7) (LRR F)
Depth (inc Remarks: lewly develor lydrolog Vetland Hyc Primary Ind Surface V High Wa Saturatio Water M: Sedimen Drift dep Algal Ma: Iron Dep Inundatio Water-St Field Observ Surface Water Water Table P Saturation Presincludes capil	y Irology Indicators: icators (minimum of of Mater (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Visible on Aerial Imagained Leaves (B9) rations: Present? Present? Yes isent? Ilary fringe) Y Irology Indicators: Ves Irology Indicators: I	e No C No C No C	Salt Crust (B Aquatic Inve Hydrogen Su Dry Season (Oxidized Rhi (where i Presence of Thin Muck Si Other (Expla	11) rtebrates ilfide Odor Water Tab zospheres not tilled) Reduced I urface (C7 in in Rem.	(C1) le (C2) on Living R ron (C4)) aarks) 0	Wetl	Secondary II Surface Sparsel Drainag Oxidize (W Crayfisi Saturat Geomo FAC-ne Frost H	ndicators (minimum of two requires Soil Cracks (B6) by Vegetated Concave Surface (B8) ge Patterns (B10) ed Rhizospheres on Living Roots (C3) where tilled) h Burrows (C8) etion Visible on Aerial Imagery (C9) erphic Position (D2) eutral Test (D5) leave Hummocks (D7) (LRR F)
Depth (inc Remarks: lewly develor lydrolog Wetland Hyc Primary Ind Surface V High Wa Saturatio Water M: Sedimen Drift dep Algal Ma: Iron Dep Inundatio Water-St Field Observ Surface Water Water Table P Saturation Pre Includes capil	y Irology Indicators: icators (minimum of of Mater (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Visible on Aerial Imagained Leaves (B9) rations: Present? Present? Yes isent? Ilary fringe) Y Irology Indicators: Ves Irology Indicators: I	e No C No C No C	Salt Crust (B Aquatic Inve Hydrogen Su Dry Season (Oxidized Rhi (where i Presence of Thin Muck Si Other (Expla	11) rtebrates ilfide Odor Water Tab zospheres not tilled) Reduced I urface (C7 in in Rem.	(C1) le (C2) on Living R ron (C4)) aarks) 0	Wetl	Secondary II Surface Sparsel Drainag Oxidize (W Crayfisi Saturat Geomo FAC-ne Frost H	ndicators (minimum of two requires Soil Cracks (B6) by Vegetated Concave Surface (B8) ge Patterns (B10) ed Rhizospheres on Living Roots (C3) where tilled) h Burrows (C8) etion Visible on Aerial Imagery (C9) erphic Position (D2) eutral Test (D5) leave Hummocks (D7) (LRR F)
Depth (incomments) Remarks: ewly develop Vetland Hyc Primary Indi Surface Now High Wa Sedimen Drift dep Algal Ma' Iron Dep Inundatic Water-St Field Observ Surface Water Table Posturation Preincludes capil Describe Recembers:	y Irology Indicators: icators (minimum of of Mater (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Visible on Aerial Imagained Leaves (B9) rations: Present? Present? Yes isent? Ilary fringe) Y Irology Indicators: Ves Irology Indicators: I	No C No C No C No C gauge, mon	Salt Crust (B Aquatic Inve Hydrogen Su Dry Season (Oxidized Rhi (where i Presence of Thin Muck Si Other (Expla	ntebrates alfide Odor Water Tab zospheres not tilled) Reduced I urface (C7 in in Rem. hes): hes): hes): ttos, prev	r (C1) le (C2) on Living R ron (C4)) arks) 3 0 0 rious inspe	Wetl	Secondary II Surface Sparsel Drainag Oxidize (w Crayfisi Saturat Geomo FAC-ne Frost H	ndicators (minimum of two requires Soil Cracks (B6) by Vegetated Concave Surface (B8) ge Patterns (B10) and Rhizospheres on Living Roots (C3) where tilled) h Burrows (C8) tion Visible on Aerial Imagery (C9) triphic Position (D2) autral Test (D5) leave Hummocks (D7) (LRR F)
Depth (incomments) Permarks: Pewly develor Petland Hyc Primary Indi Surface N High Wa Saturation Water St ield Observ Vater Table Paturation Presidence Secribe Recembers Describe Recembers:	ping hydric soil. Y Irology Indicators: icators (minimum of or Nater (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Visible on Aerial Imagained Leaves (B9) rations: Present? Present? Yes esent? lary fringe) corded Data (stream of	No C No C No C No C gauge, mon	Salt Crust (B Aquatic Inve Hydrogen Su Dry Season (Oxidized Rhi (where i Presence of Thin Muck Si Other (Expla	ntebrates alfide Odor Water Tab zospheres not tilled) Reduced I urface (C7 in in Rem. hes): hes): hes): ttos, prev	r (C1) le (C2) on Living R ron (C4)) arks) 3 0 0 rious inspe	Wetl	Secondary II Surface Sparsel Drainag Oxidize (w Crayfisi Saturat Geomo FAC-ne Frost H	ndicators (minimum of two requires Soil Cracks (B6) by Vegetated Concave Surface (B8) ge Patterns (B10) and Rhizospheres on Living Roots (C3) where tilled) h Burrows (C8) tion Visible on Aerial Imagery (C9) triphic Position (D2) autral Test (D5) leave Hummocks (D7) (LRR F)

US Army Corps of Engineers Great Plains - Version 2.0

MDT MONTANA WETLAND ASSESSMENT FORM (revised March 2008)

1.	Project Name: JTX-Tunnicliff	2. MDT Project #: STPX ST	WD (056) 3. Control #: 7286											
3.	Evaluation Date: 7/12/2018	4. Evaluator(s): Mark Traxler	5. Wetland/Site #(s): Tunnio	<u>cliff</u>										
6.	Wetland Location(s): Towns	ship <u>1 N,</u> Range <u>33 E</u> , Section <u>'</u>	<u>10;</u> Township <u>1 N</u> , Range <u>33 E</u>	, Section <u>15</u>										
	Approximate Stationing or I	Roadposts: <u>NA</u>												
	Watershed: 14 - Middle Yellowstone County: Big Horn Evaluating Agency: RESPEC for MDT 8 Wetland Size (acre): (visually estimated)													
7.	Z. Evaluating Agency: RESPEC for MDT 8. Wetland Size (acre):													
10	. CLASSIFICATION OF WET	LAND AND AQUATIC HABITA	ATS IN AA (See manual for def	initions.)										
	HGM Class (Brinson)	Class (Cowardin)	Modifier (Cowardin)	Water Regime	% OF AA									
	Depressional	Emergent Wetland	Excavated	Seasonal / Intermittent	100									
ļ														
- 11														
-														

Comments:

- 11. ESTIMATED RELATIVE ABUNDANCE (of similarly classified sites within the same Major Montana Watershed Basin; see manual.) abundant
- 12. GENERAL CONDITION OF AA

 i. Disturbance: Use matrix below to select the appropriate response; see manual for Montana listed noxious weed and aquatic nuisance vegetation species lists.

	Predominar	nt Conditions Adjacent to (within	500 feet of) AA
Conditions within AA	Managed in predominantly natural state; is not grazed, hayed, logged, or otherwise converted; does not contain roads or buildings; and noxious weed or ANVS cover is ≤15%.	Land not cultivated, but may be moderately grazed or hayed or selectively logged; or has been subject to minor clearing; contains few roads or buildings; noxious weed or ANVS cover is ≤30%.	Land cultivated or heavily grazed or logged; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density; or noxious weed or ANVS cover is >30%.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, logged, or otherwise converted; does not contain roads or occupied buildings; and noxious weed or ANVS cover is ≤15%.	low disturbance		
AA not cultivated, but may be moderately grazed or hayed or selectively logged; or has been subject to relatively minor clearing, fill placement, or hydrological alteration; contains few roads or buildings; noxious weed or ANVS cover is ≤30%.			
AA cultivated or heavily grazed or logged; subject to relatively substantial fill placement, grading, clearing, or hydrological alteration; high road or building density; or noxious weed or ANVS cover is >30%.			

Comments (types of disturbance, intensity, season, etc.): AA vegetation recovering from construction disturbance; disturbance other than wetland construction is zero except for wildlife use and wetland monitoring.

- ii. Prominent noxious, aquatic nuisance, and other exotic vegetation species: All noxious weeds have decreased: Convolvulus arvensis, Cirsium arvense. Russian knapweed observed in 2018.
- iii. Provide brief descriptive summary of AA and surrounding land use/habitat: FAS, large parcel homesites, ranching.

13. STRUCTURAL DIVERSITY (Based on number of "Cowardin" vegetated classes present [do not include unvegetated classes]; see #10 above.)

Existing # of "Cowardin" Vegetated Classes in AA	Initial Rating	Is current management peristence of additional v	U (,	Modified Rating
≥3 (or 2 if one is forested) classes		NA	NA	NA
2 (or 1 if forested) classes		NA	NA	NA
1 class, but not a monoculture	mod	←NO	YES→	
1 class, monoculture (1 species comprises ≥90% of total cover)		NA	NA	NA

Comments: Site contains emergent wetland and transitional emergent open water wetland

Wetland/Site #(s): Tunnicliff

14A. HABITAT FOR FEDERAL	LLY LIS	STED (OR P	ROP	OSED	THRI	EATEN	IED (OR E	NDANG	ERED	PLA	NTS C	OR AN	IMALS	S				
i. AA is Documented (D) or St Primary or critical habitat (list Secondary habitat (list speci- Incidental habitat (list specie No usable habitat	specie es)	es)	to co		s s	eck bo	ox base	ed on	defin	nitions ir	n manu	al.								
ii. Rating: Based on the strong	est hab	itat ch	osen			ove	select t	he co	orresi	oonding	ı functio	onal r	ooint a	nd rati	na					
Highest Habitat Level	Doc/P				rimary		oc/Sec			Sus/Se				ncider		Sus	/Incide	ental	Non	e
Functional Point/Rating				-					y	040,00		y	200/11		- Lui			, iii	0L	╡
Sources for documented use	(e.a. oh	servat	ions	reco	ords): L	ISFW	S T&F	list fo	or Big	Horn (County				l l				OL.	
14B. HABITAT FOR PLANTS Do not include species lis	OR AN	IMALS	RA		, _							RAL	HERIT	AGE I	PROG	RAM				
 AA is Documented (D) or St Primary or critical habitat (list Secondary habitat (list speci- Incidental habitat (list specie No usable habitat 	specie es)	es)	\Box D		S Bur					itions in I onsite			eat Blu	<u>ie Her</u>	on (S3	<u>)</u>				
						-														-
i. Rating: Based on the strongest habitat chosen in 14A(i) above, select the corresponding functional point and rating. Highest Habitat Level Doc/Primary Doc/Secondary Sus/Secondary Doc/Incidental Sus/Incidental None S1 Species																				
S1 Species Functional Point/Rating S2 and S3 Species 6M																				
S2 and S3 Species																				
 Levidence of Overall Wildlife Use in the AA: Check substantial, moderate, or low based on supporting evidence. □ Substantial: Based on any of the following [check]. □ doservations of abundant wildlife #s or high species diversity (during any period) □ abundant wildlife sign such as scat, tracks, nest structures, game trails, etc. □ presence of extremely limiting habitat features not available in the surrounding area □ interview with local biologist with knowledge of the AA ☑ Moderate: Based on any of the following [check]. □ observations of scattered wildlife groups or individuals or relatively few species during peak periods ☑ common occurrence of wildlife sign such as scat, tracks, nest structures, game trails, etc. ☑ adequate adjacent upland food sources □ interview with local biologist with knowledge of the AA i. Wildlife Habitat Features: Working from top to bottom, check appropriate AA attributes in matrix to arrive at rating. Structural diversity is from #13. For class cover to be considered evenly distributed, the most and least prevalent vegetated classes must be within 20% of each other in terms of their percent composition of the AA (see #10). Abbreviations for surface water durations are as follows: P/P = permanent/perennial; 																				
S/I = seasonal/intermittent; T/E : Structural Diversity					High								derate						OW	
(see #13) Class Cover Distribution		☐ Eve	an an		_	□ IIn	even			⊠ E		3 1110		 □ Un	ovon			□ E		
(all vegetated classes) Duration of Surface	P/P		T/E	Α	P/P	S/I	T/E	Α	P/P		T/E	Α	P/P	S/I	T/E	Α	P/P	S/I	T/E	Α
Water in ≥ 10% of AA ⊠ Low Disturbance at AA										Н										
(see #12i) ☐ Moderate Disturbance																				
at AA (see #12i) ☐ High Disturbance at																				
AA (see #12i)												<u> </u>								
iii. Rating: Use the conclusion Evidence of Wildlife Use	s from	i and ii	abov	ve an						he func es Rati		oint a	and rat	ting.		7				
(i)		Exce	eptio	nal			High				oderat	е		☐ Lo	w					
☐ Substantial																				
		-	-				.7M													
☐ Minimal		-																		

Comments: Northern leopard frogs common across site in 2018. Evidence of waterfowl and mammal use.

Wetland/Site #(s): Tunnicliff

14D.	GENERAL FISH HABITAT	☑ NA (proceed to 14E)	
	If the AA is not used by fish, fish	use is not restorable due to habitat constraints, or is not desired from a management perspective	[such as fish
	entrapped in a canal], then check	k the NA box and proceed to 14E.	

Assess this function if the AA is used by fish or the existing situation is "correctable" such that the AA could be used by fish [i.e., fish use is precluded by perched culvert or other barrier].

Type of Fishery: Cold Water (CW) Warm Water (WW) Use the CW or WW guidelines in the manual to complete the matrix.

i. Habitat Quality and Known / Suspected Fish Species in AA: Use matrix to select the functional point and rating.

Duration of Surface Water in AA	□Р	erman	ent / P	erenn	ial		□s	☐ Seasonal / Intermittent						☐ Temporary / Ephemeral					
Aquatic Hiding / Resting / Escape Cover	Opti] imal	Adeq] uate	Po	or	Opti] imal	Ade	_ quate	□ Po	or	Opt	_ timal	Aded] uate	Po	oor	
Thermal Cover: optimal / suboptimal	0	S	0	S	0	s	0	s	0	s	0	S	0	S	0	s	0	S	
FWP Tier I fish species																			
FWP Tier II or Native Game fish species																			
FWP Tier III or Introduced Game fish										-	-								
FWP Non-Game Tier IV or No fish species																			

Sources used for identifying fish spp. potentially found in AA: No fish habitat within AA.

**	Modified Detings	NOTE: Modified sco	ro connot avacad	1 0	orbo	loop than	Λ 1	í
11.	woditied Rating:	NOTE: Modified sco	re cannot exceed	T.U	or be	iess man	U. I	ı

a) Is fish use of the AA significantly reduced by a culvert, dike, or other man-made structure or activity, **or** is the waterbody included on the current final MDEQ list of waterbodies in need of TMDL development with listed "Probable Impaired Uses" including cold or warm water fishery or aquatic life support, **or** do aquatic nuisance plant or animal species (see **Appendix E**) occur in fish habitat?

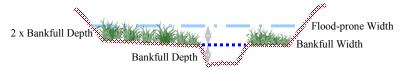
YES, reduce score in i by 0.1 = ___ or
NO

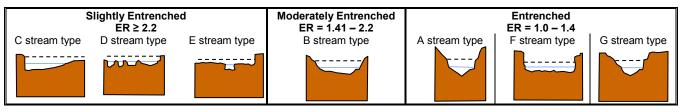
b) Does the AA contain a documented spawning area or other critical habitat feature (i.e., sanctuary pool, upwelling area; specify in comments) for native fish or introduced game fish?

YES, add to score in i or iia 0.1 = or No

iii.	Final S	Score	and	Rating: _	Comments:	
------	---------	-------	-----	-----------	-----------	--

14E. FLOOD ATTENUATION NA (proceed to 14F)


Applies only to wetlands that are subject to flooding via in-channel or overbank flow.


If wetlands in AA are not flooded from in-channel or overbank flow, check the NA box and proceed to 14F.

Entrenchment Ratio (ER) Estimation (see manual for additional guidance). Entrenchment ratio = (flood-prone width) / (bankfull width). Flood-prone width = estimated horizontal projection of where 2 X maximum bankfull depth elevation intersects the floodplain on each side of the stream.

700 / 250 = 2.8

flood prone width / bankfull width = entrenchment ratio

i. Rating: Working from top to bottom, use the matrix below to select the functional point and rating.

Estimated or Calculated Entrenchment	⊠ Sli	ightly Entrei	nched	☐ Mod	erately Enti	renched	☐ Entrenched				
(Rosgen 1994, 1996)	C, D, E stream types B stream type							A, F, G stream types			
Percent of Flooded Wetland Classified as			\boxtimes								
Forested and/or Scrub/Shrub	75%	25-75%	<25%	75%	25-75%	<25%	75%	25-75%	<25%		
AA contains no outlet or restricted outlet			.6M								
AA contains unrestricted outlet											

ii. Are ≥10 acres of wetland in the AA subject to flooding AND are man-made features which may be significantly damaged by floods located within 0.5 mile downstream of the AA? ☐ YES ☒ NO Comments: AA subject to periodic flooding from Bighorn River although flows in the Bighorn River are controlled by a dam. Entrenchment ratio estimated from aerial photo interpretation and not measured in field. River is C-Type.

					Wetl	and/Site #(s	s): <u>Tunnic</u>	:liff					
14F. SHORT AND LONG TERM SI Applies to wetlands that flood If no wetlands in the AA are su	or pond f	rom overba	nk or	in-channe	el flow, p		, upland s			roundwat	er flow.		
i. Rating: Working from top to botto	om, use th	ne matrix b	elow to	select th	ne functi	ional point a	and rating	. Abbr	eviations f				
follows: P/P = permanent/perenni Estimated Maximum Acre F in Wetlands within the AA	eet of W	ater Conta			>5 acre				cre feet		initions o		ermsj.
Periodic Flooding or Pondi		*** **		- 5/5	1 - 0"		- 5/5	- 0"	T	- 5/5			
Duration of Surface Water at			e AA	□ P/P	⊠ S/	_	□ P/P	□ S/I	□ T/E	□ P/P	□ S/I	□ T/E	
Wetlands in AA flood or pond ≥					.9H								
Wetlands in AA flood or pond < Comments: 8.31 acres of wetlands			of 201										l
14G. SEDIMENT / NUTRIENT / TO Applies to wetland with poten If no wetlands in the AA are s i. Rating: Working from top to bott	tial to rec ubject to	eive sedim such input	ents, r checl	nutrients, the NA	or toxication	proceed to	n influx of 14H.	surfac	e or groun	d water c	or direct i	input.	
Sediment, Nutrient, and T Input Levels within AA		AA recei has pote nutrients such tha substant sedimen toxicants present.	ves of the control of	r surrour o deliver ompouner function mpaired.	nding la r sedime ds at levens are i Minor s of nut	nd use ents, vels not	Waterb need of causes toxican has por nutrien functio sedime	ody is f TMDL " relate its or A tential its, or c ns are	on MDEQ developmed to sedi A receiver to deliver compound substanti n, sources trophicat	ment for ment, nues or sur high lev ds such t ally impa s of nutri	"probat utrients, roundin els of se that othe aired. M ents or	ble or g land us ediments er lajor	5,
% Cover of Wetland Vegetatio	n in AA		≥ 70%		⊠ <	< 70%		_ ≥ 7	′0%		<	70%	
Evidence of Flooding / Ponding	g in AA	☐ Yes		No	⊠ Yes	□No	☐ Yes		☐ No		☐ Yes)
AA contains no or restricted of	outlet				.7M								
AA contains unrestricted ou	ıtlet							•					
Comments: AA has potential to rec	eive sedi	ment/nutrie	nts/to	xicants fro	om surfa	ace or grour	ndwater.				<u>, </u>	-	
Applies only if AA occurs on composition body which is subject to wave If 14H does not apply, check to Cover of Wetland Streambar	or within to action. the NA bo	he banks o	f a rive	141.	n, or oth						oreline o	f a standi	ng wate
Shoreline by Species with Stal Ratings of ≥6 (see Appendix F).		☐ Permar		Perennia		Seasonal	•		_	orary / E	phemer	ral	
□ ≥ 65%							-						
□ 35-64%						.6							
⊠ < 35%													
Comments: <u>Seasonal surface wate</u> upland grasses. 14I. PRODUCTION EXPORT / FOO				veloping	wetland:	s. Those ce	ells with ca	attail ha	ive higher	<u>stability r</u>	ating tha	<u>an those v</u>	<u>with</u>
Level of Biological Activity: Sy	nthesis o							=1					
General Fish Habitat Rating (14Diii)		General E/H	Wildl	ife Habit ⊠ M	at Ratin	g (14Ciii) □	<u>L</u>						
□ E/H	_]					
M								4					
□ L □ NA				 M	+			1					
								_ ii					

ii. Rating: Working from top to bottom, use the matrix below to select the functional point and rating. Factor A = acreage of vegetated wetland
component in the AA; Factor B = level of biological activity rating from above (14li); Factor C = whether or not the AA contains a surface or subsurface
outlet; the final three rows pertain to the duration of surface water in the AA, where P/P, S/I, and T/E were previously defined, and A = "absent"
[see manual for further definitions of these terms]

Α		Vegeta	ted Co	mponent	: >5 ac	res	\boxtimes	Vegeta	ated Co	mponent	1-5 ac	☐ Vegetated Component <1 acre						
В	□ migri ⊠ woderate		Low		☐ High				☐ Low		☐ High				☐ Low			
С	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
P/P																		
S/I				.4M														
T/E/A		1				-										-		

15. GENERAL SITE NOTES: _____

				Wetland	l/Site #(s)): Tunnicliff				
14	II. PRODUCTION EXPORT / FOOD CH	AIN SUI	PPORT (contin			· <u></u> -				
iii.	. Modified Rating: Note: Modified score	e cannot	t exceed 1.0 o	r be less than	0.1.					
	Vegetated Upland Buffer: Area with mowing or clearing (unless for weed colls there an average ≥ 50-foot wide veg	ontrol).	•					•	·	
v.	. Final Score and Rating: <u>.5M</u> Comm	ents:								
	J. GROUNDWATER DISCHARGE / RE Check the appropriate indicators in i i. Discharge Indicators The AA is a slope wetland. Springs or seeps are known o Vegetation growing during do Wetland occurs at the toe of a Seeps are present at the wetland AA permanently flooded durin Wetland contains an outlet, but	er observerment sea natural and edge g drought to inle	elow. /ed. eason/drought slope. e. ht periods. et.		⊠ Perr □ Wet □ Stre	rge Indicators meable substra land contains am is a knowr er:	ate present wit inlet but no ou	tlet.		
	☐ Shallow water table and the si☐ Other:	ite is sat	turated to the	surface.						
iii.	. Rating: Use the information from i and	d ii above	e and the table	e below to sele	ct the fur	nctional point a	and rating.			
Ī	- raming. God and amountained from Faire		Duration of S	Saturation at A	AA Wetla	ınds <i>FROM G</i>	ROUNDWAT			
	Criteria		<u>WITH W</u> □ P/P	<u>'ATER THAT I</u> ⊠ S		<u>ARGING THE</u> □ T	GROUNDWA	TER SYS		
ľ	☐ Groundwater Discharge or Recha	rae				<u></u>				
ı	☐ Insufficient Data/Information	3								
	Rating: Working from top to bottom, us Replacement Potential	AA cor spring foreste	atrix below to so ntains fen, bo s or mature (: ed wetland OF ation listed a	g, warm >80 yr-old) ⋜ plant	AA doe cited ra diversi	nt and rating. es not contain are types ANI ty (#13) is hig ns plant asso	structural h OR	previou associa	es not containusly cited ranations AND s	e types OR tructural
		the MT		3 O1 Dy		s "S2" by the		diversi	ty (#13) is lov	w-moderate
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	□ Rare	□ Common	☐ Abundant	□ Rare	□ Common	☐ Abundant	□ Rare		□ Abundant
	Low Disturbance at AA (#12i)								.4M	
	Moderate Disturbance at AA (#12i) High Disturbance at AA (#12i)									
	omments: Wetland type is common in th									
14 i.	IL. RECREATION / EDUCATION POTE Affords 'bonus' points if AA provides Is the AA a known or potential recrea Check categories that apply to the AA	NTIAL a recrea tional o	tional or educ	NA (proceed to ational opportu	ınity. S , go to ii.	☐ NO , che	ck the NA box	۲.	umptive recrea	ational
iii	. Rating: Use the matrix below to select			nd rating						
Ī				or Education	al Area			Known	Potential	7
ŀ	Public ownership or public easemen					n required)		.2H		┪
ľ	Private ownership with general publi	c acces	s (no permis	sion required]
Ţ	Private or public ownership without					sion for publi	c access			
Cc	omments: Site owned by MFWP									

Wetland/Site #(s): Tunnicliff

Function & Value Variables	Rating – Actual Functional Points	Possible Functional Points	Functional Units: Actual Points x Estimated AA Acreage	Indicate the Four Most Prominent Functions with an Asterisk
A. Listed / Proposed T&E Species Habitat	low 0.00	1.00	0	
B. MT Natural Heritage Program Species Habitat	mod 0.60	1.00	5.0	
C. General Wildlife Habitat	mod 0.70	1.00	5.8	*
D. General Fish Habitat	NA	NA	0	
E. Flood Attenuation	mod 0.60	1.00	5.0	
F. Short and Long Term Surface Water Storage	high 0.90	1.00	7.5	*
G. Sediment / Nutrient / Toxicant Removal	mod 0.70	1.00	5.8	*
H. Sediment / Shoreline Stabilization	mod 0.60	1.00	5.0	
I. Production Export / Food Chain Support	mod 0.50	1.00	4.2	
J. Groundwater Discharge / Recharge	mod 0.70	1.00	5.8	*
K. Uniqueness	mod 0.40	1.00	3.3	
L. Recreation / Education Potential (bonus point)	high 0.20		1.7	
Total Points	5.9	10	49.1 Total	Functional Units
Percent of Possible	e Score 59% (round	I to nearest whol	e number)	

	Category I Wetland: (must satisfy one of the following criteria; otherwise go to Category II)
	Score of 1 functional point for Listed/Proposed Threatened or Endangered Species; or
	Score of 1 functional point for Uniqueness; or
	Score of 1 functional point for Flood Attenuation and answer to Question 14E.ii is "yes"; or
	Percent of possible score > 80% (round to nearest whole #).
	Category II Wetland: (Criteria for Category I not satisfied and meets any one of the following criteria; otherwise go to Category IV)
	Score of 1 functional point for MT Natural Heritage Program Species Habitat; or
	Score of .9 or 1 functional point for General Wildlife Habitat; or
	Score of .9 or 1 functional point for General Fish Habitat; or
	☐ "High" to "Exceptional" ratings for both General Wildlife Habitat and General Fish/Aquatic Habitat; or
	Score of .9 functional point for Uniqueness; or
	Percent of possible score > 65% (round to nearest whole #).
	Cotomorni III Watland (Criteria for Cotomorica I II an IV anticoticfied)
	☐ Category III Wetland: (Criteria for Categories I, II, or IV not satisfied)
	October 10 Western de (October for October and Lord Control of the following oritoric control for the following oritoric control of the following oritoric control original cont
	Category IV Wetland: (Criteria for Categories I or II are not satisfied and all of the following criteria are met; if not go to Category III)
	Use "Low" rating for Uniqueness; and
	☐ Vegetated <u>wetland</u> component < 1 acre (do <u>not</u> include upland vegetated buffer); and
	☐ Percent of possible score < 35% (round to nearest whole #).
_	
O	VERALL ANALYSIS AREA (AA) RATING: Check the appropriate category based on the criteria outlined above.

APPENDIX C PROJECT AREA PHOTOGRAPHS

MDT Wetland Mitigation Monitoring JTX – Tunnicliff Ranch Big Horn County, Montana

Photo Point: 1 Bearing: 320 degrees

Location: East side of property Year: 2016

Photo Point: 1 Bearing: 320 degrees

Location: East side of property Year: 2017

Photo Point: 1 Bearing: 320 degrees

Location: East side of property Year: 2018

Photo Point: 1 Bearing: 270 degrees

Location: East side of property
North Year: 2016

Photo Point: 1 Bearing: 270 degrees

Location: East side of property North Year: 2017

Photo Point: 1 Bearing: 270 degrees

Location: East side of property
North Year: 2018

Photo Point: 1 Bearing: 220 degrees

Location: East side of property

Year: 2016

Photo Point: 1 Bearing: 220 degrees

Location: East side of property

Year: 2017

Photo Point: 1 Bearing: 220 degrees

Location: East side of property

Year: 2018

Photo Point: 2 Bearing: 315 degrees

Location: South side of property

Year: 2016

Photo Point: 2 Bearing: 315 degrees

Location: South side of property

Year: 2017

Photo Point: 2 Bearing: 315 degrees

Location: South side of property

Year: 2018

Photo Point: 2 Bearing: 0 degrees

Location: South side of property Year: 2016

Photo Point: 2 Bearing: 0 degrees

Location: South side of property Year: 2017

Photo Point: 2 Bearing: 0 degrees

Location: South side of property

Year: 2018

Photo Point: 2 Bearing: 45 degrees

Location: South side of property Year: 2016

Photo Point: 2 Bearing: 45 degrees

Location: South side of property Year: 2017

Photo Point: 2 Bearing: 45 degrees

Location: South side of property

grees Year: 2018

Bearing: 140 degrees

Photo Point: 3 Bearing: 140 degrees

Location: West side of property Year: 2017

Photo Point: 3 Bearing: 140 degrees

Location: West side of property Year: 2018

Photo Point: 3 Bearing: 100 degrees

Location: West side of property Year: 2016

Photo Point: 3 Bearing: 100 degrees

Location: West side of property

Year: 2017

Photo Point: 3 Bearing: 100 degrees

Location: West side of property

Year: 2018

Location: North side of property

Year: 2017

Photo Point: 4

Bearing: 105 degrees

Photo Point: 4

Bearing: 105 degrees

Location: North side of property

Year: 2018

Photo Point: 4 Bearing: 160 degrees

Location: North side of property Year: 2016

Photo Point: 4 Bearing: 160 degrees

Location: North side of property Year: 2017

Photo Point: 4 Bearing: 160 degrees

Location: North side of property Year: 2018

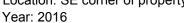
Photo Point: 4 Bearing: 240 degrees

Location: North side of property Year: 2016

Photo Point: 4 Bearing: 240 degrees

Location: North side of property Year: 2017

Photo Point: 4 Bearing: 240 degrees


Location: North side of property Year: 2018

JTX Tunnicliff: Transect Photographs

Transect 1: Start Bearing: 230 degrees

Location: SE corner of property

Transect 1: Start Bearing: 230 degrees

Location: SE corner of property Year: 2017

Transect 1: Start Bearing: 230 degrees

Location: SE corner of property Year: 2018

Transect 1: End Bearing: 50 degrees

Location: SE corner of property Year: 2016

Transect 1: End Bearing: 50 degrees

Location: SE corner of property Year: 2017

Transect 1: End Bearing: 50 degrees

Location: SE corner of property Year: 2018

JTX Tunnicliff: Transect Photographs

Transect 2: Start Bearing: 350 degrees

Location: West side of property Year: 2016

Transect 2: Start Bearing: 350 degrees

Location: West side of property Year: 2017

Transect 2: Start Bearing: 350 degrees

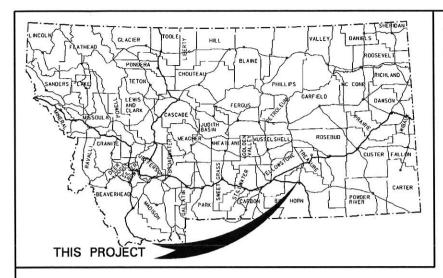
Location: West side of property Year: 2018

Transect 2: End Bearing: 170 degrees

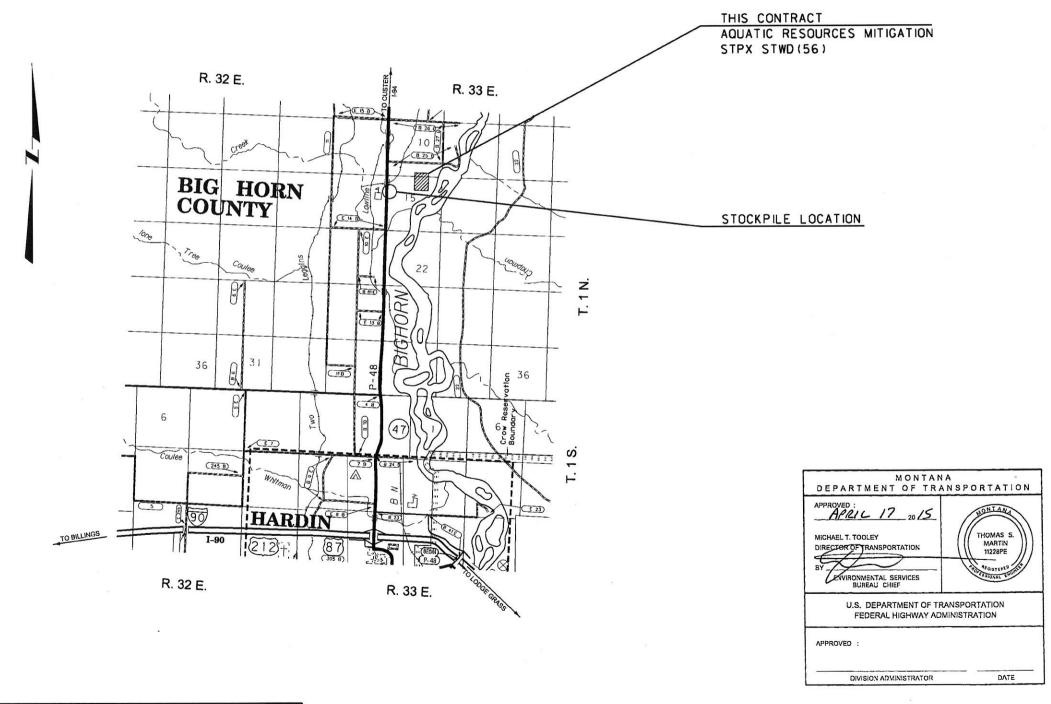
Location: West side of property Year: 2016

Transect 2: End Bearing: 170 degrees

Location: West side of property Year: 2017



Location: West side of property Year: 2018


APPENDIX D PROJECT PLAN SHEETS

MDT Wetland Mitigation Monitoring JTX – Tunnicliff Ranch Big Horn County, Montana

MONTANA DEPARTMENT OF TRANSPORTATION

FEDERAL AID PROJECT NO. STPX STWD(56) WS #14 - AQUATIC MITIGATION BIG HORN COUNTY

A S S O C I A T E D P R O J E C T
A G R E E M E N T N U M B E R S

R / W & I.C. STPX STWD(302)

P. E. STPX STWD(56)

TABLE OF CONTENTS

ROAD PLANS	SHEET NO.
TITLE SHEET	1
TABLE OF CONTENTS	2
NOTES	2
LEVEL DATA	2
CONTROL DIAGRAM	3
CONTROL ABSTRACT	3
SUMMARIES	4-5
GRADING SURFACING TOPSOIL AND SEEDING ABANDON WELL CULVERTS CULVERT SUMMARY RECAP FENCING CLEARING AND GRUBBING	4 4 4 5 5 5
DETAILS SITE PLAN SEEDING AND REVEGETATION PLAN STOCKPILE LOCATION STOCKPILE APPROACH DETAIL STAKEOUT POINTS WL-1 & WL-2 STAKEOUT POINTS WL-3 & WL-4 STAKEOUT POINTS WL-5, WL-6 & WL-7 STAKEOUT POINTS WL-8 & WL-9 STAKEOUT POINTS WL-10 & WL-11 STAKEOUT POINTS WL-10 & WL-11	6-15 6 7 8 9 10 11 12 13 14

NOTES

UTILITIES

CALL THE UTILITIES UNDERGROUND LOCATION CENTER (811) OR OTHER NOTIFICATION SYSTEM FOR THE MARKING AND LOCATION OF ALL LINES AND SERVICE BEFORE EXCAVATING. ALL CLEARANCES OR DEPTHS PROVIDED FOR UTILITIES ARE FROM EXISTING GROUND LINE.

WETLANDS

WETLANDS EXIST ADJACENT TO THE PROJECT AND MAY EXIST BEYOND THE PROJECT LIMITS. WETLAND AREAS WITHIN THE PROJECT LIMITS HAVE BEEN DELINEATED AND ARE SHOWN ON THE PLANS. NO PERMITS HAVE BEEN OBTAINED FOR WORK OUTSIDE OF THE PROJECT CONSTRUCTION LIMITS. ANY ACTION IMPACTING WETLAND AREAS OUTSIDE OF THE PERMANENT IMPACT AREAS SHOWN IS THE RESPONSIBILITY OF THE CONTRACTOR.

DELINEATED WETLAND AREAS

WE	TLAND	DELINE	EATION TABLE
	WETLAND AR	REA (ACRES)	
WETLAND DESIGNATION	DELINEATED AREA	IMPACTED AREA (PERM.)	REMARKS
EWL-1	0.01	0.00	
EWL-2	0.04	0.00	
TOTAL	0.05	0.00	

** TEMPORARY WETLAND IMPACTS ASSOCIATED WITH CONTRACTOR OPERATIONS ARE TO BE PERMITTED BY CONTRACTOR.

MONITOR WELLS

SEE SITE PLAN FOR LOCATIONS OF MONITOR WELLS ON THE PROJECT. DO NOT DISTURB ON-SITE MONITOR WELLS UNLESS NOTED OTHERWISE . WELLS THAT ARE ABANDONED AND THEN REPLACED ARE NOT MEASURED FOR PAYMENT. (SEE SPECIAL PROVISIONS)

DESIGN CHANGES

ANY DESIGN CHANGES MADE DURING CONSTRUCTION MUST BE APPROVED BY THE MDT AQUATIC MITIGATION ENGINEER (406-444-7273)

SOILS INFORMATION

SOILS INFORMATION IS INCLUDED WITH THE SPECIAL PROVISIONS FOR THIS PROJECT.

PERMANENT APPROACHES - COUNTY ROAD & STOCKPILE

CONSTRUCT APPROACHES TO A 48' FINISHED TOP ON A 58' SUBGRADE UNLESS NOTED OTHERWISE IN THE PLANS.

PROVIDE THE FOLLOWING SURFACING: 0.75' CRUSHED AGGREGATE COURSE

TEMPORARY ACCESS ROAD

PROVIDE A TEMPORARY ACCESS ROAD TO ENSURE ADEQUATE CAPACITY AND WIDTH FOR EQUIPMENT ACCESS TO AND FROM THE SITE. SEE SPECIAL PROVISIONS.

SURVEY DATA

DTM FILES FORMATTED FOR TRIMBLE, LEICA AND TOPCON SURVEY CONTROLLERS ARE AVAILABLE UPON REQUEST. MDT DOES NOT GUARANTEE THE ACCURACY AND COMPLETENESS OF THE SUPPLIED DTM FILES. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO ENSURE THAT THE FINISHED GRADES MATCH THE GRADES AND ELEVATIONS INDICATED IN THE PLANS.

CONTACT THE MDT AQUATIC MITIGATION ENGINEER (406-444-7273)

DO NOT DISTURB

DO NOT DISTURB EXISTING WETLANDS, EXISTING IRRIGATION SUPPLY DITCHES AND MONITORING WELLS UNLESS NOTED OTHERWISE.

HIGH GROUNDWATER ELEVATIONS

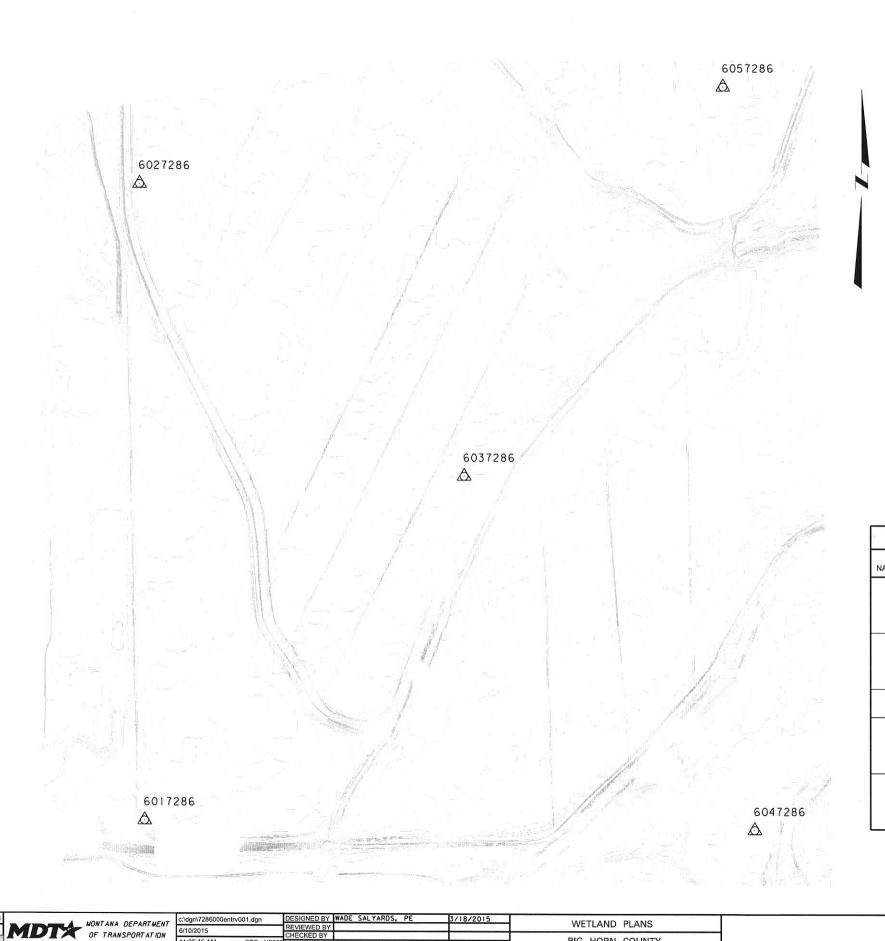
HIGH GROUNDWATER ELEVATIONS SHOWN ON THE PLANS ARE BASED ON MONITORING WELL DATA AND ARE FOR INFORMATIONAL PURPOSES ONLY. THE CONTRACTOR IS RESPONSIBLE FOR INTERPRETING THE GROUNDWATER DATA AND DETERMINING THE PROBABLE GROUNDWATER ELEVATION FOR THE TIME PERIOD OF CONSTRUCTION. (SEE SPECIAL PROVISIONS)

LEVEL DATA

BEARING SOURCE

GRID -- MONTANA COORDINATE SYSTEM NAD83-2011.
THE HARDIN - NORTH (NORTH SECTION) PROJECT NO. STPP 48-1(31)2
IS ON A SEPARATE AND DIFFERENT COORDINATE SYSTEM.

CSF = 0.99946705


LEVEL DATUM SOURCE

NAVD88 (GNSS DERIVED ELEVATIONS USING GEOID 12 AND HOLDING BMS BIL1A, V487, WR28, AND Z487

dgn\7286000en	ttl001.dgn	DESIGNED BY	WADE SALYARDS, PE	E 3/18/2015	WETLAND	DLANC	Г
10/2015		REVIEWED BY			WETLAND	PLANS	ı
		CHECKED BY			DIC HODN	COLINITY	
1:35:37 AM	CPS - U2623				BIG HORN	COUNTY	
							_

WS #14 AQUATI	C MITIGATION	PROJECT NO. STPX STWD (56)
	UPN 7286000	SHEET 2 OF 15

CONTROL DIAGRAM

NOTE: THIS PROJECT IS ON THE MONTANA COORDINATE SYSTEM NAD83-2011. NORTHING AND EASTING COORDINATES ARE EXPRESSED IN UNITS OF INTERNATIONAL FEET AND ELEVATIONS ARE IN UNITS OF U.S. SURVEY FEET.

DIMENSIONS SHOWN ON THE PLANS ARE GRID. ALL SURVEY AND STAKING REQUIRE THE USE OF A COMBINATION SCALE FACTOR (CSF) TO CONVERT GRID DIMENSIONS TO GROUND DIMENSIONS (GRID DISTANCE / CSF = GROUND DISTANCE). THE CSF FOR THIS PROJECT IS 0.99946705.

17			CONTRO	L ABSTRACT
POINT NAME/NUMBER	N OR Y COORDINATE	E OR X COORDINATE	POINT ELEVATION	LOCATION AND DESCRIPTION
6017286	584,661.165	2,452,173.344	2837.83	SET A 2 INCH ALUMINUM CAP ON A 5/8 INCH BY 30 INCH REBAR FLUSH WITH GROUND STAMPED 6017286 2012 NORTH OF HARDIN, ACCESS AT MP 7.84 ON US HWY 47 0.35 MILES EAST ON GRANT MARSH ROAD 0.44 MILES SOUTH ON COTTONWOOD ROAD TO DRIVEWAY TO TWO STORY GREY HOUSE APPROX 200.0 FT EAST OF GREY HOUSE 24.2 FT EAST OF WITNESS POST IN N/S FENCE SET 26 MAR 2012
6027286	586,024.605	2,452,159.552	2836.55	SET A 2 INCH ALUMINUM CAP ON A 5/8 INCH BY 30 INCH REBAR FLUSH WITH GROUND STAMPED 6027286 2012 WALK IN ACCESS FROM POINT 6017286, SET IN NW CORNER OF PASTURE 33.0 FT EAST OF FENCE CORNER 9.0 FT SOUTH OF WITNESS POST IN EAW FENCE SET 26 MAR 2012
6037286	585,399.115	2,452,856.386	2836.88	SET A 2 INCH ALUMINUM CAP ON A 5/8 INCH BY 30 INCH REBAR FLUSH WITH GROUND STAMPED 6037286 2012 APPROX 1000.0 FT NE OF CONTROL POINT 6017286 IN CENTER OF PASTURE 3.2 FT EAST OF WITNESS POST SET 26 MAR 2012
6047286	584,642.907	2,453,479.262	2837,64	SET A 2 INCH ALUMINUM CAP ON A 5/8 INCH BY 30 INCH REBAR FLUSH WITH GROUND STAMPED 6047286 2012 ACCESS AT MP 7.84 ON US HWY 47 0.99 MILES EAST ON GRANT MARSH ROAD 0.54 MILES SOUTH ON FISHING ACCESS TO END OF ROAD APPROX 200.0 FT WEST OF END OF FISHING ACCESS ROAD 15.0 FT NORTH OF FENCE CORNER 15.0 FT NORTH OF EW FENCE 3.6 FT WEST OF WITNESS POST IN N/S FENCE SET 26 MAR 2012
6057286	586,235.362	2,453,410.658	2835.13	SET A 2 INCH ALUMINUM CAP ON A 5/8 INCH BY 30 INCH REBAR FLUSH WITH GROUND STAMPED 6057286 2012 WALK IN ACCESS FROM POINT 6017286, SET IN NE CORNER OF PASTURE 7.7 FT SW OF WESTERN BRACE POST 25.0 FT WEST OF N/S FENCE 5.2 FT SOUTH OF WITNESS POST IN E/W FENCE SET 26 MAR 2012

SUMMARY

			GRAD	DING
		cubic yards		
STATION	UNCL. EXC.	EXCESS EXC.	EMB.+	REMARKS
	107,401			
			15	WETLAND BERM
			24,150	TOPSOIL REPLACEMENT - WETLAND & BERM AREAS
	30		220	FARM FIELD APP ACCESS ROAD
	30		420	FARM FIELD APP STOCKPILE ACCESS
			5	DITCH BLOCK - NW CORNER
TOTAL	107,461	# 82,651	# 24,810	

FOR INFORMATION ONLY

				SURI	FACING			
	linea	rfeet				AGGREGATE		
				· ·		cubic yards		
GROSS	NET	+		FOR	CR. TOP SURF. TY. B GR. 3	CRUSHED AGG. COURSE	TRAFFIC GRAVEL	REMARKS
				COUNTY RD APPROACH		107		
				STOCKPILE APPROACH		218		
0.00	0.00	\sim	~		2	325	~	

		I was a little	OPSOIL	& SEEDING	G		
	cubic yards		acres		lump si	um	The state of the s
	cubic yarus		SEED				
FOR	TOPSOIL SALVAGING & PLACING	WETLAND SEEDING - UPLAND	WETLAND SEEDING - WETLAND	SUPPLEMENTAL WETLAND MIX #	REVEGETATION	TREE & SHRUB PLANTING	REMARKS
METLAND CELLS & BERM AREAS	24,150					1.0	SALVAGE TOPSOIL TO DEPTH OF 0.5 FT.
STOCKPILE					1.0		INCLUDES MULCH
SEEDING AT ELEV. 2832 & LOWER SEEDING BETWEEN ELEV. 2832 & ELEV. 2835.5			4.7	4.7			
SEEDING ABOVE ELEV. 2835.5		1.1					
TOTAL	24,150	1.1	26.8	~	1.0	1.0	

FOR INFORMATION ONLY - INCLUDED IN OTHER ITEMS

AB	ANDON WELL	
ABANDON WELL	REMARKS	
EACH		
5	Project Site	

2	ONTANA DEPARTMENT F TRANSPORTATION

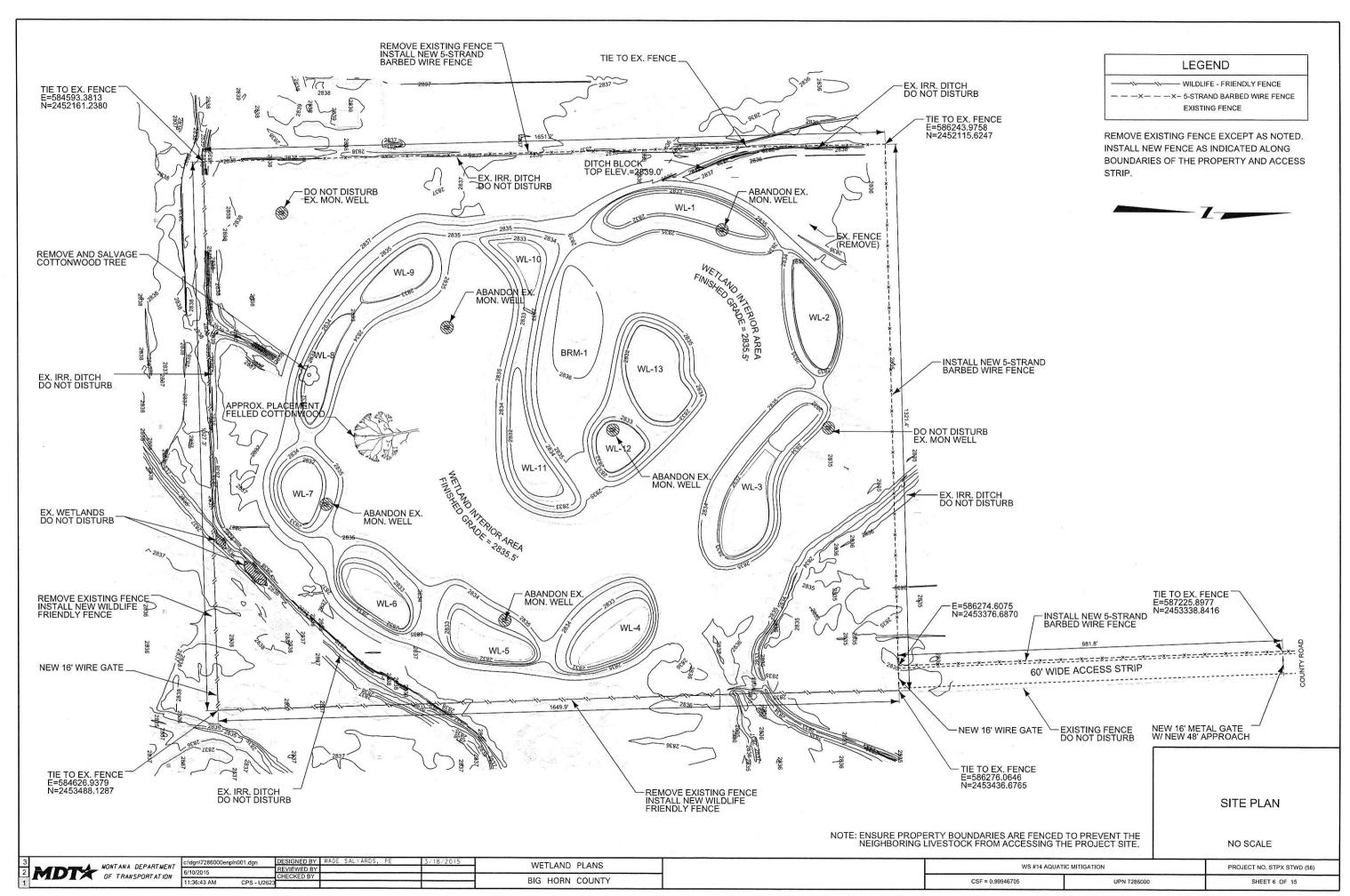
ign\7286000en	sum001.dgn	DESIGNED BY	LOUISE STONER	11/17/2014	14/571 4415		
0/2015			WADE SALYARDS, PE	3/18/2015	WETLAND	PLANS	
35:55 AM	CPS - U2623	CHECKED BY			BIG HORN	COLINTY	
	01 0 - 02023				BIG HOMA	COUNTY	

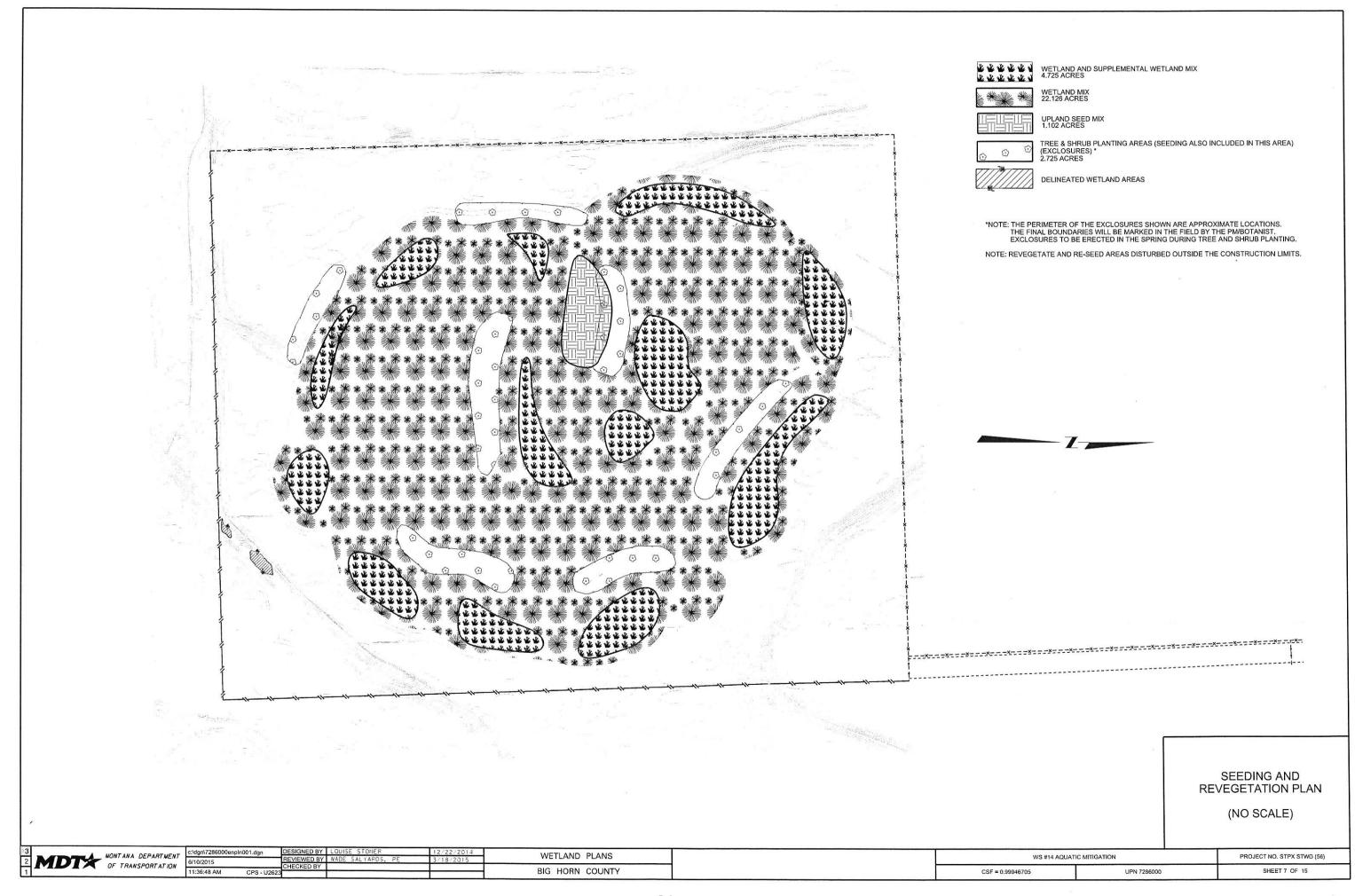
WS #14 AQUATIO	WS #14 AQUATIC MITIGATION			
CSF = 0.99946705	UPN 7286000	SHEET 4 OF 15		

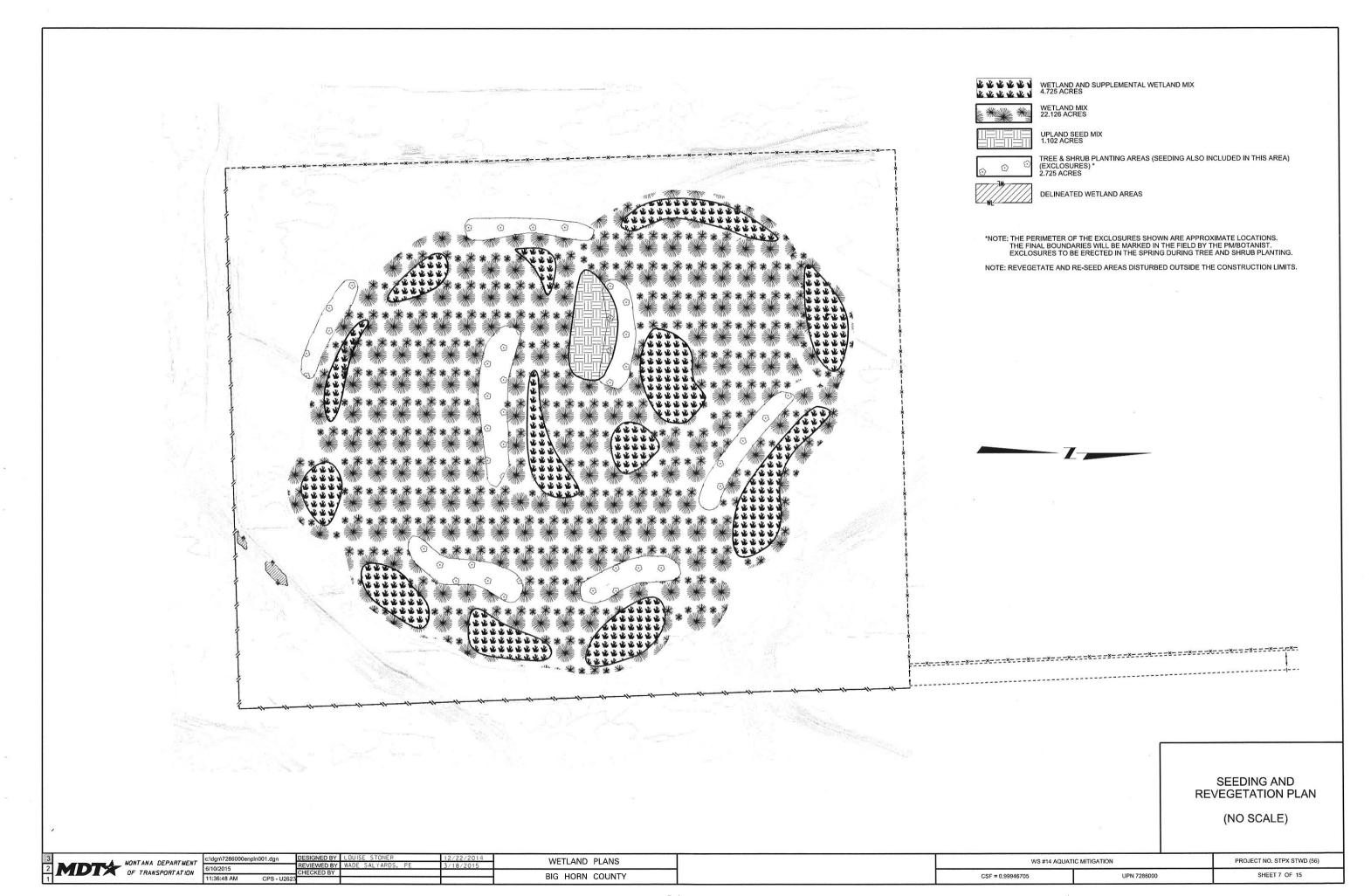
SUMMARY

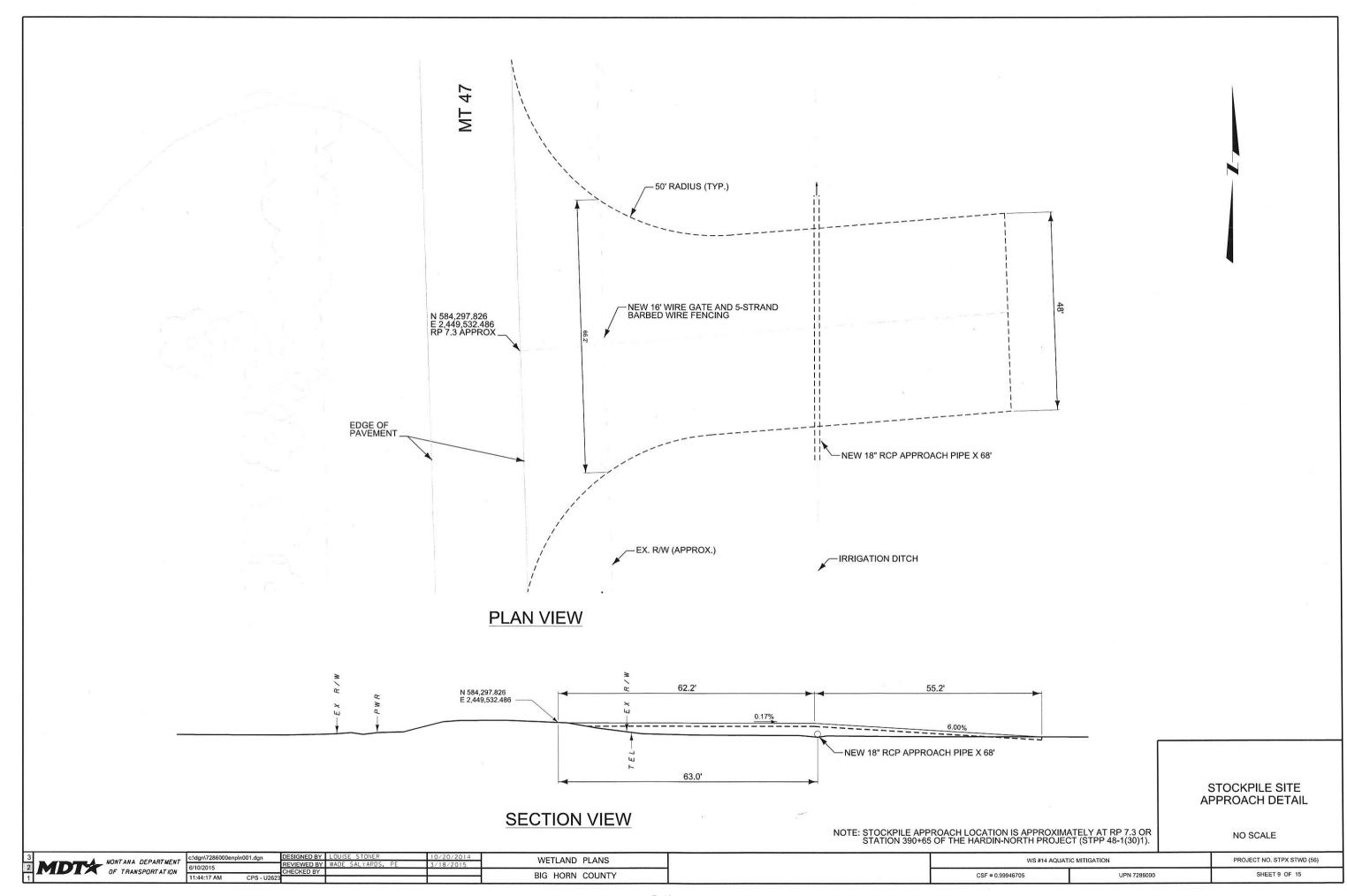
	BASIC E	BID ITEMS	PIPE OPTIC	NS in				linear feet																	
LOCATION	CULVERT PIPE in	linear feet LENGTH OF PIPE	STEEL - 2 2/3 x 1/2 CORR. CONCRETE ALUMINUM - 2 2/3 x 1/2 CORR.	CLASS OR THK.	COATING #	END SECTIONS		END SECTIONS		END SECTIONS		END SECTIONS		END SECTIONS		END SECTIONS		END SECTIONS		END SECTIONS		END SECTIONS		END SECTIONS HEIGHT OF COVER SKEW IN PL. in x ft	REMARKS
	100 80					LEFT	RIGHT																		
COUNTY ROAD APPROACH	18	68	18 CSP 18 RCP 18 CAP	0.079 CL. 3 0.075	NONE NONE NONE	FETS FETS FETS	FETS FETS FETS	1.5																	
STOCKPILE ACCESS APPROACH	18	68	18 RCP	CL. 3	NONE	SQ.	SQ	0.5																	
W																									
TOTAL	~	2	2	~	~	~	~	~	~	~															

					FENCI	NG								
		linear feet		each			linea	r feet						
LOCATION	FARM	FENCE				FARM FENCE PANEL								
	FENCE		WILDLIFE	25454444	FARM GATE			REMARKS						
	TYPE	SPECIAL DESIGN	FRIENDLY	l DE			DEADMAN							
	F5W	D LOIGIN	FW	SINGLE	DOUBLE		TYPE G2	TYPE G3						
METLAND AREA			2.977.3	5	3	1	16		SOUTH AND EAST SIDE ONLY					
METLAND AREA	2,972.7			4		1	16		NORTH AND WEST SIDE ONLY					
ACCESS ROAD	1,041.8			7	1			*16						
STOCKPILE APPROACH	66.2			*2			*16							
EXCLOSURES		5,100.0												
TOTAL	4,080.7	5,100.0	2,977.3	18	4	2	48	16						

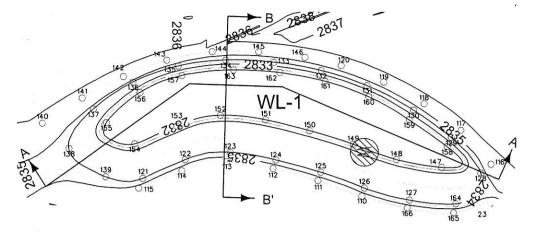

^{*} INSTALL WHEN HAULING IS COMPLETE

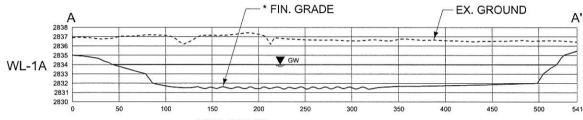

	linear feet
BASIC BID	NEW PIPE (TOTAL)
18"	68
18"RCP CL. 3	68
TOTAL	~

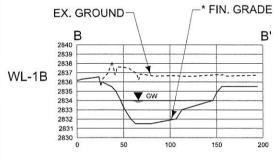

CLEARING & GRUBBING						
STATION		acres				
		CLEARING AND	REMARKS			
FROM	то	GRUBBING				
		31.7	Project Site			
		-				
TOTA	AL	31.7				

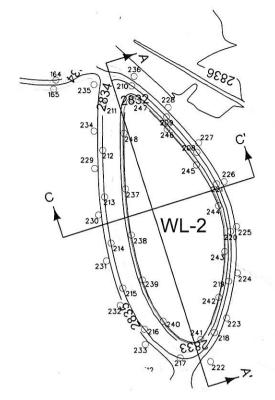

3	ONTANA DEPARTMENT	c:\dgn\7286000ensu		DESIGNED BY				11/19/2014
		6/10/2015		REVIEWED BY	WADE	SALYARDS,	PE	3/18/2015
	IF TRANSPURTATION	11:36:01 AM	CPS - U2623	CHECKED BY	-			

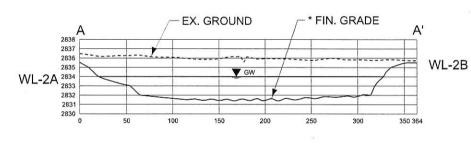
dgn\7286000ensum001.dgn	DESIGNED BY LOUISE STONER REVIEWED BY WADE SALYARDS, PE	11/19/2014 3/18/2015	WETLAND PLANS	WS #14 AQUATI	C MITIGATION	PROJECT NO. STPX STWD (56)
1:36:01 AM CPS - U26	CHECKED BY		BIG HORN COUNTY	CSF = 0.99946705	UPN 7286000	SHEET 5 OF 15

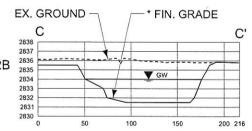






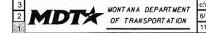




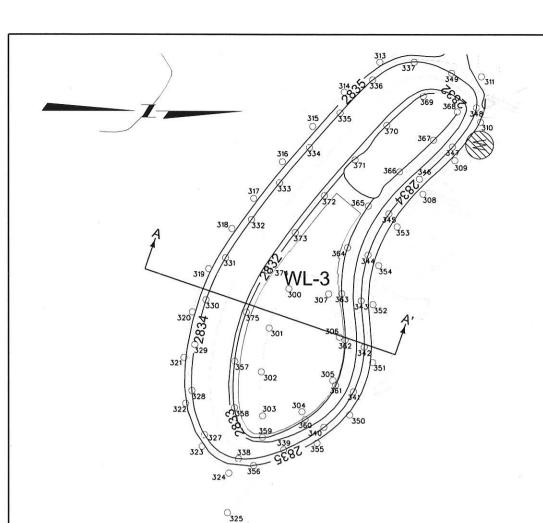


Point	North	East	Elevation
110	585,845.986	2,452,369.844	2,835.50
111	585,798.850	2,452,353.200	2,835.50
112	585,750.594	2,452,340.255	2,835.50
113	585,701.180	2,452,332.992	2,835.50
114	585,652.560	2,452,342.843	2,835.50
115	585,606.143	2,452,361.423	2,835.50
116	585,984.132	2,452,335.571	2,835.50
117	585,952.005	2,452,299.078	2,835.50
118	585,912.515	2,452,270.662	2,835.50
119	585,869.690	2,452,247.517	2,835.50
120	585,824.330	2,452,229.909	2,835.50
121	585,610.530	2,452,351.070	2,834.00
122	585,656.097	2,452,331.011	2,834.00
123	585,704.737	2,452,323.074	2,834.00
124	585,753.808	2,452,331.060	2,834.00
125	585,801.830	2,452,344.205	2,834.00
126	585,848.620	2,452,361.186	2,834.00
127	585,896.647	2,452,374.022	2,834.00
128	585,972.997	2,452,344.852	2,834.00
129	585,941.476	2,452,306.964	2,834,00
130	585,901.362	2,452,277.517	2,834.00
131	585,851.813	2,452,251.453	2,834.00
132	585,802.778	2,452,235.203	2,834.00
133	585,751.898	2,452,226.210	2,834.00
134	585,700.279	2,452,224.106	2,834.00
135	585,649.059	2,452,230.524	2,834.00
136	585,600.449	2,452,247.789	2,834.00
137	585,557.731	2,452,276.701	2,834.00
138	585,531.539	2,452,319.053	2,834.00
139	585,570.896	2,452,349.334	2,834.00

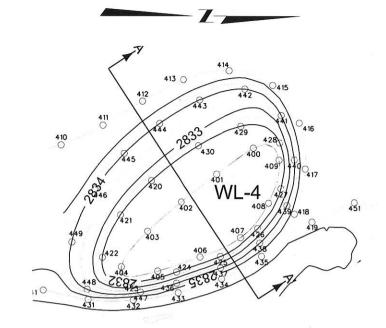
Point	North	East	Elevation
140	585,503,584	2,452,291,840	2,835.50
141	585,545.725	2,452,264.959	2,835.50
142	585,590.069	2,452,241.923	2,835.50
143	585,636.772	2,452,224.253	2.835.50
144	585,685.832	2,452,215.109	2,835.50
145	585,735.777	2,452,215,161	2,835.50
146	585,785.408	2,452,220.885	2,835.50
147	585,931.081	2,452,338.953	2,832.00
148	585,882.948	2,452,330.631	2,832.00
149	585,836.930	2,452,314.195	2,832.00
150	585,790.249	2,452,299.704	2,832.00
151	585,742.771	2,452,288.072	2,832.00
152	585,694.217	2,452,283.403	2,832.00
153	585,647.120	2,452,295.060	2,832.00
154	585,602.064	2,452,313.965	2,832.00
155	585,571.793	2,452,291.296	2,832.00
156	585,607.972	2,452,258.875	2,832.00
157	585,653.077	2,452,240.742	2,832.00
158	585,936.973	2,452,316.686	2,832.00
159	585,896.585	2,452,287.927	2,832.00
160	585,853.612	2,452,263.299	2,832.00
161	585,806.961	2,452,246.637	2,832.00
162	585,758.271	2,452,237.425	2,832.00
163	585,708.787	2,452,234.613	2,832.00
164	585,946.158	2,452,377.984	2,834.00
165	585,943.733	2,452,387.680	2,835.50
166	585,894.307	2,452,382.583	2,835.50

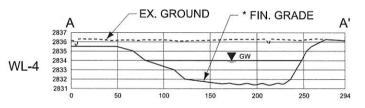


Point	North	East	Elevation
208	586,097.595	2,452,455.275	2,834.00
209	586,065.218	2,452,417.198	2,834.00
210	586,027.997	2,452,383.959	2,834.00
211	585,997.391	2,452,403.284	2,834.00
212	585,996.678	2,452,453.266	2,834.00
213	585,998.591	2,452,503.215	2,834.00
214	586,005.439	2,452,552,705	2,834.00
215	586,017.993	2,452,601.053	2,834.00
216	586,041.126	2,452,645.064	2,834.00
217	586,079.410	2,452,675.689	2,834.00
218	586,116.305	2,452,648.571	2,834.00
219	586,132.071	2,452,593.386	2,834.00
220	586,133.964	2,452,540.018	2,834.00
221	586,118.987	2,452,489.014	2,834.00
222	586,112.157	2,452,679.723	2,835.50
223	586,129.592	2,452,632.875	2,835.50
224	586,141.359	2,452,584.452	2,835.50


Point	North	East	Elevation
225	586,140.334	2,452,534.579	2,835.50
226	586,127.047	2,452,486.737	2,835.50
227	586,099.559	2,452,445.068	2,835.50
228	586,067.033	2,452,407.122	2,835.50
229	585,987.975	2,452,472.757	2,835.50
230	585,991.996	2,452,522.577	2,835.50
231	586,000.510	2,452,571.834	2,835.50
232	586,015.316	2,452,619.533	2,835.50
233	586,042.059	2,452,661.405	2,835.50
234	585,987.297	2,452,432.766	2,835.50
235	585,987.384	2,452,382.783	2,835.50
236	586,030.807	2,452,373.810	2,835.50
237	586,021.049	2,452,494.624	2,832.00
238	586,027.128	2,452,543.930	2,832.00
239	586,039.032	2,452,592.160	2,832.00
240	586,061,228	2,452,636.395	2,832.00
241	586,101.616	2,452,655.918	2,832.00
242	586,120.973	2,452,610,642	2,832.00
243	586,127.612	2,452,561.483	2,832.00
244	586,120.830	2,452,512.476	2,832.00
245	586,097.172	2,452,468.927	2,832.00
246	586,065.736	2,452,430.444	2,832.00
247	586,028.725	2,452,398.284	2,832.00
248	586,019.637	2,452,434.922	2.832.00

* FINISHED GRADE ELEVATIONS DO NOT INCLUDE TOPSOIL PLACEMENT. ROUGHEN AND UNDULATE THE BOTTOM.




c:\dgn\7286000er			LODISE STONER	10/24/2014	WETLAND PLANS '	
6/10/2015		REVIEWED BY	WADE SALYARDS, PE	3/18/2015	WETLAND TEANS	
0/10/2013		CHECKED BY			BIG HORN COUNTY	•
11:44:52 AM	CPS - U2623				BIG HORN COUNTY	
						•

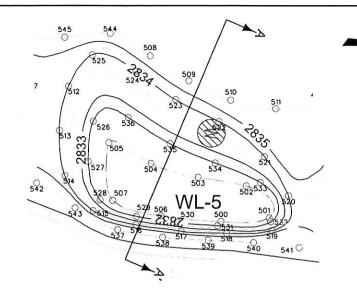
WS #14 AQUATIO	MITIGATION	PROJECT NO. STPX STWD (56)
CSF = 0.99946705	LIPN 7286000	SHEET 10 OF 15

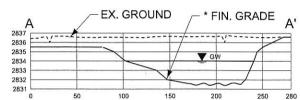
	CELL WL-4	4 COORDINA	ATES
Point	North	East	Elevation
400	585,641.446	2,453,239.196	2,831.50
401	585,602,429	2,453,267,291	2,831.50
402	585,564.581	2,453,296.996	2,831.50
403	585,528,112	2.453.328.355	2,831.50
404	585,499.686	2,453,366.445	2,831.50
405	585,538.898	2,453,371.092	2,831.50
406	585,584.583	2,453,356.024	2,831.50
407	585,627.679	2,453,335.177	2,831.50
408	585,657.671	2,453,298.180	2,831.50
409	585,668.948	2,453,252.110	2,831.50
410	585,434.708	2,453,235.881	2,835.50
411	585,479.902	2,453,214.683	2,835.50
412	585,522.736	2,453,188.900	2,835.50
413	585,567.031	2,453,165,842	2,835.50
414	585,615.755	2,453,156.304	2,835.50
415	585,662.278	2,453,171.991	2,835.50
416	585,690.712	2,453,212.381	2,835.50
417	585,697.129	2,453,261,625	2.835.50
418	585,685.221	2,453,309,916	2,835.50
419	585,704.316	2,453,318.444	2,835.50
420	585,532.337	2,453,273,979	2,832.00
421	585,498.873	2,453,310.974	2,832.00
422	585,479.024	2,453,356.372	2,832.00
423	585,510,609	2.453.383.519	2.832.00
424	585,559,189	2,453,372.154	2,832,00
425	585,606.325	2,453,355.489	2,832.00
426	585,645.879	2,453,325.483	2,832.00
427	585,670.761	2,453,282.719	2,832.00
428	585,669.658	2,453,233.703	2,832.00
429	585,628.226	2,453,215.869	2,832.00
430	585,583.010	2,453,236.699	2,832.00
431	585,463.545	2,453,401.695	2,835.50
432	585,512.521	2,453,402.318	2,835.50
433	585,560.898	2,453,394.409	2,835.50
434	585,607.581	2,453,379.447	2,835.50
435	585,650.087	2,453,355.275	2,835.50
436	585,559.197	2,453,384.108	2,834.00
437	585,606.431	2,453,367.724	2,834.00
438	585,648.161	2,453,340.905	2,834.00
439	585,677.231	2,453,300.684	2,834.00
440	585,685.264	2,453,251.835	2,834.00
441	585,671.293	2,453,204.130	2,834.00
442	585,632.530	2,453,176.008	2,834.00
443	585,584.371	2,453,187.578	2,834.00
444	585,541.269	2,453,212.779	2,834.00
445	585,502.967	2,453,244.837	2,834.00
446	585,471.151	2,453,283.309	2,834.00
447	585,520.434	2,453,393.738	2,834.00
448	585,462.496	2,453,390.689	2,834.00
449	585,446.214	2,453,339.987	2,834.00
450	585,798.461	2,453,285.614	2,835.50
451	585,749.827	2,453,297.738	2,835.50

Α		EX. GRO	DUND	/-* FII	N. GRADE	Ē A'
WL-3 2837 2836 2835 2834 2833				▼ GW		
2832 2831 0	50	100	150	200	250	283

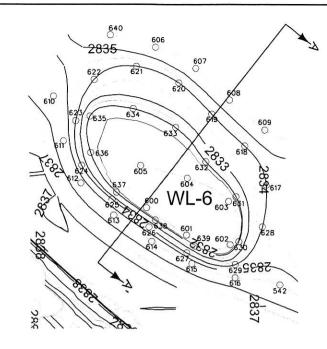
Point	North	East	Elevation
300	585,900.228	2,452,955,499	2,831,50
301	585,879.003	2,452,997.754	2,831.50
302	585,870.578	2,453,044.713	2,831.50
303	585,872.037	2,453,091.883	2,831.50
304	585,914.009	2,453,087.394	2,831.50
305	585,947.192	2,453,053,971	2,831.50
306	585,954.230	2,453,007.431	2,831.50
307	585,942.865	2,452,961.154	2,831.50
308	586,043.729	2,452,853.901	2,835.50
309	586,078.385	2,452,817.883	2,835.50
310	586,106.260	2,452,776.843	2,835.50
311	586,107.302	2,452,728.012	2,835.50
312	586,044.665	2,452,697.103	2,835.50
313	585,997.714	2,452,712.328	2,835.50
314	585,959.734	2,452,744.612	2,835.50
315	585,925.941	2,452,781.459	2,835.50
316	585,893.376	2,452,819.396	2,835.50
317	585,862.491	2,452,858.710	2,835.50
318	585,839.128	2,452,891.171	2,835.50
319	585,814.331	2,452,934.138	2,835.50
320	585,796.840	2,452,980.528	2,835.50
321	585,787.942	2,453,029.326	2,835.50
322	585,789.712	2,453,078.747	2,835.50
323	585,807.101	2,453,124.810	2,835.50
324	585,835.762	2,453,153.499	2,835.50
325	585,834.156	2,453,195.935	2,835.50

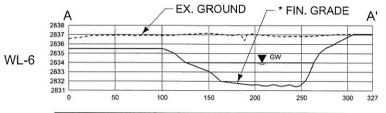
Point	North	East	Elevation
326	585,824.724	2,453,243.721	2,835.50
327	585,809.804	2,453,112.249	2,834.00
328	585,796.300	2,453,064.947	2,834.00
329	585,799.488	2,453,015.529	2,834.00
330	585,811.521	2,452,967.434	2,834.00
331	585,832,285	2,452,922.450	2,834.00
332	585,860.140	2,452,881.396	2,834,00
333	585,890.288	2,452,841.984	2,834.00
334	585,922.395	2,452,804.148	2,834.00
335	585,955.291	2,452,766.992	2,834.00
336	585,989.953	2,452,731.563	2,834.00
337	586,034.537	2,452,712.306	2,834.00
338	585,845.992	2,453,137.936	2,834.00
339	585,894.310	2,453,128.355	2,834.00
340	585,937.592	2,453,104.025	2,834.00
341	585,969.088	2,453,066.042	2,834.00
342	585,980.547	2,453,018.012	2,834.00
343	585,977.340	2,452,968.383	2,834.00
344	585,984.793	2,452,919.387	2,834.00
345	586,007.220	2,452,875.149	2,834.00
346	586,039.984	2,452,837.806	2,834.00
347	586,075.825	2,452,803.308	2,834.00
348	586,101.691	2,452,761.366	2,834.00
349	586,074.918	2,452,724.099	2,834.00
350	585,965.008	2,453,090.889	2,835.50

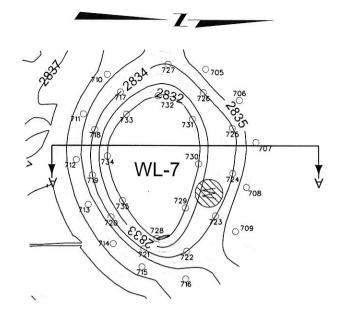

Point	North	East	Elevation
351	585,989,677	2,453,034.593	2,835.50
352	585,990.030	2,452,972.459	2,835.50
353	586,016.000	2,452,889.071	2,835.50
354	585,996.218	2,452,930.557	2,835.50
355	585,930.206	2,453,121.222	2,835.50
356	585,862,281	2,453,145.350	2,835.50
357	585,842.058	2,453,033.402	2,832.00
358	585,841.739	2,453,083.237	2,832.00
359	585,871.755	2,453,115.016	2,832.00
360	585,917.340	2,453,095.828	2,832.00
361	585,950.065	2,453,059.058	2,832.00
362	585,960.209	2,453,010.542	2,832.00
363	585,956.820	2,452,960.699	2,832.00
364	585,963.073	2,452,911.383	2,832.00
365	585,985.096	2,452,866.772	2,832.00
366	586,018.769	2,452,829.988	2,832.00
367	586,055.381	2,452,795.948	2,832.00
368	586,081.170	2,452,765.670	2,832.00
369	586,044.289	2,452,749.004	2,832.00
370	586,005.046	2,452,780.206	2,832.00
371	585,971.051	2,452,817.392	2,832.00
372	585,938.406	2,452,855.770	2,832.00
373	585,907.136	2,452,895.275	2,832.00
374	585,877.567	2,452,936.062	2,832.00
375	585,854.449	2,452,980.692	2,832.00

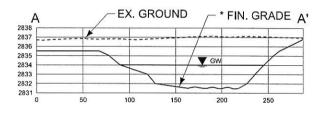

* FINISHED GRADE ELEVATIONS DO NOT INCLUDE TOPSOIL PLACEMENT. ROUGHEN AND UNDULATE THE BOTTOM.

		LOUISE STONER	10/24/2014	WETLAND PLANS		I
/10/2015		WADE SALYARDS, PE	3/18/2015	WEILAND	FLAINS	J
	CHECKED BY			BIG HORN	COUNTY	1
1:45:00 AM CPS - U2623			la-en-porter en-	BIG HONN	COUNTY	T


WS #14 AQUATIC M	TIGATION	PROJECT NO. STPX STWD (56)
0.99946705	UPN 7286000	SHEET 11 OF 15




oint	North	East	Elevation
500	585,331,746	2.453.363.651	2.831.50
501	585,383,760	2,453,359,472	2.831.50
502	585,359.181	2,453,325.499	2,831.50
503	585,307.091	2,453,316.222	2.831.50
504	585,256.589	2,453,301.213	2,831.50
505	585,211,474	2,453,278.838	2,831,50
506	585,267.041	2,453,357.501	2,831.50
507	585,215.201	2,453,340.974	2,831.50
508	585,256.258	2,453,185.555	2,835.50
509	585,297.831	2,453,212.556	2,835.50
510	585,342.748	2,453,233.386	2,835.50
511	585,391.311	2,453,242.382	2,835.50
512	585,168.027	2,453,218.245	2,834.00
513	585,158.110	2,453,265.967	2,834.00
514	585,163.743	2,453,314.363	2,834.00
515	585,193.961	2,453,351.997	2,834.00
516	585,240.237	2,453,367.281	2,834.00
517	585,288.818	2,453,374.098	2,834.00
518	585,337.801	2,453,376.350	2,834.00
519	585,386.621	2,453,373.286	2,834.00
520	585,404.341	2,453,335.736	2,834.00
521	585,378.856	2,453,294.083	2,834.00
522	585,330.065	2,453,256.524	2,834.00
523	585,283.451	2,453,232.772	2,834.00
524	585,241.073	2,453,202.119	2,834.00
525	585,193.915	2,453,184.603	2,834.00
526	585,194.680	2,453,256.059	2,832.00
527	585,188.872	2,453,299.358	2,832.00
528	585,201.599	2,453,340.463	2,832.00
529	585,240.893	2,453,358.085	2,832.00
530	585,284.347	2,453,364.213	2,832.00
531	585,328.043	2,453,368.123	2,832.00
532	585,385.200	2,453,363.660	2,832.00
533	585,374.278	2,453,321.685	2,832.00
534	585,325.710	2,453,300.832	2,832.00
535	585,277.100	2,453,280.033	2,832.00
536	585,232.284	2,453,251.940	2,832.00
537	585,220.440	2,453,372.391	2,835.50
538	585,268,802	2,453,380.440	2,835.50
539	585,317.768	2,453,383.741	2,835.50
540	585,366.793	2,453,386.082	2,835.50
541	585,415,524	2,453,391.613	2,835.50
542	585,133.236	2,453,322.288	2,835.50
543	585,174.460	2,453,349.099	2,835.50
544	585,213.579	2,453,161.230	2,835.50
545	585,164.321	2,453,165.553	2,835.50


NOTE: GW DESIGNATES DESIGN HIGH WATER ELEVATION. FOR INFORMATIONAL PURPOSES ONLY.

Point	North	East	Elevation
600	584,989.793	2,453,239.741	2,831.50
601	585,032.502	2,453,269.142	2,831.50
602	585,079.779	2,453,279.326	2,831.50
603	585,078.198	2.453,232,906	2.831.50
604	585,033,535	2,453,208.086	2,831.50
605	584,983.503	2,453,194,624	2.831.50
606	584,999.935	2,453,067.330	2,835.50
607	585,043.403	2,453,090.116	2,835.50
608	585,079.489	2,453,124,120	2,835.50
609	585,117.167	2,453,156.274	2,835.50
610	584,890.669	2,453,120.069	2,835.50
611	584,901.275	2,453,168.149	2,835.50
612	584,919.899	2,453,213.416	2,835.50
613	584,954.802	2,453,247.870	2,835.50
614	584,995.260	2,453,275.915	2,835.50
615	585,038.336	2,453,299.704	2,835.50
616	585,085.070	2,453,314.704	2,835.50
617	585,118.766	2,453,215.349	2,834.00
618	585,095.607	2,453,173,443	2,834.00
619	585,060.451	2,453,139.229	2,834.00
620	585,024.767	2,453,105.667	2,834.00
621	584,979.426	2,453,087.955	2,834.00
622	584,934.524	2,453,102.247	2,834.00
623	584,914.657	2,453,146.487	2,834.00
624	584,920.811	2,453,194.328	2,834.00
625	584,953.262	2,453,230.659	2,834.00
626	584,992.222	2,453,260.498	2,834.00
627	585,032.817	2,453,288.034	2,834.00
628	585,114.476	2,453,260.082	2,834.00
629	585,085.366	2,453,300.554	2,834.00
630	585,089.048	2,453,276.055	2,832.00
631	585,086.136	2,453,227.931	2,832.00
632	585,054.002	2,453,190.299	2,832.00
633	585,020.944	2,453,153.552	2,832.00
634	584,975.794	2,453,133.520	2,832.00
635	584,929.990	2,453,141.654	2,832.00
636	584,930.640	2,453,180.746	2,832.00
637	584,957.853	2,453,223.140	2,832.00
638	584,999.109	2,453,252.926	2,832.00
639	585,041.729	2,453,280.773	2,832.00
640	584,952.130	2,453,054.171	2,835.50

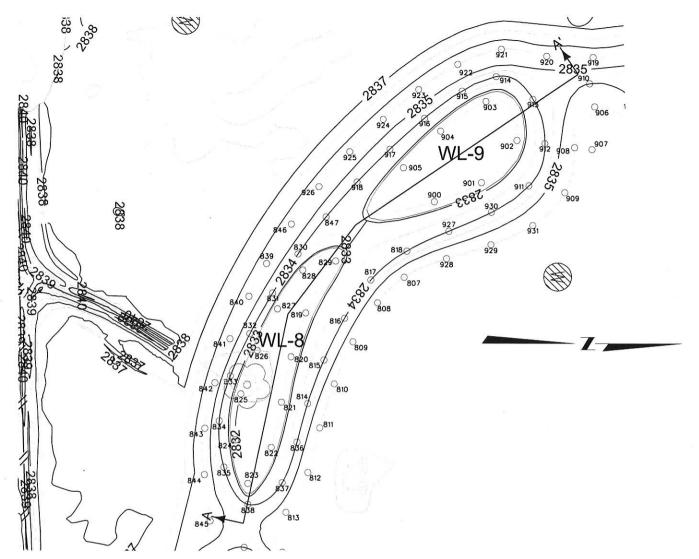
Point	North	East	Elevation
705	584,886.033	2,452,855,717	2,835.50
706	584,922.279	2,452,889.212	2,835.50
707	584,940.089	2,452,934.393	2,835.50
708	584,929.629	2,452,982.481	2,835.50
709	584,917.928	2,453,029,911	2,835.50
710	584,779.727	2,452,861.483	2,835.50
711	584,754.037	2,452,904.144	2,835,50
712	584,746.261	2,452,953.017	2,835.50
713	584,758.975	2,453,001.121	2,835.50
714	584,785.736	2,453,043.100	2,835.50
715	584,816.634	2,453,067.898	2,835.50
716	584,864.076	2,453,080.754	2,835.50
717	584,793.618	2,452,880.393	2,834.00
718	584,766.147	2,452,920.739	2,834.00
719	584,763.520	2,452,969.643	2,834,00
720	584,783.330	2,453,014.626	2,834.00
721	584,818.619	2,453,048.860	2,834.00
722	584,865.149	2,453,051.163	2,834.00
723	584,896.411	2,453,013,294	2,834.00
724	584,914.861	2,452,967.595	2,834.00
725	584,914.474	2,452,919.155	2,834,00
726	584,883.464	2,452,880.905	2,834.00
727	584,845.269	2,452,850,484	2,834.00
728	584,832.725	2,453,037.450	2,832.00
729	584,863.889	2,453,004.686	2.832.00
730	584,878.161	2,452,957.488	2,832.00
731	584,871.561	2,452,909.644	2,832,00
732	584,834.457	2,452,884.380	2,832.00
733	584,799.975	2,452,904.251	2,832.00
734	584,779.751	2,452,949,139	2,832.00
735	584,795.577	2,452,996,856	2.832.00

* FINISHED GRADE ELEVATIONS DO NOT INCLUDE TOPSOIL PLACEMENT. ROUGHEN AND UNDULATE THE BOTTOM.

MONTANA DEPARTMENT
OF TRANSPORTATION

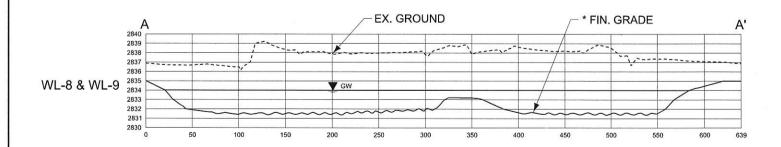
WL-5

 c:/dgn/7286000enplp001.dgn
 DESIGNED BY | LOUISE STONER
 10/24/2014
 WETLAND
 PLANS

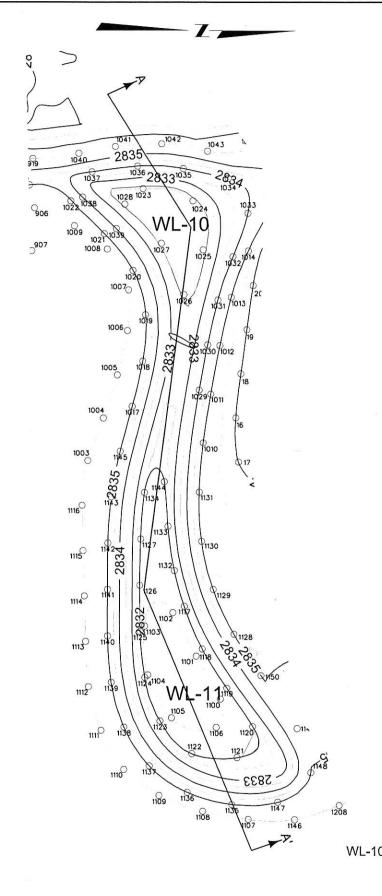

 6/10/2015
 REVIEWED BY | WADE SALYARDS, PE | 3/18/2015
 3/18/2015
 BIG HORN COUNTY

 11:45:07 AM | CPS - U2623
 BIG HORN COUNTY
 COUNTY

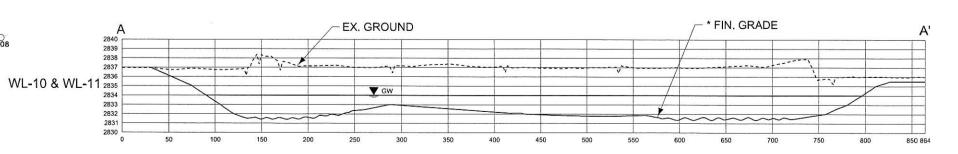
 WS #14 AQUATIC MITIGATION
 PROJECT NO. STPX STWD (56)


 CSF = 0.99946705
 UPN 7286000
 SHEET 12 OF 15

NOTE: GW DESIGNATES DESIGN HIGH WATER ELEVATION. FOR INFORMATIONAL PURPOSES ONLY.


807 585,017.344 2,452,560.469 2,935,50 808 584,988,613 2,452,587.941 2,835,50 809 584,962,149 2,452,687.941 2,835,50 810 584,942,030 2,452,675.105 2,335,50 811 584,926,536 2,452,722.229 2,835,50 812 584,913,531 2,452,770,114 2,835,50 813 584,889,966 2,452,812.800 2,835,50 814 584,913,506 2,452,696,76 2,834,00 815 584,931,148 2,452,649,420 2,834,00 816 584,953,253 2,452,604,602 2,834,00 817 584,981,486 2,452,532,452 2,834,00 818 585,020,386 2,452,534,44 2,834,00 818 585,020,386 2,452,532,452 2,834,00 819 584,911,587 2,452,645,981 2,832,50 820 584,895,753 2,452,645,981 2,832,50 821 584,895,428 2,452,645,981 2,832,50 822	Point	North	East	Elevation
809 584,962.149 2,452,629.798 2,835.50 810 584,942.030 2,452,675.105 2,835.50 811 584,926.536 2,452,772.229 2,835.50 812 584,913.531 2,452,770.114 2,935.50 813 584,889.966 2,452,696.176 2,834.00 814 584,931.480 2,452,694.420 2,234.00 815 564,931.148 2,452,694.420 2,234.00 816 584,953.253 2,452,604.602 2,834.00 817 584,981.486 2,452,563.444 2,834.00 818 585,020.386 2,452,532.452 2,834.00 819 584,911.587 2,452,598.845 2,832.50 820 584,895.753 2,452,694.880 2,832.50 821 584,894.844 2,452,694.880 2,332.50 822 584,894.341 2,452,781.942 2,832.50 823 584,849.257 2,452,781.942 2,832.50 824 584,836.312 2,452,735.053 2,832.50 825 <td>807</td> <td>585.017.344</td> <td>2,452,560,469</td> <td></td>	807	585.017.344	2,452,560,469	
810 584,942.030 2,452,675.105 2,835.50 811 584,926,536 2,452,722.229 2,835.50 812 584,913,531 2,452,770.114 2,835.50 813 584,889.966 2,452,812.800 2,335.50 814 584,913,506 2,452,696.176 2,834.00 815 584,931.148 2,452,696.176 2,834.00 816 584,953.253 2,452,604.420 2,834.00 817 584,981.486 2,452,563.444 2,834.00 818 585,020.386 2,452,598.845 2,834.00 819 584,911.587 2,452,598.845 2,832.50 820 584,895.753 2,452,694.880 2,832.50 821 584,895.753 2,452,694.880 2,832.50 822 584,895.753 2,452,694.880 2,832.50 822 584,895.428 2,452,743.202 2,832.50 823 584,849.257 2,452,735.053 2,832.50 824 584,895.17 2,452,695.801 2,832.50 825	808	584,988,613	2,452,587,941	2,835,50
810 584,942.030 2,452,675.105 2,835.50 811 584,926,536 2,452,722.229 2,835.50 812 584,913,531 2,452,770.114 2,835.50 813 584,889.966 2,452,812.800 2,835.50 814 584,913,506 2,452,696.176 2,834.00 815 584,931.148 2,452,694.420 2,834.00 816 584,953.253 2,452,696.4002 2,834.00 817 584,981.486 2,452,593.444 2,834.00 818 585,020.386 2,452,598.845 2,834.00 819 584,911.587 2,452,598.845 2,832.50 820 584,895.753 2,452,645.981 2,832.50 821 584,895.753 2,452,694.680 2,832.50 822 584,895.753 2,452,694.680 2,832.50 822 584,895.428 2,452,735.053 2,832.50 822 584,874.341 2,452,735.053 2,832.50 824 584,893.312 2,452,735.053 2,832.50 825 <td></td> <td></td> <td></td> <td></td>				
811 584,926,536 2,452,722,229 2,835,50 812 584,913,531 2,452,770,114 2,935,50 813 584,889,966 2,452,696,176 2,834,00 814 584,913,506 2,452,696,176 2,834,00 815 584,931,148 2,452,649,420 2,834,00 816 584,953,253 2,452,604,602 2,834,00 817 584,981,486 2,452,563,444 2,834,00 818 585,020,386 2,452,532,452 2,834,00 819 584,911,587 2,452,598,845 2,832,50 820 584,895,753 2,452,694,881 2,832,50 821 584,885,428 2,452,694,880 2,832,50 822 584,874,341 2,452,743,202 2,832,50 823 584,849,257 2,452,781,942 2,832,50 824 584,836,312 2,452,735,953 2,832,50 825 584,841,929 2,452,695,860 2,832,50 826 584,859,517 2,452,695,861 2,832,50 827 <td>810</td> <td>584,942,030</td> <td></td> <td></td>	810	584,942,030		
813 584,889.966 2,452,812.800 2,835.50 814 584,913.506 2,452,696.176 2,834.00 815 584,931.148 2,452,694.200 2,834.00 816 584,953.253 2,452,604.602 2,834.00 817 584,981.486 2,452,563.444 2,834.00 818 585,020.386 2,452,598.845 2,832.50 820 584,891.1587 2,452,694.680 2,832.50 821 584,895.753 2,452,694.680 2,832.50 822 584,874.341 2,452,781.942 2,832.50 823 584,849.257 2,452,781.942 2,832.50 824 584,895.517 2,452,685.801 2,832.50 825 584,899.517 2,452,699.281 2,832.50 826 584,899.517 2,452,594.569 2,832.50 827 584,881.372 2,452,594.569 2,832.50 828 584,908.469 2,452,552.909 2,832.50 829 584,891.317 2,452,594.569 2,832.50 829 <td>811</td> <td>584,926,536</td> <td></td> <td></td>	811	584,926,536		
814 584,913.506 2,452,696.176 2,834.00 815 584,931.148 2,452,649.420 2,834.00 816 584,953.253 2,452,604.602 2,834.00 817 584,981.486 2,452,563.444 2,834.00 818 585,020.386 2,452,532.452 2,834.00 819 584,911.587 2,452,598.845 2,832.50 820 584,895.753 2,452,645.981 2,832.50 821 584,885.428 2,452,694.680 2,832.50 822 584,874.341 2,452,743.202 2,832.50 823 564,849.257 2,452,781.942 2,832.50 824 584,865.517 2,452,693.281 2,832.50 825 584,841.929 2,452,693.281 2,832.50 826 584,859.517 2,452,693.281 2,832.50 827 584,861.372 2,452,594.569 2,832.50 828 584,933.809 2,452,552.909 2,832.50 829 584,934.809 2,452,555.641 2,834.00 831 <td>812</td> <td>584,913.531</td> <td>2,452,770.114</td> <td>2,835.50</td>	812	584,913.531	2,452,770.114	2,835.50
814 584,913.506 2,452,696.176 2,834.00 815 584,931.148 2,452,649.420 2,834.00 816 584,953.253 2,452,604.602 2,834.00 817 584,981.486 2,452,563.444 2,834.00 818 585,020.386 2,452,532.452 2,834.00 819 584,911.587 2,452,598.845 2,832.50 820 584,895.753 2,452,645.981 2,832.50 821 584,885.428 2,452,645.981 2,832.50 822 584,874.341 2,452,743.202 2,832.50 823 564,849.257 2,452,781.942 2,832.50 824 584,869.575 2,452,785.053 2,832.50 825 584,819.27 2,452,639.281 2,832.50 826 584,869.57 2,452,639.281 2,832.50 827 584,861.372 2,452,594.569 2,832.50 828 584,908.469 2,452,552.909 2,832.50 829 584,938.809 2,452,555.641 2,834.00 831	813	584,889,966		2,835.50
815 584,931.148 2,452,649.420 2,834.00 816 584,953.253 2,452,604.602 2,834.00 817 584,981.486 2,452,563.444 2,834.00 818 585,020.386 2,452,532.452 2,834.00 819 584,911.587 2,452,598.845 2,832.50 820 584,895.753 2,452,694.880 2,832.50 821 584,885.428 2,452,743.202 2,832.50 822 584,874.341 2,452,781.942 2,832.50 823 584,894.257 2,452,781.942 2,832.50 824 584,896.312 2,452,735.053 2,832.50 825 584,841.929 2,452,695.801 2,832.50 826 584,895.517 2,452,695.809 2,832.50 827 584,881.372 2,452,594.569 2,832.50 828 584,903.469 2,452.552.909 2,832.50 829 584,903.408 2,452,535.641 2,834.00 830 584,903.408 2,452,535.641 2,834.00 831 <td>814</td> <td>584,913,506</td> <td></td> <td></td>	814	584,913,506		
817 584,981.486 2,452,563.444 2,834.00 818 585,020.386 2,452,532.452 2,834.00 819 584,895.753 2,452,598.845 2,832,50 820 584,895.753 2,452,645.981 2,832,50 821 584,895.753 2,452,694.880 2,832,50 822 584,874.341 2,452,743.202 2,832,50 823 584,849.257 2,452,781.942 2,832,50 824 584,836.312 2,452,735.053 2,832.50 825 584,841.929 2,452,685.801 2,832.50 826 584,859.517 2,452,693.281 2,832.50 827 584,881.372 2,452,594.569 2,832.50 828 584,903.408 2,452,552.909 2,832.50 829 584,943.809 2,452,553.641 2,834.00 831 584,861.695 2,452,557.529 2,834.00 832 584,851.695 2,452,656.606 2,834.00 833 584,830.727 2,452,666.506 2,834.00 834 <td>815</td> <td></td> <td></td> <td></td>	815			
818 585,020.386 2,452,532.452 2,834.00 819 584,911.587 2,452,598.845 2,832.50 820 584,895.753 2,452,694.5981 2,832.50 821 584,885.428 2,452,694.680 2,832.50 822 584,874.341 2,452,743.202 2,832.50 823 584,849.257 2,452,781.942 2,832.50 824 584,836.312 2,452,735.053 2,832.50 825 584,841.929 2,452,685.801 2,832.50 826 584,859.517 2,452,699.480 2,832.50 827 584,81.372 2,452,594.569 2,832.50 828 584,903.408 2,452,552.909 2,832.50 829 584,933.809 2,452,535.641 2,832.50 830 584,903.408 2,452,535.641 2,834.00 831 584,876.128 2,452,535.641 2,834.00 832 584,881.695 2,452,621.140 2,834.00 833 584,801.952 2,452,737.579 2,834.00 833 <td>816</td> <td>584,953.253</td> <td>2,452,604.602</td> <td>2,834.00</td>	816	584,953.253	2,452,604.602	2,834.00
819 584,911.587 2,452,598.845 2,832.50 820 584,895.753 2,452,645.981 2,832.50 821 584,885.428 2,452,694.680 2,832.50 822 584,874.341 2,452,781.942 2,832.50 823 584,849.257 2,452,781.942 2,832.50 824 584,836.312 2,452,735.053 2,832.50 825 564,841.929 2,452,693.281 2,832.50 826 584,861.372 2,452,594.569 2,832.50 827 584,881.372 2,452,552.909 2,832.50 828 584,908.469 2,452,552.909 2,832.50 829 584,938.409 2,452,552.909 2,832.50 830 584,903.408 2,452,577.529 2,834.00 831 584,876.128 2,452,577.529 2,834.00 832 584,851.695 2,452,621.140 2,834.00 833 584,851.695 2,452,621.140 2,834.00 834 584,818.774 2,452,714.874 2,834.00 835 <td>817</td> <td>584,981,486</td> <td>2,452,563,444</td> <td>2.834.00</td>	817	584,981,486	2,452,563,444	2.834.00
819 584,911.587 2,452,598.845 2,832.50 820 584,895.753 2,452,645.981 2,832.50 821 584,885.428 2,452,694.680 2,832.50 822 584,874.341 2,452,781.942 2,832.50 823 584,849.257 2,452,781.942 2,832.50 824 584,836.312 2,452,735.053 2,832.50 825 564,841.929 2,452,693.281 2,832.50 826 584,861.372 2,452,594.569 2,832.50 827 584,881.372 2,452,552.909 2,832.50 828 584,908.469 2,452,552.909 2,832.50 829 584,938.409 2,452,552.909 2,832.50 830 584,903.408 2,452,577.529 2,834.00 831 584,876.128 2,452,577.529 2,834.00 832 584,851.695 2,452,621.140 2,834.00 833 584,851.695 2,452,621.140 2,834.00 834 584,818.774 2,452,714.874 2,834.00 835 <td>818</td> <td>585,020.386</td> <td>2,452,532,452</td> <td>2,834.00</td>	818	585,020.386	2,452,532,452	2,834.00
821 584,885.428 2,452,694.680 2,832.50 822 584,874.341 2,452,743.202 2,832.50 823 584,849.257 2,452,781.942 2,832.50 824 564,836.312 2,452,735.053 2,832.50 825 584,841.929 2,452,685.801 2,832.50 826 584,859.517 2,452,699.281 2,832.50 827 584,881.372 2,452,594.569 2,832.50 828 584,908.469 2,452,552.909 2,832.50 829 584,933.09 2,452,535.641 2,834.00 831 584,876.128 2,452,577.529 2,834.00 832 584,813.772 2,452,666.506 2,834.00 833 584,830.727 2,452,666.506 2,834.00 834 584,818.774 2,452,764.406 2,834.00 835 584,823.591 2,452,761.025 2,834.00 836 584,901.952 2,452,781.025 2,834.00 837 584,866.029 2,452,781.025 2,834.00 838	819		2,452,598.845	2,832.50
822 584,874,341 2,452,743,202 2,832,50 823 584,849,257 2,452,781,942 2,832,50 824 584,836,312 2,452,735,053 2,832,50 825 584,841,929 2,452,685,801 2,832,50 826 584,859,517 2,452,639,281 2,832,50 827 584,81,372 2,452,594,569 2,832,50 828 584,908,469 2,452,552,909 2,832,50 829 584,943,809 2,452,535,641 2,832,50 830 584,903,408 2,452,535,641 2,834,00 831 584,876,128 2,452,577,529 2,834,00 832 584,851,695 2,452,671,40 2,834,00 833 584,803,727 2,452,666,506 2,834,00 834 584,818,74 2,452,714,874 2,834,00 835 584,823,591 2,452,737,571 2,834,00 837 584,860,292 2,452,781,025 2,834,00 838 584,891,696 2,452,891,00 2,834,00 839	820	584,895,753	2,452,645,981	2,832.50
823 584,849.257 2,452,781.942 2,832.50 824 584,836.312 2,452,735.053 2,832.50 825 584,841.929 2,452,685.801 2,832.50 826 584,859.517 2,452,639.281 2,832.50 827 584,881.372 2,452,594.569 2,832.50 828 584,908.469 2,452,552.909 2,832.50 829 584,943.809 2,452,535.641 2,832.40 830 584,903.408 2,452,535.641 2,834.00 831 584,876.128 2,452,652.140 2,834.00 832 584,851.695 2,452,666.506 2,834.00 833 584,830.727 2,452,666.506 2,834.00 834 584,818.774 2,452,764.406 2,834.00 835 584,823.591 2,452,737.571 2,834.00 836 584,901.952 2,452,737.571 2,834.00 837 584,866.029 2,452,781.025 2,834.00 838 584,849.208 2,452,804.383 2,834.00 839 <td>821</td> <td>584,885.428</td> <td>2,452,694.680</td> <td>2,832.50</td>	821	584,885.428	2,452,694.680	2,832.50
824 584,836.312 2,452,735.053 2,832.50 825 584,841.929 2,452,685.801 2,832.50 826 584,859.517 2,452,639.281 2,832.50 827 584,881.372 2,452,594.569 2,832.50 828 584,908.469 2,452,552.909 2,832.50 829 584,943.809 2,452,535.641 2,834.00 831 584,903.408 2,452,537.529 2,834.00 832 584,851.695 2,452,621.140 2,834.00 833 584,830.727 2,452,666.506 2,834.00 834 584,818.774 2,452,714.874 2,834.00 835 584,835.591 2,452,764.406 2,834.00 836 584,901.952 2,452,781.025 2,834.00 837 584,886.029 2,452,781.025 2,834.00 838 584,849.208 2,452,845.907 2,835.50 840 584,869.770 2,452,545.907 2,835.50 841 584,800.765 2,452,581.994 2,835.50 842 <td>822</td> <td>584,874.341</td> <td>2,452,743.202</td> <td>2,832.50</td>	822	584,874.341	2,452,743.202	2,832.50
825 584,841.929 2,452,685.801 2,832.50 826 584,859,517 2,452,639.281 2,832.50 827 584,881.372 2,452,594.569 2,832.50 828 584,908.469 2,452,552.909 2,832.50 829 584,943.809 2,452,535.641 2,832.50 830 584,961.28 2,452,535.641 2,834.00 831 584,876.128 2,452,577.529 2,834.00 832 584,851.695 2,452,621.140 2,834.00 833 584,830.727 2,452,666.506 2,834.00 834 584,818.774 2,452,714.874 2,834.00 835 584,901.952 2,452,737.571 2,834.00 836 584,901.952 2,452,781.025 2,834.00 837 584,866.029 2,452,781.025 2,834.00 838 584,891.028 2,452,861.907 2,835.50 840 584,869.770 2,452,545.907 2,835.50 841 584,830.333 2,452,626.706 2,835.50 842	823	584,849.257	2,452,781.942	2,832.50
826 584,859.517 2,452,639.281 2,832.50 827 584,881.372 2,452,594.569 2,832.50 828 584,908.469 2,452,552.909 2,832.50 829 584,943.809 2,452,543.140 2,832.50 830 584,903.408 2,452,535.641 2,834.00 831 584,876.128 2,452,577.529 2,834.00 832 584,851.695 2,452,621.140 2,834.00 833 584,830.727 2,452,666.506 2,834.00 834 584,818.774 2,452,714.874 2,834.00 835 584,823.591 2,452,737.571 2,834.00 836 584,901.952 2,452,737.571 2,834.00 837 584,866.029 2,452,781.025 2,834.00 838 584,894.208 2,452,804.383 2,834.00 839 584,869.770 2,452,545.907 2,835.50 840 584,830.333 2,452,626.706 2,835.50 841 584,803.539 2,452,772.93 2,835.50 843	824	584,836.312	2,452,735.053	2,832.50
827 584,881.372 2,452,594.569 2,832.50 828 584,908.469 2,452,552.909 2,832.50 829 584,943.809 2,452,543.140 2,832.50 830 584,903.408 2,452,535.641 2,834.00 831 584,876.128 2,452,577.529 2,834.00 832 584,851.695 2,452,666.506 2,834.00 833 584,830.727 2,452,666.506 2,834.00 834 584,818.774 2,452,714.874 2,834.00 835 584,823.591 2,452,764.406 2,834.00 836 584,901.952 2,452,737.571 2,834.00 837 584,866.029 2,452,781.025 2,834.00 838 584,849.208 2,452,804.383 2,834.00 839 584,869.770 2,452,545.907 2,835.50 840 584,869.765 2,452,581.994 2,835.50 841 584,803.333 2,452,673.990 2,835.50 842 584,814.182 2,452,772.515 2,835.50 843 <td>825</td> <td>584,841.929</td> <td>2,452,685.801</td> <td>2,832.50</td>	825	584,841.929	2,452,685.801	2,832.50
828 584,908.469 2,452,552.909 2,832.50 829 584,943.809 2,452,543.140 2,832.50 830 584,903.408 2,452,535.641 2,834.00 831 584,876.128 2,452,577.529 2,834.00 832 584,851.695 2,452,666.506 2,834.00 833 584,830.727 2,452,666.506 2,834.00 834 584,818.774 2,452,714.874 2,834.00 835 584,823.591 2,452,737.571 2,834.00 836 584,901.952 2,452,781.025 2,834.00 837 584,866.029 2,452,781.025 2,834.00 838 584,849.208 2,452,804.383 2,834.00 839 584,869.770 2,452,545.907 2,835.50 840 584,850.765 2,452,626.706 2,835.50 841 584,830.333 2,452,626.706 2,835.50 842 584,814.182 2,452,772.793 2,835.50 843 584,803.539 2,452,772.515 2,835.50	826	584,859.517	2,452,639.281	2,832.50
829 584,943.809 2,452,543.140 2,832.50 830 584,903.408 2,452,535.641 2,834.00 831 584,876.128 2,452,577.529 2,834.00 832 584,851.695 2,452,621.140 2,834.00 833 584,830.727 2,452,666.506 2,834.00 834 584,818.774 2,452,714.874 2,834.00 835 584,823.591 2,452,764.406 2,834.00 836 584,901.952 2,452,737.571 2,834.00 837 584,866.029 2,452,781.025 2,834.00 838 584,849.208 2,452,804.383 2,834.00 839 584,869.770 2,452,545.907 2,835.50 840 584,850.765 2,452,581.094 2,835.50 841 584,803.333 2,452,626.706 2,835.50 842 584,814.182 2,452,772.993 2,835.50 843 584,802.963 2,452,772.515 2,835.50	827	584,881.372	2,452,594.569	2,832.50
830 584,903.408 2,452,535.641 2,834.00 831 584,876.128 2,452,577.529 2,834.00 832 584,851.695 2,452,621.140 2,834.00 833 584,830.727 2,452,666.506 2,834.00 834 584,818.774 2,452,714.874 2,834.00 835 584,823.591 2,452,764.406 2,834.00 836 584,901.952 2,452,737.571 2,834.00 837 584,866.029 2,452,781.025 2,834.00 838 584,849.208 2,452,804.383 2,834.00 839 584,869.770 2,452,545.907 2,835.50 840 584,850.765 2,452,581.094 2,835.50 841 584,803.333 2,452,626.706 2,835.50 842 584,814.182 2,452,772.99 2,835.50 843 584,802.963 2,452,722.793 2,835.50 844 584,802.963 2,452,772.515 2,835.50	828	584,908.469	2,452,552.909	2,832.50
831 584,876.128 2,452,577.529 2,834.00 832 584,851.695 2,452,621.140 2,834.00 833 584,830.727 2,452,666.506 2,834.00 834 584,818.774 2,452,714.874 2,834.00 835 584,823.591 2,452,764.406 2,834.00 836 584,901.952 2,452,781.025 2,834.00 837 584,866.029 2,452,781.025 2,834.00 838 584,849.208 2,452,804.383 2,834.00 839 584,869.770 2,432,545.907 2,835.50 840 584,850.765 2,452,681.094 2,835.50 841 584,830.333 2,452,626.706 2,835.50 842 584,814.182 2,452,673.990 2,835.50 843 584,802.963 2,452,772.515 2,835.50 844 584,802.963 2,452,772.515 2,835.50	829	584,943.809	2,452,543.140	2,832.50
832 584,851.695 2,452,621.140 2,834.00 833 584,830.727 2,452,666.506 2,834.00 834 584,818.774 2,452,714.874 2,834.00 835 584,823.591 2,452,764.406 2,834.00 836 584,901.952 2,452,737.571 2,834.00 837 584,869.029 2,452,781.025 2,834.00 838 584,849.208 2,452,804.383 2,834.00 839 584,869.70 2,452,545.907 2,835.50 840 584,850.765 2,452,581.094 2,835.50 841 584,830.333 2,452,626.706 2,835.50 842 584,814.182 2,452,673.990 2,835.50 843 584,803.539 2,452,722.793 2,835.50 844 584,802.963 2,452,772.515 2,835.50	830	584,903.408	2,452,535.641	2,834.00
833 584,830.727 2,452,666.506 2,834.00 834 584,818.774 2,452,714.874 2,834.00 835 584,823.591 2,452,764.406 2,834.00 836 584,901.952 2,452,737.571 2,834.00 837 584,886.029 2,452,781.025 2,834.00 838 584,849.208 2,452,804.383 2,834.00 839 584,869.770 2,452,545.907 2,835.50 840 584,850.765 2,452,581.094 2,835.50 841 584,830.333 2,452,626.706 2,835.50 842 584,814.182 2,452,722.793 2,835.50 843 584,803.539 2,452,722.793 2,835.50 844 584,802.963 2,452,772.515 2,835.50	831	584,876.128	2,452,577.529	2,834.00
834 584,818.774 2,452,714.874 2,834.00 835 584,823.591 2,452,764.406 2,834.00 836 584,901.952 2,452,737.571 2,834.00 837 584,886.029 2,452,781.025 2,834.00 838 584,849.208 2,452,804.383 2,834.00 839 584,869.770 2,452,545.907 2,835.50 840 584,850.765 2,452,681.094 2,835.50 841 584,830.333 2,452,673.990 2,835.50 842 584,814.182 2,452,673.990 2,835.50 843 584,803.539 2,452,722.793 2,835.50 844 584,802.963 2,452,772.515 2,835.50	832	584,851.695	2,452,621.140	2,834.00
835 584,823.591 2,452,764.406 2,834.00 836 584,901.952 2,452,737.571 2,834.00 837 584,886.029 2,452,781.025 2,834.00 838 584,849.208 2,452,804.383 2,834.00 839 584,869.770 2,452,545.907 2,835.50 840 584,850.765 2,452,581.094 2,835.50 841 584,830.333 2,452,626.706 2,835.50 842 584,814.182 2,452,73.990 2,835.50 843 584,803.539 2,452,722.793 2,835.50 844 584,802.963 2,452,772.515 2,835.50	833	584,830.727	2,452,666.506	2,834.00
836 584,901.952 2,452,737.571 2,834.00 837 584,866,029 2,452,781.025 2,834.00 838 584,849.208 2,452,804.383 2,834.00 839 584,869.770 2,452,545.907 2,835.50 840 584,850.765 2,452,581.094 2,835.50 841 584,830.333 2,452,626.706 2,835.50 842 584,814.182 2,452,673.990 2,835.50 843 584,803.539 2,452,722.793 2,835.50 844 584,802.963 2,452,772.515 2,835.50	834	584,818.774	2,452,714.874	2,834.00
837 584,886.029 2,452,781.025 2,834.00 838 584,849.208 2,452,804.383 2,834.00 839 584,869.770 2,452,545.907 2,835.50 840 584,850.765 2,452,581.094 2,835.50 841 584,830.333 2,452,626.706 2,835.50 842 584,814.182 2,452,673.990 2,835.50 843 584,803.539 2,452,722.793 2,835.50 844 584,802.963 2,452,772.515 2,835.50	835	584,823.591	2,452,764.406	2,834.00
838 584,849.208 2,452,804.383 2,834.00 839 584,869.770 2,452,545.907 2,835.50 840 584,850.765 2,452,581.094 2,835.50 841 584,830.333 2,452,626.706 2,835.50 842 584,814.182 2,452,673.990 2,835.50 843 584,803.539 2,452,722.793 2,835.50 844 584,802.963 2,452,772.515 2,835.50	836	584,901.952	2,452,737.571	2,834.00
839 584,869.770 2,452,545.907 2,835.50 840 584,850.765 2,452,581.094 2,835.50 841 584,830.333 2,452,626.706 2,835.50 842 584,814.182 2,452,673.990 2,835.50 843 584,803.539 2,452,722.793 2,835.50 844 584,802.963 2,452,772.515 2,835.50	837	584,886.029	2,452,781.025	2,834.00
840 584,850.765 2,452,581.094 2,835.50 841 584,830.333 2,452,626.706 2,835.50 842 584,814.182 2,452,673.990 2,835.50 843 584,803.539 2,452,722.793 2,835.50 844 584,802.963 2,452,772.515 2,835.50	838	584,849.208	2,452,804.383	2,834.00
841 584,830.333 2,452,626.706 2,835.50 842 584,814.182 2,452,673.990 2,835.50 843 584,803.539 2,452,722.793 2,835.50 844 584,802.963 2,452,772.515 2,835.50	839	584,869.770	2,452,545.907	2,835.50
842 584,814,182 2,452,673,990 2,835,50 843 584,803,539 2,452,722,793 2,835,50 844 584,802,963 2,452,772,515 2,835,50	840	584,850.765	2,452,581.094	2,835.50
843 584,803.539 2,452,722.793 2,835.50 844 584,802.963 2,452,772.515 2,835.50	841	584,830.333	2,452,626.706	2,835.50
844 584,802.963 2,452,772.515 2,835.50	842	584,814.182	2,452,673.990	2,835.50
	843	584,803.539	2,452,722.793	2,835.50
845 584,808.933 2,452,821.986 2,835.50	844	584,802.963		2,835.50
	845	584,808.933	2,452,821.986	2,835.50
846 584,896.335 2,452,503.565 2,835.50	846	584,896.335	2,452,503.565	2,835.50

Point	North	East	Elevation
900	585,050,111	2.452.479.507	2.832.50
901	585,100.744	2,452,459.066	2,832.50
902	585,139.185	2,452,413.658	2.832.50
903	585,105.732	2,452,372.042	2,832.50
904	585,056,935	2,452,403.792	2,832.50
905	585,016.909	2,452,443.084	2,832.50
906	585,223.091	2,452,377.645	2,835.50
907	585,220.094	2,452,423.543	2,835.50
908	585,201,319	2,452,421,373	2,835.50
909	585,190,779	2,452,469.635	2,835.50
910	585,217,774	2,452,352,968	2.835.00
911	585,151,974	2,452,462,270	2,834.00
912	585,169.480	2,452,417.035	2,834.00
913	585,156.581	2,452,369.507	2,834.00
914	585,116.785	2,452,345.270	2,834.00
915	585,080.171	2,452,360.807	2,834.00
916	585,039.728	2,452,390.082	2,834.00
917	585,002.341	2,452,423.262	2,834.00
918	584,966.817	2,452,458.438	2,834.00
919	585,221.536	2,452,324.684	2,835.50
920	585,171.625	2,452,323.344	2,835.50
921	585,122,452	2,452,315.952	2,835.50
922	585,075.476	2,452,332,131	2,835.50
923	585,033.511	2,452,359.191	2,835.50
924	584,995.118	2,452,391.196	2,835.50
925	584,959.196	2,452,425.962	2,835.50
926	584,926.088	2,452,463.403	2,835.50
927	585,065.553	2,452,511.125	2,834.00
928	585,063.005	2,452,540.506	2,835.50
929	585,110.701	2,452,525.521	2,835.50
930	585,111.218	2,452,490.794	2,834.00
931	585,156,120	2,452,504.852	2.835.50

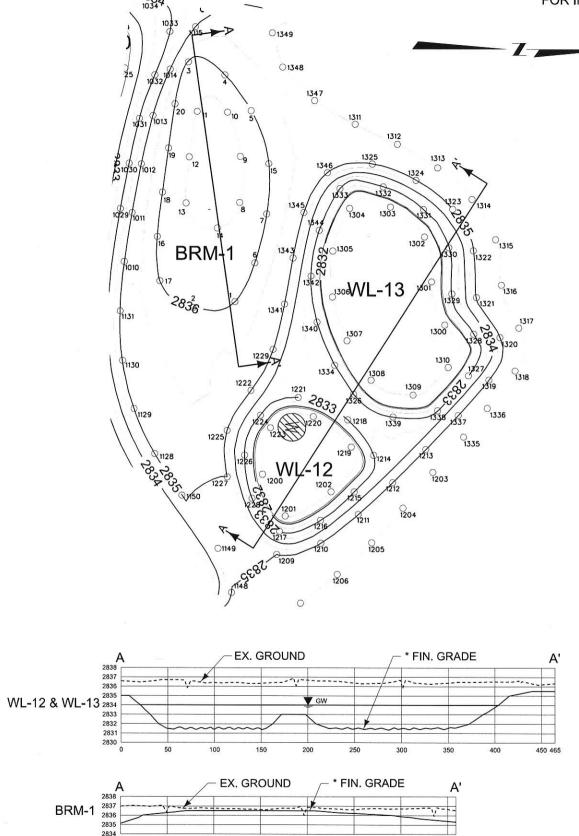

* FINISHED GRADE ELEVATIONS DO NOT INCLUDE TOPSOIL PLACEMENT. ROUGHEN AND UNDULATE THE BOTTOM.

MONTANA DEPARTMENT OF TRANSPORTATION OF	WETLAND PLANS	WS #14 AQUATIC MITIGATION	PROJECT NO. STPX STWD (56)
OF TRANSPORTATION 11:45:30 AM CPS - U2623	BIG HORN COUNTY	CSF = 0.99946705 UPN 7286	SHEET 13 OF 15

Point	North	East	Elevation
1000	585,395,364	2,452,409,205	2.831.50
1001	585,364.513	2,452,367.915	2,831.50
1002	585,372,224	2,452,405,894	2,831.50
1002	585,301,027	2,452,421.705	2,835,50
1004	585,266,115	2,452,396.768	2,835.50
1005	585,453.059	2,452,423.514	2,835.50
1006	585,298.043	2,452,405.151	2,835.50
1007	585,262.331	2,452,370.103	2,835.50
1008	585,340.115	2,452,356.846	2,835.50
1000	585,393,535	2,452,369.832	2,835.50
1010	585,404,362	2,452,422.473	2,835.00
1010	585,359.475	2,452,422.473	2,835.00
1012	585,320,295	2,452,373.675	2,835.00
1012	585,436.536	2,452,373.675	2,835.00
1013	585,452,733	2,452,383.060	2,835.00
1014	585,431.692	2,452,365.060	2,835.00
1013	303,431.092	2,432,343.024	2,633.00
1017	585,327,496	2,452,590.583	2,835.00
1018	585,339,127	2,452,541,923	2,835.00
1019	585,342.353	2,452,492,149	2,835.00
1020	585,328,755	2,452,444.449	2,835.00
1021	585,298.043	2,452,405.151	2,835.00
1022	585,262.331	2,452,370.103	2,835.00
1023	585,340.115	2,452,356.846	2,832.50
1024	585,393.535	2,452,369.832	2,832.50
1025	585,404.362	2,452,422.473	2,832.50
1026	585,383,588	2,452,470,462	2,832.50
1027	585,359.475	2,452,415.454	2,832.50
1028	585,320.295	2,452,373.675	2,832.50
1029	585,399.622	2,452,573.017	2,834.00
1030	585,408.869	2,452,524.444	2,834.00
1031	585,420.041	2,452,476.280	2,834.00
1032	585,436.536	2,452,429,723	2,834.00
1033	585,452.733	2,452,383.060	2,834.00
1034	585,431.692	2,452,345.824	2,834.00
1035	585,383.386	2,452,335.294	2,834.00
1036	585,334,140	2,452,332.684	2,834.00
1037	585,285.089	2,452,338.875	2,834.00
1038	585,274.878	2,452,366.035	2,834.00
1039	585,311.001	2,452,399.796	2,834.00
1040	585,271.107	2,452,319.041	2,835.50
1041	585,310.360	2,452,311.617	2,835.50
1042	585,360.223	2,452,308.701	2,835.50
1043	585,409,439	2,452,316.541	2,835.50
1044	585,458.819	2,452,313,355	2,835.50

Point	North	East	Elevation
1100	585,421.552	2,452,905.709	2,831.50
1101	585,395.517	2,452,859.534	2,831.50
1102	585,370.512	2,452,812.781	2,831.50
1103	585,340.172	2,452,827.233	2,831.50
1104	585,343.501	2,452,879.791	2,831,50
1105	585,368.669	2,452,925.896	2,831.50
1106	585,416.941	2,452,936.056	2,831,50
1107	585,451,346	2,453,034.628	2,835.50
1108	585,402,126	2,453,026.034	2,835.50
1109	585,355,113	2,453,009.285	2,835,50
1110	585,317.183	2,452,981.280	2,835.50
1111	585,292.677	2,452,939.215	2,835.50
1112	585,279.340	2,452,892.415	2,835.50
1113	585,276,477	2,452,843.656	2,835.50
1114	585,275,297	2,452,794,806	2,835.50
1115	585,274,003	2,452,745.960	2,835.50
1116	585,273.114	2,452,697.105	2,835.50
1117	585,382,871	2,452,805,923	2,832.00
1118	585,401.994	2,452,851.817	2,832.00
1119	585,428.418	2,452,893.962	2,832.00
1120	585,456,284	2,452,935.196	2,832.00
1121	585,439.358	2,452,968.354	2,832.00
1122	585,390.381	2,452,964.200	2,832.00
1123	585,356.413	2,452,929.246	2,832.00
1124	585,340.294	2,452,882.535	2,832.00
1125	585,335.337	2,452,833.039	2,832.00
1126	585,335.005	2,452,783.269	2,832.00
1127	585,336.256	2,452,733.508	2,832.00
1128	585,436.270	2,452,835.865	2,835.00
1129	585,414.077	2,452,787.604	2,835.00
1130	585,401.806	2,452,735.954	2,835.00
1131	585,399.333	2,452,682.880	2,835.00
1132	585,372,194	2,452,767.407	2,832.00
1133	585,365.475	2,452,719.704	2,832.00
1134	585,340.567	2,452,683,291	2,832.00
1135	585,433.632	2,453,018.809	2,835.00
1136	585,385,486	2,453,005.798	2,835.00
1137	585,344.644	2,452,977.458	2,835.00
1138	585,317.449	2,452,935,734	2,835.00
1139	585,303.818	2,452,887.714	2,835.00
1140	585,299.976	2,452,837.855	2,835.00
1141	585,300.097	2,452,787.811	2,835.00
1142	585,300.664		
1142	585,304.444	2,452,737.771 2,452,687.899	2,835.00
1143	585,361.919		2,835.00
		2,452,671.646	2,832.00
1145	585,314.419	2,452,638.888	2,835.00
1146	585,501.154	2,453,035.087	2,835.50
1147	585,483.295	2,453,016.267	2,835.00
1148	585,518.526	2,452,984.443	2,835.00
1149 1150	585,503.982 585,465,384	2,452,937.255 2,452,880.383	2,835.00 2,835.00

* FINISHED GRADE ELEVATIONS DO NOT INCLUDE TOPSOIL PLACEMENT. ROUGHEN AND UNDULATE THE BOTTOM.


| MONTANA DEPARTMENT | OF TRANSPORTATION | | 11:45:36 AM | CPS - U2623 | | DESIGNED BY | LOUISE STONER | 10/24/2014 | | 10/24/2015 | | 11:45:36 AM | CPS - U2623 | | CHECKED BY | WADE SALYARDS, PE | 3/18/2015 | | CHECKED BY | CPS - U2623 | | CHECKED BY | CPS - U2623 | | CPS - U2623 | | CPS - U2623 | CPS - U262

10/24/2014 WETLAND PLANS 3/18/2015 BIG HORN COUNTY

 WS #14 AQUATIC MITIGATION
 PROJECT NO. STPX STWD (56)

 CSF = 0.99946705
 UPN 7286000
 SHEET 14 OF 15

NOTE: GW DESIGNATES DESIGN HIGH WATER ELEVATION. FOR INFORMATIONAL PURPOSES ONLY.

Point	North	East	Elevation
1200	585,551.710	2,452,857.770	2,831.50
1201	585,575.966	2,452,902.503	2,831.50
1202	585,625.179	2,452,876.424	2,831.50
1203	585,733.868	2,452,855.454	2,835.50
1204	585,701.886	2,452,893.886	2,835.50
1205	585,668.384	2,452,930.980	2,835.50
1206	585,631.720	2,452,964.957	2,835.50
1207	585,592.394	2,452,995.817	2,835.50
1208	585,548.676	2,453,019.734	2,835.50
1209	585,566.888	2,452,943.627	2,835.00
1210 1211	585,614.257	2,452,931.498 2,452,900,791	2,835.00
1212	585,653.976 585,690,773	2,452,866.550	2,835.00 2,835.00
1213	585,726.338	2,452,831.027	2,835.00
1214	585,670.515	2,452,837.315	2,833.00
1215	585,649.809	2,452,876.528	2,833.00
1216	585,613.945	2,452,907.062	2,833.00
1217	585,569.950	2,452,918.913	2,833.00
1218	585,643.006	2,452,799.363	2,833.00
1219	585,646.649	2,452,828.472	2,831.50
1220	585,606.259	2,452,795.822	2,831.50
1221	585,590.060	2,452,775.351	2,833.00
1222	585,539.470	2,452,767.891	2,835.00
1223	585,560.230	2,452,807.848	2,831.50
1224	585,549.497	2,452,794.441	2,833.00
1225	585,513.823	2,452,810.791	2,835.00
1226 1227	585,532.649	2,452,837.237	2,833.00
1228	585,513.869 585,540.562	2,452,860.586 2,452,883.555	2,835.00 2,833.00
1229	585,563.106	2,452,723.807	2,835.00
1300	585,746.684	2,452,697,385	2,831.50
1301	585,732.743	2,452,651.069	2,831.50
1302	585,725.228	2,452,602.935	2,831.50
1303	585,688.593	2,452,570.929	2,831.50
1304	585,645.143	2,452,572.368	2,831.50
1305	585,627.220	2,452,618.192	2,831.50
1306	585,626.731	2,452,667.448	2,831.50
1307	585,642.280	2,452,714.425	2,831.50
1308	585,667.799	2,452,756.690	2,831.50
1309	585,712.807	2,452,772.630	2,831.50
1310	585,750.362	2,452,742.943 2,452,482.214	2,831.50
1312	585,651.121 585,696.269	2,452,503.684	2,835.50 2,835.50
1313	585,739.386	2,452,528.860	2,835.50
1314	585,775.798	2,452,562.689	2,835.50
1315	585,801.112	2,452,605.733	2,835.50
1316	585,807.307	2,452,654.656	2,835.50
1317	585,825.981	2,452,700.584	2,835.50
1318	585,821.855	2,452,746.663	2,835.50
1319	585,793.726	2,452,756.478	2,835.00
1320	585,805.625	2,452,710.839	2,835.00
1321	585,780.477	2,452,667.814	2,835.00
1322	585,777.191	2,452,617.689	2,835.00
1323 1324	585,755.360	2,452,573,258	2,835.00
1324	585,716.208 585,669.385	2,452,542.263 2,452,524.815	2,835.00 2,835.00
1326	585,649.072	2,452,771,753	2,833.00
1327	585,771.926	2,452,771.838	2,833.00
1328	585,777.570	2,452,707.201	2,833.00
1329	585,754.363	2,452,664.083	2,833.00
1330	585,751.097	2,452,614.440	2,833.00
1331	585,724.141	2,452,573.488	2,833.00
1332	585,680.985	2,452,549.201	2,833.00
1333	585,634.867	2,452,551.266	2,833.00
1334	585,629.113	2,452,740.797	2,833.00
1335	585,766.606	2,452,817.663	2,835.50
1336	585,792.009	2,452,786.772	2,835.50
1337	585,760.874	2,452,794.503	2,835.00
1338	585,738.963	2,452,789.326	2,833.00
1339	585,691.177	2,452,796.176	2,833.00
1340 1341	585,610.320	2,452,694.479	2,833.00
1341	585,575.425 585,603.931	2,452,675.111 2,452,645.026	2,835.00 2,833.00
1342	585,584.612	2,452,645.026	2,835.00
1343	585,612.768	2,452,595.963	2,833.00
1345	585,596.326	2,452,576.845	2,835.00
1346	585,621.547	2,452,534.150	2,835.00
1347	585,608.041	2,452,456.925	2,835.50
1348	585,573.712	2,452,421.054	2,835.50
1349	585,562.533	2,452,384.268	2,835.50

Point	North	East	Elevation
1	585,522.288	2,452,672.581	2,836.00
2	585,477.391	2,452,679.014	2,836.00
3	585,472.484	2,452,415.714	2,836.00
4	585,511.564	2,452,429.542	2,836.00
5	585,539.877	2,452,467.937	2,836.00
6	585,543.718	2,452,630.969	2,836.00
7	585,556.352	2,452,578.442	2,836.00
8	585,527.526	2,452,566.257	2,836.50
9	585,528.184	2,452,516.918	2,836.50
10	585,514.477	2,452,469.504	2,836.50
11	585,481.986	2,452,468.702	2,836.50
12	585,473.363	2,452,517.487	2,836.50
13	585,469.881	2,452,566.954	2,836.50
14	585,503.409	2,452,593.732	2,836.50
15	585,558.653	2,452,524.557	2,835.50
16	585,439.068	2,452,602.880	2,835.50
17	585,441.758	2,452,650.373	2,835.50
18	585,444.643	2,452,555.374	2,835.50
19	585,451.217	2,452,507.983	2,835.50
20	585,458.198	2,452,460.653	2,835.50

* FINISHED GRADE ELEVATIONS DO NOT INCLUDE TOPSOIL PLACEMENT. ROUGHEN AND UNDULATE THE BOTTOM.

3 MPTA	MONTANA DEPARTMENT
MUIX	OF TRANSPORTATION

c:\dgn\7286000enplp002.dgn		DESIGNED BY	LOUISE STONER	10/24/2014	WETLAND	DLANC
6/10/2015		REVIEWED BY	WADE SALYARDS, PE	3/18/2015	WETLAND	PLANS
		CHECKED BY			DIG LIGHN	COLINITY
11:45:41 AM	CPS - U2623				BIG HORN	COUNTY

WS #14 AQUATI	C MITIGATION	PROJECT NO. STPX STWD (56)
CSF = 0.99946705	UPN 7286000	SHEET 15 OF 15