MONTANA DEPARTMENT OF TRANSPORTATION WETLAND MITIGATION MONITORING REPORT

SCHRIEBER LAKE MITIGATION SITE LINCOLN COUNTY, MONTANA

PROJECT COMPLETED: 2014

MONITORING REPORT #7: DECEMBER 2017

Prepared for:

2701 Prospect Avenue Helena, Montana 59620

Prepared by:

820 North Montana Ave, Suite A Helena, Montana 59601

Montana Department of Transportation Wetland Mitigation Monitoring Report: Year 2017

SCHRIEBER LAKE MITIGATION SITE LINCOLN COUNTY, MONTANA SITE-WIDE CONSTRUCTION: 2014

MDT Project Number NH 27(029) Control Number 1027007

Corps #: NWO-2013-00874-MTM SPA MDT-R1-40-2013

prepared for

Montana Department of Transportation 2701 Prospect Avenue Helena, Montana 59620

prepared by

RESPEC 820 North Montana Avenue, Suite A Helena, Montana 59601

December 2017

"MDT attempts to provide accommodations for any known disability that may interfere with a person participating in any service, program, or activity of the Department of Transportation. Alternative accessible formats of this information will be provided upon request. For further information, call 406-444-7228, TTY at 800-335-7592, or Montana Relay at 711."

TABLE OF CONTENTS

1.0	INTF	ODUCTION	.1
	1.1	WETLAND MITIGATION OBJECTIVES	.3
	1.2	STREAM-MITIGATION OBJECTIVES	.4
	1.3	APPROVED PERFORMANCE STANDARDS	.4
2.0	MET	HODS	.6
	2.1	HYDROLOGY	.6
	2.2	VEGETATION	.7
	2.3	SOIL	.7
	2.4	WETLAND DELINEATION	.8
	2.5	WILDLIFE	
	2.6	FUNCTIONAL ASSESSMENT	.8
	2.7	PHOTOGRAPHIC DOCUMENTATION	.9
	2.8	STREAM-MONITORING METHODS	.9
		2.8.1 Channel Cross Sections	.9
		2.8.2 Bank Pins	.9
		2.8.3 Vegetation Monitoring at Perpendicular Belt Transects	.9
		2.8.4 Vegetation Monitoring at Parallel Belt Transects	.10
	2.9	GLOBAL POSITIONING SYSTEM DATA	.10
	2.10	MAINTENANCE NEEDS	.11
3.0	RES	JLTS	.11
	3.1	HYDROLOGY	.11
	3.2	VEGETATION	.11
	3.3	SOIL	.20
	3.4	WETLAND DELINEATION	.21
	3.5	WILDLIFE	.21
	3.6	FUNCTIONAL ASSESSMENT	.24
	3.7	PHOTOGRAPHIC DOCUMENTATION	
	3.8	STREAM-MONITORING RESULTS	.25
		3.8.1 Channel Cross Sections	
		3.8.1.1 Schrieber Creek, Reach 1	.27
		3.8.1.2 Schrieber Creek, Reach 2A	.27
		3.8.1.3 Schrieber Creek, Reach 2B	.27
		3.8.1.4 Schrieber Creek, Reach 3	.27
		3.8.1.5 Schrieber Creek, Reach 7	.27
		3.8.1.6 Coyote Creek, Reach 1A	
		3.8.1.7 Coyote Creek, Reach 1B	
		3.8.1.8 Assessment From Current Monitoring Year Survey	.28
		3.8.2 Bank Pins	
		3.8.3 Vegetation Monitoring at Perpendicular Belt Transects	
		3.8.4 Vegetation Monitoring at Parallel Belt Transects	
		3.8.4.1 Percent Vegetation Cover	
		3.8.4.2 Stream Bank Vegetation	
		3.8.4.3 Woody Vegetation Survival	.34

TABLE OF CONTENTS (continued)

4.0	REFERENCES	43
	3.10.3 Stream-Mitigation Credit	41
	3.10.2 Performance Standards and Success Criteria	
	3.10.1 Wetland Mitigation Credit	35
	3.10 CURRENT CREDIT SUMMARY	35
	3.9 MAINTENANCE NEEDS	35

LIST OF TABLES

TABLE	F	PAGE
1-1	Determination of Wetland Credits	4
2-1	Riparian Buffer Widths for Each Reconstructed Channel Reach as Specified in the Schrieber Lake Mitigation Plan	10
3-1	Vegetation Species Identified From 2015 Through 2017 at the Schrieber Lake Site	12
3-2	Data Summary for T-1 From 2015 Through 2017 at the Schrieber Lake Site	16
3-3	Data Summary for T-2 From 2015 Through 2017 at the Schrieber Lake Site	17
3-4	Data Summary for T-3 From 2015 Through 2017 at the Schrieber Lake Site	19
3-5	Project Upland and Delineated Wetland Acres From 2015 Through 2017	21
3-6	Wildlife Observed at the Schrieber Lake Site From 2015 Through 2017	22
3-7	Functions and Values of the Schrieber Lake Site From 2015 to 2017	24
3-8	Surveyed Cross-Section Parameters at the Schrieber Lake Site From 2015 Through 2017	26
3-9	Exposed Rebar Length at Select Cross Sections From 2015 Through 2017	29
3-10	Results of Vegetation Inventory Within Perpendicular Belt Transects From 2015 Through 2017	30
3-11	Results of Vegetation Inventory Within Parallel Belt Transects From 2015 Through 2017	32
3-12	Combined Cover for Riparian and Stream Bank Vegetation Transects in 2017	33
3-13	Vegetation Communities Identified at Each Monitoring Cross Section	34
3-14	Summary of Wetland Credits at the Schrieber Lake Site 2015–2017	36
3-15	Summary of Performance Standards and Success Criteria at the Schrieber Lake Site in 2017	37
3-16	Anticipated Riparian and Stream Credits Generated From the Schrieber Lake Site	41

LIST OF FIGURES

IGURE PAG	ŧΕ
1-1 Project Location of the Schrieber Lake Site	2
IST OF CHARTS	
CHART PAG	ŧΕ
3-1 Transect Map Showing Community Types on T-1 From 2015 Through 2017 From Start (0 Foot) to Finish	6
3-2 Length of Habitat Types Within T-1 From 2015 Through 2017	7
3-3 Transect Map Showing Community Types on T-2 From 2015 Through 2017 From Start (0 Foot) to Finish	8
3-4 Length of Habitat Types Within T-2 From 2015 Through 2017	8
3-5 Transect Map Showing Community Types on T-3 From 2015 Through 2017 From Start (0 Foot) to Finish	9
3-6 Length of Habitat Types Within T-3 From 2015 Through 2017	0
LIST OF APPENDICES	
PPENDIX A. PROJECT AREA MAPS A	-1
PPENDIX B. MONITORING FORMS	-1
PPENDIX C. PROJECT AREA PHOTOGRAPHS C	-1
PPENDIX D. SURVEYED STREAM CROSS SECTIONS D	-1
PPENDIX E. PROJECT PLAN SHEETS	-1

Cover: View looking west along Transect 3.

1.0 INTRODUCTION

The Schrieber Lake Wetland Mitigation 2017 Monitoring Report presents the results of the third year of post-construction monitoring at the Schrieber Lake mitigation area. The site was acquired by the Montana Department of Transportation (MDT) in 2010 to provide compensatory mitigation for both stream and wetland impacts associated with the proposed Swamp Creek – East projects along the US Highway 2 corridor and to serve as a mitigation bank for future transportation projects within Watershed #1 – Kootenai River basin. Construction of the Schrieber Lake mitigation project was completed in 2014, and final revegetation of the site occurred in 2015.

Figures A-2 and A-3 in Appendix A of this report show the monitoring activity locations and mapped site features, respectively. Appendix B contains the MDT Wetland Mitigation Site Monitoring form, the US Army Corps of Engineers (USACE) Wetland Determination Data forms for the Western Mountains, Valleys, and Coast (WMVC) Region [USACE, 2010], and the 2008 MDT Montana Wetland Assessment Method (MWAM) forms. Appendix C contains photographs of the project area, Appendix D incudes the surveyed stream cross sections, and Appendix E includes project plan sheets.

The MDT Schrieber Lake mitigation project is located adjacent to the US Highway 2 corridor in Sections 12 and 13 of Township 27 North, Range 30 West, Lincoln County, Montana, as shown in Figure 1-1. The 79.6-acre site lies within the boundaries of Watershed #1 – Kootenai River Basin. This site is situated directly downstream and adjacent to the 141-acre, MDT-owned Schrieber Meadows aquatic mitigation project. The property is bisected by Schrieber and Coyote Creeks, which drain into Schrieber Lake, which eventually drains into the Fisher River. Schrieber Lake is situated within a narrow valley corridor that is bordered on the western and northern sides by the Kootenai National Forest. The US Highway 2 corridor bounds the area to the east. Privately owned timber company land (formerly Plum Creek Timber and now Weyerhaeuser) occurs immediately adjacent to the site on the southwestern side.

Before the construction of the Schrieber Lake Mitigation Project, the area consisted of hay grounds and historic wetlands that had been filled, graded, leveled, and drained. The stream channel had been channelized to promote and maximize hay production and grazing opportunities for livestock, as well as to flood irrigate the adjacent hay pastures. Historically, the project site was likely a large floodplain and beaver pond complex of mixed riparian scrub/shrub and emergent wetlands associated with both Coyote and Schrieber Creeks.

The goals of the mitigation project include preserving, restoring, and creating wetland and riparian habitats. Specifically, MDT plans to restore the hydrology to approximately 19 acres of drained wetlands by excavating and creating depressional wetland cells; protect the existing 10.2 acres of fencarr shrubland wetland vegetation community; restore previously developed agricultural areas into native wetland and upland plant communities through seeding and plantings; relocate and reconstruct approximately 3,000 linear feet of Schrieber Creek from the adjacent Schrieber Meadows site to its historic channel and outfall into Schrieber Lake; and to relocate and restore approximately 1,400 linear feet of channelized Coyote Creek to its historic channel and outfall into Schrieber Lake. Although technically located on the Schrieber Meadow site, monitoring of the reconstructed Schrieber Creek channel is being completed as part of the Schrieber Lake monitoring. The total area being monitored is 104.7 acres.

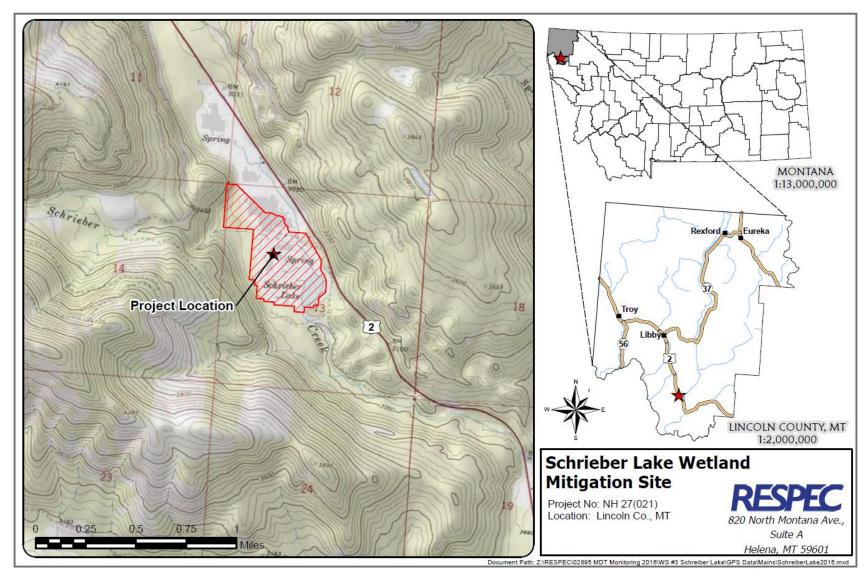


Figure 1-1. Project Location of the Schrieber Lake Site.

MDT anticipates developing 13.4 wetland credit acres from the Schrieber Lake project (Appendix E). The plan includes creation, restoration (rehabilitation and enhancement), and upland buffer credits. The entire Schrieber Lake mitigation project encompassed creating additional depression wetland cells and buffer areas within upland and degraded wetlands, enhancing scrub/shrub palustrine wetlands, and reconstructing the Coyote and Schrieber Creek channels. The crediting objectives of the full Schrieber Lake project include the following:

1.1 WETLAND MITIGATION OBJECTIVES

The mitigation objectives for wetlands on this site are described in detail below. How the proposed wetland credits were determined is further explained in Table 1-1.

- **Creation:** 3.06 wetland credit acres will be created by excavating shallow, seasonal, depressional wetland cells within the upland portions along the edges of the site. These areas will be seeded with a native wetland plant seed mix, and volunteer seeds within the soil bank are expected to also colonize within these sites.
- Restoration (Reestablishment): Approximately 1.69 wetland credit acres will be provided by
 excavating shallow depressions in the portions of the lower hay meadow. These shallow
 depressions were constructed to diversify the vegetation community by removing nonnative
 pasture grass sod within the site. These depressions will be flat and 1–2 feet deep to promote
 revegetation and establishment of sedge species.
- Enhancement: 1.51 wetland credit acres will be derived from the 4.53 acres of area that will be enhanced within the site. Enhancement will be a primary tool for much of the mitigation efforts within the lower hay meadow and will provide for the natural succession of the fen-carr wetland community to expand beyond its current limitations caused by haying operations. The succession of woody species is expected to continue along all edges of the fen-carr shrubland out into the former hay meadow after haying has ceased. Further enhancements within these areas will include seeding and woody plantings.
- **Preservation:** Approximately 6.4 wetland preservation credit acres will be provided. Approximately 25.6 acres of the property will be preserved, primarily because of the unique fen-carr areas that are present within the site.
- Upland Buffers: Approximately 0.76 upland buffer credit is being requested for the created
 wetland cells located at the northern end and within the interior of the property. These upland
 buffers are separated from the proposed riparian buffers for the new stream channels. The
 upland buffer areas will be reseeded and planted with shrubs/trees to diversify the vegetation
 communities adjacent to these created wetlands.
- **Open Water:** The open-water area of Schrieber Lake will be protected and maintained as open water and is not considered part of the preservation credit calculation.

Table 1-1. Determination of Wetland Credits

Wetland Mitigation	Acreage	Ratio ^(a)	Credit Acres
Proposed Creation – Cells	3.06	1 to 1	3.06
Proposed Restoration (Re-establishment) Cells	2.53	1.5 to 1	1.69
Enhancement Areas (Carr Shrubland expansion)	4.53	3 to 1	1.51
Preservation (Existing Fen-Carr-Carex Areas)	25.6	4 to 1	6.40
Upland Buffer (50 feet) ^(b)	3.81	5 to 1	0.76
Open Water – Schrieber Lake	8.60	None	0
Temporary Project Impacts(c)	6.34	None	0
Permanent Project Impacts	0.02	None	-0.02
Total Mitigation Credit Acreage	48.06		13.40 acres

⁽a) Ratios used are from Column A of the Montana Regulatory Program Wetland Compensatory Mitigation Ratios, April 2005.

1.2 STREAM-MITIGATION OBJECTIVES

For the purposes of obtaining stream-mitigation credits for the proposed Schrieber Lake mitigation project, the proposed stream restoration areas that concern Schrieber and Coyote Creeks have been divided into seven distinct reaches: two reaches in Coyote Creek, four reaches in Schrieber Creek, and the combined Coyote Creek/Schrieber Creek channel as the final reach. The following objectives are intended for this site:

- Restore approximately 1,398 linear feet of Coyote Creek stream channel and 2,987 linear feet of the Schrieber Creek channel.
- Develop approximately 36,741.85 stream-mitigation credits by restoring Coyote and Schrieber Creeks for use within Watershed #1 – Kootenai River Basin.

1.3 APPROVED PERFORMANCE STANDARDS

The following list presents the proposed performance standards for the mitigation activities [MDT, 2009].

 Wetland Characteristics for all of the restored created, enhanced, and preserved wetlands within the project limits will meet the three parameter criteria for hydrology, vegetation, and soils established for determining wetland areas as outlined in the 1987 Corps of Engineers Wetland Delineation Manual (1987 Wetland Manual) [Environmental Laboratory, 1987] and the 2010 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (WMVC) (2010 Regional Supplement) [USACE, 2010].

⁽b) Assuming a standard 50-foot upland buffer around the perimeter of the wetland cells constructed adjacent to the uplands.

⁽c) Temporary impacts associated with the restoration, enhancement, and new stream channel construction activities within the site.

- a. **Wetland Hydrology Success** will be achieved where wetland hydrology is present as per the technical guidelines in the 1987 Wetland Manual. Soil saturation will be present for at least 12.5 percent of the growing season.
- b. Hydric Soil Success will be achieved where hydric soil conditions are present (per the most recent Natural Resource Conservation Service [NRCS] definitions for hydric soil) or appear to be forming, the soil is sufficiently stable to prevent erosion, and the soil is able to support plant cover. Because typical hydric soil indicators may require long periods to form, a lack of distinctive hydric soil features will not be considered a failure if hydrologic and vegetation success is achieved.
- c. Hydrophytic Vegetation Success will be achieved where combined absolute cover of facultative or wetter species is 70 percent or greater and state-listed noxious weeds do not exceed 5 percent absolute cover.
- 2. Open Water is intended to be provided by the project during the spring and early summer within excavated depressions. As the growing season progresses and the groundwater levels recede, vegetation is expected to become established within the majority of the depressions. Open water with submerged and/or floating vegetation will, therefore, be considered successful and creditable.
- Channel Restoration Success will be evaluated in terms of revegetation success.
 - a. Revegetation along the new Coyote and Schrieber Creek channel corridors will be considered successful when banks are vegetated with a majority of deep-rooting riparian plant species that have root stability indexes of 6 or greater and wetland herbaceous and woody plant species.
 - b. **New Stream Channels** will be allowed to naturally migrate within the established floodplain/riparian areas and will be given enough room to move and stabilize themselves within the site.
- 4. Bank Restoration Success will be achieved based on the rate of erosion encountered during the monitoring period and will be based on the assessed proper functioning condition assessment using methods outlined by Prichard [1998]. The rate of erosion will be determined by installing bank pins and measured annually for a period of 5 years and/or until the bank vegetation stabilizes.
- 5. Riparian Buffer Success will be achieved when woody and riparian vegetation becomes established and noxious weeds do not exceed 5 percent cover within the riparian buffer areas. Any areas within the creditable buffer area that were disturbed by the project construction must have at least 50 percent aerial cover of nonnoxious weed species by the end of the monitoring period.
 - a. Vegetation Success will be achieved where the combined aerial cover of riparian and stream bank vegetation communities is 70 percent or greater and state-listed noxious weeds do not exceed 5 percent cover, subject to the woody standards listed below.
 - b. Woody Plants, including planted trees and shrubs, will be considered successful where they exhibit 50 percent survival after 5 years. Natural colonization of woody plant species from nearby sources is expected to occur once haying and construction activities cease on the site.

- 6. **Upland Buffer Success** will be achieved when the noxious weeds do not exceed 5 percent of cover within the buffer areas on site. Any area within the creditable buffer zone that was disturbed by project construction must have at least 50 percent aerial cover of nonweed species by the end of the monitoring period.
- 7. Weed Control will be based on annual site monitoring to determine weed species and the degree of infestation within the site. Based on the monitoring results, control measures will be implemented by MDT to minimize and/or eliminate the intrusion of state-listed noxious weed species within the site. MDT managed the property to control known weed problems (knapweed and houndstongue) before wetland construction activities began within the site.

The restoration efforts within the Schrieber Lake site greatly complement the Schrieber Meadows restoration efforts to reestablish a larger aquatic ecosystem across the landscape. Once complete, the two sites will increase migratory bird and endangered species habitat protection, improve water storage within the watershed, reestablish wetlands and other aquatic habitat that will increase wildlife and fisheries habitat in the Schrieber and Coyote Creek drainages, and restore historic wetland and stream functions to the altered landscape within the site.

The construction of the Schrieber Lake mitigation project was authorized under the authority of Section 404 of the Clean Water Act via permit NWO-2013-00874-MTM and in accordance with Montana's Stream Protection Act (SPA) #MDT-R1-40-2013.

2.0 METHODS

The third annual monitoring event was conducted on July 26, 2017, for wetland and streams. Information that was collected to complete the Wetland Mitigation Site Monitoring form and Wetland Determination Data forms was recorded during the field investigation (Appendix B). Monitoring activity locations were mapped using a global positioning system (GPS) (Figure A-2, Appendix A). Data-collection activities included wetland delineation; wetland/open-water/aquatic habitat boundary mapping; vegetation community mapping; vegetation transect monitoring; soils, hydrology, and bird-and wildlife-use documentation; photographs; stream cross sections at 11 established stations; functional assessments; and a nonengineering examination of the established infrastructure in the mitigation project area.

2.1 HYDROLOGY

Technical criteria for wetland hydrology guidelines have been established as "permanent or periodic inundation, or soil saturation within 12 inches of the ground surface for a significant period (usually 14 days or 12.5 percent or more during the growing season)" [USACE, 2010]. Systems with continuous inundation or saturation for greater than 12.5 percent of the growing season are considered wetlands. The growing season is defined for purposes of this report as the number of days where there is a 50 percent probability that the minimum daily temperature is greater than or equal to 28.5 degrees Fahrenheit [Environmental Laboratory, 1987]. The growing season that was recorded for the meteorological station at Libby 32 SSE (245020), which is located approximately 8 miles northwest of the project, extends from June 7 to September 4 for a total of 82 days [NRCS, 2010]. Areas that are

defined as wetlands would require 10 days of inundation or saturation within 12 inches of the ground surface to meet the hydrology criteria and performance standards. Annual precipitation from January through August each year at the Libby 32 SSE (245020) meteorological station will be compared to the long-term average for this area to determine if the site is receiving above-average, below-average, or average precipitation and whether the site is experiencing drought or wet cycles.

The presence of hydrological indicators as outlined on the Wetland Determination Data forms was assessed at two data points that were established within the project area. The hydrologic indicators were evaluated according to features observed in situ during the site visit. The data were recorded on the Wetland Determination Data forms (Appendix B). Hydrologic assessments allow mitigation goals that address inundation and saturation requirements to be evaluated.

Soil pits that were excavated during the wetland delineation were used to evaluate groundwater levels within 18 inches of the ground surface. The data were recorded on the Wetland Determination Data forms (Appendix B). Areas of surface inundation were delineated on an aerial photograph during the growing season. The extent of soil saturation was determined through core sampling.

2.2 VEGETATION

The boundaries of general dominant-species-based vegetation communities were determined in the field during the active growing season and subsequently delineated on the 2017 aerial photographs. The percent cover of dominant species within a community type was estimated and recorded using the following values: 0 (< 1 percent), 1 (1–5 percent), 2 (6–10 percent), 3 (11–20 percent), 4 (21–50 percent), and 5 (> 50 percent) (Appendix B). Community types were named based on the predominant vegetation species that characterized each mapped polygon (Figure A-3, Appendix A).

Temporal changes in vegetation were evaluated by annually monitoring three vegetation belt transects that are approximately 10 feet wide and 384, 280, and 584 feet long, respectively. The transect endpoints were recorded with a GPS unit. Spatial changes in the vegetation communities were recorded along the stationed transect. The percent aerial cover of each vegetation species within the belt transect was estimated using the same cover ranges listed above (Appendix B). Photographs were taken at the endpoints of each transect during the monitoring event (Appendix C).

The *Montana Noxious Weed List* (February 2017), which was prepared by the Montana Department of Agriculture [2017], was used to categorize weeds identified within the site. The location of noxious weeds was noted in the field and mapped on the aerial photograph with noxious weed species color-coded (Figure A-3, Appendix A). Cover classes are represented by a T, L, M, or H, which represent less than 1 percent, 1–5 percent, 6–25 percent, and 26–100 percent, respectively. The total cover by noxious weeds overall across the site was estimated based on the noxious weed cover classes and project acreage.

2.3 SOIL

Soil information was obtained from the Web Soil Survey for Lincoln County Area and in situ soil descriptions accessed from the NRCS official soil description website [US Department of Agriculture,

2016]. Soil cores were excavated using a sharpshooter shovel and evaluated according to procedures outlined in the 1987 Wetland Manual and 2010 WMVC Regional Supplement. A description of the soil profile, including hydric indicators when present, was recorded on the Wetland Determination Data form for each profile (Appendix B).

2.4 WETLAND DELINEATION

Waters of the US, including special aquatic sites and jurisdictional wetlands, were delineated throughout the project area according to criteria established in the 1987 Wetland Manual and the 2010 WMVC Regional Supplement. The technical criteria for hydrophytic vegetation, hydric soil, and wetland hydrology that were described in the 2010 WMVC Regional Supplement must be satisfied to delineate a representative area as jurisdictional. The name and indicator status of plant species was derived from the 2016 national wetland plant list (NWPL) [Lichvar et al., 2016]. A routine level-2 on-site determination method [Environmental Laboratory, 1987] was used to delineate jurisdictional areas within the project boundaries. The information was recorded onto the Wetland Determination Data forms (Appendix B).

The wetland boundary was determined in the field based on changes in plant communities and/or hydrology and changes in soil characteristics. Topographic relief boundaries within the project area were also examined and cross-referenced with soil and vegetation communities as supportive information for this delineation. Vegetation composition, soil characteristics, and hydrology were assessed at likely wetland and adjacent upland locations. If all three parameters met the criteria, the area was designated as wetland and mapped by vegetation community type. If any one of the parameters did not exhibit positive wetland indicators, the area was determined to be upland unless the site was classified as an atypical situation, potential problem area, or special aquatic site (i.e., mudflat). The wetland boundary was surveyed in the field using GPS technology and identified on the 2017 aerial photographs. Wetland areas were calculated using GIS methods.

2.5 WILDLIFE

Observations and other positive indicators of use by mammal, reptile, amphibian, and bird species were recorded on the Wetland Mitigation Site Monitoring forms during each of the site visits. Indirect-use indicators, including tracks, scat, burrows, eggshells, skins, and bones, were also recorded. These signs were recorded while traversing the site for other required activities. Direct sampling methods, such as snap traps, live traps, and pitfall traps, were not used. A comprehensive wildlife species list of animals observed from 2015 through 2017 was compiled for this report.

2.6 FUNCTIONAL ASSESSMENT

The 2008 MDT MWAM has been used to evaluate functions and values on the site since post-construction monitoring began. This method provides an objective means of assigning an overall rating to wetlands and provides regulators with a means of assessing mitigation success based on wetland functions. Functions are self-sustaining properties of a wetland ecosystem that exist in the absence of society and relate to ecological significance without regard to subjective human values [Berglund and McEldowney, 2008]. Field data for this assessment were collected during the site visit. An MWAM form was completed for each wetland or group of wetlands (assessment areas [AAs]) (Appendix B).

2.7 PHOTOGRAPHIC DOCUMENTATION

Monitoring at photo points provided supplemental information that documented wetland, upland, and transect conditions; site trends; and current land uses that surround the site. Photographs were taken at established photo points throughout the site during the site visit (Appendix C). Photo-point locations were recorded with a resource-grade GPS unit (Figure A-2, Appendix A).

2.8 STREAM-MONITORING METHODS

2.8.1 Channel Cross Sections

The Schrieber Lake mitigation plan called for establishing a minimum of one stream cross section per 500 feet of assessed stream reach or one per different stream reach segment to monitor channel form and function, natural channel migration, vertical stability (down-cutting), sediment buildup, thalweg location changes, and stream bank/riparian vegetation development. Eleven permanent monitoring cross sections were established perpendicular to the constructed streams during the 2015 spring site visit (Figure A-2, Appendix A). Rebar was driven into the ground at both ends of each cross section, marked with pink paint and flagging, and covered with a wildlife-friendly cap. Additionally, T-posts were installed at either end of the cross sections to more easily locate the cross sections during the summer months when vegetation cover is high. Cross sections were surveyed initially in 2015, as well as in subsequent monitoring years using a survey-grade GPS with a base station established on site to improve accuracy. Photographs were taken at each cross section and are shown in Appendix C.

2.8.2 Bank Pins

Bank pins (¼-inch steel, painted fluorescent orange to enhance visibility) were installed in 2015 at select monitoring cross sections to document the rate of erosion after construction. Pins were installed perpendicular to the flow below the bankfull elevation. The stick-out of each pin was recorded at the time of installation. Future measures of pin stick-out will permit assessment of lateral erosion during each subsequent monitoring event.

2.8.3 Vegetation Monitoring at Perpendicular Belt Transects

Riparian vegetation monitoring included establishing belt transects perpendicular to the newly constructed channel to document riparian buffer vegetative development, channel migration, and channel and riparian community diversity. Riparian belt transects were 10 feet wide and varied in length based on the width of the riparian buffer specified in the mitigation plan for each reach. Riparian buffer width along each stream reach is listed in Table 2-1. The vegetation inventory within each perpendicular belt transects included documenting total percent vegetation cover and percent cover by noxious weeds.

Table 2-1. Riparian Buffer Widths for Each Reconstructed Channel Reach as Specified in the Schrieber Lake Mitigation Plan

Channel Segment	Reach	Width of Right Riparian Buffer (feet)	Width of Left Riparian Buffer (feet)
Covete Creek	1A	25	25
Coyote Creek	1B	25	50
	1	100	100
	2A	100	100
Schrieber Creek	2B	75	75
	3	25	25
	7	25	25

2.8.4 Vegetation Monitoring at Parallel Belt Transects

Vegetation belt transects were also established parallel to the stream channel to document riparian vegetation development and community diversity within the streamside and riparian buffers. The parallel belt transects were 5 feet wide and extended 12.5 feet upstream and downstream of each monitoring cross section for a total length of 25 feet. A planted vegetation survival assessment was performed within each parallel belt transect to document survival rates of woody vegetation installed along the reconstructed stream banks. The vegetation inventories within each parallel belt transect included compiling a comprehensive species list and assigning a cover class for each species.

The results of the vegetation inventory within the parallel belt transects were used to determine which vegetation communities are present along the reconstructed stream banks. Dominant species that were present along the banks were combined to assign vegetation community types, which were cross-referenced with bank stability indices [Winward, 2000]. If a stability rating was not available for the assigned community, an alternate stability rating was selected based on the individual species observed within the belt transect.

2.9 GLOBAL POSITIONING SYSTEM DATA

Site features and survey points were collected by using a resource-grade (± 1 meter) Trimble R1 GNSS GPS receiver and companion Android tablet during the 2017 monitoring season. The collected data were then transferred to a personal computer, imported into GIS, and projected in Montana State Plane Single Zone NAD 83 meters. Site features and survey points that were located with GPS included wetland boundaries, photo points, transect endpoints, stream cross sections, noxious weed infestations, and wetland data points. All channel cross-section positions were collected with survey-grade, Real-Time Kinematic GPS methods that used a base station on an MDT-established project control point within the project area.

2.10 MAINTENANCE NEEDS

Channels, engineered structures, fencing, bird boxes, and other man-made features were examined during the site visit for obvious signs of breaching, damage, and other problems. This examination was cursory and did not constitute an engineering-level structural inspection.

3.0 RESULTS

3.1 HYDROLOGY

Climate data from the Libby 32 SSE, Montana (245020), weather station recorded an average total annual precipitation rate of 24.44 inches from 1949 to 2016 [Western Regional Climate Center, 2017]. Annual precipitation in 2015 (21.26 inches) and 2016 (21.73 inches) was approximately 3 inches below the long-term average. Precipitation from January through August in 2015 (11.14 inches), 2016 (10.56 inches), and 2017 (8.47 inches) were 4–7 inches below the long-term average for that time of year (14.94 inches). In general, the region that surrounds the project area received below-average precipitation over the past 3 years of monitoring. Based on field observations of hydrology within the site over the first 3 years of monitoring, water levels within the excavated basins appeared to be largely influenced by groundwater and stream discharge with moderate influence from direct precipitation.

During the July 2017 investigation, the average depth of surface water across the site was estimated at 2 feet with a range of depths from 1 to 3 feet. Approximately 80 percent of the AAs were inundated. The surface-water depth at the emergent vegetation and open-water boundary was estimated at 1.1 feet. Direct precipitation also contributes to wetland hydrology, but the high seasonal groundwater table provides the majority of water that drives wetland hydrology within this site. Other site-wide indicators of wetland hydrology included saturation and inundation that is visible on aerial photographs and a seasonal high groundwater table.

Two data points were sampled in 2017 to determine the wetland/upland boundaries. DP-1W was located within wetland community Type 3 – *Phalaris arundinacea/Carex* sp. (Figure A-2, Appendix A). This wetland data point exhibited saturation to 10 inches below the ground surface, hydrogen sulfide odor, and geomorphic position (valley bottom at toe of slope). DP-1U was located upslope from DP-1W within upland community Type 1 – *Elymus repens/Bromus inermis*. No hydrologic indicators were found at DP-1U.

3.2 VEGETATION

A comprehensive list of 96 plant species that were identified on the site between 2015 and 2017 is presented in Table 3-1. No new plant species were identified in 2017. Nine wetland and three upland community types were identified and mapped at the mitigation site in 2017 (Figure A-3, Appendix A). Individual plant species that were observed within each community are listed on the Wetland Mitigation Site Monitoring form (Appendix B). The vegetation community types identified on the site in 2017 are discussed below.

Table 3-1. Vegetation Species Identified From 2015 Through 2017 at the Schrieber Lake Site (Page 1 of 3)

Scientific Names	Common Names	WMVC Indicator Status ^(a)
Abies grandis	Grand Fir	FACU
Achillea millefolium	Common Yarrow	FACU
Agrostis scabra	Rough Bent	FAC
Agrostis stolonifera	Spreading Bent	FAC
Algae, green	Algae, green	NL
Alnus incana	Speckled Alder	FACW
Alopecurus pratensis	Field Meadow Foxtail	FAC
Amelanchier alnifolia	Saskatoon Service-Berry	FACU
Antennaria sp.	Pussytoes	NL
Apocynum androsaemifolium	Spreading Dogbane	FACU
Aquatic macrophytes	Aquatic macrophytes	NL
Arctostaphylos uva-ursi	Red Bearberry	FACU
Bromus marginatus	Mountain Brome	NL
Betula pumila	Bog Birch	OBL
Bromus inermis	Smooth Brome	UPL
Calamagrostis rubescens	Pinegrass	NL
Campanula rotundifolia	Bluebell-of-Scotland	FACU
Cardaria draba	Whitetop	NI
Carex aquatilis	Leafy Tussock Sedge	OBL
Carex bebbii	Bebb's Sedge	OBL
Carex geyeri	Geyer's Sedge	NL
Carex inops	Long-Stolon Sedge	NL
Carex lasiocarpa	Woolly-Fruit Sedge	OBL
Carex nebrascensis	Nebraska Sedge	OBL
Carex simulata	Analogue Sedge	OBL
Carex sp.	Sedge	NL
Carex utriculata	Northwest Territory Sedge	OBL
Carex vesicaria	Lesser Bladder Sedge	OBL
Centaurea stoebe	Spotted Knapweed	NL
Cirsium arvense	Canada Thistle	FAC
Cirsium vulgare	Bull Thistle	FACU
Comarum palustre	Purple Marshlocks	OBL
Cornus canadensis	Canadian Bunchberry	FAC
Crataegus douglasii	Black Hawthorn	FAC
Cynoglossum officinale	Houndstongue	FACU
Dactylis glomerata	Orchard Grass	FACU
Deschampsia caespitosa	Tufted Hair Grass	FACW
Elymus glaucus	Blue Wild Rye	FACU
Elymus repens	Creeping Wild Rye	FAC
Elymus trachycaulus	Slender Wild Rye	FAC
Epilobium ciliatum	Fringed Willow Herb	FACW
Equisetum arvense	Field Horsetail	FAC

Table 3-1. Vegetation Species Identified From 2015 Through 2017 at the Schrieber Lake Site (Page 2 of 3)

Scientific Names	Common Names	WMVC Indicator Status ^(a)
Fragaria virginiana	Virginia Strawberry	FACU
Galium triflorum	Fragrant Bedstraw	FACU
Geum macrophyllum	Large-Leaf Avens	FAC
Glyceria grandis	American Mannagrass	OBL
Glyceria striata	Fowl Mannagrass	OBL
Gnaphalium palustre	Western Marsh Cudweed	FACW
Hypericum perforatum	Common St. John's-Wort	FACU
Juncus nodosus	Knotted Rush	OBL
Juncus tenuis	Lesser Poverty Rush	FAC
Larix occidentalis	Western Larch	FACU
Lemna minor	Common Duckweed	OBL
Leucanthemum vulgare	Ox-Eye Daisy	FACU
Linaria dalmatica	Dalmatian Toadflax	NL
Linaria vulgaris	Butter-and-Eggs	NL
Mahonia aquifolium	Holly-Leaf Oregon-Grape	FACU
Maianthemum stellatum	Starry False Solomon's-Seal	FAC
Moss	Sphagnum/Aulacomnium Moss	NL
Nasella viridula	Green Needlegrass	NL
Pascopyrum smithii	Western Wheatgrass	FACU
Penstemon sp.	Beardtongue	NL
Persicaria amphibia	Water Smartweed	OBL
Phalaris arundinacea	Reed Canary Grass	FACW
Phleum pratense	Common Timothy	FAC
Pinus contorta	Lodgepole Pine	FAC
Pinus monticola	Western White Pine	FACU
Pinus ponderosa	Ponderosa Pine	FACU
Plantago sp.	Plantain	NL
Poa compressa	Flat-Stem Bluegrass	FACU
Poa palustris	Fowl Bluegrass	FAC
Poa pratensis	Kentucky Bluegrass	FAC
Poa sp.	Bluegrass	NL
Potentilla anserina	Silverweed	OBL
Potentilla norvegica	Norwegian Cinquefoil	FAC
Pseudoroegneria spicata	Bluebunch Wheatgrass	NL
Pseudotsuga menziesii	Douglas Fir	FACU
Rhamnus alnifolia	Alder-Leaf Buckthorn	FACW
Rosa woodsii	Woods' Rose	FACU
Rumex acetosella	Common Sheep Sorrel	FACU
Salix bebbiana	Gray Willow	FACW
Salix boothii	Booth's Willow	FACW
Salix candida	Sage Willow	OBL
Salix geyeriana	Geyer's Willow	FACW

Table 3-1. Vegetation Species Identified From 2015 Through 2017 at the Schrieber Lake Site (Page 3 of 3)

Scientific Names	Common Names	WMVC Indicator Status ^(a)
Salix sp.	Willow	NL
Scutellaria galericulata	Hooded Skullcap	OBL
Shepherdia canadensis	Russet Buffalo-Berry	UPL
Symphoricarpos albus	Common Snowberry	FACU
Symphyotrichum spathulatum	Mountain American-Aster	FAC
Taraxacum officinale	Common Dandelion	FACU
Thlaspi arvense	Field Pennycress	UPL
Trifolium aureum	Yellow Clover	NL
Typha latifolia	Broad-Leaf Cattail	OBL
Urtica dioica	Stinging Nettle	FAC
Vaccinium sp.	Blueberry	NL
Verbascum thapsus	Great Mullein	FACU

⁽a) 2016 NWPL [Lichvar et al., 2016].New species that were identified in 2017 are **bolded.**

Upland community Type 1 – *Elymus repens/Bromus inermis* covered 30 acres of the project area, primarily in the uplands towards the northern end of the site. Creeping wild rye (*Elymus repens*), smooth brome (*Bromus inermis*), western wheatgrass (*Pascopyrum smithii*), common timothy (*Phleum pretense*), and flat-stem bluegrass (*Poa compressa*) dominated the community. Common yarrow (*Achillea millefolium*), redtop (*Agrostis stolonifera*), field meadow foxtail (*Alopecurus pratensis*), spotted knapweed (*Centaurea stoebe*), reed canary grass (*Phalaris arundinacea*), Kentucky bluegrass (*Poa pratensis*), bluebunch wheatgrass (*Pseudoroegneria spicata*), and Douglas fir (*Pseudotsuga menziesii*) were present at 1–5 percent cover.

Wetland community Type 2 – Betula pumila/Rhamnus alnifolia covered 10.7 acres of the project area and is associated with the fen-carr area located in the southwestern corner of the site. Bog birch (Betula pumila), alder-leaf buckthorn (Rhamnus alnifolia), and Carex species dominated the community. More than 50 percent of the community cover contained moss species. Six additional species were identified in this community at less than 5 percent cover.

Wetland community Type 3 – *Phalaris arundinacea/Carex* sp. covered 9.2 acres of the project area, occurs mainly in the middle of the site, and surrounds the excavated wetland depressions. Reed canary grass, analogue sedge (*Carex simulata*), and rough bentgrass (*Agrostis scabra*) dominated the community. Nine additional species were identified in this community at less than 5 percent to trace of the community cover. Approximately 5 percent of the community contained open water.

Wetland community Type 4 – *Carex simulata/Persicaria amphibia* covered 2.8 acres of the project area and generally borders the fen-carr area to the north and west. Analogue sedge, water smartweed (*Persicaria amphibia*), and leafy tussock sedge (*Carex aquatilis*) dominated the vegetation community. Rough bent, Northwest Territory sedge (*Carex utriculata*), and moss were each present within the community at less than 10 percent cover. Six additional species were identified in this community at less than 5 percent cover each.

Upland community Type 5 – *Pseudotsuga menziesii/Larix occidentalis* covered 21.9 acres along the edges of the project area. Douglas fir, western larch (*Larix occidentalis*), and lodgepole pine (*Pinus contorta*) dominated the vegetation community cover. The shrub layer contained common snowberry (*Symphoricarpos albus*), Woods' rose (*Rosa woodsii*), bearberry (*Arctostaphylos uva-ursi*), and blueberry (*Vaccinium* sp.). The understory contained Geyer's sedge (*Carex geyeri*), smooth brome, blue wild rye (*Elymus glaucus*), and starry false Solomon's-seal (*Maianthemum stellatum*). Two Priority 2B noxious weed species were identified within the community: spotted knapweed at 6–10 percent cover and Canada thistle (*Cirsium arvense*) at less than 1 percent cover.

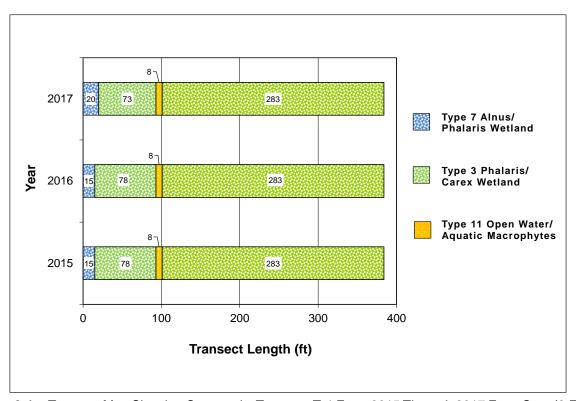
Wetland community Type 6 – *Salix bebbiana/Phalaris arundinacea* covered 0.8 acre of the project area along the Coyote Creek channel toward the center of the site. Gray willow (*Salix bebbiana*) and reed canary grass dominated the vegetation community. Three additional species were identified in this community and were each present at less than 5 percent cover.

Wetland community Type 7 – *Alnus incana/Phalaris arundinacea* covered 0.4 acre of the project area along the historic Coyote Creek channel. Speckled alder (*Alnus incana*) and reed canary grass dominated the vegetation community. Water smartweed was present at less than 5 percent cover, and Canada thistle was present in trace amounts.

Wetland community Type 8 – *Carex utriculata* covered 10.7 acres of the project area toward the center of the site. This community was dominated by Northwest Territory sedge, which was interspersed with minor amounts of willow and other sedge species.

Upland community Type 9 – *Crataegus douglasii/Symphoricarpos albus* covered 0.5 acre of the project area on the northeastern side of the site. This community was dominated by black hawthorn (*Crataegus douglasii*) and common snowberry shrubs. Reed canary grass accounted for less than 10 percent of the vegetation community cover. This community had a substantial Canada thistle infestation that accounted for 6–10 percent of the vegetative cover. Eight other species were present at cover values of a trace or less, including houndstongue, which is a state-listed noxious weed.

Wetland community Type 10 – *Typha latifolia* covered 2.8 acres around the fringe of Schrieber Lake. This community contained broad-leaf cattail (*Typha latifolia*) and purple marshlocks (*Comarum palustre*) within areas of shallow open water.


Wetland community Type 11 – Open Water/Aquatic Macrophytes covered 12.6 acres of the project area and included Schrieber Lake and the newly constructed wetland cells. This community contained more than 50 percent open water. Vegetation in the community included water smartweed and aquatic macrophytes.

Wetland community Type 12 – *Carex lasiocarpa* covered 1.3 acres of the project area on the southern edge of Schrieber Lake, immediately adjacent to the cattail community there (community Type 10). Woolly-fruit sedge (*Carex lasiocarpa*) accounted for more than 50 percent of the vegetative cover in this community. Reed canary grass and leafy tussock sedge were each present at less than 10 percent cover. Five species were identified in the community.

Trends in plant species composition were measured on three transects (T-1, T-2, and T-3) in 2017. Photographs of the transect end points are shown in Appendix C. T-1 consists of a 384-foot transect that was established during initial monitoring at the site in 2015. Table 3-2 and Charts 3-1 and 3-2 summarize the data for T-1 (Wetland Mitigation Site Monitoring form, Appendix B). Community Types 3, 7, and 11 were identified along this transect. All three vegetative communities are considered wetland communities. Site conditions in 2017 remained mostly similar to those observed in 2016.

Table 3-2. Data Summary for T-1 From 2015 Through 2017 at the Schrieber Lake Site

Monitoring Year	2015	2016	2017
Transect Length (feet)	384	384	384
Vegetation Community Transitions Along Transect	3	3	3
Vegetation Communities Along Transect	3	3	3
Hydrophytic Vegetation Communities Along Transect	3	3	3
Total Vegetative Species	10	9	10
Total Hydrophytic Species	5	8	9
Total Upland Species	5	1	1
Estimated % Total Vegetative Cover	90	100	100
Estimated % Unvegetated	10	0	0
% Transect Length Comprising Hydrophytic Vegetation Communities	100	100	100
% Transect Length Comprising Upland Vegetation Communities	0	0	0
% Transect Length Comprising Open Water	0	0	0
% Transect Length Comprising Mudflat	0	0	0

Chart 3-1. Transect Map Showing Community Types on T-1 From 2015 Through 2017 From Start (0 Foot) to Finish (384 Feet).

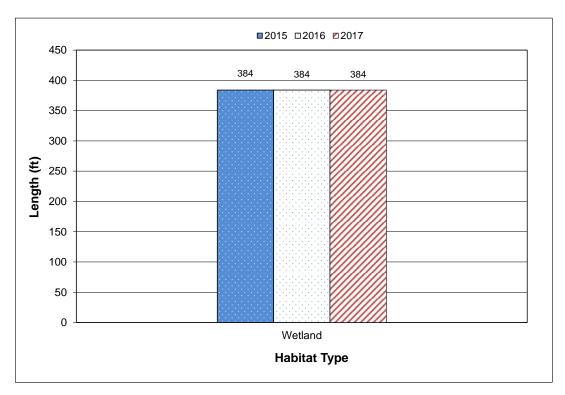
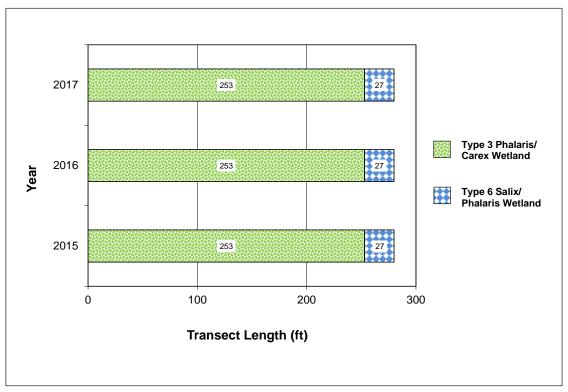



Chart 3-2. Length of Habitat Types Within T-1 From 2015 Through 2017.

T-2 crossed wetland community Type 3 – *Phalaris arundinacea/Carex* sp. and wetland community Type 6 – *Salix bebbiana/Phalaris arundinacea* in the middle of the restored wetland area (Figure A-2, Appendix A). Hydrophytic vegetation communities dominated 100 percent of the transect (Figure A-3, Appendix A). Details of the transect data are summarized and graphed on Table 3-3 and Charts 3-3 and 3-4. Site conditions in 2017 remained similar to those observed in 2016. Photographs of the endpoints of T-2 are shown in Appendix C.

Table 3-3. Data Summary for T-2 From 2015 Through 2017 at the Schrieber Lake Site

Monitoring Year Transect Length (feet)	2015 280	2016 280	2017 280
Vegetation Community Transitions Along Transect	1	1	1
Vegetation Communities Along Transect	2	2	2
Hydrophytic Vegetation Communities Along Transect	2	2	2
Total Vegetative Species	7	5	6
Total Hydrophytic Species	5	5	6
Total Upland Species	2	0	0
Estimated % Total Vegetative Cover	99	100	100
Estimated % Unvegetated	1	0	0
% Transect Length Comprising Hydrophytic Vegetation Communities	100	100	100
% Transect Length Comprising Upland Vegetation Communities	0	0	0
% Transect Length Comprising Unvegetated Open Water	0	0	0
% Transect Length Comprising Mudflat	0	0	0

Chart 3-3. Transect Map Showing Community Types on T-2 From 2015 Through 2017 From Start (0 Foot) to Finish (280 Feet).

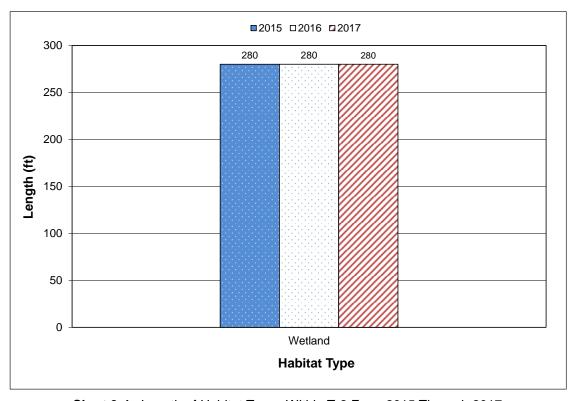
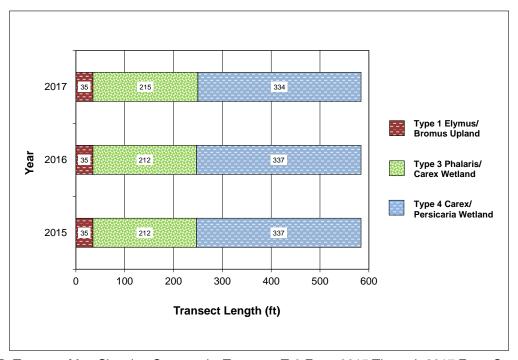



Chart 3-4. Length of Habitat Types Within T-2 From 2015 Through 2017.

T-3 extended 584 feet at 175 degrees on the western side of the restored area (Figure A-2, Appendix A). Transect details are shown on Table 3-4 and Charts 3-5 and 3-6 (Wetland Mitigation Site Monitoring forms, Appendix B). Site conditions in 2017 remained similar to those observed in 2016. The transect crossed three communities: wetland community Types 3 – *Phalaris arundinacea/Carex* sp. and 4 – *Carex simulate/Persicaria amphibia* and upland community Type 1 – *Elymus repens/Broums inermis*. Sixteen plant species were identified along the transect. Photographs of the T-3 endpoints are shown in Appendix C.

Table 3-4. Data Summary for T-3 From 2015 Through 2017 at the Schrieber Lake Site

Monitoring Year	2015	2016	2017
Transect Length (feet)	584	584	584
Vegetation Community Transitions Along Transect	2	2	2
Vegetation Communities Along Transect	3	3	3
Hydrophytic Vegetation Communities Along Transect	2	2	2
Total Vegetative Species	16	11	10
Total Hydrophytic Species	14	10	8
Total Upland Species	2	1	2
Estimated % Total Vegetative Cover	100	100	100
Estimate % Unvegetated	0	0	0
% Transect Length Comprising Hydrophytic Vegetation Communities	94	94	94
% Transect Length Comprising Upland Vegetation Communities	6	6	6
% Transect Length Comprising Unvegetated Open Water	0	0	0
% Transect Length Comprising Mudflat	0	0	0

Chart 3-5. Transect Map Showing Community Types on T-3 From 2015 Through 2017 From Start (0 Foot) to Finish (584 Feet).

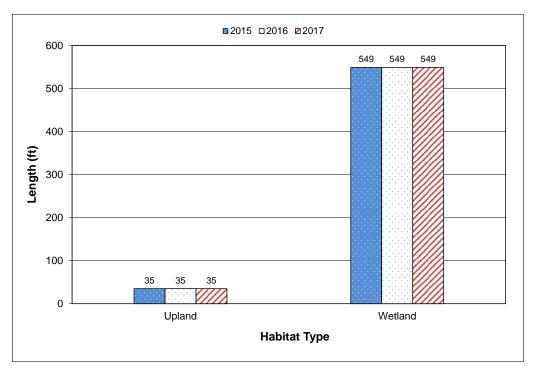


Chart 3-6. Length of Habitat Types Within T-3 From 2015 Through 2017.

Priority 2B noxious weeds that were identified within the Schrieber Lake mitigation site included spotted knapweed, Canada thistle, Gypsy-flower (*Cynoglossum officinale*), St. John's-wort (*Hypericum perforatum*), ox-eye daisy (*Leucanthemum vulgare*), dalmatian toadflax (*Linaria dalmatica*), whitetop (*Lepidium draba*), and butter-and-eggs (*Linaria vulgaris*). Infestation areas were mapped in 2017. The most common weed species found on the site were yellow toadflax, spotted knapweed, and Canada thistle (Figure A-3, Appendix A).

MDT planted 1,500 woody plants in the riparian buffer along Schrieber Creek, Coyote Creek, and around some wetland excavations. Based on observations at the parallel and perpendicular belt transects, woody plantings survival was estimated to be below the required 50 percent survival. Woody planting survival is hampered by competition with herbaceous vegetation, extremely saturated soil conditions, herbivory by ungulates and rodents, and (in some areas) by weed spraying activities.

3.3 SOIL

The primary map unit on the site (approximately 70 percent) was identified as a poorly drained Aquic Udifluvent. The soil is found in intermontane basins and is classified as hydric. The NRCS soil unit Andic Dystric Eutrochrepts was mapped along the edges of the site and included silty glaciolacustrine deposits that are common on lacustrine terraces and glacial outwash terraces.

Two soil pits were evaluated to determine the extent of hydric soil development. DP-1W satisfied hydric soil indicators with the presence of a hydrogen sulfide odor. DP-1U revealed a black (10 YR 2/1) loam-textured soil without redox features from 0 to 18 inches. No positive indicators of hydric soil were observed at the upland data point.

3.4 WETLAND DELINEATION

The total jurisdictional wetland and aquatic habitat acreage that was delineated at the Schreiber Lake mitigation site in 2017 was 52.1 acres, as shown in Table 3-5. The wetland acreage has remained constant since monitoring began in 2015. This acreage includes Schreiber Lake (8.26 acres), the Schreiber and Coyote Creek stream channels (approximately 1 acre), wetlands that occur within the creditable riparian buffer of those stream channels (3.9 acres), and lake fringe wetlands that occur on that portion of the project site that is owned by the US Forest Service (USFS) (1.25 acres). None of those wetlands are eligible for wetland credit under the Schreiber Lake mitigation plan [MDT, 2009]. The remaining acreage available for wetland crediting is 37.65 acres. The extensive development of wetlands at this site is the product of excavating the wetland cells, plugging the former stream channels, and re-meandering and raising the bed elevation of the restored creek channels. As a result, widespread inundation was present throughout the site during the July 2017 site visit. Wetland development in the low-lying meadow in the west-central part of the site seems to have plateaued but will continue to be monitored for wetland expansion in this area.

Table 3-5. Project Upland and Delineated Wetland Acres From 2015
Through 2017

Habitat Type	2015 Acres	2016 Acres	2017 Acres	
Uplands	52.60	52.60	52.60	
Wetlands & Aquatic Habitat				
Schrieber Lake	8.26	8.26	8.26	
Stream channels	1.00	1.00	1.00	
Riparian buffer	3.90	3.90	3.90	
USFS wetlands	1.25	1.25	1.25	
Remaining wetlands	37.65	37.65	37.65	
Wetlands subtotal ^(a)	52.10	52.10	52.10	
Project Area	104.70	104.70	104.70	

⁽a) The subtotal was rounded to the nearest hundredth.

3.5 WILDLIFE

A list of animal species that were observed directly or indirectly between 2015 and 2017 is presented in Table 3-6. Observations made by MDT staff on the same day that monitoring occurred are included in the species list for 2017. A total of 42 different bird species were identified at the site in 2017. Other wildlife that were directly observed included white-tailed deer (*Odocoileus virginianus*), muskrat (*Ondatra zibethicus*), western jumping mouse (*Zapus princeps*), ground squirrels (*Marmotini* sp.), and chipmunk (*Tamias* sp.). Breeding western toads (*Anaxyrus boreas*) (a Montana S2 species) have been documented by USFS personnel on the project site in the past. The Montana Department of Fish, Wildlife, and Parks and the US Fish and Wildlife Service have also documented grizzly bear (*Ursus arctos*) on the Schrieber Lake site.

Table 3-6. Wildlife Observed at the Schrieber Lake Site From 2015 Through 2017 (Page 1 of 2)

Common Name	Scientific Name					
	phibian Bono lutainantuia					
Columbia Spotted Frog	Rana luteiventris					
Western Toad	Anaxyrus boreas					
	Fish					
Brook Trout	Salvelinus fontinalis					
Pumpkinseed	Lepomis gibbosus					
Shiner sp.						
Trout sp.						
	Reptile					
Common Gartersnake	Thamnophis sirtalis					
Painted Turtle	Chrysemys picta					
	ammal					
Bushy-Tailed Woodrat	Neotoma cinerea					
Chipmunk sp.	Tamias sp.					
Deer sp.	Odocoileus sp.					
Elk	Cervus elaphus					
Grizzly Bear	Ursus arctos					
Ground Squirrel	Marmotini sp.					
Meadow Vole	Microtus pennsylvanicus					
Moose	Alces americanus					
Muskrat	Ondatra zibethicus					
Raccoon	Procyon lotor					
Vole sp.						
Western Jumping Mouse	Zapus princeps					
White-Tailed Deer	Odocoileus virginianus					
Yellow-Bellied Marmot	Marmota flaviventris					
	Bird					
American Coot	Fulica americana					
American Dipper	Cinclus mexicanus					
American Robin	Turdus migratorius					
American Wigeon	Anas americana					
Bank Swallow	Riparia riparia					
Barn Swallow	Hirundo rustica					
Belted Kingfisher	Ceryle alcyon					
Black-Billed Magpie	Pica hudsonia					
Black-Capped Chickadee	Poecile atricapillus					
Blue-Winged Teal	Anas discors					
Bobolink	Dolichonyx oryzivorus					
Bufflehead	Bucephala albeola					
Brewer's Blackbird	Euphagus cyanocephalus					
Calliope Hummingbird	Stellula calliope					
Canada Goose	Branta canadensis					

Table 3-6. Wildlife Observed at the Schrieber Lake Site From 2015 Through 2017 (Page 2 of 2)

Common Name	Scientific Name
Cedar Waxwing	Bombycilla cedrorum
Chimney Swift	Chaetura pelagica
Chipping Sparrow	Spizella passerina
Cinnamon Teal	Anas cyanoptera
Common Snipe	Gallinago gallinago
Common Yellowthroat	Geothlypis trichas
Dark-Eyed Junco	Junco hyemalis
Duck	ourios riyerians
Dusky Flycatcher	Empidonax oberholseri
Flycatcher	Zimpiuonux osomoisen
Great Blue Heron	Ardea herodias
Green-Winged Teal	Anas crecca
Grosbeak sp.	
House Wren	Troglodytes aedon
Killdeer	Charadrius vociferus
Macgillivray's Warbler	Oporornis tolmiei
Mallard	Anas platyrhynchos
Marsh Wren	Cistothorus palustris
Northern Flicker	Colaptes auratus
Northern Shoveler	Anas clypeata
Osprey	Pandion haliaetus
Pied-Billed Grebe	Podilymbus podiceps
Red-Tailed Hawk	Buteo jamaicensis
Red-Winged Blackbird	Agelaius phoeniceus
Rough-Winged Swallow	Stelgidopteryx serripennis
Ruddy Duck	Oxyura jamaicensis
Song Sparrow	Melospiza melodia
Sora	Prozana carolina
Sparrow sp.	
Spotted Sandpiper	Actitis macularia
Swallow sp.	
Tree Swallow	Tachycineta bicolor
Vaux Swift	Chaetura vauxi
Vesper Sparrow	Pooecetes gramineus
Virginia Rail	Rallus limicola
Western Bluebird	Sialia mexicana
Willow Flycatcher	Empidonax traillii
Wilson's Snipe	Gallinago delicata
Wilson's Warbler	Wilsonia pusilla
Yellow Warbler	Dendroica petechia
Yellow-Headed Blackbird	Xanthocephalus xanthocephalus
Yellow-Rumped Warbler	Dendroica coronata

Species that were identified in 2017 are bolded.

3.6 FUNCTIONAL ASSESSMENT

The 2008 MDT MWAM was used to evaluate the site in 2017; Table 3-7 displays the results of this evaluation. The 2015 functional assessment incorporated the created, restored, and preserved wetlands into one AA. The 2017 functional assessment followed this format. The MWAM AA included all of the delineated wetlands, including the creditable wetlands (37.65 acres); the wetlands within the riparian buffers of Schrieber and Coyote Creeks (3.9 acres); the open water within Schrieber Lake (8.26 acres); portions of Schreiber and Coyote creeks that flow through the wetland areas (0.65 acres); and the wetlands on USFS lands (1.25 acres). The wetlands in the AA received a Category I rating with 87 percent of the total possible points in 2017. The 51.7-acre AA was rated as a Category I wetland and scored excellent for general wildlife habitat and production export/food chain support and high for listed/proposed threatened and endangered (T&E) species habitat, short- and long-term surface-water storage, sediment/nutrient/toxicant removal, sediment/shoreline stabilization, groundwater/discharge/recharge, and uniqueness. The fish habitat score decreased slightly in 2016 and 2017 from 2015 because brook trout are listed as a Tier IV species rather than Tier III, which was used in the 2015 rating.

Table 3-7. Functions and Values of the Schrieber Lake Site From 2015 to 2017

Function and Value Parameters From the 2008 MDT MWAM ^(a)	2015	2016	2017
Listed/Proposed T&E Species Habitat	High (0.8)	High (0.8)	High (0.8)
Montana Natural Heritage Program (MTNHP) Species Habitat	Mod (0.6)	Mod (0.6)	Mod (0.6)
General Wildlife Habitat	High (1.0)	High (1.0)	High (1.0)
General Fish/Aquatic Habitat	Mod (0.7)	Mod (0.5)	Mod (0.5)
Flood Attenuation	Mod (0.6)	Mod (0.6)	Mod (0.6)
Short- and Long-Term Surface-Water Storage	High (1.0)	High (1.0)	High (1.0)
Sediment/Nutrient/Toxicant Removal	High (1.0)	High (1.0)	High (1.0)
Sediment/Shoreline Stabilization	High (1.0)	High (1.0)	High (1.0)
Production Export/ Food Chain Support	High (1.0)	High (1.0)	High (1.0)
Groundwater Discharge/Recharge	High (1.0)	High (1.0)	High (1.0)
Uniqueness	High (0.9)	High (0.9)	High (0.9)
Recreation/Education Potential	Mod (0.1)	High (0.2)	High (0.2)
Actual Points/Possible Points	9.7/11	9.6/11	9.6/11
% of Possible Score Achieved	88.2	87	87
Overall Category	I	I	I
Acreage of Assessed Aquatic Habitats within Easement (acres)	51.7	51.7	51.7
Functional Units (acreage × actual points)	501.49	496.32	496.32

⁽a) Berglund and McEldowney [2008].

3.7 PHOTOGRAPHIC DOCUMENTATION

Ten photo points were initially established in the project area in 2015. All ten photo-point locations were documented during the 2017 site visit. Additionally, photographs were taken at each surveyed

stream cross section, sampled data point, and start and end of the vegetation transects (T-1, T-2, and T-3) in 2017. The locations of these photographs are illustrated on Figure A-2 in Appendix A. The 2017 photographs are provided in Appendix C.

3.8 STREAM-MONITORING RESULTS

3.8.1 Channel Cross Sections

From the channel cross-section survey and identification of the bankfull water surface elevation, parameters that are relevant to the geomorphic evolution of the channel can be calculated and compared. Geometric parameters of interest include bankfull width, maximum depth, cross-sectional area, and mean depth. From these metrics, the width to depth ratio is calculated. The width to depth (W:D) ratio is the ratio of the bankfull channel width divided by the mean bankfull depth. The W:D ratio is used in stream classification systems and is often used to compare conditions between reaches with the same stream type. Comparing the W:D ratios that were measured at the same location over time provides a potential quantitative indicator of channel over-widening and aggradation or channel incision and degradation. These two phenomena are observed responses of the channel morphology to changes in the hydrologic regime of the larger scale system related to sediment discharge, sediment particle size, stream flow, and stream slope. Increases or decreases of those four factors generally trigger a morphological response. For example, when a channel is straightened, it loses length over the same elevation change and consequently becomes steepened. A typical morphological response is for the stream to degrade (i.e., down-cut and become incised, headcut migration) to a new equilibrium. The incised channel then loses connectivity to its floodplain, where more flood flow is contained in the channel, which may accelerate channel degradation. Changes in any of the four factors generally creates an unstable condition, which triggers a morphological response until a new dynamic equilibrium is reached.

Significant increases or decreases in bankfull width, maximum depth, cross-sectional area, mean depth, and W:D ratio as measured over time may suggest that the channel is unstable and undergoing a morphological response toward dynamic equilibrium. For these repeated annual measurements and comparisons, the bankfull water surface elevation that was initially determined in 2015 was held constant for each cross section. Bankfull width, maximum depth, cross-sectional area, mean depth, and W:D ratio results from each cross section are shown in Table 3-8. Each surveyed cross section was plotted and included in Appendix D. The sinuosity of each constructed channel reach was calculated during the initial survey in 2015 by digitizing the new channel centerline from aerial photographs and dividing the centerline length by the valley length of each reach.

The following sections describe each reconstructed stream reach within the mitigation site after initial measurements in 2015.

Table 3-8. Surveyed Cross-Section Parameters at the Schrieber Lake Site From 2015 Through 2017

Monitoring Cross Section	Cross (ft)		Maximum Depth (ft)			XS Area (ft²)			Mean Depth (ft)				W:D Ratio							
Section	2015	2016	2017	%∆ ^(a)	2015	2016	2017	%∆ ^(a)	2015	2016	2017	%∆ ^(a)	2015	2016	2017	%∆ ^(a)	2015	2016	2017	%∆ ^(a)
SC1-1	11.0	11.7	11.4	-2%	2.0	2.2	2.1	-5%	14.3	17.0	16.3	-4%	1.3	1.5	1.4	-2%	8.4	8.0	8.0	0%
SC1-2	11.2	11.9	12.6	6%	1.6	1.7	1.7	-2%	12.1	12.8	14.1	10%	1.1	1.1	1.1	4%	10.4	11.1	11.3	2%
SC2A-1	11.6	12.2	14.1	15%	1.6	1.5	1.6	1%	12.4	11.4	12.5	10%	1.1	0.9	0.9	-5%	11.0	13.0	15.8	21%
SC2A-2	13.2	12.6	13.1	4%	2.4	2.3	2.3	0%	18.5	17.8	19.5	10%	1.4	1.4	1.5	6%	9.4	8.9	8.8	-2%
SC2B-1	12.5	12.6	13.4	6%	2.4	2.6	2.4	-7%	20.8	18.8	20.1	7%	1.7	1.5	1.5	1%	7.5	8.5	8.9	5%
SC3-1	14.5	14.6	14.5	-1%	2.6	2.6	2.5	-3%	29.9	31.2	28.0	-10%	2.1	2.1	1.9	-10%	7.0	6.9	7.6	10%
SC3-2	16.6	15.3	14.8	-3%	2.9	2.8	3.0	6%	27.8	27.6	24.3	-12%	1.7	1.8	1.6	-9%	9.8	8.5	9.0	7%
SC7-1	7.4	7.0	7.7	10%	2.0	1.8	2.5	37%	8.5	8.2	10.8	32%	1.1	1.2	1.4	20%	6.5	6.0	5.5	-8%
CC1A-1	10.2	9.6	10.0	4%	2.4	2.1	2.2	6%	13.6	11.4	13.6	19%	1.3	1.2	1.4	15%	7.7	8.1	7.4	-9%
CC1A-2	7.5	7.1	6.5	-9%	1.8	1.8	1.9	4%	11.3	11.9	11.7	-2%	1.5	1.7	1.8	7%	5.0	4.3	3.7	-15%
CC1B-1	11.4	12.0	11.7	-3%	2.6	3.0	2.5	-14%	19.5	22.0	16.9	-23%	1.7	1.8	1.5	-21%	6.7	6.6	8.0	22%

⁽a) Percent change between 2016 and 2017. ft = feet.

3.8.1.1 Schrieber Creek. Reach 1

Reach 1 of Schrieber Creek was constructed through a dry former hayfield and is considered an ephemeral stream reach. The mitigation plan states that this channel segment will be constructed to a Rosgen B/C-type channel configuration, which typically exhibit moderate W:D ratios of more than 12 and moderate to high sinuosities of more than 1.2. Survey results at two cross sections within Reach 1 indicated W:D ratios of 8.4 and 10.4, which are more typical of Rosgen E-type channels. Bankfull widths at these two cross sections were 11.0 and 11.2 feet, which fell within the range specified for channel width within the design for Reach 1. The channel sinuosity is 1.1, which indicates a relatively straight channel alignment as compared to typical B- and C-type channels.

3.8.1.2 Schrieber Creek, Reach 2A

Reach 2A of Shrieber Creek continues through the dry, former hayfield and is considered an ephemeral stream reach. The mitigation plan indicates that Reach 2A of Schrieber Creek will be constructed with a Rosgen C-type channel configuration, which typically exhibit W:D ratios of more than 12 and sinuosity of more than 1.5. Two cross sections were surveyed through Reach 2A and indicated W:D ratios of 11.0 and 9.4. These W:D ratios are considered low for a C-type channel and are more indicative of an E-type channel. The bankfull channel width surveyed at these cross sections was 11.6 and 13.2 feet, which is within the range specified in the design for Reach 2A. The sinuosity of the channel through Reach 2A is 1.1, which is also considered low for a C-type stream.

3.8.1.3 Schrieber Creek, Reach 2B

Reach 2B is a short, 130-foot channel segment that remains within the ephemeral reach of Schrieber Creek. The mitigation plan proposes a Rosgen A/B channel type through Reach 2B as the creek transitions from the upper to the lower hay fields. The W:D ratio calculated for the two cross sections surveyed in Reach 2B of 7.5 indicates a Rosgen A-type channel, which have W:D ratios below 12 and are usually dominated by rocky step-pool features. The sinuosity of the reach is 1.0, which also indicates an A-type channel. The bankfull width surveyed in this reach was 12.5 feet, which is within the range specified in the project design for Reach 2B.

3.8.1.4 Schrieber Creek, Reach 3

Reach 3 of Schrieber Creek runs across the lower hay meadow and appears to have perennial flows. The mitigation plan states that this channel segment will be constructed with a Rosgen E-type configuration, which typically exhibits very low W:D ratios (less than 12) and high sinuosities (more than 1.5). Two cross sections were surveyed in Reach 3 and exhibited W:D ratios that indicate an E-type channel configuration (7.1 and 9.8). Bankfull widths that were surveyed at these cross sections (14.5 and 16.5 feet) were higher than the widths specified in the design for Reach 3 (10.1–11.8 feet). Channel sinuosity through this constructed reach is 1.4, which is considered low for an E-type channel.

3.8.1.5 Schrieber Creek, Reach 7

The mitigation plan included reactivating a relic segment of Schrieber Creek that had been deactivated after historic efforts to channelize and relocate the creek to improve agricultural production. Because this reach is a reactivated natural relic channel, it has a higher sinuosity than the other constructed reaches associated with this project. This reactivated channel segment is considered Reach 7 of Schrieber Creek. One cross section was surveyed in Reach 7 and exhibited dimensions typical of a

Rosgen E-type channel that flows through a wet meadow. The surveyed cross section in Reach 7 displayed a lower W:D ratio (6.5) and bankfull width (7.4 feet) that was approximately half of that surveyed in Reach 3. The cross-sectional area of the channel surveyed in Reach 7 was less than one-third the area of cross sections surveyed in Reach 3, which indicates a much-reduced channel capacity compared to the reconstructed channel reach upstream. Channel sinuosity through Reach 7 is 1.7, which is considerably higher than the constructed channel reaches because of the alignment that cuts across the valley bottom.

3.8.1.6 Coyote Creek, Reach 1A

Reach 1 of Coyote Creek was designed as a perennial, Rosgen E-type channel through the lower hay meadow. Two cross sections were surveyed within Reach 1 of Coyote Creek and displayed very low W:D ratios that indicate an E-type channel. CC1A-1 displayed a bankfull width (10.2 feet) that was higher than the range of design widths specified for Reach 1 (6.6–8.2 feet). Channel sinuosity through Reach 1A is 1.8, which falls within the range that is often observed in E-type channels.

3.8.1.7 Coyote Creek, Reach 1B

Reach 1B of Coyote Creek is the reactivated original stream channel that runs through the lower hay meadow. One cross section was surveyed through this reach and displayed a W:D ratio typical for a Rosgen E-type channel. The bankfull width of this channel cross section was 11.4 feet. The alignment of the channel through Reach 1B is relatively straight with a sinuosity of 1.1.

3.8.1.8 Assessment From Current Monitoring Year Survey

In general, large-scale horizontal and vertical changes were not observed. Subtle changes (less than 20 percent) that are shown in Table 3-8 between monitoring years may be attributed to many factors other than geomorphic changes, including the following:

- Differences in survey-point quantity and spacing
- Slight deviations in point collection alignment between cross-section monuments
- Settling of bioengineered banks.

The most apparent change in the monitored cross sections from the current year occurred at SC7-1. At this location, a slight deepening and widening produced changes in bankfull channel width, cross-sectional area, and W:D ratio. This cross section is located in a reactivated historic reach, similar to CC1B-1, both at breaks in the dense riparian canopy. Substantial muck comprises the channel bottom at both of these sections. The depositional conditions at these sections complicate surveying the channel bottom and banks, which potentially influences comparisons between monitoring years.

As mentioned, surveys for some reaches suggest that the channel was constructed as a different channel type than initially planned. However, these reaches appear to be stable and, in some cases, may be gradually trending toward dynamic equilibrium. For example, section SC2A-1 has shown a trend of increasing W:D ratio over the 3 monitoring years. This reach could be trending toward a C-type channel, as planned. Continued monitoring of all the cross sections will further document lateral or vertical adjustments over time.

3.8.2 Bank Pins

Bank pins were installed in 2015 perpendicular to select monitoring cross sections to document lateral movement of the channel over time. Lateral erosion rates will be documented in subsequent years' monitoring reports by measuring the length of bank pins exposed each year. Table 3-9 provides installed exposed length of rebar in 2015 and the field measured length for monitoring years 2016 and 2017.

Table 3-9. Exposed Rebar Length at Select Cross Sections From 2015 Through 2017

Monitoring		Exposed Rebar Length (inch)											
Cross	20	15	20	16	2017								
Section	Left	Right	Left	Right	Left	Right							
SC1-1		1.0		0.625		No Pin Projecting							
SC2A-2	1.0		0.5		0.25								
SC2B-1	0.88	0.88	0.5	No Pin Projecting	0.25	No Pin Projecting							
SC3-2	1.0 (Upper Pin) 2.5 (Lower pin)		0.375 (Upper Pin) Lower Pin not located		0.56 (Upper Pin) 2.06 (Lower Pin)								
SC7-1	1.375 (Upper Pin) 1.375 (Lower Pin)		No Pins Located		No Pins Located								
CC1A-1		1.625 (Upper Pin) 1.563 (Lower Pin)		1.25 (Upper Pin) Lower Pin not located		1.25 (Upper Pin) 1.25 (Lower Pin)							

In general, exposed rebar lengths decreased since installation or were not projecting from the bank, which is likely the result of sagging or slumping of the bioengineered soil lift that composes the constructed bank.

3.8.3 Vegetation Monitoring at Perpendicular Belt Transects

Results of the vegetation inventory within the perpendicular belt transects are summarized in Table 3-10. In 2017, the total percent cover within the riparian buffer along Schrieber Creek was 93 percent and 7 percent cover for noxious weeds. The total cover increased by 1 percent from 2016 to 2017. The total noxious weed cover decreased by 4 percent. In 2017, the total percent cover within the riparian buffer along Coyote Creek was 100 percent and 1 percent for noxious weeds. No change in percent cover was noted between 2016 and 2017.

Table 3-10. Results of Vegetation Inventory Within Perpendicular Belt Transects From 2015 Through 2017

			20)15	20	16	2017		
New Channel Segment	Cross Section	Belt Transect Length (ft)	Total Percent Cover	Percent Noxious Weed Cover	Total Percent Cover	Percent Noxious Weed Cover	Total Percent Cover	Percent Noxious Weed Cover	
	SC1-1	200	90	8	94	9	94	5	
	SC1-2	200	88	10	87	22	87	15	
	SC2A-1	200	65	15	92	13	90	15	
	SC2A-2	200	75	5	86	8	85	8	
Schrieber Creek	SC2B-1	150	75	5	94	16	94	10	
	SC3-1	50	100	0	100	0	100	0	
	SC3-2	50	100	0	100	0	100	0	
	SC7	50	100	0	100	0	100	0	
	Subtotal for	r Schrieber Creek	82	8	92	11	93	7	
	CC1A-1	100	100	3	100	2.5	100	2.5	
Counts One st	CC1A-2	100	100	0	100	0	100	0	
Coyote Creek	CC1B-1	75	100	3	100	0	100	1	
	Subtotal fo	or Coyote Creek	100	2	100	1	100	1	

Riparian buffer success criteria require a minimum of 50 percent cover of beneficial plant species by the end of the monitoring period with 5 percent or less cover of noxious weeds. Vegetation composition within the riparian buffer along Schrieber and Coyote Creeks is currently meeting the target for total percent cover. At Schrieber Creek, the 2017 total percent cover for noxious weeds does not meet the target of 5 percent or less as specified in the performance standards. Noxious weeds were more prevalent along Reaches 1, 2A, and 2B of Schrieber Creek. Weeds may be more prominent along these reaches because installed soil wraps are often more susceptible to weed proliferation until native vegetation establishes.

3.8.4 Vegetation Monitoring at Parallel Belt Transects

3.8.4.1 Percent Vegetation Cover

Results of the percent vegetation cover within the parallel belt transects at each cross section are provided in Table 3-11. The parallel belt transects differ from the perpendicular belt transects in that they provide data on how well the stream banks are vegetating as opposed to the riparian buffer.

The parallel belt transects were evaluated for vegetation cover, woody species survival, and noxious weed cover during the 2017 monitoring. The 2017 data for Schrieber Creek remained similar to 2016 with 85 percent total vegetative cover along both banks. The total percent cover along Coyote Creek remained similar to observations in 2016 with extensive vegetation cover at 100 percent.

Vegetation establishment along the banks of Schrieber Creek is above 50 percent in all of the reaches and satisfies performance standards. Vegetation along the banks of Reaches 3 and 7 of Schrieber Creek are well vegetated because these reaches were constructed through a densely vegetated wet meadow, which precluded the need to build coir soil lifts along the banks.

Table 3-12 provides an area-weighted percent cover for perpendicular (riparian) and parallel (stream bank) belt transects combined. The combined percent cover of all of the belt transects is currently 91 percent along Schrieber Creek and 100 percent along Coyote Creek. The riparian buffer vegetation success criteria requires at least 70 percent of the combined aerial cover of riparian and stream bank vegetation; therefore, both of the reconstructed channel segments currently meet this standard when results for all of the cross sections are combined. A 13 percent increase for the total weighted percent cover was observed from 2015 to 2016 and remained constant in 2017. Vegetation continues to establish along the banks of the upper, ephemeral reaches of Schrieber Creek. The total weighted percent cover along Coyote Creek remained similar to 2016 observations with an existing vegetation cover of 100 percent.

		2015			2016			2017		
New Channel Segment	Cross Section	Percent Cover Left Bank	Percent Cover Right Bank	Total Percent Cover	Percent Cover Left Bank	Percent Cover Right Bank	Total Percent Cover	Percent Cover Left Bank	Percent Cover Right Bank	Total Percent Cover
	SC1-1	15	15	15	63	68	66	60	60	60
	SC1-2	20	35	28	59	79	69	59	79	69
	SC2A-1	65	30	48	89	90	90	85	90	88
	SC2A-2	20	50	35	86	67	77	86	67	77
Schrieber Creek	SC2B-1	30	15	23	90	86	88	90	86	88
	SC3-1	100	100	100	100	100	100	100	100	100
	SC3-2	100	100	100	100	100	100	100	100	100
	SC7	100	100	100	100	100	100	100	100	100
	Subtotal for Schrieber Creek	56	56	56	86	86	86	86	85	85
	CC1A-1	100	100	100	100	100	100	100	100	100
	CC1A-2	100	100	100	100	100	100	100	100	100
Coyote Creek	CC1B-1	100	100	100	100	100	100	100	100	100
	Subtotal for Coyote Creek	100	100	100	100	100	100	100	100	100

Table 3-12. Combined Cover for Riparian and Stream Bank Vegetation Transects in 2017

Channel Segment	Cross Section	Perpendicular Transect Length (ft)	Perpendicular Transect Total % Cover	Parallel Transect Length (ft) (Right Bank + Left Bank)	Parallel Transect Total % Cover	Total Weighted % Cover
	SC1-1	200	94	50	60	91
	SC1-2	200	87	50	69	85
	SC2A-1	200	92	50	88	92
	SC2A-2	200	86	50	77	85
Schrieber Creek	SC2B-1	150	94	50	88	93
	SC3-1	50	100	50	100	100
	SC3-2	50	100	50	100	100
	SC7	50	100	50	100	100
	Subtotal for Schrieber Creek		92		86	91
	CC1A-1	100	100	50	100	100
	CC1A-2	100	100	50	100	100
Coyote Creek	CC1B-1	75	100	50	100	100
	Subtotal for Coyote Creek		100		100	100

3.8.4.2 Stream Bank Vegetation

Success criteria for channel restoration requires a majority of species along the banks to have a bank stability index of 6 or higher using ratings provided by Winward [2000]. Stability ratings are provided for vegetation communities rather than for individual species; therefore, to use the Winward [2000] ratings, vegetation communities at each monitoring cross section were assigned. Vegetation communities were assigned by identifying the two dominant vegetation species within the parallel belt transect. At 2B-1 and 2B-2, the area was rated as Barren Ground (1) because the dominant species were not specified as a community in the stability index.

Table 3-13 includes the vegetation communities that were identified at each cross section and the bank stability rating provided for that community [Winward, 2000]. The upper, ephemeral reaches of Schrieber Creek (Reaches 1, 2A, and 2B) are recently constructed and, thus, continue to fully revegetate. The majority of reaches are dominated by reed canary grass, Canada thistle, or smooth brome. Two reaches are rated as bare ground but are dominated by a grass species (creeping wild rye). Stability ratings were satisfied for all of the reaches except 2A-2 and 2B-1. All of the reconstructed channel segments that occurred through the vegetated meadow area of the project site are dominated by reed canary grass and analogue sedge communities, which have a bank stability rating of 9. These reaches include Schrieber Creek Reaches 3 and 7 and Coyote Creek Reaches 1A and 1B.

Table 3-13. Vegetation Communities Identified at Each Monitoring Cross Section

Channel Segment	Monitoring Cross Section	Dominant Stream Bank Community	Community Type Stability Rating
	SC1-1	Phalaris arundinacea	9
	SC1-2	Cirsium arvense	6
	SC2A-1	Bromus inermis	3
Cabriah an Craal	SC2A-2	Elymus/Phalaris	9
Schrieber Creek	SC2B-1	Elymus/Phalaris	9
	SC3-1	Phalaris arundinacea	9
	SC3-2	Phalaris arundinacea	9
	SC7	Phalaris arundinacea	9
	CC1A-1	Phalaris arundinace/Carex simulata	9
Coyote Creek	CC1A-2	Phalaris arundinacea/Carex simulata	9
	CC1B-1	Phalaris arundinacea	9

3.8.4.3 Woody Vegetation Survival

Planted woody vegetation was assessed within each parallel belt transect at each cross section to determine survival rates. Planted woody vegetation was only observed at one stream bank cross section along Schrieber Creek (SC1-1) and one along Coyote Creek (CC1A-1). Woody plantings survival is below the required 50 percent survival rating as specified in the performance standards.

3.9 MAINTENANCE NEEDS

Two nest boxes were installed at the site, in good repair, and occupied. Noxious weed management will be an ongoing issue at this site. MDT completed noxious weed spraying at the Schrieber Lake site on August 2, 2017.

3.10 CURRENT CREDIT SUMMARY

3.10.1 Wetland Mitigation Credit

MDT anticipates developing 13.4 wetland credit acres from the Schrieber Lake project. Proposed mitigation credits from the 2014 Schrieber Lake Mitigation Plan included creating 3.06 wetland acres, reestablishing 2.53 wetland acres, enhancing 4.53 acres of the fen-carr shrubland expansion, preserving 25.6 acres of existing fen-carr *Carex* areas, and creating a 50-foot upland buffer (3.81 acres) around newly established wetlands in the center of the site.

Table 3-14 summarizes the estimated wetland credits based on the pending USACE-approved credit ratios and the wetland delineation completed in July 2017. The 2017 wetland delineation indicates that 37.65 acres of wetland habitat that consist of Schreiber Lake, riparian buffer, and other uncreditable areas exist within the mitigation site. The wetland acreages that were delineated in 2017 included 4.8 acres of created wetland, 2.42 acres of reestablished wetlands, 4.77 acres of enhanced wetlands, 25.66 acres of preserved wetlands, and 3.81 acres of upland buffer. The 2017 estimated credit acres for this site have exceeded the proposed credit acres. A total of 15.17 credit acres have developed at this site after mitigation construction. Please note that the 2015 and 2016 credit calculations in Table 3-14 included an upland buffer around all wetlands on the property rather than just the newly established wetlands toward the center of the site. Because MDT only proposes to obtain upland buffer credits on 3.81 acres of upland, these numbers have been adjusted. Figure A-4 (Appendix A) shows the location of wetlands based on credit type.

Table 3-14. Summary of Wetland Credits at the Schrieber Lake Site 2015–2017

Mitigation Type	Total Proposed Acreage	Ratio ^(a)	Proposed Credit Acres	2015 Delineated Acreage	2015 Credit Acres	2016 Delineated Acreage	2016 Credit Acres	2017 Delineated Acreage	2017 Credit Acres
Creation	3.06	1:1	3.06	4.80	4.80	4.80	4.80	4.80	4.80
Restoration (Reestablishment)	2.53	1.5:1	1.69	2.42	1.62	2.42	1.62	2.42	1.62
Enhancement areas – carr shrubland expansion	4.53	3:1	1.51	4.77	1.59	4.77	1.59	4.77	1.59
Preservation – existing fen-carr Carex areas	25.60	4:1	6.40	25.66	6.42	25.66	6.42	25.66	6.42
Upland buffer (50 ft) ^(b)	3.81	5:1	0.76	8.42	1.68	8.42	1.68	3.81	0.76
Permanent project impacts	0.02	None	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02
Total Mitigation Acreage	39.55		13.40	46.05	16.09	46.05	16.09	41.44	15.17

⁽a) The ratios used are from Column A of the Montana Regulatory Program Wetland Compensatory Mitigation Ratios, April 2005. Riparian buffer areas were used to calculate stream and riparian credits. Wetland acreages within riparian buffer were subtracted from wetland credit total; the riparian buffer does not include upland buffer acreage.

3.10.2 Performance Standards and Success Criteria

The current site conditions documented in 2017 were evaluated using the approved performance standards and success criteria in Table 3-15. The wetlands delineated in 2017 met the performance standards approved for this site, which included meeting the three parameter criteria for hydrology, vegetation, and soils. Hydrophytic vegetation success has been achieved based on the absolute cover of facultative or wetter species being at 70 percent or more. The open-water area of Schrieber Lake was given no credit based on the stated goal of the project to maintain already existing open water in Schrieber Lake. Weed cover site-wide and within the upland buffers is estimated at less than 5 percent, which meets the success criteria. Isolated weed infestations were mapped throughout the site and are controlled by MDT as mandated by the performance standards. The upland buffer success criteria have been achieved; these areas have at least 50 percent aerial cover of nonweed species.

⁽b) A standard 50-foot upland buffer was assumed for the perimeter of the delineated wetland. No credits are being requested for the existing Schrieber Lake.

Table 3-15. Summary of Performance Standards and Success Criteria at the Schrieber Lake Site in 2017 (Page 1 of 4)

Performance Standards	Success Criteria		eria eved /N	Discussion
	31,01,0	SC ^(a)	CC _(p)	
Wetland Characteristics	The three parameter criteria are met for hydrology, vegetation, and soils as outlined in the 1987 Wetland Manual and 2010 Regional Supplement.	Y	Y	Areas that were identified as wetland habitat within the mitigation site meet the three parameter criteria.
Wetland Hydrology	Soil saturation is present for at least 12.5 percent of the growing season.	Υ	Y	Areas that were identified as wetland habitat within the mitigation site exhibit soil saturation for a minimum 12.5 percent of growing season.
	Hydric soil conditions are present or appear to be forming.	Υ	Y	Hydric soil characteristics have developed throughout a majority of the constructed wetlands.
Hydric Soil	Soil is sufficiently stable to prevent erosion.	Υ	Υ	Disturbed soil is stable and does not exhibit signs of erosion.
	Soil is able to support plant cover.	Υ	Υ	Plant cover is well established across disturbed soils.
	Combined absolute cover of facultative or wetter species is 70 percent or greater.		Y	Areas that were identified as wetland habitat within the mitigation site support a prevalence of hydrophytic vegetation (OBL, FACW, and FAC).
Hydrophytic Vegetation	State-listed noxious weeds do not exceed 5 percent absolute cover.	Y	Y	State-listed noxious weeds are estimated well below 5 percent absolute cover within wetland areas.
	Woody plants exceed 50 percent survival after 5 years.	N	N	Woody plant survival is very low.
Open Water	The project is intended to provide open water during the spring and early summer within excavated depressions. Open water with emergent, submerged, and/or floating vegetation will, therefore, be considered successful and creditable.	Y	Υ	Excavated depressions within the upper reach of the site experience seasonal drawdown, and rooted hydrophytic vegetation development has been observed. The lower depressions appear to support perennial inundation with an established aquatic macrophyte community.

Performance Standards	Success Criteria		eria eved /N	Discussion	
Otalia ao			CC _(p)		
Channel Restoration Success	Revegetation along the new Coyote and Schrieber Creek channel corridors will be considered successful when banks are vegetated with a majority of deep-rooting riparian and wetland herbaceous and woody plant species with a root stability indexes greater than 6.	N	Y	Three of the five reaches of Schrieber Creek are ephemeral in nature and have yet to develop vegetation along the banks. As a result, these reaches (SC1, SC2A, and SC2B) do not currently meet the performance criteria. The downstream reaches of Schrieber Creek (Reaches SC3 and SC7) and both reaches of Coyote Creek (CC1A and CC1B) are dominated by reed canary grass, which has a root stability index of 9.	
Success	New stream channels will be allowed to naturally migrate within the established floodplain/riparian areas and to give it enough room to move and stabilize itself within the site.	Υ	Υ	No lateral migration has been documented along either Schrieber or Coyote Creek to date.	
Bank Restoration Success	Rates of success will be determined by the following rates: i.) Rate of less than 0.5 ft of erosion annually = Functioning ii.) Rate of less than 1.0 ft/year = Functioning ii.) Rate of less than 1.5 ft/year = Functioning at Risk iv.) Rate of less than 2.5 ft/year = Functioning at Risk v.) Rate of greater than 2.5 ft/year = Functioning at Risk or Not Functioning vi.) Rate of less than 3 ft/year = Not Functioning.	Y	Y	Transect data derived from bank pin locations during the 2017 monitoring have documented no lateral channel migration since 2015.	

Table 3-15. Summary of Performance Standards and Success Criteria at the Schrieber Lake Site in 2017 (Page 3 of 4)

Performance Standards	Success Criteria		eria eved /N	Discussion
		SC ^(a)	CC _(p)	
Bank Restoration Success	Ratings for the stream bank will be based on the proper functioning condition rating that determines if the area supports a healthy, stable bank area adjacent to the stream: i.) Functioning – The stream bank supports a healthy and stable bank area adjacent to the river. ii.) Functioning at Risk – one or more functions of the stream bank are adjusting to changes in the design within the reach area, and more monitoring is needed. ii.) Not Functioning – Measurements of the functions indicate that the site is not achieving functional goals and is not supporting a healthy, stable bank reach.	N/A	N/A	This data will be collected during the third and fifth monitoring years.
	Creditable buffer areas must have at least 50 percent aerial cover of nonnoxious weed species by the end of the monitoring period.	Y	Y	All riparian vegetation transects exhibited 50 percent or greater areal cover of nonnoxious weed species along both Schrieber and Coyote Creek.
Riparian Buffer Success	Combined aerial cover of riparian and stream bank vegetation communities is 70 percent or greater.		Y	Combined areal cover of riparian and stream bank vegetation along Schrieber Creek is 56 percent; however, two cross sections indicated a total weighted percent cover below 70 percent. Combined areal cover of riparian and stream bank vegetation along Coyote Creek is 100 percent.
	Noxious weeds do not exceed 5 percent cover within the riparian buffer areas.	N	Y	Noxious weed cover along Schrieber Creek is estimated at 8 percent. Noxious weed cover along Coyote Creek is 2 percent.
	Planted trees and shrubs will be considered successful where they exhibit 50 percent survival after 5 years.	N	N	Planted trees and shrubs along Schrieber Creek exhibit less than 50 percent survival to date. Planted trees and shrubs along Coyote Creek exhibit a 43 percent survival rate to date.

Table 3-15. Summary of Performance Standards and Success Criteria at the Schrieber Lake Site in 2017 (Page 4 of 4)

Performance Standards	Success Criteria		teria ieved /N	Discussion
		SC ^(a)	CC _(p)	
	Noxious weeds do not exceed 5 percent cover within upland buffer area.		Υ	Noxious weed cover is less than 5 percent within the upland buffer.
Upland Buffer	Any area that was disturbed within creditable buffer zone must have at least 50 percent aerial cover of nonweed species by end of monitoring period.	Y	Y	Disturbed areas have established greater than 50 percent cover by nonweed species.
Weed Control	Weed control will be based on annual site monitoring to determine weed species and degree of infestation within the site. Control measures based on the monitoring results will be implemented by MDT to minimize and/or eliminate the intrusion of state-listed noxious weed species within the site.	Y	Y	State-listed noxious weed species across the site have been monitored and mapped during each post-construction monitoring event. MDT administers an ongoing weed-control program.

⁽a) SC = Schrieber Creek(b) CC = Coyote Creek.

3.10.3 Stream-Mitigation Credit

The goal of the stream-mitigation component of the Schrieber Lake project includes restoring approximately 2,130 linear feet of Schrieber Creek, 1,397 feet of Coyote Creek, and 978 feet of Schrieber Creek below the Schrieber/Coyote Creek confluence, which should result in an overall increase of 3,108 linear feet of stream length. When combined with establishing and protecting a riparian buffer of varying width on both sides of the restored channels, the project is expected to generate a total of 36,741.87 stream and riparian credits, as shown in Table 3-16. Stream-mitigation credit calculations follow guidance in the USACE's *Montana Stream-Mitigation Procedure (MTSMP) – February 2013* [USACE, 2013]. The stream-mitigation project has been separated into the following distinct reaches:

- Coyote Creek, Reach 1A, which involves reconstructing a new channel through the lower hay meadow between the MDT-owned Schrieber Meadows property line to its confluence with an existing, relic segment of Coyote Creek (974.5 feet)
- 2. **Coyote Creek, Reach 1B,** which consists of a relic segment of Coyote Creek that has been reactivated as a result of this project (423.0 feet)
- 3. **Schrieber Creek**, **Reach 1**, which consists of a newly constructed channel configuration that extends from the existing channel downstream to Reach 2A (531.6 feet)
- 4. **Schrieber Creek**, **Reach 2A**, which consists of a newly constructed channel configuration that extends from the downstream end of Reach 1 to the upstream end of Reach 2B (544.5 feet)
- 5. **Schrieber Creek, Reach 3,** which consists of a newly constructed channel configuration that extends from Reach 2B to the confluence with Coyote Creek (932.9 feet)
- 6. **Schrieber Creek, Reach 7**, which consists of a relic channel that extends from the confluence of Schrieber and Coyote Creeks to Schrieber Lake (978 feet).

Table 3-16. Anticipated Riparian and Stream Credits
Generated From the Schrieber Lake Site

Channel Segment	Reach	Side	Predicted Credits
	4.0	Α	4,141.63
Cavata Craal	1A	В	4,141.63
Coyote Creek	40	Α	1,586.25
	1B	В	1,692.00
	1	Α	2,392.20
	1	В	2,392.20
	2A	Α	2,722.50
		В	2,722.50
Schrieber		Α	576.65
Schliebei	2B	В	576.65
	3	Α	3,964.83
	<u> </u>	В	3,964.83
	7	Α	2,934.00
	/	В	2,934.00
Tota	I		36,741.87

The 2015 monitoring report for the Schrieber Lake site provided a first-year, baseline assessment of the site's condition after the project's completion. Data collected during the 2017 monitoring revealed continued development of vegetation cover along the reaches. Reaches 1, 2A, and 2B of Schrieber Creek have yet to meet performance criteria established for (1) establishing bank-stabilizing vegetation communities and (2) percent cover of noxious weeds within the riparian corridor. Reaches 3 and 7 of Schrieber Creek and Reaches 1A and 1B of Coyote Creek currently meet all of the success criteria and are expected to generate the predicted credits outlined in the monitoring plan. Future site monitoring will determine whether vegetation establishment within Reaches 1, 2A, and 2B of Schrieber Creek results in achieving the success criteria and generating all of the anticipated credits.

4.0 REFERENCES

Berglund, J. and R. McEldowney, 2008. *MDT Montana Wetland Assessment Method,* PBS&J Project B43075.00, prepared by Post, Buckley, Schuh, & Jernigan, Helena, MT, for the Montana Department of Transportation, Helena, MT.

Environmental Laboratory, 1987. Corps of Engineers Wetlands Delineation Manual, Program Technical Report Y-87-1, prepared by Environmental Laboratory, Department of the Army, Waterways Experiment Station, Corps of Engineers, Vicksburg, MS, for the Department of the Army, US Army Corps of Engineers, Washington, DC.

Lichvar, R. W., D. L. Banks, W. N. Kirchner, and N. C. Melvin, 2016. "The National Wetland Plant List: 2016 Wetland Ratings," *Phytoneuron*, Vol. 2016-30, No. 1–17.

Montana Department of Agriculture, 2017. "Montana Noxious Weed List," *mt.gov,* retrieved November 7, 2017, from *http://agr.mt.gov/Portals/168/Documents/Weeds/2017%20Noxious%20Weed%20List.pdf*

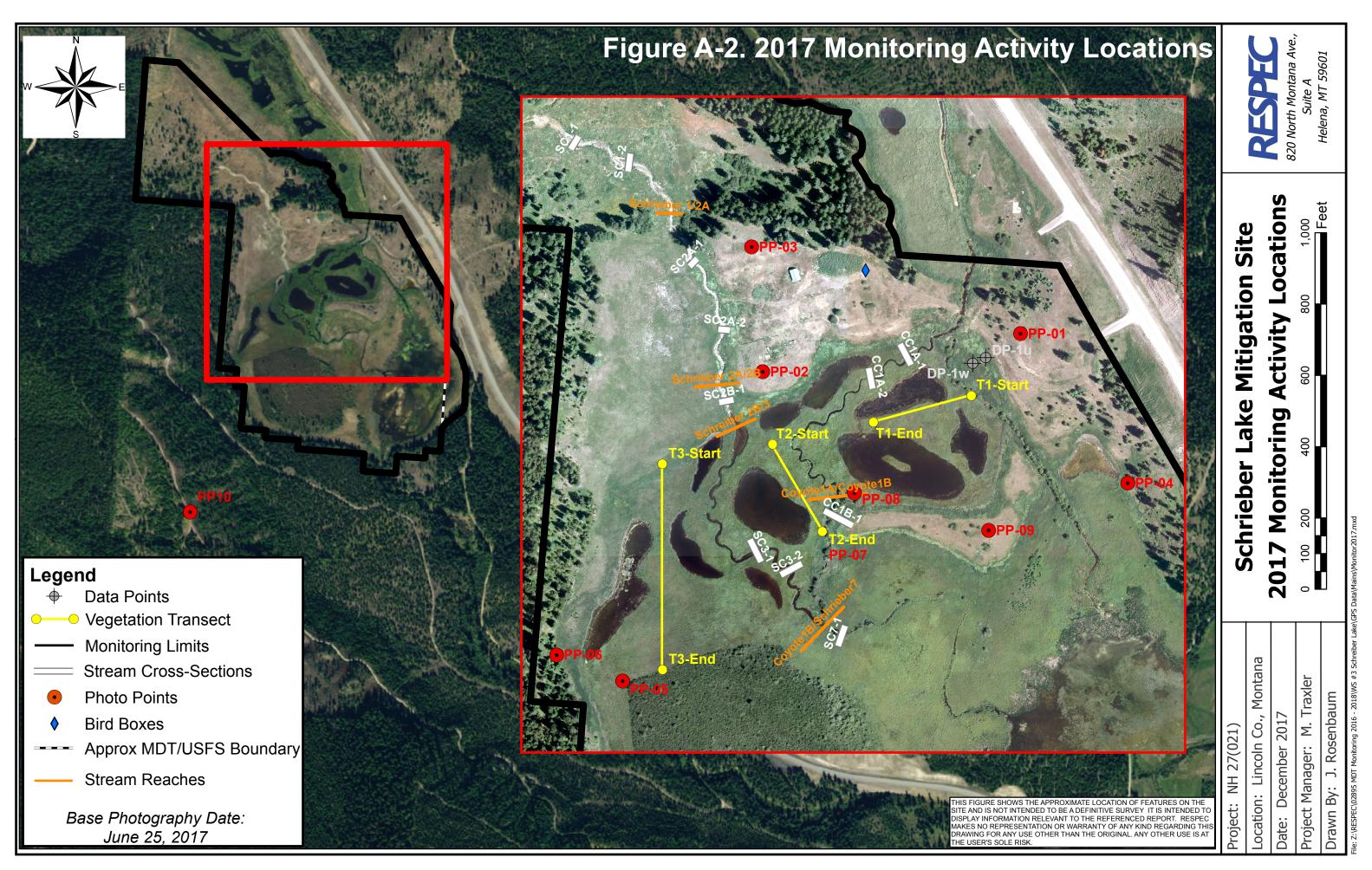
Montana Department of Transportation, 2009. Schrieber Lake Wetland Mitigation Plan, NH 27(021) CN 1027, Watershed #1 – Kootenai River Basin, Lincoln County, Montana, Montana Department of Transportation, Helena, MT.

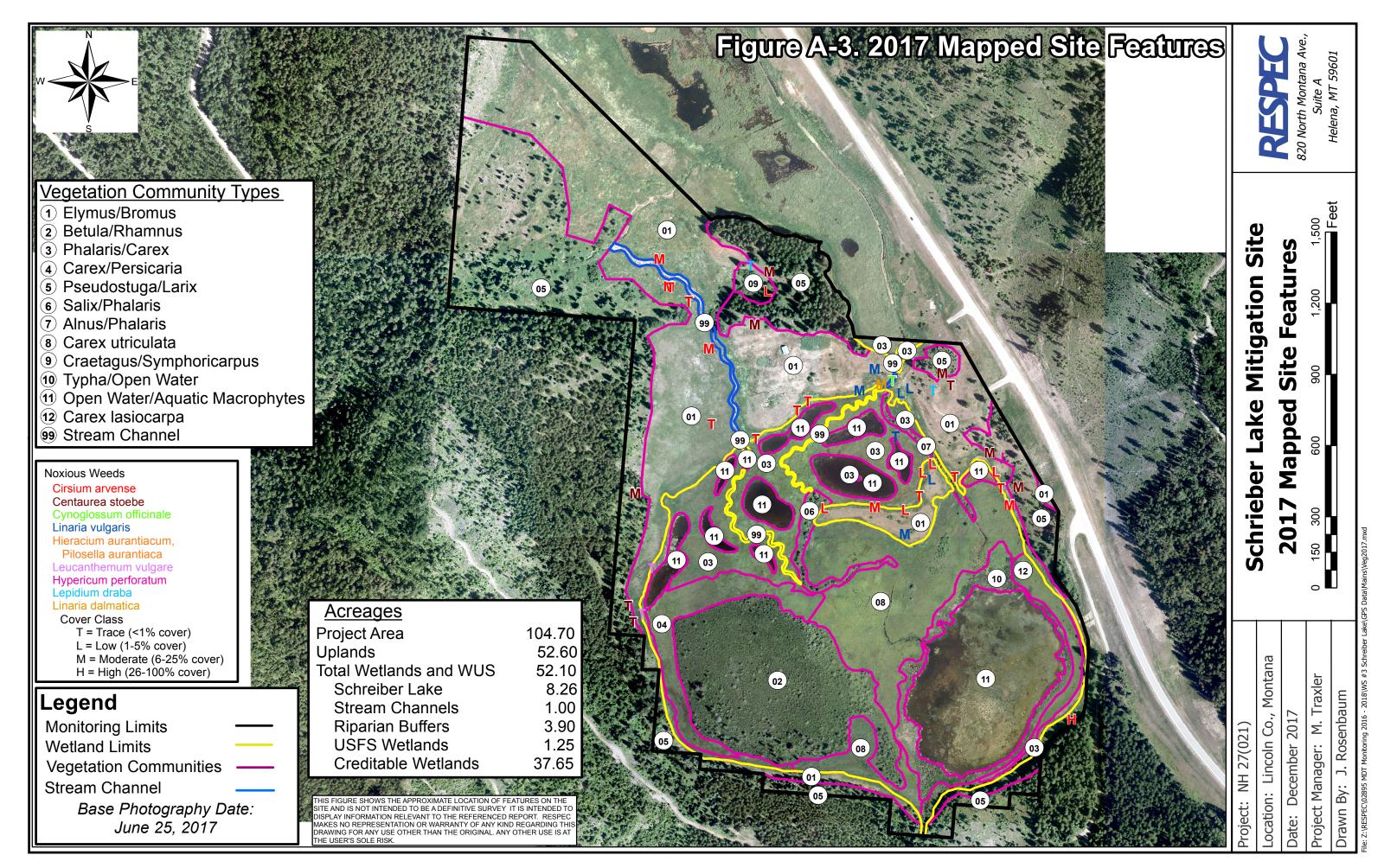
Natural Resources Conservation Service, 2010. "WETS Station Data," *usda.gov,* retrieved August 17, 2015, from *http://www.wcc.nrcs.usda.gov/climate/wetlands.html*

Prichard, D., 1998. Riparian Area Management: A User Guide To Assessing Proper Functioning Condition And The Supporting Science For Lotic Areas, TR 1737-15, prepared by the US Department of the Interior, Bureau of Land Management, National Applied Resource Sciences Center, Denver, CO.

US Army Corps of Engineers, 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual, Western Mountains, Valleys, and Coast Region (Version 2.0), ERDC/EI TR-10-3, J. S. Wakely, R. W. Lichvar, and C. V. Noble (eds.), prepared by the US Army Corps of Engineers, US Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS.

US Army Corps of Engineers, **2013**. *Montana Stream Mitigation Procedure (MTSMP) – February 2013*, Helena, Montana.


US Department of Agriculture, 2016. "Web Soil Survey for Lincoln County Area," *usda.gov*, retrieved July 8, 2016, from *http://websoilsurvey.nrcs.usda.gov/app*


Western Regional Climate Center, 2017. "Monthly Sum of Precipitation at Libby 30 SSE, Montana (245020)" *dri.edu*, retrieved September 13, 2017, from *http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?mt5387*

Winward, A. H., 2000. *Monitoring the Vegetation Resources in Riparian Areas,* RMRS-GTR-47, prepared by the US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, UT.

APPENDIX A PROJECT AREA MAPS

MDT Wetland Mitigation Monitoring Schrieber Lake Lincoln County, Montana

APPENDIX B MONITORING FORMS

MDT Wetland Mitigation Monitoring Schrieber Lake Lincoln County, Montana

RESPEC/MDT WETLAND MITIGATION SITE MONITORING FORM

Project Name: Schrieber Lake Project Number: NH 27(021)

Assessment Date: <u>July 26, 2017</u> Person(s) conducting the assessment: <u>M. Traxler</u>

Location: <u>Highway 2, Swamp Creek East</u> MDT District: <u>Missoula</u>

Milepost: <u>53.8 on US 2</u>

Legal Description: T 27N R 30W Section 13 T 27N R 30W

Weather Conditions: **sunny**, **80 degrees**Time of Day: **8 am**

Initial Evaluation Date: May 18, 2015 Monitoring Year: 3 # Visits in Year: 1

Size of evaluation area: <u>105 acres</u> Land use surrounding wetland: <u>US Highway 2, US Forest</u>

Service, forested watershed, Plum Creek lands to the south of the site.

HYDROLOGY

Surface Water Source: Schrieber Creek, Coyote Creek, precipitation, groundwater

Inundation: <u>Present</u> Average Depth: <u>2 feet</u> Range of Depths: <u>1-3</u>

Percent of assessment area under inundation: 80%

Depth at emergent vegetation-open water boundary: 1.0 feet

If assessment area is not inundated then are the soils saturated within 12 inches of surface: __Other evidence of hydrology on the site (ex. – drift lines, erosion, stained vegetation, etc.):

Groundwater Monitoring Wells: Absent

Record depth of water below ground surface (in feet):

Well Number	Depth	Well Number	Depth	Well Number	Depth

Additional	Activities	Checklist.
АССПИСИИ	ACHVIIIES	THE CRITE

\ /	3.6	, , , •	, 1 1	
×	Man emergen	t vegetation_onen	water houndary of	on aerial photograph.
/ \	i wian cinciech	i vogotationi-onom	water izounuary t	m acmai midugerami.

Observe extent of surface water during each site visit and look for evidence of past surface water elevations (drift lines, erosion, vegetation staining, etc.)

Use GPS to survey groundwater monitoring well locations, if present.

COMMENTS / PROBLEMS:

Water depth refers to shallow wetland cells, not including Schreiber Lake. 80% innundation does not include the extensive uplands in the northern "panhandle" of the project area.

VEGETATION COMMUNITIES

Community Number: 1 Community Title (main spp): Elymus repens / Bromus inermis

Dominant Species	% Cover	Dominant Species	% Cover
Elymus repens	4 = 21-50%	Agrostis stolonifera	1 = 1-5%
Bromus inermis	3 = 11-20%	Alopecurus pratensis	1 = 1-5%
Pascopyrum smithii	3 = 11-20%	Phalaris arundinacea	1 = 1-5%
Phleum pratense	3 = 11-20%	Poa pratensis	1 = 1-5%
Poa compressa	3 = 11-20%	Pseudotsuga menziesii	1 = 1-5%
Achillea millefolium	1 = 1-5%	Pseudoroegneria spicata	1 = 1-5%

Comments / Problems: _____

Community Number: 2 Community Title (main spp): Betula pumila / Rhamnus alnifolia

Dominant Species	% Cover	Dominant Species	% Cover
Betula pumila	5 = > 50%	Salix boothii	1 = 1-5%
Moss	5 = > 50%	Salix candida	1 = 1-5%
Rhamnus alnifolia		Phalaris arundinacea	+ = < 1%
Carex sp.	2 = 6-10%	Symphyotrichum spathulatum	+=<1%
Comarum palustre	1 = 1-5%		
Persicaria amphibia	1 = 1-5%		-

Comments / Problems: _____

Community Number: <u>3</u> Community Title (main spp): <u>Phalaris arundinacea / Carex sp.</u>

Dominant Species	% Cover	Dominant Species	% Cover
Carex stimulata	5 = > 50%	Persicaria amphibia	1 = 1-5%
Phalaris arundinacea	5 = > 50%	Symphyotrichum spathulatum	1 = 1-5%
Agrostis scabra	2 = 6-10%	Comarum palustre	+=<1%
Alopecurus pratensis	1 = 1-5%	Deschampsia caespitosa	+=<1%
Carex aquatilis	1 = 1-5%	Geum macrophyllum	+=<1%
Lemna minor	1 = 1-5%	Juncus tenuis	+=<1%

Comments / Problems: _____

Community Number: 4 Community Title (main spp): Carex simulata / Persicaria amphibia

Dominant Species	% Cover	Dominant Species	% Cover
Carex stimulata	5 = > 50%	Comarum palustre	1 = 1-5%
Carex aquatilis	3 = 11-20%	Geum macrophyllum	1 = 1-5%
Persicaria amphibia	3 = 11-20%	Potentilla norvegica	1 = 1-5%
Carex utriculata	2 = 6-10%	Phalaris arundinacea	1 = 1-5%
Moss	2 = 6-10%	Symphyotrichum spathulatum	1 = 1-5%
Carex nebrascensis	1 = 1-5%		

Comments / Problems:

VEGETATION COMMUNITIES (continued)

Community Number: <u>5</u> Community Title (main spp): <u>Pseudotsuga menziesii / Larix occidentalis</u>

Dominant Species	% Cover	Dominant Species	% Cover
Larix occidentalis	4 = 21-50%	Bromus inermis	2 = 6-10%
Pseudotsuga menziesii	4 = 21-50%	Centaurea stoebe	2 = 6-10%
Pinus contorta	4 = 21-50%	Elymus glaucus	2 = 6-10%
Carex geyeri	3 = 11-20%	Symphoricarpos albus	2 = 6-10%
Abies grandis	2 = 6-10%	Bereberis repens	1 = 1-5%
Arcostaphylos uva-ursi	2 = 6-10%	Calamagrostis rubescens	1 = 1-5%

Comments / Problems: _____

Community Number: 6 Community Title (main spp): Salix bebbiana / Phalaris arundinacea

Dominant Species	% Cover	Dominant Species	% Cover
Salix bebbiana	5 = > 50%		
Phalaris arundinacea	5 = > 50%		
Alnus incana	1 = 1-5%		
Crataegus douglasii	1 = 1-5%		
Persicaria amphibia	1 = 1-5%		

Comments / Problems:

Community Number: 7 Community Title (main spp): Alnus incana / Phalaris arundinacea

Dominant Species	% Cover	Dominant Species	% Cover
Alnus incana	5 = > 50%		
Phalaris arundinacea	5 = > 50%		
Persicaria amphibia	1 = 1-5%		
Cirsium arvense	+=<1%		

Comments / Problems:

Community Number: **8** Community Title (main spp): **Carex utriculata**

Dominant Species	% Cover	Dominant Species	% Cover
Carex utriculata	4 = 21-50%		
Carex aquatilis	1 = 1-5%		
Persicaria amphibia	1 = 1-5%		
Phalaris arundinacea	1 = 1-5%		
Salix bebbiana	1 = 1-5%		
Salix candida	1 = 1-5%		

Comments / Problems:

VEGETATION COMMUNITIES (continued)

Community Number: **9** Community Title (main spp): **Crataegus douglasii / Symphoricarpos albus**

Dominant Species	% Cover	Dominant Species	% Cover
Crataegus douglasii	5 = > 50%	Achillea millefolium	+ = < 1%
Symphoricarpos albus	4 = 21-50%	Cynoglossum officinale	+ = < 1%
Cirsium arvense	2 = 6-10%	Dactylis glomerata	+=<1%
Phalaris arundinacea	2 = 6-10%	Galium triflorum	+ = < 1%
Alopecurus pratensis	1 = 1-5%	Taraxacum officinale	+ = < 1%
Elymus trachycaulus	1 = 1-5%	Urtica dioica	+=<1%

Comments / Problems: _____

Community Number: 10 Community Title (main spp): Typha latifolia / Open Water

Dominant Species	% Cover	Dominant Species	% Cover
Typha latifolia	5 = > 50%		
Comarum palustre	4 = 21-50%		
Open Water	4 = 21-50%		

Comments / Problems:

Community Number: 11 Community Title (main spp): Open Water / Aquatic macrophytes

Dominant Species	% Cover	Dominant Species	% Cover
Open Water	5 = > 50%		
Aquatic macrophytes	4 = 21-50%		
Persicaria amphibia	3 = 11-20%		

Comments / Problems: _____

Community Number: 12 Community Title (main spp): Carex lasiocarpa

Dominant Species	% Cover	Dominant Species	% Cover
Carex lasiocarpa	5 = > 50%		
Carex aquatilis	2 = 6-10%		
Phalaris arundinacea	2 = 6-10%		
Carex utriculata	1 = 1-5%		
Typha latifolia	1 = 1-5%		

Comments / Problems:

Additional Activities Checklist:

Record and map vegetative communities on aerial photograph.

PLANTED WOODY VEGETATION SURVIVAL

Plant Species	Number Originally Planted	Number Observed	Mortality Causes
Various Species	1500		

Comments / Problems: MDT planted 1,500 woody plants in the riparian buffer along Schrieber Creek, Coyote Creek, and around some wetland excavations. Based on observations at the parallel and perpendicular belt transects woody plantings survival was estimated to be below the required 50% survival. For many of the plantings, competition with herbaceous vegetation such as reed canary grass is problematic, as are conditions that are either too wet or too dry for woody survival. Larry Urban with MDT (Contacted July 2017) has indicated that some of the woody plantings have likely been adversely affected by weed spraying activities at the site.

Transect Number: 1 Approximate Transect Length: 284 feet Compass Direction from Start: 251 Note:

Transect Interval Length: 20 feet (Station 0-20)	
Vegetation Community Type: Alnus incana / Phalaris arundinacea	
Plant Species	Cover
Phalaris arundinacea	5 = > 50%
Total Vegetative Cover:	100%

Transect Interval Length: 73 feet (Station 20-93)	
Vegetation Community Type: Phalaris arundinacea / Carex sp.	
Plant Species	Cover
Phalaris arundinacea	5 = > 50%
Carex simulata	5 = > 50%
Deschampsia cespitosa	1 = 1-5%
Carex utriculata	1 = 1-5%
Persicaria amphibia	1 = 1-5%
Eleocharis palustris	1 = 1-5%
Glyceria grandis	+=<1%
Total Vegetative Cover:	100%

Transect Interval Length: 8 feet (Station 93-101)		
Vegetation Community Type: Open Water / Aquatic macrophytes		
Plant Species	Cover	
Open Water	5 = > 50%	
Persicaria amphibia	3 = 11-20%	
Aquatic macrophytes	+ = < 1%	
Total Vegetative Cove	er: 50%	

Transect Interval Length: 183 feet (Station 101-284)	4)
Vegetation Community Type: Phalaris arundinacea / Carex sp.	
Plant Species	Cover
Phalaris arundinacea	5 = > 50%
Carex simulata	4 = 21-50%
Persicaria amphibia	3 = 11-20%
Eleocharis palustris	2 = 6-10%
Carex utriculata	1 = 1-5%
Algae - Green	+=<1%
Lemna minor	+ = < 1%
Total Vegetative	Cover: 100%

MDT WETLAND MONITORING – VEGETATION TRANSECT

Site: Schrieber Lake Date: July 26, 2017 Examiner: M. Traxler

Transect Number: 2 Approximate Transect Length: 280 feet Compass Direction from Start: 152 Note:

Transect Interval Length: 253 feet (Station 0-253)		
Vegetation Community Type: Phalaris arundinacea / Carex sp.		
Plant Species	Cover	
Phalaris arundinacea	4 = 21-50%	
Carex simulata	4 = 21-50%	
Carex utriculata	4 = 21-50%	
Persicaria amphibia	3 = 11-20%	
Carex vesicaria	1 = 1-5%	
Total Vegetative Cover:	100%	

Transect Interval Length: 27 feet (Station 253-280) Vegetation Community Type: Salix bebbiana / Phalaris arundinacea	
Phalaris arundinacea	5 = > 50%
Persicaria amphibia	1 = 1-5%
Salix bebbiana	+=<1%
Total Vegetative Cover:	100%

Transect Interval Length:	
Vegetation Community Type:	
Plant Species	Cover
Total Vegetative Cover:	%

Transect Interval Length:	
Vegetation Community Type:	
Plant Species	Cover
Total Vegetative Cover:	%

لا-

Transect Number: 3 Approximate Transect Length: 584 feet Compass Direction from Start: 175 Note:

Transact Interval Langth, 25 feet (Station 0.25)		
Transect Interval Length: 35 feet (Station 0-35)		
Vegetation Community Type: Elymus repens / Bromus inermis		
Plant Species	Cover	
Bromus inermis	5 = > 50%	
Phalaris arundinacea	5 = > 50%	
Phleum pratense	1 = 1-5%	
Total Vegetative Cover:	100%	

Transect Interval Length: 215 feet (Station 35-250)		
Vegetation Community Type: Phalaris arundinacea / Carex sp.		
Plant Species	Cover	
Phalaris arundinacea	4 = 21-50%	
Carex simulata	3 = 11-20%	
Agrostis scabra	2 = 6-10%	
Carex aquatilis	1 = 1-5%	
Comarum palustre	+ = < 1%	
Geum macrophyllum	+ = < 1%	
Persicaria amphibia	+ = < 1%	
Total Vegetative Cover:	100%	

Transect Interval Length: 334 feet (Station 250-584)	
Vegetation Community Type: Carex simulata / Persicaria amphibia	
Plant Species	Cover
Carex simulata	3 = 11-20%
Agrostis scabra	3 = 11-20%
Persicaria amphibia	2 = 6-10%
Moss	2 = 6-10%
Phalaris arundinacea	2 = 6-10%
Carex nebrascensis	1 = 1-5%
Comarum palustre	1 = 1-5%
Phleum pratense	1 = 1-5%
Total Vegetative Cover:	100%

Transect Interval Length:	
Vegetation Community Type:	
Plant Species	Cover
-	
T + 1 V + + ' C	0/
Total Vegetative Cover:	%

3 = 11-10%4 = 21-50% + = Obligate
- = Facultative/Wet

P = Planted

2 = 6-10%

5 = > 50%

0 = Facultative

V = Volunteer

Percent of perimeter developing wetland vegetation (excluding dam/berm structures): %

Establish transects perpendicular to the shoreline (or saturated perimeter). The transect should begin in the upland area. Permanently mark this location with a standard metal fencepost. Extend the imaginary transect line towards the center of the wetland, ending at the 3 foot depth (in open water), or at the point where water depths or saturation are maximized. Mark this location with another metal fencepost.

Estimate cover within a 10 foot wide "belt" along the transect length. At a minimum, establish a transect at the windward and leeward sides of the wetland. Remember that the purpose of this sampling is to monitor, not inventory, representative portions of the wetland site.

Comments: ____

PHOTOGRAPHS

Take photographs of the following permanent reference points listed in the check list below. Record the direction of the photograph using a compass. When at the site for the first time, establish a permanent reference point by setting a ½ inch rebar or fencepost extending 2-3 feet above ground. Survey the location with a resource grade GPS and mark the location on the aerial photograph.

Photogr	aph Checklist:
	One photograph for each of the four cardinal directions surrounding the wetland.
	At least one photograph showing upland use surrounding the wetland. If more than one upland
	exists then take additional photographs.
	At least one photograph showing the buffer surrounding the wetland.
	One photograph from each end of the vegetation transect, showing the transect.

Location	Photograph Frame #	Photograph Description & Lat/Long	Compass Reading (°)
PP-1		Photo Point 1, Photo 1: 48.107033 / -115.409592	242
PP-1		Photo Point 1, Photo 2: 48.107033 / -115.409592	197
PP-1		Photo Point 1, Photo 3: 48.107033 / -115.409592	164
PP-2		Photo Point 2, Photo 1: 48.106591 / -115.412511	323
PP-2		Photo Point 2, Photo 2: 48.106591 / -115.412511	205
PP-2		Photo Point 2, Photo 3: 48.106591 / -115.412511	162
PP-2		Photo Point 2, Photo 4: 48.106591 / -115.412511	104
PP-2		Photo Point 2, Photo 5: 48.106591 / -115.412511	69
PP-3		Photo Point 3: 48.10754 / -115.412747	183
PP-4		Photo Point 4: 48.105948 / -115.408236	287
PP-5		Photo Point 5, Photo 1: 48.104136 / -115.413847	173
PP-5		Photo Point 5, Photo 2: 48.104136 / -115.413847	35
PP-5		Photo Point 5, Photo 3: 48.104136 / -115.413847	359
PP-6		Photo Point 6, Photo 1: 48.104297 / -115.414628	150
PP-6		Photo Point 6, Photo 2: 48.104297 / -115.414628	103
PP-6		Photo Point 6, Photo 3: 48.104297 / -115.414628	52
PP-7		Photo Point 7, Photo 1: 48.105398 / -115.411691	228
PP-7		Photo Point 7, Photo 2: 48.105398 / -115.411691	299
PP-7		Photo Point 7, Photo 3: 48.105398 / -115.411691	355
PP-8		Photo Point 8, Photo 1: 48.105714 / -115.411356	320
PP-8		Photo Point 8, Photo 2: 48.105714 / -115.411356	49
PP-8		Photo Point 8, Photo 3: 48.105714 / -115.411356	79
PP-9		Photo Point 9, Photo 1: 48.105502 / -115.409787	323
PP-9		Photo Point 9, Photo 2: 48.105502 / -115.409787	120
PP-10		Photo Point 10, Photo 1: 48.100529 / -115.415406	17
PP-10		Photo Point 10, Photo 2: 48.100529 / -115.415406	39
PP-10		Photo Point 10, Photo 3: 48.100529 / -115.415406	57
T-1 start		Transect 1 start: 48.106526 / -115.410102	251
T-1 end		Transect 1 end: 48.106268 / -115.411205	71
T-2 start		Transect 2 start: 48.106037 / -115.412335	152
T-2 end		Transect 2 end: 48.105398 / -115.411692	332
T-3 start		Transect 3 start: 48.105866 / -115.413539	175

-		
T-3 end	Transect 3 end: 48.104242 / -115.413401	355
DP-1W	Wetland soil pit: 48.106783 / -115.4101126	
DP-1U	Upland soil pit: 48.106833 / -115.409964	
SC1-1	SC1-1 upstream: 48.10823599 / -115.4148624	300
SC1-1	SC1-1 left bank: 48.108236 / -115.414862	30
SC1-2	SC1-2 upstream: 48.108116 / -115.414221	280
SC1-2	SC1-2 left bank: 48.108116 / -115.414221	10
SC2A-1	SC2A-1 downstream: 48.107386 / -115.413401	315
SC2A-1	SC2A-1 left bank: 48.107386 / -115.413401	45
SC2A-2	SC2A-2 downstream: 48.106889 / -115.412990	185
SC2A-2	SC2A-2 right bank: 48.106889 / -115.412990	275
SC2B-1	SC2B-1 downstream: 48.106342 / -115.412902	175
SC2B-1	SC2B-1 right bank: 48.106342 / -115.412902	265
SC3-1	SC3-1 upstream: 48.105212 / -115.412439	240
SC3-1	SC3-1 left bank: 48.105212 / -115.412439	330
SC3-2	SC3-2 downstream: 48.105090 / -115.412014	160
SC3-2	SC3-2 left bank: 48.105090 / -115.412014	70
SC7-1	SC7-1 downstream: 48.104608 / -115.411380	110
SC7-1	SC7-1 left bank: 48.104608 / -115.411380	20
CC1A-1	CC1A-1 upstream: 48.106803 / -115.410891	50
CC1A-1	CC1A-1 left bank: 48.106803 / -115.410891	140
CC1A-2	CC1A-2 upstream: 48.106600 / -115.411270	85
CC1A-2	CC1A-2 left bank: 48.106600 / -115.411270	175
CC1B-1	CC1B-1 downstream: 48.105509 / -115.411518	200
CC1B-1	CC1B-1 left bank: 48.105509 / -115.411518	110

Comments /	Problems:	

GPS SURVEYING

Using a resource grade GPS survey the items on the checklist below. Collect at least 3 location points set at a 5 second recording rate. Record file numbers for site in designated GPS field notebook.

 GPS Checklist: ☑ Upland/wetland boundary. ☑ 4-6 landmarks that are recognizable on the aerial photograph. ☑ Start and End points of vegetation transect(s). ☑ Photograph reference points. ☐ Groundwater monitoring well locations. ☑ Bird nest boxes.
Comments / Problems:
WETLAND DELINEATION (attach COE delineation forms)
At each site conduct these checklist items: Delineate wetlands according to the 1987 Army COE manual and regional supplement. Delineate wetland – upland boundary onto aerial photograph.
Comments / Problems:
FUNCTIONAL ASSESSMENT Complete and attach full MDT Montana Wetland Assessment Method field forms.
Comments / Problems:
MAINTENANCE
Were man-made nesting structure installed at this site? <u>Yes</u> If yes, do they need to be repaired? <u>No</u> If yes, describe the problems below and indicate if any actions were taken to remedy the problems.
Were man-made structures built or installed to impound water or control water flow into or out of the wetland? <u>NA</u> If yes, are the structures working properly and in good working order? <u>NA</u> If no, describe the problems below.
Comments / Problems:

WILDLIFE

Birds

Were man-made nesting structures installed? <u>Yes</u> If yes, type of structure: <u>Box</u> How many? <u>2</u> Are the nesting structures being used? <u>No</u> Do the nesting structures need repairs? <u>No</u>

Mammals and Herptiles

Mammal and Hamtile Species	Number		Indir	ect Indicatio	on of Use
Mammal and Herptile Species	Observed	Tracks	Scat	Burrows	Other
Chipmunk sp.	2				
Ground squirrel sp.	3				
Columbia spotted frog					
Pumpkinseed					
Brook trout					
Shiner sp.					
Painted turtle					
Common garter snake					
White-tailed deer	1				
Raccoon		\boxtimes			
Muskrat		\boxtimes			
Meadow vole					
Bushy-tailed woodrat					
Western jumping mouse					
Yellow-bellied marmot					
Elk					
Moose					
Western toad					

Additional Activities Checklist:

NA Macroinvertebrate Sampling (if required)

Comments / Problems: <u>List includes species observed by MDT staff during a site visit conducted at the same time as 2017 monitoring.</u>

BIRD SURVEY - FIELD DATA SHEET

Site: Schrieber Lake Date: 7/26/17

Survey Time: _____ to ____

Bird Species	#	Behavior	Habitat	Bird Species	#	Behavior	Habitat
Canada goose	28	FL	OW	Willow flycatcher		FO	MA
Mallard	12	FL	OW	Common snipe		F	MA
Dark-eyed junco	7	FO	MA	House wren		FO	MA
Green-winged teal		FL	OW	American robin		FO L	MA
Cinnamon teal		FL	OW	Song sparrow		FO	MA
Bufflehead		FL	OW	Chipping sparrow		FO	MA
Great blue heron		L	MA	Pied-billed grebe		FL	OW
Sora		F	MA	Macgillivray's warbler		FO	MA
Spotted sandpiper		F	MA	Northern flicker		FO	MA
American dipper		F	MA	Grosbeak sp.		FO	MA
Tree swallow		FO	MA	Wilson's warbler		FO	MA
Vaux's swift		FO	MA	Rough-winged swallow		FO	MA
Red-tailed hawk		FO	MA	Black-billed magpie		FO	MA
Bank swallow		FO	MA	Western bluebird		FO L	MA
Barn swallow		FO	MA	Osprey		FO	MA
Common yellowthroat		FO	MA	American wigeon		FL	OW
Yellow warbler		FO	MA	Belted kingfisher		FO L	MA
Red-winged blackbird		FO L	MA	Cedar waxwing		FO	MA
Yellow-headed blackbird		FO L	MA	American coot		FL	OW
Calliope hummingbird		FO	MA				
Yellow-rumped warbler		FO	MA				
Dusky flycatcher		FO	MA				
Marsh wren		FO L	MA				

BEHAVIOR CODES

BP = One of a breeding pair **BD** = Breeding display

F = Foraging **FO** = Flyover

L = LoafingN = Nesting HABITAT CODES

AB = Aquatic bed
FO = Forested
I = Island
WM = Wet meadow
WA = Marsh
US = Unconsolidated shore

MF = Mud Flat **OW** = Open Water

Weather: 80 degrees, sunny

Notes: <u>List includes species observed by MDT staff during a site visit conducted at the same time as 2017 monitoring.</u>

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

roject/Site: Schrieber Lake		City/County:	Lincoln	Sampling Date: 26-Jul-17
pplicant/Owner: MDT				State: MT Sampling Point: DP-1U
nvestigator(s): RESPEC - M. Traxler		Section, To	wnship, Ra	ange: S 13 T 27N R 30W
Landform (hillslope, terrace, etc.): Floodplain		Local relief	(concave, c	convex, none): CONVEX Slope: 2.0 % / 1.1
subregion (LRR): LRR E	Lat. : 48	.106833		Long.: -115.409964
oil Map Unit Name: aquic adfluvents, poorly drained				NWI classification: Upland
e climatic/hydrologic conditions on the site typical for this t	ime of year	? Yes	. ● No C	
Are Vegetation , Soil , or Hydrology s	ignificantly	disturbed?	Are "N	Normal Circumstances" present? Yes No
Are Vegetation . , Soil . , or Hydrology . n	aturally pro	blematic?		eded, explain any answers in Remarks.)
Summary of Findings - Attach site map sho			-	
Hydrophytic Vegetation Present? Yes No 💿		To the	Sampled A	Avon
Hydric Soil Present? Yes No •			•	Vaa O Na 🔘
Wetland Hydrology Present? Yes No 💿		within	a Wetland	d? 163 © 110 ©
Remarks:		•		
Upland sample point.				
VEGETATION - Use scientific names of plant	S.	Dominant _Species? .		
Tree Stratum (Plot size: 30 Foot Radius)	Absolute % Cover	Rel.Strat.	Indicator Status	Dominance Test worksheet:
1.		0.0%	Status	Number of Dominant Species That are OBL, FACW, or FAC: (A)
2		0.0%		mat are obt, racw, or rac.
3		0.0%		Total Number of Dominant Species Across All Strata: 1 (B)
4.	_	0.0%		Species Across Air Strata.
Sapling/Shrub Stratum (Plot size: 15 Foot Radius)	0	= Total Cove	er	Percent of dominant Species That Are OBL, FACW, or FAC: 0.0% (A/B)
1	0	0.0%		Prevalence Index worksheet:
2	0	0.0%		Total % Cover of: Multiply by:
3	0	0.0%		OBL species
4	0	0.0%		FACW species $\underline{5}$ x 2 = $\underline{10}$
5		0.0%		FAC species $0 \times 3 = 0$
Herb Stratum (Plot size: 5 Foot Radius)	0	= Total Cove	er	FACU species $\frac{75}{}$ x 4 = $\frac{300}{}$
	70	✓ 77.8%	EACH	UPL species $\frac{10}{}$ x 5 = $\frac{50}{}$
Elymus repens Bromus inermis	10	11.1%	FACUUPL	Column Totals: 90 (A) 360 (B)
Alopecurus pratensis	5	5.6%	FACW	Prevalence Index = B/A = 4,000
4 Phleum pratense	5	5.6%	FACU	,
5	0	0.0%		Hydrophytic Vegetation Indicators:
6	_	0.0%		1 - Rapid Test for Hydrologic Vegetation
7	0	0.0%		2 - Dominance Test is > 50%
8		0.0%		3 - Prevalence Index is ≤3.0 ¹
9	-	0.0%		4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
10.—	•	0.0%		5 - Wetland Non-Vascular Plants ¹
11.	90			Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: 30 Foot Radius)	90	- Total Cove	31	Indicators of hydric soil and wetland hydrology must
	0	0.0%		be present, unless disturbed or problematic.
1. 2.	0	0.0%		Hydrophytic
<u> </u>	0	= Total Cove		Vegetation Vac O Na O
		- Total Cove	-1	Present? Yes O No O
% Bare Ground in Herb Stratum: _1				

^{*}Indicator suffix = National status or professional decision assigned because Regional status not defined by FWS.

Soil Sampling Point: DP-1U Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) **Redox Features** Matrix Depth % Color (moist) Loc2 **Texture** (inches) % Color (moist) Type 1 Remarks Rocks at 10", dry 0-18 10YR 3/2 100 Silt Loam ¹Type: C=Concentration. D=Depletion. RM=Reduced Matrix, CS=Covered or Coated Sand Grains ²Location: PL=Pore Lining. M=Matrix Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils3: Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histic Epipedon (A2) Stripped Matrix (S6) Red Parent Material (TF2) Black Histic (A3) Loamy Mucky Mineral (F1) (except in MLRA 1) Other (Explain in Remarks) Loamy Gleyed Matrix (F2) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Redox Dark Surface (F6) ☐ Thick Dark Surface (A12) ³Indicators of hydrophytic vegetation and Depleted Dark Surface (F7) wetland hydrology must be present, Sandy Muck Mineral (S1) unless disturbed or problematic. Redox depressions (F8) Sandy Gleyed Matrix (S4) Restrictive Layer (if present): Type: Yes O No 💿 **Hydric Soil Present?** Depth (inches): Remarks: No hydric soil indicator present. **Hydrology** Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) (except MLRA Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) 1, 2, 4A, and 4B) High Water Table (A2) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Aquatic Invertebrates (B13) Dry Season Water Table (C2) Water Marks (B1) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery (C9) Drift deposits (B3) Oxidized Rhizospheres on Living Roots (C3) Geomorphic Position (D2) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) ☐ Iron Deposits (B5) Recent Iron Reduction in Tilled Soils (C6) FAC-neutral Test (D5) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Inundation Visible on Aerial Imagery (B7) Frost Heave Hummocks (D7) Other (Explain in Remarks) Sparsely Vegetated Concave Surface (B8) **Field Observations:** Yes 🔾 No 💿 Surface Water Present? Depth (inches): Yes \bigcirc No 💿 Water Table Present? Depth (inches): Yes 🔾 No 💿 **Wetland Hydrology Present?** Saturation Present? Yes 🔾 No 💿 Depth (inches): (includes capillary fringe) Describe Recorded Data (stream gauge, monitor well, aerial photos, previous inspections), if available: Remarks: No hydrology indicators present.

US Army Corps of Engineers

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

Project/Site: Schrieber Lake		City/County:	Lincoln		Samplii	ng Date: <u>26-J</u>	ul-17
Applicant/Owner: MDT				State: MT	Sam	pling Point:	DP-1W
Investigator(s): RESPEC - M. Traxler		Section, To	wnship, Ra	ange: S 13	T 27N	R 30W	
Landform (hillslope, terrace, etc.): Floodplain		Local relief	concave, c	convex, none): flat		Slope: 2	2.0 % / 1.1
Subregion (LRR): LRR E	Lat.: 48	.106783		Long.: -115.4101	126	 Datum	ı: NAD 83
oil Map Unit Name: aquic adfluvents, poorly drained					assification:	Unland	
e climatic/hydrologic conditions on the site typical for this	time of vear	? Yes	. ● No C				
	ignificantly		Are "N	ormal Circumstance			No O
	aturally pro			eded, explain any a	-		
Summary of Findings - Attach site map sho			-			-	tures, etc.
Hydrophytic Vegetation Present? Yes • No		Tatha	Samulad A	1400			
Hydric Soil Present? Yes ● No ○			Sampled A	Vaa 📵 Na ($\overline{}$		
Wetland Hydrology Present? Yes ● No ○		within	a Wetland	1? 1es © 140			
Remarks:		ı.					
Wetland sample point. Wetland area dominated by emerge	ent vegetation	on type.					
VEGETATION - Use scientific names of plant	ts.	Dominant					
		_Species? . Rel.Strat.		Dominance Test v	vorksheet:		
<u>Tree Stratum</u> (Plot size: 30 Foot Radius)	% Cover		Status	Number of Domina		_	
1		0.0%		That are OBL, FAC	V, or FAC:	1_	(A)
2. 3.		0.0%		Total Number of Do			(D)
4.	_	0.0%		Species Across All S	trata:	1_	(B)
Sapling/Shrub Stratum (Plot size: 15 Foot Radius)	0	= Total Cove	er	Percent of domin That Are OBL, FA		:100.0	% (A/B)
1	0	0.0%		Prevalence Index	worksheet:		
2		0.0%		Total % Co		Multiply by:	
3		0.0%		OBL species	0		0
4	0	0.0%		FACW species	100	x 2 = _2	00
5	0	0.0%		FAC species	0	x 3 =	0
(5)	0	= Total Cove	er	FACU species	0	x 4 =	0
Herb Stratum (Plot size: 5 Foot Radius)				UPL species	1	x 5 =	5
1_Phalaris arundinacea	80	79.2%	FACW	Column Totals:	101	(A) _2	05 (B)
2_Alopecurus pratensis 3_Bromus inermis	1	19.8%	FACWUPL	Prevalence In)
4.		0.0%	OLE			-	
5		0.0%		Hydrophytic Vege			
6.		0.0%		✓ 1 - Rapid Test			1
7	•	0.0%		2 - Dominance			
8.—	0	0.0%		3 - Prevalence			
9	-	0.0%		4 - Morpholog		ions ¹ (Provide a separate sh	
10.		0.0%		5 - Wetland N		•	,
11.————————————————————————————————————		0.0%		☐ Problematic H			(volain
(Plateire, 20 Feet Bedies)	101	= Total Cove	er			-	
Woody Vine Stratum (Plot size: 30 Foot Radius)	0	0.0%		¹ Indicators of hy be present, unles	aric soil and s disturbed	wetiana nyai or problemati	ology must c.
1		0.0%		Hydrophytic			
2	0	= Total Cove		Vegetation	res 💿 No	\circ	
		- I Otal Cove	31	Present?	C3 - 140	,	
% Bare Ground in Herb Stratum: _1							

^{*}Indicator suffix = National status or professional decision assigned because Regional status not defined by FWS.

ydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histos (A1)		iption. (Des	scribe to t	he depth	needed to	document	t the indi	icator or c	onfirm the	absence of indicators.)	
O-9	•										
ype: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains yper C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains yper C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains yper C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains yper C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains yper C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains yper C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains yper C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains yper C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains yper C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains yper C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains yper C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains yper C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains yper C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains yper C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains yper C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains yper C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Category, Depletion, RM=Reduced phylocology matrix, CS=College,				-	Color (moist)	_%_	Type	Loc ²		Remarks
Specific Concentration	0-9	10YR	2/1	100						Loam	
ydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosic (A1)	9-18	10YR	2/1	95	10YR	5/8	5	D	M	Loam	
ydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histos (A1)											
Histosol (A1)	· ·								rains ² Loc		
Histic Epipedon (A2)	<u>-</u>		(Аррисав	ne to an L	. —			.)			ematic nyuric Solis?:
Black Histic (A3)	_ `	•				•	. ,			_ ` ′	al (TE2)
Interest Loamy Gleyed Matrix (F2) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Depleted Below Dark Surface (A12) Redox Dark Surface (F6) 3 Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Sandy Muck Mineral (S1) Depleted Dark Surface (F7) Redox depressions (F8) Hydric Soil Present? Yes No	_ ` '					• •	. ,	F1) (except	in MLRA 1)	\equiv	` '
Depleted Below Dark Surface (A11)		, ,						, , ,	• • • • • • • • • • • • • • • • • • • •		. container
Sandy Muck Mineral (S1)		. ,		.1)	☐ De	pleted Matr	ix (F3)				
Sandy Muck Mineral (S1)	Thick Dar	k Surface (A	12)	•	Red	dox Dark S	urface (F6	5)		³ Indicators of hydrophy	tic vegetation and
Saturation (A3) Saturation (A4) Saturation (A5) Saturation		•	•			•		. ,		wetland hydrology m	ust be present,
Type:	_ '	•	•		☐ Red	dox depres	sions (F8))		unless disturbed or p	roblematic.
Depth (inches):		ayer (if pre	sent):								
ydrology retand Hydrology Indicators: rrimary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Salt Crust (B1) Water Marks (B1) Water Marks (B1) Aquatic Invertebrates (B13) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Sediment Deposits (B2) Weltand Hydrology Sulfide Odor (C1) Sediment Deposits (B2) Algal Mat or Crust (B4) Fresence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Wetland Hydrology Present? Yes No Depth (inches): Wetland Hydrology Present? Yes No Depth (inches): Depth (inches): Inundeds capillary fringe) Wetland Hydrology Present? Yes No Depth (inches): Depth (inches): Inundeds capillary fringe)	Type:										
ydrology // Retand Hydrology Indicators: // Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (minimum of two recommend)										Hydric Soil Present?	Voc (•) No ()
Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (minimum of two rec Surface Water (A1) Water-Stained Leaves (B9) (except MLRA Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) High Water Table (A2) 1, 2, 4A, and 4B) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) ✓ Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Dry Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery (C9) Drift deposits (B3) Oxidized Rhizospheres on Living Roots (C3) Geomorphic Position (D2) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Recent Iron Reduction in Tilled Soils (C6) FAC-neutral Test (D5) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Frost Heave Hummocks (D7) Water Table Present? Yes No Depth (inches): No Depth (inches):	Remarks:	,	esent with	smell of h	nydrogen s	ulfide.				Hydric Soil Present?	Yes ● No U
Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (minimum of two recompleted) Surface Water (A1) High Water Table (A2) Saturation (A3) Salt Crust (B11) Aquatic Invertebrates (B13) Dry Season Water Table (C2) Saturation Visible on Aerial Imagery (B7) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Water Present? Yes No Depth (inches): Depth (inches)	Remarks: ydric soil ind	dicators pre	sent with	smell of h	nydrogen s	ulfide.				Hydric Soil Present?	Yes ● No ○
Surface Water (A1)	Remarks: ydric soil ind	dicators pre		smell of h	nydrogen s	ulfide.				Hydric Soil Present?	Yes ● No ○
High Water Table (A2) Saturation (A3) Water Marks (B1) Aquatic Invertebrates (B13) Drainage Patterns (B10) Aquatic Invertebrates (B13) Dry Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Drift deposits (B3) Oxidized Rhizospheres on Living Roots (C3) Geomorphic Position (D2) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Recent Iron Reduction in Tilled Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No Depth (inches):	Remarks: ydric soil ind ydrolog' Wetland Hyd	dicators pre	cators:				anly)				
Saturation (A3) Water Marks (B1) Aquatic Invertebrates (B13) Dry Season Water Table (C2) Sediment Deposits (B2) Drift deposits (B3) Oxidized Rhizospheres on Living Roots (C3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Self Crust (B11) Drift deposits (B13) Oxidized Rhizospheres on Living Roots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-neutral Test (D5) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Frost Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Field Observations: Other (Explain in Remarks) Depth (inches):	Remarks: ydric soil ind ydrolog Vetland Hyd	dicators pre y Irology Indi icators (min	cators:		red; check	all that ap		s (RQ) (evre	ent MI RA	_Secondary Indic	ators (minimum of two rec
Water Marks (B1) Sediment Deposits (B2) Drift deposits (B3) Aquatic Invertebrates (B13) Dry Season Water Table (C2) Whydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery (C9) Drift deposits (B3) Oxidized Rhizospheres on Living Roots (C3) Geomorphic Position (D2) Presence of Reduced Iron (C4) Iron Deposits (B5) Recent Iron Reduction in Tilled Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Wetland Hydrology Present? Yes No Depth (inches): Depth (i	Remarks: ydric soil ind ydrology Vetland Hyd Primary Indi Surface \	y Irology Indi icators (min Nater (A1)	icators: nimum of o		red; check	all that ap Vater-Stain	ed Leaves	s (B9) (exce	ept MLRA	Secondary Indic	ators (minimum of two rec
Sediment Deposits (B2) Drift deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Recent Iron Reduction in Tilled Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No Depth (inches): Depth (inches)	Remarks: ydric soil ind ydrology Vetland Hyd Primary Indi Surface \ High Wat	y Irology Indi icators (min Nater (A1) ter Table (A2)	icators: nimum of o		red; check	all that ar Vater-Stain , 2, 4A, and	ed Leaves d 4B)	s (B9) (exce	ept MLRA	Secondary Indio Water-Staine 4A, and 4B)	ators (minimum of two rec
Drift deposits (B3)	ydrology Vetland Hyd Surface \ High Wat Saturatio	y Irology Indi icators (min Nater (A1) ter Table (A2) n (A3)	icators: nimum of o		red; check	all that ar Vater-Stain , 2, 4A, and Galt Crust (E	ed Leaves d 4B) 311)		ept MLRA	Secondary Indio Water-Staine 4A, and 4B) Drainage Pat	ators (minimum of two rec d Leaves (B9) (MLRA 1, 2, terns (B10)
Algal Mat or Crust (B4)	Remarks: ydric soil ind ydrology Vetland Hyd Primary Ind Surface V High Wat Saturatio Water Ma	y Irology Indi icators (min Nater (A1) ter Table (A2) n (A3) arks (B1)	icators: nimum of (red; check	all that ar Vater-Stain ., 2, 4A, and Galt Crust (E Equatic Inve	ed Leaves d 4B) 311) ertebrates	(B13)	ept MLRA	Secondary Indio Water-Staine 4A, and 4B) Drainage Pal Dry Season V	tators (minimum of two rec rd Leaves (B9) (MLRA 1, 2, terns (B10) Water Table (C2)
Iron Deposits (B5) Recent Iron Reduction in Tilled Soils (C6) FAC-neutral Test (D5) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Frost Heave Hummocks (D7)	Aydrology Vetland Hyd Surface V High Wat Saturatio Water Ma Sediment	y Irology Indi icators (min Water (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B:	icators: nimum of (red; check	all that ar Vater-Stain , 2, 4A, and Galt Crust (E Aquatic Inve Hydrogen Si	ed Leaves d 4B) 311) ertebrates ulfide Odd	(B13) or (C1)		Secondary Indic Water-Staine 4A, and 4B) Drainage Pat Dry Season V Saturation V	tators (minimum of two rec ad Leaves (B9) (MLRA 1, 2, terns (B10) Nater Table (C2) sible on Aerial Imagery (C9)
Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Frost Heave Hummocks (D7) ield Observations: urface Water Present? Yes No Depth (inches): vater Table Present? Yes No Depth (inches): aturation Present? yes No Depth (inches): Depth (inches):	ydrology ydrology yetland Hyd Surface V High Wat Saturatio Water Ma Sediment Drift dep	y Irology Indi icators (min Water (A1) icer Table (A2) in (A3) arks (B1) it Deposits (B3) osits (B3)	icators: nimum of o		red; check	all that ap Vater-Stain , 2, 4A, and Galt Crust (E Aquatic Inve Hydrogen Si Oxidized Rh	ed Leaves d 4B) B11) ertebrates ulfide Odd izosphere	(B13) or (C1) s on Living		Secondary Indic Water-Staine 4A, and 4B) Drainage Pat Dry Season V Saturation VI Geomorphic	cators (minimum of two record Leaves (B9) (MLRA 1, 2, terns (B10) Water Table (C2) Sible on Aerial Imagery (C9) Position (D2)
Inundation Visible on Aerial Imagery (B7)	ydrology Vetland Hyd Surface V High Wat Saturatio Water Ma Sediment Drift dep Algal Mat	y Irology Indi icators (min Nater (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B3) c or Crust (B4)	icators: nimum of o		red; check V 1 S A V P	all that ag Vater-Stain , 2, 4A, and Galt Crust (E Aquatic Inve Hydrogen Si Dxidized Rh Presence of	ed Leaves d 4B) 311) ertebrates ulfide Odd izosphere Reduced	s (B13) or (C1) s on Living Iron (C4)	Roots (C3)	Secondary Indic Water-Staine 4A, and 4B) Drainage Pat Dry Season V Saturation V Geomorphic Shallow Aqui	tators (minimum of two record Leaves (B9) (MLRA 1, 2, terns (B10) Water Table (C2) sible on Aerial Imagery (C9) Position (D2) tard (D3)
Sparsely Vegetated Concave Surface (B8) Field Observations: Furface Water Present? Yes No Depth (inches): Vater Table Present? Yes No Depth (inches): Fortification Present? Yes No Depth (inches): Fortificatio	ydrology Vetland Hyd Surface V High Water Ma Sediment Drift dep Algal Mat Iron Dep	y Irology Indi icators (min Nater (A1) ier Table (A2) in (A3) arks (B1) it Deposits (B3) it or Crust (B4) osits (B5)	cators: nimum of o		red; check v 1 S A V P R	all that ag Vater-Stain , 2, 4A, and Galt Crust (E Aquatic Inve dydrogen So Dxidized Rh Presence of Recent Iron	ed Leaves d 4B) B11) ertebrates ulfide Odd izosphere Reduced Reduction	r (B13) or (C1) s on Living Iron (C4) n in Tilled S	Roots (C3)	Secondary Indic Water-Staine 4A, and 4B) Drainage Pat Dry Season V Saturation V Geomorphic Shallow Aqui	tators (minimum of two record Leaves (B9) (MLRA 1, 2, terns (B10) Water Table (C2) sible on Aerial Imagery (C9) Position (D2) tard (D3) Test (D5)
ield Observations: urface Water Present? Yes No Depth (inches): //ater Table Present? Yes No Depth (inches): aturation Present? roludes capillary fringe) Yes No Depth (inches): Depth (inches): Depth (inches): 10 Wetland Hydrology Present? Yes No	ydrology /etland Hyd /etland Hyd /etland Hyd Surface \ High Water Ma Sediment Drift dep Algal Mat Iron Dep Surface S	y Irology Indi icators (min Nater (A1) ier Table (A2) in (A3) arks (B1) it Deposits (B3) it Opposits (B3) it or Crust (B4) osits (B5) Goil Cracks (B	cators: nimum of o	one requir	red; check V 1 S A V P R S S	all that ar Vater-Stain , 2, 4A, and Galt Crust (E Aquatic Inve Hydrogen Si Dxidized Rh Presence of Recent Iron Stunted or S	ed Leaves d 4B) 311) ertebrates ulfide Odd izosphere Reduced Reduction Stressed F	or (B13) or (C1) s on Living Iron (C4) n in Tilled S	Roots (C3)	Secondary Indic Water-Staine 4A, and 4B) Drainage Pat Dry Season V Saturation V Geomorphic Shallow Aqui FAC-neutral Raised Ant M	tators (minimum of two record Leaves (B9) (MLRA 1, 2, terns (B10) Water Table (C2) sible on Aerial Imagery (C9) Position (D2) tard (D3) Test (D5) Jounds (D6) (LRR A)
urface Water Present? Yes No Depth (inches): Water Table Present? Attraction Present? Yes No Depth (inches): Wetland Hydrology Present? Yes No Depth (inches):	ydrology ydrology yetland Hyd Surface V High Wat Sediment Drift dep Algal Mat Iron Dep Surface S Inundation	y Irology Indi icators (min Nater (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B3) c or Crust (B4) osits (B5) Soil Cracks (B on Visible on	icators: nimum of of 2) 2) 4) Aerial Imag	one requir gery (B7)	red; check V 1 S A V P R S S	all that ar Vater-Stain , 2, 4A, and Galt Crust (E Aquatic Inve Hydrogen Si Dxidized Rh Presence of Recent Iron Stunted or S	ed Leaves d 4B) 311) ertebrates ulfide Odd izosphere Reduced Reduction Stressed F	or (B13) or (C1) s on Living Iron (C4) n in Tilled S	Roots (C3)	Secondary Indic Water-Staine 4A, and 4B) Drainage Pat Dry Season V Saturation V Geomorphic Shallow Aqui FAC-neutral Raised Ant M	tators (minimum of two record Leaves (B9) (MLRA 1, 2, terns (B10) Water Table (C2) sible on Aerial Imagery (C9) Position (D2) tard (D3) Test (D5) Jounds (D6) (LRR A)
includes capillary fringe) Yes No Depth (inches): No Wetland Hydrology Present? Wetland Hydrology Present? Yes No No Depth (inches):	ydrology Vetland Hyd Surface V High Water Ma Sediment Drift dep Algal Mat Iron Dep Surface S Inundation	y Irology Indi icators (min Nater (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B3) c or Crust (B4) osits (B5) Soil Cracks (B on Visible on	icators: nimum of of 2) 2) 4) Aerial Imag	one requir gery (B7)	red; check V 1 S A V P R S S	all that ar Vater-Stain , 2, 4A, and Galt Crust (E Aquatic Inve Hydrogen Si Dxidized Rh Presence of Recent Iron Stunted or S	ed Leaves d 4B) 311) ertebrates ulfide Odd izosphere Reduced Reduction Stressed F	or (B13) or (C1) s on Living Iron (C4) n in Tilled S	Roots (C3)	Secondary Indic Water-Staine 4A, and 4B) Drainage Pat Dry Season V Saturation V Geomorphic Shallow Aqui FAC-neutral Raised Ant M	tators (minimum of two record Leaves (B9) (MLRA 1, 2, terns (B10) Water Table (C2) sible on Aerial Imagery (C9) Position (D2) tard (D3) Test (D5) Jounds (D6) (LRR A)
aturation Present? Includes capillary fringe) Yes No Depth (inches): 10 Wetland Hydrology Present? Yes No No Control No	ydrology ydrology yetland Hyd Surface N High Wat Sediment Drift dep Algal Mat Iron Dep Surface S Inundatic Sparsely	y Irology Indi icators (min Nater (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B3) c or Crust (B4) osits (B5) Goil Cracks (B on Visible on Vegetated Co	icators: nimum of of 2) 2) 4) Aerial Imagoncave Surf	one requir gery (B7) face (B8)	red; check V 1 S A P R S C	all that ar Vater-Stain , 2, 4A, and Galt Crust (E Aquatic Inve Hydrogen St Dxidized Rh Presence of Recent Iron Stunted or S Other (Explain	ed Leaves d 4B) B11) ertebrates ulfide Odd izosphere Reduced Reduction Stressed F ain in Rem	or (B13) or (C1) s on Living Iron (C4) n in Tilled S	Roots (C3)	Secondary Indic Water-Staine 4A, and 4B) Drainage Pat Dry Season V Saturation V Geomorphic Shallow Aqui FAC-neutral Raised Ant M	tators (minimum of two record Leaves (B9) (MLRA 1, 2, terns (B10) Water Table (C2) sible on Aerial Imagery (C9) Position (D2) tard (D3) Test (D5) Jounds (D6) (LRR A)
includes capillally fiftige)	Remarks: ydric soil ind ydrology Vetland Hyd Primary Indi Surface V High Wat Saturatio Water Mater Mat	dicators pre y Irology Indi icators (min Water (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B3) t Or Crust (B4) osits (B5) Soil Cracks (B on Visible on Vegetated Co ations: Present?	icators: nimum of (1) 2) 3) 4) Aerial Imagoncave Suri	gery (B7) face (B8)	red; check V 1 S A V P R S C	all that ap Vater-Stain , 2, 4A, and Galt Crust (E Aquatic Inve dydrogen So Dxidized Rh Presence of Recent Iron Stunted or So Dther (Explain Depth (inc	ed Leaves d 4B) B11) ertebrates ulfide Odd izosphere Reduced Reduction Stressed F ain in Ren	or (B13) or (C1) s on Living Iron (C4) n in Tilled S	Roots (C3)	Secondary Indic Water-Staine 4A, and 4B) Drainage Pat Dry Season V Saturation V Geomorphic Shallow Aqui FAC-neutral Raised Ant M	tators (minimum of two record Leaves (B9) (MLRA 1, 2, terns (B10) Water Table (C2) sible on Aerial Imagery (C9) Position (D2) tard (D3) Test (D5) Jounds (D6) (LRR A) Hummocks (D7)
	Remarks: lydric soil ind lydrology Netland Hyd Primary Indi Surface V High Wat Saturatio Water Mater Mater Sediment Iron Dep Surface Sediment Sparsely Field Observ Nater Table P Saturation Presentation Presentat	dicators pre y Irology Indi icators (min Nater (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B3) t or Crust (B4) osits (B5) Soil Cracks (B on Visible on Vegetated Co ations: Present?	icators: nimum of or 2) 2) 4) Aerial Imagoncave Suri	gery (B7) face (B8) No	red; check V 1 S A P R S C C	all that are Vater-Stain, 2, 4A, and Galt Crust (Executed Investigation of State of	ed Leaves d 4B) B11) ertebrates ulfide Odd izosphere Reduced Reduction Stressed F ain in Ren ches):	(B13) or (C1) s on Living Iron (C4) n in Tilled S Plants (D1) narks)	Roots (C3) foils (C6) (LRR A)	Secondary Indic Water-Staine 4A, and 4B) Drainage Pat Dry Season N Saturation V Geomorphic Shallow Aqui FAC-neutral Raised Ant M Frost Heave	tators (minimum of two record Leaves (B9) (MLRA 1, 2, terns (B10) Water Table (C2) sible on Aerial Imagery (C9) Position (D2) tard (D3) Test (D5) Jounds (D6) (LRR A) Hummocks (D7)

US Army Corps of Engineers

Western Mountains, Valleys, and Coast - Version 2.0

MDT MONTANA WETLAND ASSESSMENT FORM (revised March 2008)

1.	Project Name: Schrieber Lak	e 2. MDI Project #: NH 2/(2	(9) 3. Control #: 1027007						
3.	Evaluation Date: July 26, 20	17 4. Evaluator(s): Mark Tra	xler 5. Wetland/Site #(s): Scl	nrieber Lake					
6.	Wetland Location(s): Township 27 N, Range 30 W, Section 13; Township N, Range E, Section								
	Approximate Stationing or I	Roadposts: Approximately Mile	epost 53.8						
	Watershed: 1 - Kootenai C	ounty: _ <u>Lincoln</u>							
7.	Evaluating Agency: RESPE	C for MDT	8. Wetland Size (acre)	: (visually estimated)					
	Purpose of Evaluation:			51.7 (measured, e.g. GPS)					
	Wetland potentially affe								
	Mitigation wetlands; pre								
	Mitigation wetlands; po	st-construction		AA) Size (acre): (visual					
	Other		(see manual for dete	rmining AA) <u>51.7</u> (measure	ed, e.g. GPS)				
10	. CLASSIFICATION OF WET	LAND AND AQUATIC HABITA	ATS IN AA (See manual for def	initions.)					
	HGM Class (Brinson)	Class (Cowardin)	Modifier (Cowardin)	Water Regime	% OF AA				
ı	Depressional	Aquatic Bed		Permanent / Perennial	20				

	210	J
Comme	nts:	

11. ESTIMATED RELATIVE ABUNDANCE (of similarly classified sites within the same Major Montana Watershed Basin; see manual.) common

12. GENERAL CONDITION OF AA

Depressional

Riverine

Slope

Slope

 i. Disturbance: Use matrix below to select the appropriate response; see manual for Montana listed noxious weed and aquatic nuisance vegetation species lists.

Permanent / Perennial

Permanent / Perennial

Permanent / Perennial

Seasonal / Intermittent

Seasonal / Intermittent

10

5

30

10

25

	Predominant Conditions Adjacent to (within 500 feet of) AA										
Conditions within AA	Managed in predominantly natural state; is not grazed, hayed, logged, or otherwise converted; does not contain roads or buildings; and noxious weed or ANVS cover is ≤15%.	Land not cultivated, but may be moderately grazed or hayed or selectively logged; or has been subject to minor clearing; contains few roads or buildings; noxious weed or ANVS cover is ≤30%.	Land cultivated or heavily grazed or logged; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density; or noxious weed or ANN cover is >30%.								
AA occurs and is managed in predominantly natural state; is not grazed, hayed, logged, or otherwise converted; does not contain roads or occupied buildings; and noxious weed or ANVS cover is ≤15%.		low disturbance									
AA not cultivated, but may be moderately grazed or hayed or selectively logged; or has been subject to relatively minor clearing, fill placement, or hydrological alteration; contains few roads or buildings; noxious weed or ANVS cover is ≤30%.											
AA cultivated or heavily grazed or logged; subject to relatively substantial fill placement, grading, clearing, or hydrological alteration; high road or building density; or noxious weed or ANVS cover is >30%.											

Comments (types of disturbance, intensity, season, etc.): Highway 2 and USFS roads are adjacent to the AA.

Emergent Wetland

Unconsolidated Bottom

Emergent Wetland

Emergent Wetland

Scrub-Shrub Wetland

- ii. Prominent noxious, aquatic nuisance, and other exotic vegetation species: Spotted knapweed and Canada thistle infestations in the uplands surrounding the AA.
- iii. Provide brief descriptive summary of AA and surrounding land use/habitat: Site is in a realtively flat valley bottom that has historically been used for agriculture and hay production. The valley sides are heavily forested with secondary growth coniferous forest. The entire AA is very wet and is dominated primarily by emergent vegetation. PSS wetlands occur immediately along the pre-existing creek channels and in the southwest corner of the site where a "carr" fen occurs. The fen supports bog birch and other SOC including hoary willow.

13. STRUCTURAL DIVERSITY (Based on number of "Cowardin" vegetated classes present [do not include unvegetated classes]; see #10 above.)

Existing # of "Cowardin" Vegetated Classes in AA	Initial Rating	Is current management peristence of additional	O (i	Modified Rating		
≥3 (or 2 if one is forested) classes	high	NA	NA	NA		
2 (or 1 if forested) classes		NA	NA	NA		
1 class, but not a monoculture		←NO	YES→			
1 class, monoculture (1 species comprises ≥90% of total cover)		NA	NA	NA		

Comments: aquatic bed, emergent, scrub-shrub

	Wetland/Site #(s): Schrieber Lake																			
14A. HABITAT FOR FEDERAL	LLY LI	STED	OR F	ROP	OSED	THRE	EATEN	IED (OR E	NDANG	ERED	PLA	NTS C	R AN	IMALS	3				
i. AA is Documented (D) or S Primary or critical habitat (list Secondary habitat (list specient Incidental habitat (list specient) No usable habitat	t speci ies)				S S Griz S			ed on	defir	nitions ir	manu	al.								
ii. Rating: Based on the strong	jest hal	oitat c	hoser	in 14	IA(i) ab	ove, s	select t	the co	orres	onding	function	onal p	oint a	nd ratii	ng.					
Highest Habitat Level	Doc/F	Prima	ry S	Sus/P	s/Primary Doc/Secondar				ary	Sus/Secondary			Doc/li	ncider	ntal	Sus	/Incide	ntal	None	е
Functional Point/Rating				-			.81	M		-										
Sources for documented use drainage in 2010. Wolverines co						SFS	oerson	nel o	bser	ed a bo	ar griz	zly up	ostrear	n of th	e AA i	n the	Schrie	ber C	<u>reek</u>	<u> </u>
14B. HABITAT FOR PLANTS Do not include species lis				TED :	S1, S2,	OR S	S3 BY	THE	MON	ITANA	NATU	RALI	HERIT	AGE F	PROG	RAM				
i. AA is Documented (D) or Suspected (S) to contain: Check box based on definitions in manual. Primary or critical habitat (list species) Secondary habitat (list species) Incidental habitat (list species) No usable habitat AA is Documented (D) or Suspected (S) to contain: Check box based on definitions in manual. Salix candida (S3/S4), Western toad (S2); Townsend's big-eared bat (S3), hoary bat (S3) Westslope cuthoat trout (S2), fisher (S3) Salix candida (S3/S4), Western toad (S2); Townsend's big-eared bat (S3), hoary bat (S3) Westslope cuthoat trout (S2), fisher (S3)																				
ii. Rating: Based on the strong	Based on the strongest habitat chosen in 14A(i) above, select the corresponding functional point and rating.																			
Highest Habitat Level	Doc/F	Prima	ry S	Sus/P	rimary	Do	oc/Sec	onda	ary	Sus/Se	conda	ry	Doc/li	ncider	ntal	Sus/	Incide	ntal	None	
S1 Species Functional Point/Rating	-			-				-		-										
S2 and S3 Species Functional Point/Rating	.9	9H		-				-		-										
Sources for documented use fisheries biologists. Western toa	(e.g. o	bserv	ations	, reco	rds): M	DT B	RR. U	SFS,	MNH	IP, and	MFWP	data	bases	and di	iscuss	ions v	with reg	gional	wildlife	and
i. Evidence of Overall Wildlife Substantial: Based on any of abundant wildlife sign sure presence of extremely lin interview with local biology Moderate: Based on any of observations of scattered common occurrence of we adequate adjacent uplant interview with local biology ii. Wildlife Habitat Features: Well of the AA (extremely common occurrence of well and common occurrence occurrence of well and common occurrence	of the fit wildlife ch as so niting high gist with the foll I wildlife sid food signst with Working dieven see #1	ollowie #s cat, trabitation knowinge grousinge source in knowing from ly dist 0). A	ng [chor high racks, featu wledge g [chec ups or uch as es wledge n top to tribute bbrevi	eck]. specenests res note of the ck]. individuals scat, sof the obotto d, the ations	cies divestructured available AA duals of tracks, e AA om, che most as for su	ersity es, gable in r relar nest eck ap and le	(during ame trans the solution the solution tively for structure percentage)	g any ails, e urrou ew sp ures, ate A evaler durat	perional perional peciengam of the second peciengam of the second perional	od) g area s during e trails, ributes getated are as fo	☐ Min ☐ fi ☐ li ☐ s ☐ ii ☐ ii ☐ peak ☐ etc.	ew or ttle to parse ntervi period	E Baser no will on owing adjaction with the with the wind the will arrive a set be well a perm	d on a ddife o ldlife sent up h local at ratin vithin 2 anent.	ny of ti bserva ign bland fo biolog g. Str 20% of peren	ations ood s gist w ructur f each		y peak s wledg	use po	¥13.
S/I = seasonal/intermittent; T/E	= temp	orary	/ephei	meral	; and A	= abs	sent [s	ee m	anua	l for furt	her def	finitio	ns of tl	nese te	erms].		ì			
Structural Diversity (see #13)				⊠ H	ligh					☐ Moderate							☐ Low			
Class Cover Distribution (all vegetated classes)		□ E	ven			□ Uneven				□ E	ven			□ Un	even		☐ Even			
Duration of Surface Water in ≥ 10% of AA	P/P	S/I	T/E	Α	P/P	S/I	T/E	Α	P/P	S/I	T/E	Α	P/P	S/I	T/E	Α	P/P	S/I	T/E	Α
■ Low Disturbance at AA (see #12i)					Е								Е							
☐ Moderate Disturbance at AA (see #12i)																				
☐ High Disturbance at AA (see #12i)																				
iii. Rating: Use the conclusion	ns from	i and	ii abo	ve an	d the m	natrix	below	to se	elect t	he funct	ional p	oint a	and rat	ing.						
Evidence of Wildlife Use						ildlife	Habit			es Rati	ng (ii)									
(i)		⊠ Ex	ceptic	nal		☐ High								Low						
Substantial Subst			1E																	
Moderate					_				_							4				
☐ Minimal									L				L			_1				

Comments: Good habitat diversity with substantial wildlife evidence.

Wetland/Site #(s): Schrieber Lake

14D.	GENERAL FISH HABITAT	
	If the AA is not used by fish.	fish use is not restorable du

to habitat constraints, or is not desired from a management perspective [such as fish entrapped in a canal], then check the NA box and proceed to 14E.

Assess this function if the AA is used by fish or the existing situation is "correctable" such that the AA could be used by fish [i.e., fish use is precluded by perched culvert or other barrier].

Type of Fishery: Cold Water (CW) Warm Water (WW) Use the CW or WW guidelines in the manual to complete the matrix.

i. Habitat Quality and Known / Suspected Fish Species in AA: Use matrix to select the functional point and rating.

Duration of Surface Water in AA	⊠ Pe	erman	ent / P	erenn	ial		□s	easoı	nal / Ir	ntermit	tent		☐ Temporary / Ephemeral					
Aquatic Hiding / Resting / Escape Cover	Opti		Adeq	uate	Po	or	Opti] mal	Ade] quate	Po] or	Opt	imal	Aded] uate	Po	oor
Thermal Cover: optimal / suboptimal	0	S	0	S	0	s	0	s	0	s	0	s	0	s	0	s	0	s
FWP Tier I fish species																		
FWP Tier II or Native Game fish species																		
FWP Tier III or Introduced Game fish																	-	
FWP Non-Game Tier IV or No fish species		.5M																

Sources used for identifying fish spp. potentially found in AA: Brook Trout documented in Schrieber Creek immediately up and downstream of Schrieber Lake by FWP in 2011 (MFISH queary). Westslope Cutthroat documented immediately upstream from confluence with Fisher River but outside project area.

ii. Modified Rating: NOTE: Modified score cannot exceed 1.0 or be less than 0.1.

a) Is fish use of the AA significantly reduced by a culvert, dike, or other man-made structure or activity, or is the waterbody included on the current final MDEQ list of waterbodies in need of TMDL development with listed "Probable Impaired Uses" including cold or warm water fishery or aquatic life support, or do aquatic nuisance plant or animal species (see Appendix E) occur in fish habitat? TYES, reduce score in i by 0.1 = __ or 🖂 N0

b) Does the AA contain a documented spawning area or other critical habitat feature (i.e., sanctuary pool, upwelling area; specify in comments) for native fish or introduced game fish? \square YES, add to score in i or iia 0.1 = __ or \boxtimes N0

iii. Final Score and Rating: .5M Comments: Salmonids observed in creek during monitoring. Assumed to be brook trout, but is unverified.

14E. FLOOD ATTENUATION

Applies only to wetlands that are subject to flooding via in-channel or overbank flow.

☐ **NA** (proceed to 14F)

If wetlands in AA are not flooded from in-channel or overbank flow, check the NA box and proceed to 14F.

Entrenchment Ratio (ER) Estimation (see manual for additional guidance). Entrenchment ratio = (flood-prone width) / (bankfull width). Flood-prone width = estimated horizontal projection of where 2 X maximum bankfull depth elevation intersects the floodplain on each side of the stream.

25 / 10 = 2.5

flood prone width / bankfull width = entrenchment ratio

S	Blightly Entrenche ER ≥ 2.2	ed	Moderately Entrenched ER = 1.41 - 2.2								
C stream type	D stream type	E stream type	B stream type	A stream type	F stream type	G stream type					

i. Rating: Working from top to bottom, use the matrix below to select the functional point and rating.

Estimated or Calculated Entrenchment	⊠ SI	ightly Entrei	nched	☐ Mod	lerately Enti	renched	☐ Entrenched			
(Rosgen 1994, 1996)	C, D	, E stream t	ypes	Е	stream typ	e	A, F, G stream types			
Percent of Flooded Wetland Classified as			\boxtimes							
Forested and/or Scrub/Shrub	75%	25-75%	<25%	75%	25-75%	<25%	75%	25-75%	<25%	
AA contains no outlet or restricted outlet			.6M							
AA contains unrestricted outlet										

ii. Are ≥10 acres of wetland in the AA subject to flooding AND are man-made features which may be significantly damaged by floods located within 0.5 mile downstream of the AA? YES NO Comments: The stream channels in the AA have free access to their floodplains. The floodplains are dominated by herbaceous vegetation.

Wetland/Site #(s): Schrieber Lake

14F.	F. SHORT AND LONG TERM SURFACE WATER STORAGE $\ \square$	NA (proceed to 14G)
	Applies to wetlands that flood or pond from overbank or in-channel fl	ow, precipitation, upland surface flow, or groundwater flow.
	If no wetlands in the AA are subject to flooding or ponding, then chec	k the NA box and proceed to 14G.

i. Rating: Working from top to bottom, use the matrix below to select the functional point and rating. Abbreviations for surface water durations are as follows: P/P = permanent/perennial; S/I = seasonal/intermittent; and T/E = temporary/ephemeral [see manual for further definitions of these terms].

Estimated Maximum Acre Feet of Water Contained in Wetlands within the AA that are Subject to Periodic Flooding or Ponding		>5 acre fe	eet	□ 1 .1	to 5 ac	re feet	☐ ≤1 acre foot			
Duration of Surface Water at Wetlands within the AA	⊠ P/P	□ S/I	□ T/E	□ P/P	□ S/I	□ T/E	□ P/P	□ S/I	□ T/E	
Wetlands in AA flood or pond ≥ 5 out of 10 years	1H									
Wetlands in AA flood or pond < 5 out of 10 years										

Comments: Extensive areas of inundation were observed.

14G.	SEDIMENT	/ NUTRIENT /	TOXICANT	/ RETENTION	I AND REMOVAL	□NA	(proceed to 1	14H
------	----------	--------------	----------	-------------	---------------	-----	---------------	-----

Applies to wetland with potential to receive sediments, nutrients, or toxicants through influx of surface or ground water or direct input. If no wetlands in the AA are subject to such input, check the NA box and proceed to 14H.

i. Rating: Working from top to bottom, use the matrix below to select the functional point and rating.

Sediment, Nutrient, and Toxicant Input Levels within AA	AA receive has potent nutrients, such that of substantial sedimental toxicants, present.	ial to delive compount of the function in the function in the function in the function, source the function in	er sedime inds at lev ions are n d. Minor es of nutr	ents, rels not rients or	Waterbody is need of TMDI causes" relat toxicants or A has potential nutrients, or c functions are sedimentation or signs of eu	developmer ed to sedime AA receives of to deliver hig compounds s substantially n, sources of	nt for "probal nt, nutrients, or surroundin gh levels of s such that oth y impaired. M nutrients or	ole or g land use ediments, er ajor	
% Cover of Wetland Vegetation in AA	⊠≥∶	70%	□<	70%	□≥7	70%	□<	70%	
Evidence of Flooding / Ponding in AA		□No	☐ Yes	☐ No	☐ Yes	☐ No	☐ Yes	□No	
AA contains no or restricted outlet	1H								
AA contains unrestricted outlet									

Comments: AA has potential to receive minor sedimentation from nearby US 2 and adjacent hillsides that have been logged.

14H.	SEDIMENT	/ SHORELINE STABILIZATION	□ NA (proceed to 1
1 7 1 1.	SEDIMENT		I I IIA IDIOCEEU IO

Applies only if AA occurs on or within the banks of a river, stream, or other natural or man-made drainage, or on the shoreline of a standing water body which is subject to wave action.

If 14H does not apply, check the NA box and proceed to 14I.

% Cover of Wetland Streambank or Shoreline by Species with Stability	Duration of S	urface Water Adjacent to Roo	ted Vegetation
Ratings of ≥6 (see Appendix F).	□ Permanent / Perennial	☐ Seasonal / Intermittent	☐ Temporary / Ephemeral
⊠ ≥ 65%	1H		
□ 35-64%			
☐ < 35%			

Comments: Shorelines and banks are well vegetated.

14I. PRODUCTION EXPORT / FOOD CHAIN SUPPORT

i. Level of Biological Activity: Synthesis of wildlife and fish habitat rates (select).

General Fish Habitat Rating	Genera	l Wildlife Habitat Rati	ng (14Ciii)
(14Diii)	⊠ E/H	■ M	L
☐ E/H			
⊠ M	Н		
□ L			
□NA			

ii. Rating: Working from top to bottom, use the matrix below to select the functional point and rating. Factor A = acreage of vegetated wetland component in the AA; Factor B = level of biological activity rating from above (14li); Factor C = whether or not the AA contains a surface or subsurface outlet; the final three rows pertain to the duration of surface water in the AA, where P/P, S/I, and T/E were previously defined, and A = "absent" [see manual for further definitions of these terms].

Α	\boxtimes	Vegeta	ted Co	mponent	t >5 ac	res	☐ Vegetated Component 1-5 acres							☐ Vegetated Component <1 acre					
В	B 🛮 High		☐ Moderate ☐ Lo		Low	☐ High		☐ Moderate		☐ Low		☐ High				Low			
С	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	
P/P	1H																		
S/I																			
T/E/A																			

			Wetland	/Site #(s): <u>Schrieber La</u>	ake			
14I. PRODUCTION EXPORT / FOOD CH	IAIN SU	PPORT (conti	nued)						
iii. Modified Rating: Note: Modified sco	e canno	t exceed 1.0 o	r be less than	0.1.					
Vegetated Upland Buffer: Area with mowing or clearing (unless for weed of the state of the stat	ontrol).				•		•	·	
iv. Final Score and Rating: 1H Comm	ents: <u>Hi</u>	gh level of bio	ogical activity,	veg com	ponent > 5 ac	, perennial, ha	s surface	and subsurfa	ace outlets
14J. GROUNDWATER DISCHARGE / R Check the appropriate indicators in	_								
i. Discharge Indicators The AA is a slope wetland. Springs or seeps are known Vegetation growing during do Wetland occurs at the toe of Seeps are present at the wet AA permanently flooded durin Wetland contains an outlet, b Shallow water table and the s	ormant se a natural land edg ng droug ut no inle	eason/drought slope. e. ht periods. et.		☐ Peri ☐ Wet ☐ Stre	rge Indicators meable substr. land contains eam is a knowr er:	ate present wi inlet but no ou	tlet.	, , ,	0 ,
iii. Rating: Use the information from i an	d ii abov	e and the table	e below to sele	ct the fur	nctional point a	and rating.			
_			Saturation at A						
.			ATER THAT I			GROUNDWA			
Criteria		<u>⊠ P/P</u> 1H	S │	/1	T	1	□ No	ne	
☐ Insufficient Data/Information	arge	IΠ							
Comments: AA with perennial inundation	/saturatio	on to the surface	ce.						<u>l</u>
<u> </u>	outurum.		<u></u>						
14K. UNIQUENESS									
i. Rating: Working from top to bottom, us	e the ma	atrix below to s	select the funct	ional poi	nt and rating.				
Replacement Potential	AA contains fen, bog, springs or mature (>80 forested wetland OR passociation listed as "the MTNHP"		>80 yr-old) R plant	AA does not contain previously cited rare types AND structural diversity (#13) is high OR contains plant association listed as "S2" by the MTNHP		O structural gh OR ciation	AA does not contain previously cited rare associations AND str diversity (#13) is low-		e types OR tructural
Estimated Relative Abundance (#11)	□ Rare	□ Common	□ Abundant	□ Rare	☐ Common	☐ Abundant	□ Rare	☐ Common	☐ Abundant
■ Low Disturbance at AA (#12i)		.9H							
Moderate Disturbance at AA (#12i)									
High Disturbance at AA (#12i)									
Comments: This wetland complex contain	ns a ten,	is relatively ur	idisturbed, and	so is fai	rly unique in th	ne watershed.			
14L. RECREATION / EDUCATION POTE Affords 'bonus' points if AA provides		ational or educ	• • • • • • • • • • • • • • • • • • • •	ınity.	•	31 3 7			
				• ::		ak tha NIA hay	,		
i. Is the AA a known or potential recrea									
i. Is the AA a known or potential recreations. Check categories that apply to the A	A: 🛛 E							ımptive recrea	ational
ii. Check categories that apply to the A	A: 🛭 E	ducational/Sci	entific Study	Cons				Imptive recrea	ational

Known or Potential Recreational or Educational Area	Known	Potential
Public ownership or public easement with general public access (no permission required)	.2H	
Private ownership with general public access (no permission required)		
Private or public ownership without general public access, or requiring permission for public access		

Comments: This site is open to public access and has a high potential for education, especially for birders since there is a great hill at the entrance to the site that provides a good vantage point for low impact bird viewing.

15. GENERAL SITE NOTES: _____

Wetland/Site #(s): Schrieber Lake

Function & Value Variables	Rating – Actual Functional Points	Possible Functional Points	Functional Units: Actual Points x Estimated AA Acreage	Indicate the Four Most Prominent Functions with an Asterisk
A. Listed / Proposed T&E Species Habitat	mod 0.80	1.00	41.36	*
B. MT Natural Heritage Program Species Habitat	mod 0.60	1.00	31.02	
C. General Wildlife Habitat	exc 1.00	1.00	51.7	*
D. General Fish Habitat	mod 0.50	1.00	25.85	
E. Flood Attenuation	mod 0.60	1.00	31.02	
F. Short and Long Term Surface Water Storage	high 1.00	1.00	51.7	*
G. Sediment / Nutrient / Toxicant Removal	high 1.00	1.00	51.7	
H. Sediment / Shoreline Stabilization	high 1.00	1.00	51.7	
I. Production Export / Food Chain Support	high 1.00	1.00	51.7	*
J. Groundwater Discharge / Recharge	high 1.00	1.00	51.7	
K. Uniqueness	high 0.90	1.00	46.53	
L. Recreation / Education Potential (bonus point)	high 0.20		10.34	
Total Points	9.6	11	496.32 Total	Functional Units
Percent of Possibl	e Score 87% (round	I to nearest whol	e number)	

	Category I Wetland: (must satisfy one of the following criteria; otherwise go to Category II) Score of 1 functional point for Listed/Proposed Threatened or Endangered Species; or
	☐ Score of 1 functional point for Uniqueness; or
	☐ Score of 1 functional point for Flood Attenuation and answer to Question 14E.ii is "yes"; or
	☑ Percent of possible score > 80% (round to nearest whole #).
	Category II Wetland: (Criteria for Category I not satisfied and meets any one of the following criteria; otherwise go to Category IV) Score of 1 functional point for MT Natural Heritage Program Species Habitat; or
	Score of .9 or 1 functional point for General Wildlife Habitat; or
	Score of .9 or 1 functional point for General Fish Habitat; or
	☐ "High" to "Exceptional" ratings for both General Wildlife Habitat and General Fish/Aquatic Habitat; or
	☐ Score of .9 functional point for Uniqueness; or
	☐ Percent of possible score > 65% (round to nearest whole #).
	Category III Wetland: (Criteria for Categories I, II, or IV not satisfied)
	Category IV Wetland: (Criteria for Categories I or II are not satisfied and all of the following criteria are met; if not go to Category III)
	☐ "Low" rating for Uniqueness; and
	Vegetated wetland component < 1 acre (do not include upland vegetated buffer); and
	Percent of possible score < 35% (round to nearest whole #).
0	VERALL ANALYSIS AREA (AA) RATING: Check the appropriate category based on the criteria outlined above.

APPENDIX C PROJECT AREA PHOTOGRAPHS

MDT Wetland Mitigation Monitoring Schrieber Lake Lincoln County, Montana

Photo Point: 1 – Photo 1 Bearing: 242 degrees

Location: Northwest Boundary Year: 2015

Photo Point: 1 – Photo 1 Bearing: 242 degrees

Location: Northwest Boundary Year: 2016

Photo Point: 1 – Photo 1 Bearing: 242 degrees

Location: Northwest Boundary Year: 2017

Photo Point: 1 – Photo 2 Bearing: 197 degrees

Location: Northwest Boundary Year: 2015

Photo Point: 1 – Photo 2 Bearing: 197 degrees

Location: Northwest Boundary Year: 2016

Photo Point: 1 – Photo 2 Bearing: 197 degrees

Location: Northwest Boundary Year: 2017

Photo Point: 1 – Photo 3 Bearing: 164 degrees

Location: Northwest Boundary Year: 2015

Photo Point: 1 – Photo 3 Bearing: 164 degrees

Location: Northwest Boundary Year: 2016

Photo Point: 1 – Photo 3 Bearing: 164 degrees

Location: Northwest Boundary Year: 2017

Photo Point: 2 – Photo 1 Bearing: 323 degrees

Location: Near Corral Year: 2015

Photo Point: 2 – Photo 1 Bearing: 323 degrees

Location: Near Corral Year: 2016

Photo Point: 2 – Photo 1 Bearing: 323 degrees

Location: Near Corral Year: 2017

Photo Point: 2 – Photo 2 Bearing: 205 degrees

Location: Near Corral Year: 2015

Photo Point: 2 - Photo 2 Bearing: 205 degrees

Location: Near Corral Year: 2016

Photo Point: 2 – Photo 2 Bearing: 205 degrees

Location: Near Corral Year: 2017

Photo Point: 2 - Photo 3 Bearing: 162 degrees

Location: Near Corral Year: 2015

Photo Point: 2 – Photo 3 Bearing: 162 degrees

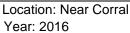


Photo Point: 2 – Photo 3 Bearing: 162 degrees

Location: Near Corral Year: 2017

Photo Point: 2 – Photo 4 Bearing: 104 degrees

Location: Near Corral Year: 2015

Photo Point: 2 – Photo 4 Bearing: 104 degrees

Location: Near Corral Year: 2016

Photo Point: 2 – Photo 4 Bearing: 104 degrees

Location: Near Corral Year: 2017

Photo Point: 2 – Photo 5 Bearing: 69 degrees

Location: Near Corral Year: 2015

Photo Point: 2 – Photo 5 Bearing: 69 degrees

Location: Near Corral Year: 2016

Photo Point: 2 – Photo 5 Bearing: 69 degrees

Location: Near Corral Year: 2017

Photo Point: 3 Bearing: 183 degrees

Location: West of Corrals Year: 2015

Photo Point: 3 Bearing: 183 degrees

Location: West of Corrals Year: 2016

Photo Point: 3 Bearing: 183 degrees

Location: West of Corrals Year: 2017

Photo Point: 4 Bearing: 287 degrees

Location: East corner of Cell 10 Year: 2015

Photo Point: 4 Bearing: 287 degrees

Location: East corner of Cell 10 Year: 2016

Photo Point: 4 Bearing: 287 degrees

Location: East corner of Cell 10 Year: 2017

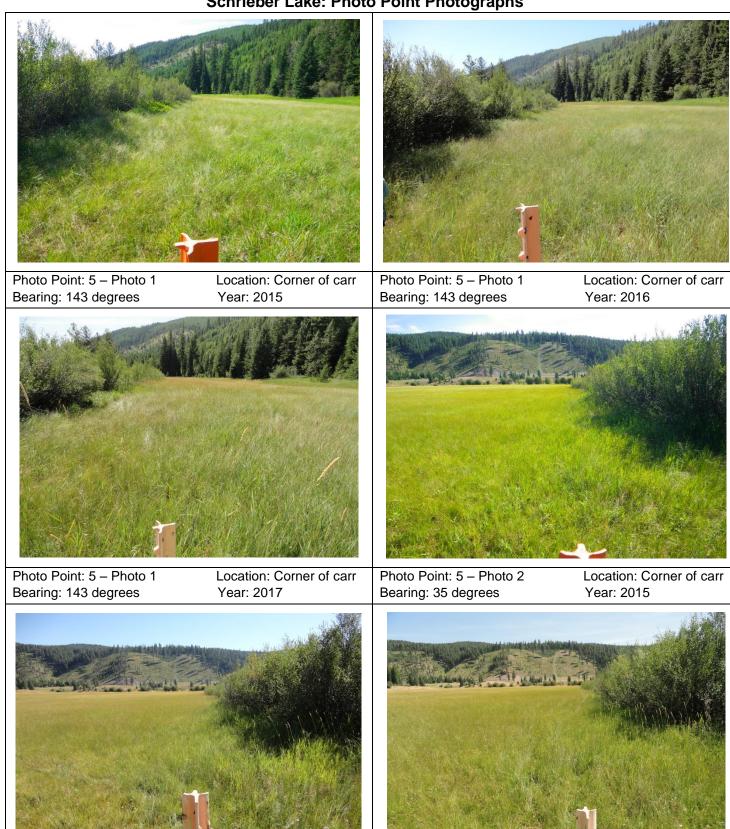


Photo Point: 5 – Photo 2 Bearing: 35 degrees

Location: Corner of carr Year: 2016

Photo Point: 5 - Photo 2 Bearing: 35 degrees

Location: Corner of carr Year: 2017

Photo Point: 5 - Photo 3 Bearing: 359 degrees

Location: Corner of carr

Photo Point: 5 - Photo 3 Bearing: 359 degrees

Location: Corner of carr Year: 2016

Photo Point: 5 – Photo 3 Bearing: 359 degrees

Year: 2015

Location: Corner of carr Year: 2017

Photo Point: 6 - Photo 1 Bearing: 150 degrees

Location: South end of Cell 1 Year: 2015

Photo Point: 6 - Photo 1 Bearing: 150 degrees

Location: South end of Cell 1 Year: 2016

Photo Point: 6 - Photo 1 Bearing: 150 degrees

Location: South end of Cell 1 Year: 2017

Photo Point: 6 – Photo 2 Bearing: 103 degrees

Location: South end of Cell 1 Year: 2015

Photo Point: 6 – Photo 2 Bearing: 103 degrees

Location: South end of Cell 1 Year: 2016

Photo Point: 6 – Photo 2 Bearing: 103 degrees

Location: South end of Cell 1 Year: 2017

Photo Point: 6 – Photo 3 Bearing: 52 degrees

Location: South end of Cell 1 Year: 2015

Photo Point: 6 – Photo 3 Bearing: 52 degrees

Location: South end of Cell 1 Year: 2016

Photo Point: 6 – Photo 3 Bearing: 52 degrees

Location: South end of Cell 1 Year: 2017

Photo Point: 7 – Photo 1 Bearing: 228 degrees

Location: South end of Transect 2 Year: 2015

Photo Point: 7 – Photo 1 Bearing: 228 degrees

Location: South end of Transect 2 Year: 2016

Photo Point: 7 – Photo 1 Bearing: 228 degrees

Location: South end of Transect 2 Year: 2017

Photo Point: 7 – Photo 2 Bearing: 299 degrees

Location: South end of Transect 2 Year: 2015

Photo Point: 7 – Photo 2 Bearing: 299 degrees

Location: South end of Transect 2 Year: 2016

Photo Point: 7 – Photo 2 Bearing: 299 degrees

Location: South end of Transect 2 Year: 2017

Photo Point: 7 – Photo 3 Bearing: 355 degrees

Location: South end of Transect 2 Year: 2015

Photo Point: 7 - Photo 3 Bearing: 355 degrees

Location: South end of Transect 2 Year: 2016

Bearing: 355 degrees

Photo Point: 7 – Photo 3 Location: South end of Transect 2 Year: 2017

Photo Point: 8 - Photo 1 Bearing: 320 degrees

Location: Interior of site Year: 2015

Photo Point: 8 - Photo 1 Bearing: 320 degrees

Location: Interior of site Year: 2016

Photo Point: 8 - Photo 1 Bearing: 320 degrees

Location: Interior of site Year: 2017

Photo Point: 8 – Photo 2 Bearing: 49 degrees

Location: Interior of site Year: 2015

Photo Point: 8 – Photo 2 Bearing: 49 degrees

Location: Interior of site Year: 2016

Photo Point: 8 – Photo 2 Bearing: 49 degrees

Location: Interior of site Year: 2017

Photo Point: 8 – Photo 3 Bearing: 79 degrees

Location: Interior of site Year: 2015

Photo Point: 8 – Photo 3 Bearing: 79 degrees

Location: Interior of site Year: 2016

Photo Point: 8 – Photo 3 Bearing: 79 degrees

Location: Interior of site Year: 2017

Photo Point: 9 – Photo 1 Bearing: 323 degrees

Location: Upland island center of site Year: 2015

Photo Point: 9 – Photo 1 Bearing: 323 degrees

Location: Upland island center of site Year: 2016

Photo Point: 9 – Photo 1 Bearing: 323 degrees

Location: Upland island center of site Year: 2017

Photo Point: 9 – Photo 2 Bearing: 120 degrees

Location: Upland island center of site Year: 2015

Bearing: 120 degrees

Location: Upland island center of site Year: 2016

Photo Point: 9 – Photo 2 Bearing: 120 degrees

Location: Upland island center of site Year: 2017

Photo Point: 10 - Photo 1 Bearing: 17 degrees

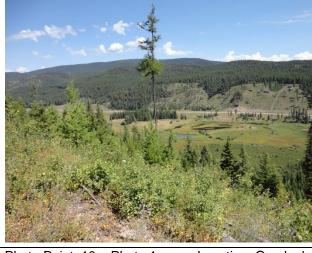
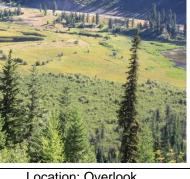



Photo Point: 10 - Photo 1 Bearing: 17 degrees

Location: Overlook Year: 2016

Photo Point: 10 - Photo 1 Bearing: 17 degrees

Location: Overlook

Year: 2015

Location: Overlook Year: 2017

Photo Point: 10 – Photo 2 Bearing: 39 degrees

Location: Overlook Year: 2015

Photo Point: 10 – Photo 2 Bearing: 39 degrees

Location: Overlook Year: 2016

Photo Point: 10 – Photo 2 Bearing: 39 degrees

Location: Overlook Year: 2017

Photo Point: 10 - Photo 3 Bearing: 57 degrees

Location: Overlook Year: 2015

Photo Point: 10 - Photo 3 Bearing: 57 degrees

Location: Overlook Year: 2016

Photo Point: 10 – Photo 3 Bearing: 57 degrees

Location: Overlook Year: 2017

Schrieber Lake: Vegetation Transect Photographs

Transect 1: Start Bearing: 251 degrees

Location: T-1 Year: 2015

Transect 1: Start Bearing: 251 degrees

Location: T-1 Year: 2016

Transect 1: Start Bearing: 251 degrees

Location: T-1 Year: 2017

Transect 1: End Bearing: 71 degrees

Location: T-1 Year: 2015

Transect 1: End Bearing: 71 degrees

Location: T-1 Year: 2016

Transect 1: End Bearing: 71 degrees

Location: T-1 Year: 2017

Schrieber Lake: Vegetation Transect Photographs

Transect 2: Start Bearing: 152 degrees

Location: T-2 Year: 2015

Transect 2: Start Bearing: 152 degrees

Location: T-2 Year: 2016

Transect 2: Start Bearing: 152 degrees

Location: T-2 Year: 2017

Transect 2: End Bearing: 332 degrees

Location: T-2 Year: 2015

Transect 2: End Bearing: 332 degrees

Location: T-2 Year: 2016

Transect 2: End Bearing: 332 degrees

Location: T-2 Year: 2017

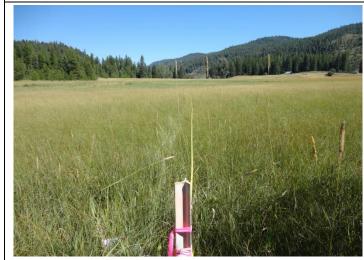
Schrieber Lake: Vegetation Transect Photographs

Transect 3: Start Bearing: 175 degrees

Location: T-3 Year: 2015

Transect 3: Start Bearing: 175 degrees

Location: T-3 Year: 2016


Transect 3: Start Bearing: 175 degrees

Location: T-3 Year: 2017

Transect 3: End Bearing: 355 degrees

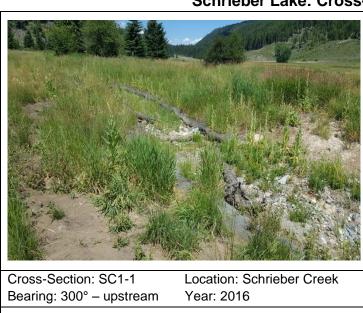
Location: T-3 Year: 2015

Transect 3: End Bearing: 355 degrees

Location: T-3 Year: 2016

Transect 3: End Bearing: 355 degrees

Location: T-3 Year: 2017



Data Point: DP-1W Year: 2017

Location: Veg Com 3

Data Point: DP-1U Year: 2017 Location: Veg Com 1

Cross-Section: SC1-1 Bearing: 300° – upstream

Location: Schrieber Creek Year: 2017

Cross-Section: SC1-1 Bearing: 30° – Left Bank

Location: Schrieber Creek Year: 2016

Cross-Section: SC1-1 Bearing: 30° – Left Bank

Location: Schrieber Creek Year: 2017

Cross-Section: SC1-2 Bearing: 280° – upstream

Location: Schrieber Creek Year: 2016

Cross-Section: SC1-2 Bearing: 280° – upstream

Location: Schrieber Creek Year: 2017

Cross-Section: SC1-2 Bearing: 10° – Left Bank

Location: Schrieber Creek Year: 2016

Cross-Section: SC1-2 Bearing: 10° – Left Bank

Location: Schrieber Creek Year: 2017

Cross-Section: SC2A-1 Bearing: 315° – downstream

Location: Schrieber Creek Year: 2016

Cross-Section: SC2A-1 Bearing: 315° – downstream

Location: Schrieber Creek Year: 2017

Cross-Section: SC2A-1 Bearing: 45° – Left Bank

Location: Schrieber Creek Year: 2016

Cross-Section: SC2A-1 Bearing: 45° – Left Bank

Location: Schrieber Creek Year: 2017

Cross-Section: SC2A-2 Bearing: 185° – downstream

Location: Schrieber Creek Year: 2016

Cross-Section: SC2A-2 Bearing: 185° – downstream

Location: Schrieber Creek Year: 2017

Cross-Section: SC2A-2 Bearing: 275° – Right Bank

Location: Schrieber Creek Year: 2016

Cross-Section: SC2A-2 Bearing: 275° – Right Bank

Location: Schrieber Creek Year: 2017

Cross-Section: SC2B-1 Bearing: 175° – downstream

Location: Schrieber Creek Year: 2016

Cross-Section: SC2B-1 Bearing: 175° – downstream

Location: Schrieber Creek Year: 2017

Cross-Section: SC2B-1 Bearing: 265° – Right Bank

Location: Schrieber Creek Year: 2016

Cross-Section: SC2B-1 Bearing: 265° – Right Bank

Location: Schrieber Creek Year: 2017

Cross-Section: SC3-1 Bearing: 240° – Upstream

Location: Schrieber Creek Year: 2016

Cross-Section: SC3-1 Bearing: 240° – Upstream

Location: Schrieber Creek Year: 2017

Cross-Section: SC3-1 Bearing: 330° – Left Bank

Location: Schrieber Creek Year: 2016

Cross-Section: SC3-1 Bearing: 330° – Left Bank

Location: Schrieber Creek Year: 2017

Cross-Section: SC3-2 Bearing: 160° – downstream

Location: Schrieber Creek Year: 2016

Cross-Section: SC3-2 Bearing: 160° - downstream Year: 2017

Location: Schrieber Creek

Cross-Section: SC3-2 Bearing: 70° - Left Bank

Location: Schrieber Creek Year: 2016

Cross-Section: SC3-2 Bearing: 250° - Right Bank

Cross-Section: SC7-1 Bearing: 110° – downstream

Location: Schrieber Creek Year: 2016

Cross-Section: SC7-1 Bearing: 110° - downstream

Location: Schrieber Creek Year: 2017

Cross-Section: SC7-1 Bearing: 20° – Left Bank

Location: Schrieber Creek Year: 2016

Cross-Section: SC7-1 Bearing: 20° – Left Bank

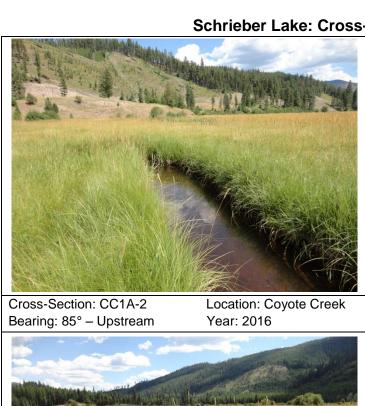
Location: Schrieber Creek Year: 2017

Cross-Section: CC1A-1 Bearing: 50° – Upstream

Location: Coyote Creek Year: 2016

Cross-Section: CC1A-1 Bearing: 50° – Upstream

Location: Coyote Creek Year: 2017


Cross-Section: CC1A-1 Bearing: 140° – Left Bank

Location: Coyote Creek Year: 2016

Cross-Section: CC1A-1 Bearing: 320° – Right Bank

Location: Coyote Creek Year: 2017

Year: 2017

Cross-Section: CC1A-2 Bearing: 175° - Left Bank

Location: Coyote Creek Year: 2016

Cross-Section: CC1A-2 Bearing: 355° - Right Bank

Location: Coyote Creek Year: 2017

Cross-Section: CC1B-1 Bearing: 200° – Downstream

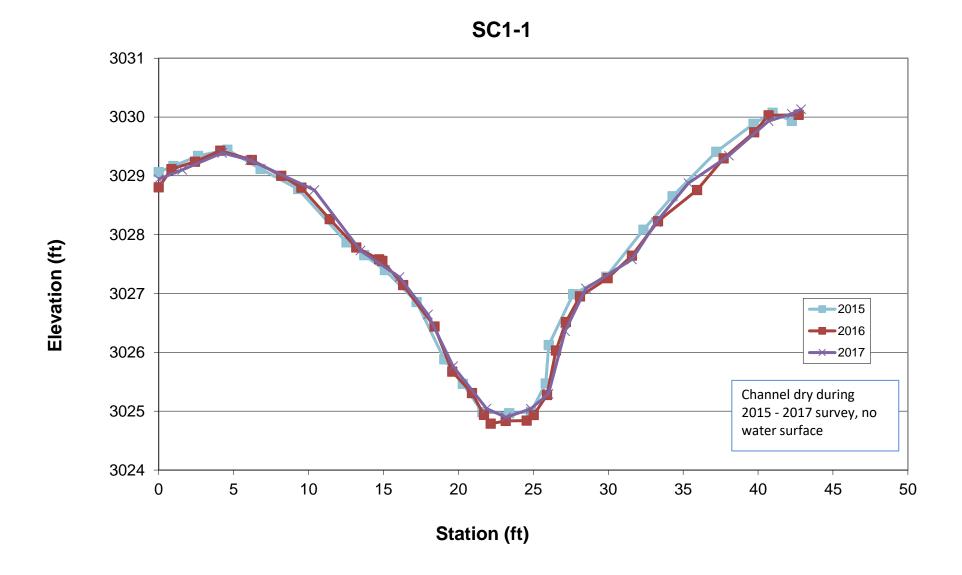
Location: Coyote Creek Year: 2016

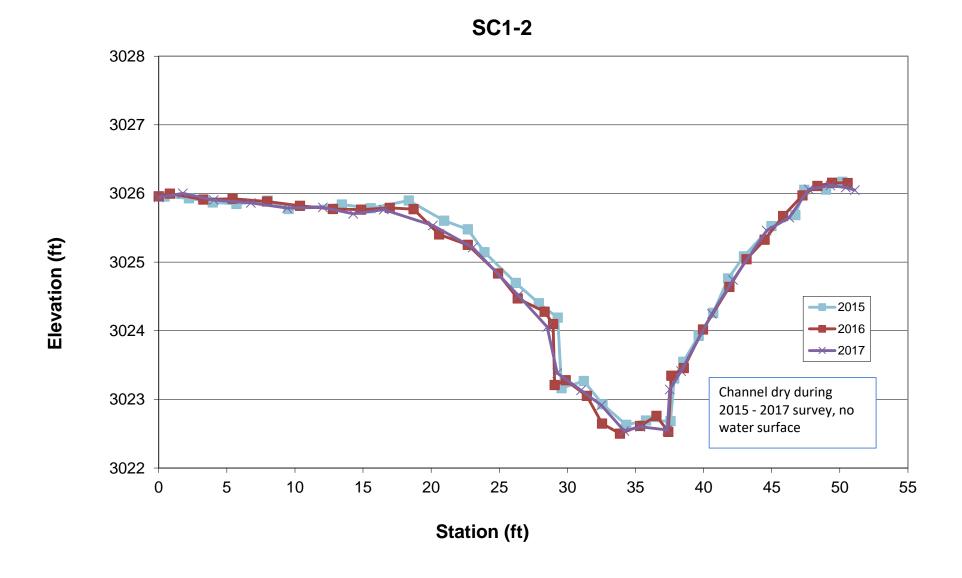
Cross-Section: CC1B-1 Bearing: 200° – Downstream

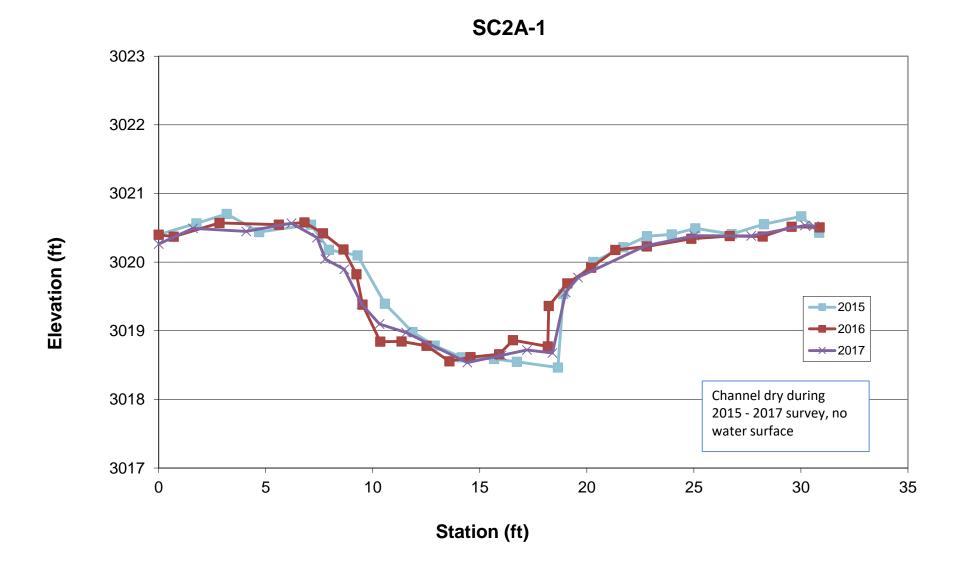
Location: Coyote Creek Year: 2017

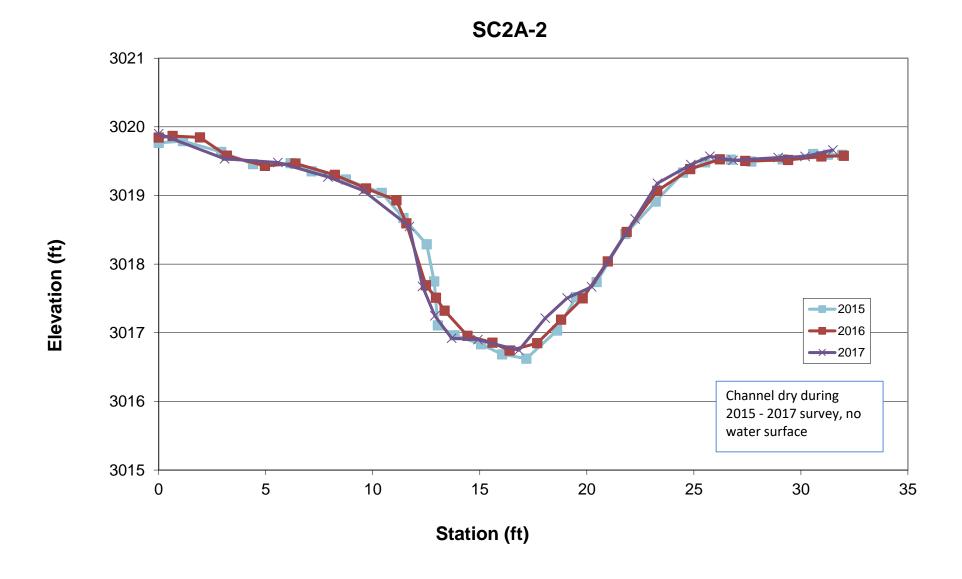
Cross-Section: CC1B-1 Bearing: 110° – Left Bank

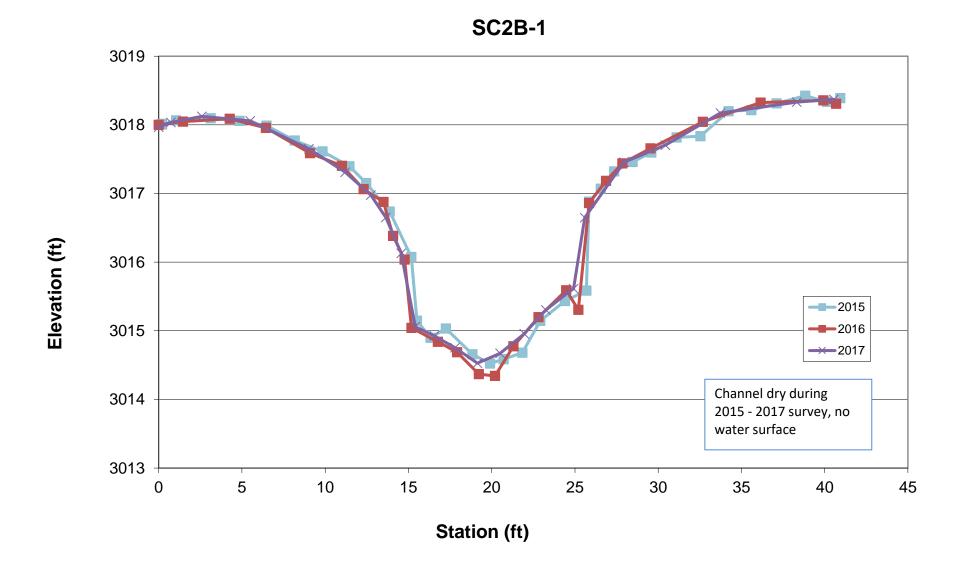
Location: Coyote Creek Year: 2016

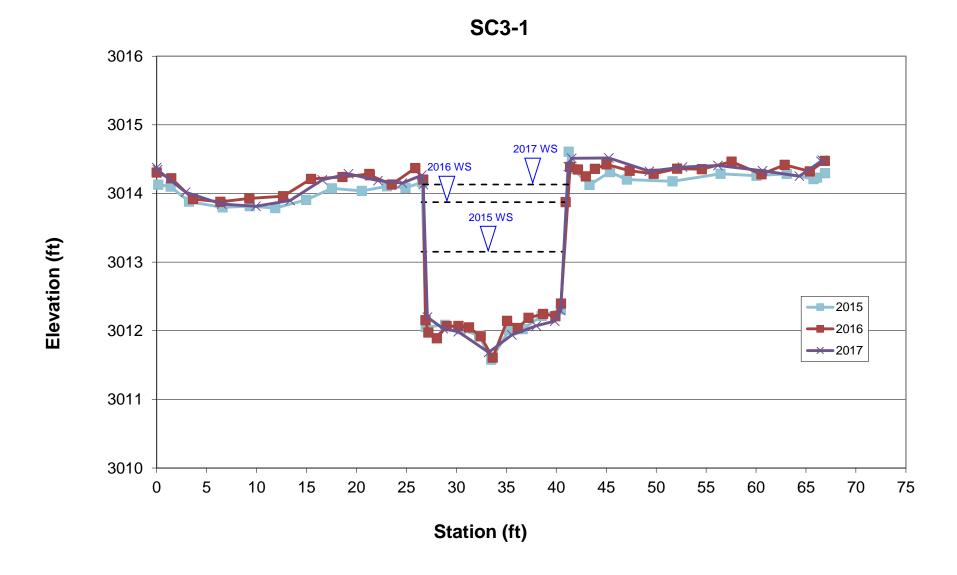


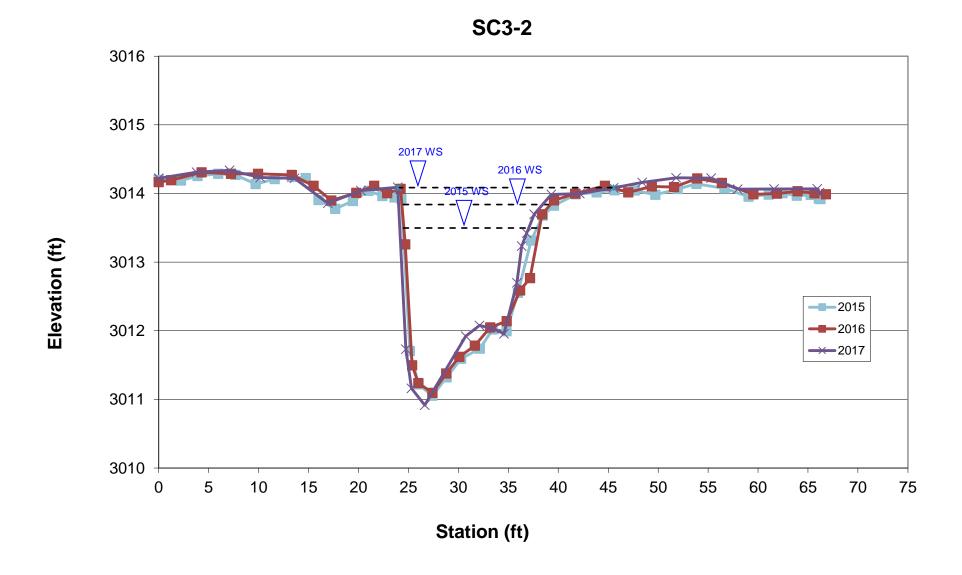

Cross-Section: CC1B-1 Bearing: 290° – Right Bank

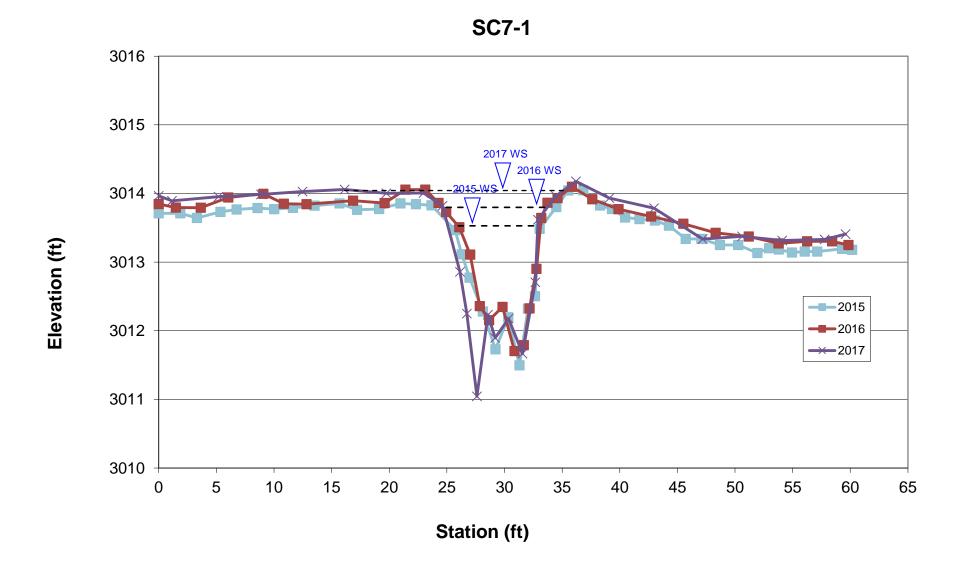

Location: Coyote Creek Year: 2017

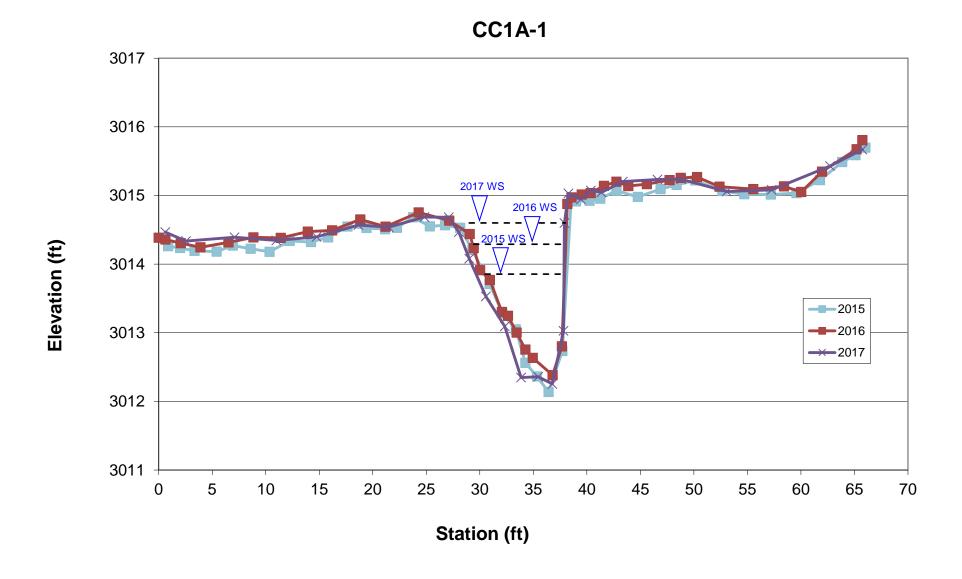

APPENDIX D SURVEYED STREAM CROSS SECTIONS

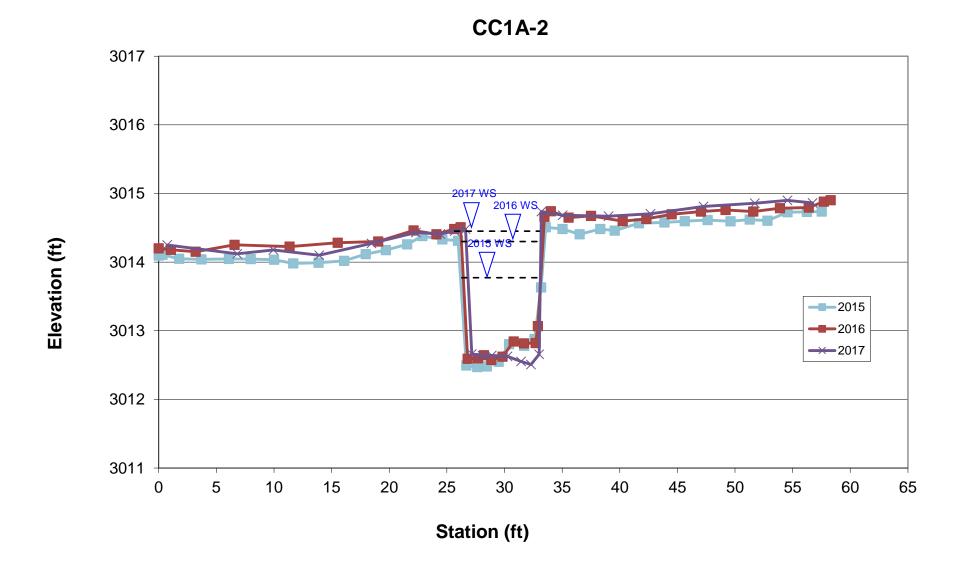

MDT Wetland Mitigation Monitoring Schrieber Lake Lincoln County, Montana

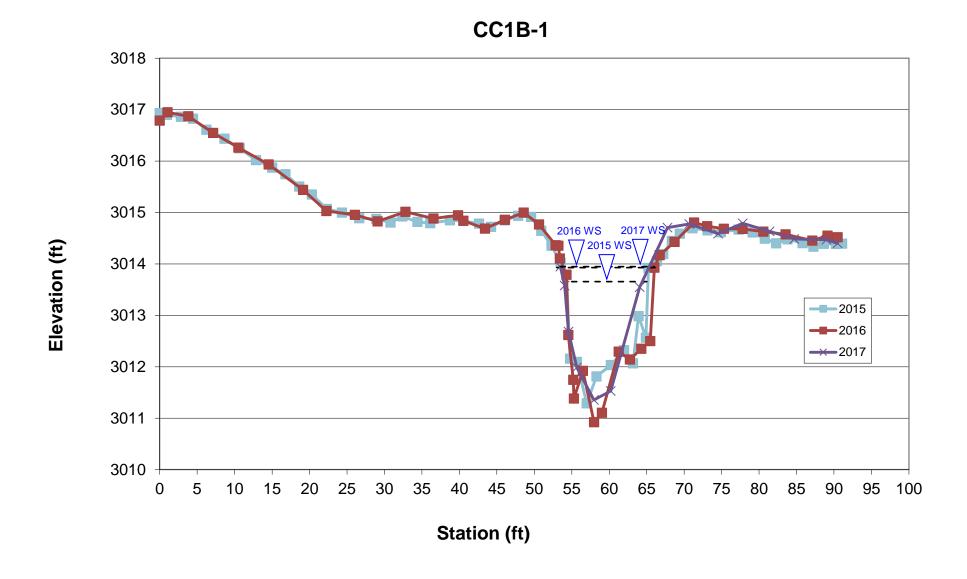


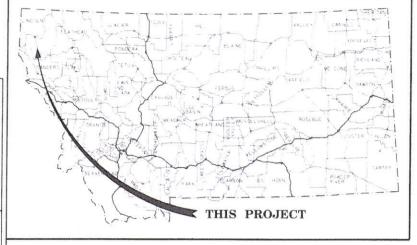






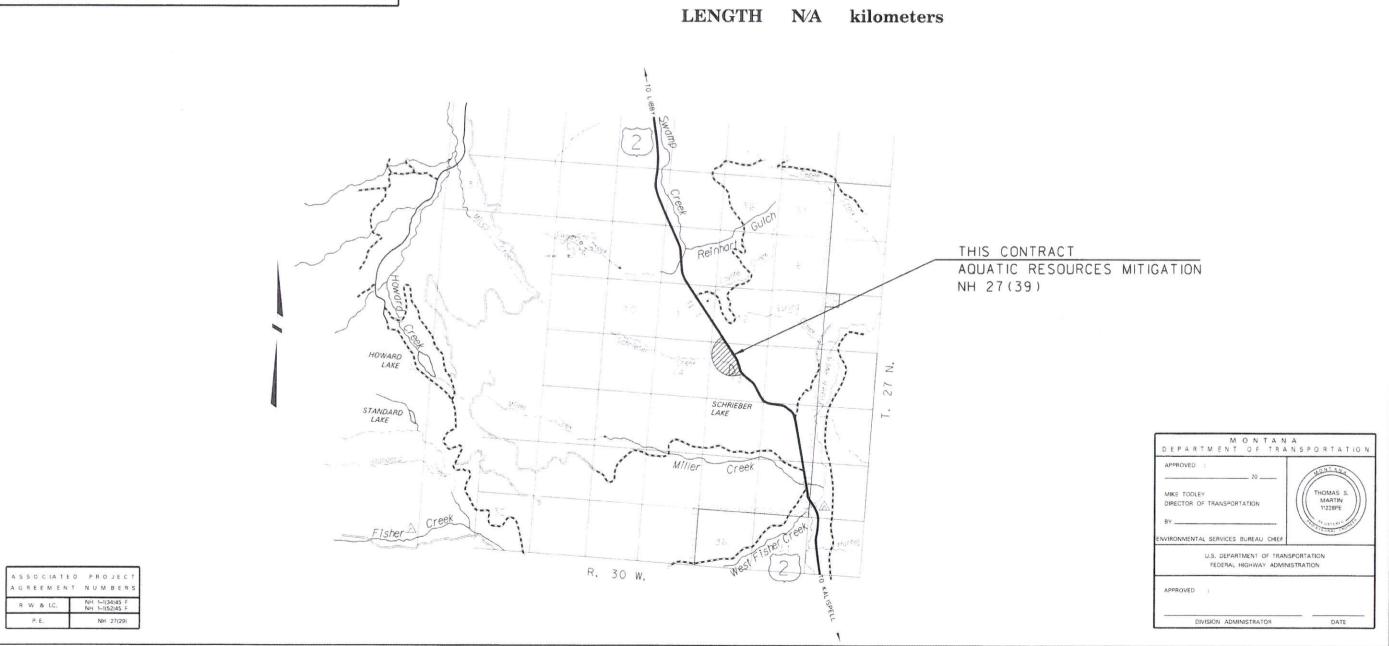






APPENDIX E PROJECT PLAN SHEETS

MDT Wetland Mitigation Monitoring Schrieber Lake Lincoln County, Montana FOR MDT INTERNAL DISTRIBUTION ONLY 104/08/2014 Highways & Engineering



MONTANA DEPARTMENT OF TRANSPORTATION

MONTANA DEPARTMENT OF TRANSPORTATION

CSF+0.99943246

FEDERAL AID PROJECT NO. NH 27(39) AQUATIC RESOURCES MITIGATION SCHRIEBER LAKE MITIGATION LINCOLN COUNTY

TABLE OF CONTENTS

DLANC	SHEET NO.
PLANS	
TITLE SHEET	1
TABLE OF CONTENTS	2
NOTES	2
LEVEL DATA	2
CONTROL DIAGRAM	3
SUMMARIES	4
GRADING CHANNEL CONSTRUCTION	4
FENCING REVESSIATION	4
REVEGETATION LOG & ROOT WAD	4
DIVERSION STRUCTURE	4
CULVERT SUMMARY RECAP REMOVE STRUCTURE	4
CONSTRUCTION SURVEY AND LAYOUT	4
CLEARING AND GRUBBING	4
DETAILS	5-11
TYPICAL CHANNEL SECTION DIMENSIONS	5
BANK PROTECTION PLAN	6
CHANNEL STRUCTURE AND STREAM BANK PROTECTION DETAIL DROP POOL SEQUENCE & GRADE CONTROL STRUCTURE DETAIL	
SCHRIEBER CREEK DIVERSION STRUCTURE DETAIL	9
COYOTE CREEK DIVERSION STRUCTURE DETAIL	10
BRIDGE REMOVAL DETAIL	11
SITE PLAN	12
CHANNEL ALIGNMENT & COORDINATES	13
CHANNEL PLAN & PROFILE	14-17
SCHRIEBER CREEK (SEGMENT !)	14
SCHRIEBER CREEK (SEGMENT 2) SCHREIBER CREEK (SEGMENT 3)	15
COYOTE CREEK	17
WETLAND PROFILE & COORDINATES	18-20
WETLAND CELLS 1 - 4	18
WETLAND CELLS 5 - 7 WETLAND CELLS 5 - 7 WETLAND CELLS 8 - 10	19
SEEDING & REVEGETATION PLAN	21

NOTES

UTILITIES

CALL THE UTILITIES UNDERGROUND LOCATION CENTER (1-800-424-5555) OR OTHER NOTIFICATION SYSTEM FOR THE MARKING AND LOCATION OF ALL LINES AND SERVICES BEFORE EXCAVATION, ALL CLEARANCES OR DEPTHS PROVIDED FOR UTILITIES ARE FROM THE EXISTING GROUND LINE.

WETLANDS

ALL WETLANDS WITHIN THE PROJECT AREA HAVE BEEN DELINEATED.
WETLANDS DO EXIST BEYOND THE PROJECT LIMITS AND ANY ACTION AFFECTING
SUCH WETLANDS IS THE RESPONSIBILITY OF THE CONTRACTOR.

MONITOR WELLS

ALL MONITOR WELLS - DO NOT DISTURB SEE SITE PLAN FOR MONITOR WELL LOCATIONS.

SOILS INFORMATION

SOILS INFORMATION IS INCLUDED WITH THE SPECIAL PROVISIONS FOR THIS PROJECT.

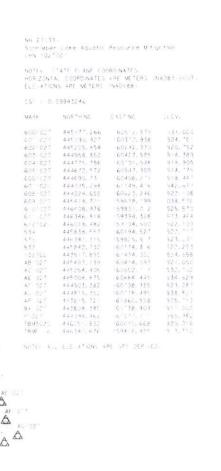
SURVEY DATA

DIM FILES FORMATTED FOR TRIMBLE, LEICA, AND TOPCON SURVEY CONTROLLERS ARE AVAILABLE UPON REQUEST.
CONTACT WADE SALYARDS, MOT WETLAND ENGINEER AT 406-444-0451.

LINEAR & LEVEL DATA

BEARING SOURCE

ALL COORDINATES ARE METRIC STATE PLANE COORDINATES HORIZONTAL COORDINATES ARE METERS (NAD83-2007) CSF = 0.99943246


LEVEL DATUM SOURCE

ELEVATIONS ARE METERS (NADV88) ALL ELEVATIONS ARE GPS DERIVED

STATE PROJECT NUMBER SHEET NO. MONTANA NH 27(39) 3

ONTROL DIAGRAM

DEPARTUENT ISPORT ATION				ソノ
MDTA WONTANA DEPARTUENT OF TRANSPORTATION		NOTE: 1	Eake Aquatic 307 A16 PLANE (0)oRad
9			COOPDINATES S APE WETERS	
2		CSF = 0.5		
		MARK	NORTHING	EAS
MONT ANA		6001027	445177,266	- 6
TA A	610102	602:027	445205, 854	-6
18 7	A	6031627	444958, 852 444775, 396	- 6
	Δ-Δ	604 027	444672,572	6
	BML 16 53	6061027	444690.73	. 6
		60 1024	444135, 298	6
		6081627	444324,655	G
		609-007 6101077	446418, 721	15
		611 627	446386, 918	15
	A	P15.05-	446018, 482	6 5
ĺ		534	445838, 657	6
	*	537	445842.732	16
		102 FEE	4439:7.895	6
	4,6 2∆ _{5,} x _a	AB 027	446481,139	6
		AC 027	445254.405	6
		AE 007 AF 007	444903, 182	6
		AL 02	444915, 152	5
		48 023	443815, 77:	6
		8x 00"	442828.285	.0
	609/02/	P102 / 18V3025	444394, 462 446051, 832	6
		18VE	446141.676	15
1		NOTE: ALL	ELE ATRONES	LPE S
	6021027 60, 027			
	Δ Δ Λ			
	∆ ∆ ∆ ₆₀₀₁₀			
	6031027 AF 07			
\Box	604-02 A A			
	604-037 A			
	ΔΔ			

0

6001021

'E' 18.8' X 30 HEBAR M TH 2 ME' ALLW HORLE CONTROL (AF STAMPED BOGIO27 201CE 18.8' X 30 HEBAR M TH 2 MET ALLW HORLE CONTROL (AF STAMPED BOGIO27 201CRUSH HOWAR 2 AT MILEPOST 54.00 TURN LETT AND HEAD MEST 280 FEET THEN MALK WORTH 185 TEET
HOWAR IS A THE TOP CF A RIGGE FROM PER 1470 MARH IS WEST 55 FEET.
HAWD HELD GRES NOST 225.4 A 115 24-34.7 ECTION?"

SET S.8" V 30 FERAR WITH N MOT WILLDRIF CONTROL AR STAMPED ECTION!"

SEUS HIGHWAY 2 AT MEEPOST 53,00 TUPN LEFT AND HEAD WEST TOLLOW ROAD CHS FEET 13 AN
HEAMOCRAD HOUSE MARK IS 60 FEET SOUTH OF AN HEAMOCRED HOUSE. MARK IS 30 FEET SOUTH AST OF
AN DELI HOMM-HOUSE, SET WITHST HOUT IS HEET NICHTH.

HAND HELD DRS N 48-06 25.4 AT 15-24 41.4 602:027
SET SLB Y 30 REBAR WITH 2 MDT ALUX HORIZ CONTROL CAR STAMPED 602:021 2015
Sh BS HORMWAY 2 AT MEETOST 54, DO TURN LEFT AND HEAD WEST WSD FEET DRWN THE SHIT FLAD,
WARPLIS MEST 56 FEET FROM 5 GATEPOST. SET WITHES POST 5 TEET NORTH.
WAND HELD CRS N 48-06-25.7 W 15-24-47 T RESTRUCT
SET 4 & 3.0 REBAR ATH 2 MOT ALLAY HORIZ CONTRE, TAT STAMPSD 6051021 2011
AT WILEPOST 54.00 TURN LEFT AND HEAD AEST FOR DA 1-6 ROAD PAST THE ABANDONED HOUSE
TOWN AND HEAD DOUT TO THE APPROX. LEYTER OF MEADLA MARK I TO FEET NORTH DE IL REGER REEF.
SET ANTHESS DOST 5 FEET NORTH #64:027 SET 5.8 % 30 REBAR WITH 3 MOT BUDW HORE COMPRO, CAR STAMPED 604:327 2011 AT MILEDOST 5. TUNN LEFT AND HARD WAST 550 FEET, MARK 10 550 FEET ABOVED THE HOAD, MARK 5 80 FEET FROM THE TRECKINE AT THE SOUTH CODE OF MEADUR, TET WITHOUTEN POSTS FEET MORTH, HAND HELD GES N 48-06 12.7 WITE-24-24.0 #651027

SET 578 * 30 REBAR WITH 2 VOT ALLW HORPZ CONTROL THE STAMPSO 604/007 2011
AT WILEPOST 56,1 TURN LEFT AND FEAR ARTH 1350 FEET AND TARE THE PROFIT FOR OF THE
ROCKE CONTINUE TO THE DIRE OF THE POSE. A LUCUMOUS TRATON WHILE DIPPOST IN POST OF
COLL MARRIES 200 FEET EAST OF THE CAUCHING STATION AT THE SCITTMASS EDGE OF SCHREBER LAKE.
SOT WINNESS POST SITES NORTH
HAND HELD CRIN N 45-06-08.5 WITH 124-15-0 FOR CO.T.

SET SUBJECT AS SO NESSAR AS THE 2 MOT SUUM HORIZ CONTROL CAR STAMPED 606 (27 201)
ON US HIGHARY 2 AT MILEPOST SALTS TORN JEST AND HEAD ACCT AT 1550 FEET TWE THE
HIGH FORK AND JON RIGG TO THE END US THE MORE. A SALURN JESTON ALL BE DIRECTLY
OF FROM THE YOUR PASS THE PREEN AND HEAD NORTH 400 FEET FROM THE STATION, WARK 5
TOR FEET LEAST OF THE TREES AND, SET ATTROSP POST 5 FEET NORTH.
HAND HELD CRS N 48 06 09.4 (A 15 26 3 3 5) HOTIOGY SET 5.8 × 30 RESAR WITH 2 MOTIFY HORYZONING, CAP STAMPED GOTTOST FORT MARK IS AT U. T. HEY 2 MULEPOST 54.86 25 FEET WORT OF CENTER ME. SET WITHINGS POST 5 FEET MORTH. HAND HELD GOS N 43-05-00. A 115/24-01 V eor or.

605:027
SET 57:8 > 50 REBAR WITH 2 YET SUBM HORIZ CONTROL CAR STRAFET 608:027 20 :
H.M.E.S. HORT 2 MULEPUS: 54.11 (EPV.CE) I AND HEAD ME21 ON DIMARHED WOAD,
DO 3.76 WLES. CEPT TURN GO 1.04 WIES, ROHT TURN GO 1.08 MIES, RIGHT TURN CONTINUE
AND 57:05 AT 1.16 MIEST FROM HAY 2, WARN 5 15 FEET EAST OF DIRT ROAD,
SET ATTOSE FORTS SEEET MORTH.
HAND HELD DRUG 48:05 58 W 115-24-26 GOTION: SO REBAR WITH 2 MCT ALUM MORE CONTROL TAR STAMPED GOTION: TO ... AT MILEPOST 52.58 DR 35.55 HAY 2 TOPA SCT. AND HEAD ACS? THE MILES ON SCHEDER EPER ROAD MARK ST 12 FFFT SOUTH OF CENTER OF AT A BENC N. THE ROAD.

BY ALTISOS POST'S FEET HES?

HAVE HELD GRS N.45-08-29 M.175-25-17 BIDDOT

TET EVE! A 30 PERAR WITH " UK! A UN HORY IDNIED: CAP STAUFFE & DIG!" TO F

U.S. HAY 2 MISPORT 53.076 BO FEF! LETT. MARK & LOCATED IN TOUTHER! ELGE OF TURNOUT AT

ARETHER STATION, SET AUTNESS FOST A FISE MEST. et 1027 . 30 REBAR WITH 2 VET ALUW ICH Z LONTROL CAP STAMPED 6 1152 20 12N LET AND HEAD WEST ON SCHREDER RPEEK ROAD AT MREEPOST 52, 38. FOLLOW THE FOAD D. HEE MICEL TO THE WARM LINEATED ON THE EAST DROULDER. SET ATMEST FOST 4 FEET SOUTH.

MIZIOZI SET 578 > 30 REPAR NITH Z MCT BLUM HUP Z CONTRCL CAP STAMPED 6 2102 20 MAR IF LOCATED ON MESTERS FINE OF MEATON 150+ FEET SOUTH PLATFREN 1987 - NE AND 40 FEET ESTERM OF A HUPTH-SCLTH POAD AT BOTTOM OF LOCGED HULL DE. SET MITNESS POST 4 FEET EAST

TOUR A ALUMINIAM AP STAMFTE SAT ART IS SET RIGHT OF HE-HAAR ... INTER NE DA THE NORTH EDGL OF A POLLOUT AT MILEFOST SALIB. A THESS POST SET A FEET WEST.

TOUNG 2 ALLMANUS (AR STAMPED 514 TITEL (ERT OF HIGHWAY 2 CENTER NE AT MILEPUST 51.50) WITNEST POST SET 2 SEET EAST

FOUNT STAFF A MINUM CAF STAMPED OFF. ODE HAND HELD OPENAR-US-47 WITE /4-45

48 027 FOUND 7 MO BEOWINDM CAP STAMPED ABOVE 7006, HAND HEED OF MARCHINE WITS-21-45

A- 02' FOUNC 2 - 001 ALUMINUM CAP STAMPED ACTOR: 7006, HAND HELD GPS NA8-06-28 - A-15-24-35

SET OUT TO MET ALLOWING CAP S'AMPLE AT SET 2006 HAND HELD OPS NABIOE 17 ATTE 24 24

POLNO : MO' ALUMINUM CAP S'AMPEC AL D. ' DICH. HAND HELD UPS NAB-05-44. AC15-23-25.

 $\frac{8 \times 102^3}{100 \times 10^2} = \frac{1000 \times 1000 \times 10000 \times 1000 \times 10000$

THE THE THE STATE OF STATE AND ALL MORE A CONTROL CAR STAMPS SHARE THE STATE OF STATE AND ALL MORE AND SHARE STATE OF ST

TEMSORS (50°) REBAR With 2 $M^{\rm CT}$ ALLM HORIZ CONTROL CAF GTAMPES TRUTTON 2012 SOLD TOLKE FER MES SATASHES",

OF TRANSPORTATION

SUMMARY

				FEN	CING					
			meters			each		me	ters	
STAT	TION	FAR	M FENCE	REMOVE FENCE	FARM FEN	NCE PANEL	DEADMAN	FARM GATE		REMARKS
FROM	то			1.21102	SINGLE	DOUBLE		TYPE G2	TYPE G3	
				1902						SEE PROJECT SITE PLAN
TOT	AL			1902	~	~		~		

		REMOV	E STRI	JCTURE		
STAT	ION	lump	cubic meters	5-11-12		
		sum	sum UNCL.	REMARKS		
FROM	TO		EXC.			
	***************************************	1	50	ACCESS ROAD BRIDGE REMOVAL		
TOT	AL	1	# 50			

				CHANN	NEL CON	NSTRUC	CTION		
		squar	e meters	lin, meters		cubic meters		each	
STAT	ION	COIR EROSION CONTROL NETTING	COCONUT BLANKET	FASCINE	# STREAM- BED	# RIFFLE MATERIAL	UNCL. CHANNEL EXC.	* GRADE CONTROL STRUCTURE	REMARKS
FROM	TO				MATERIAL	MATERIAL	EXC.	BIRCOTOR	
0+24.76	1+81.24	1090	1090	218	40.2	65.5	885.2	7	SCHRIEBER CREEK (SEGMENT 1)
1+81.24	3+52.82	715	715	238	43.5	110.9	382.0		SCHRIEBER CREEK (SEGMENT 2A)
3+52.82	3+89.82	240	240	74	7.4	21.7	188.0	7	SCHRIEBER CREEK (SEGMENT 2B)
3+89.82	4+20.67			North Committee		3.1	124.1		SCHRIEBER CREEK (TRANSITION POOL)
4+20.67	6÷74.25						399.7		SCHRIEBER CREEK (SEGMENT 3)
0+10.00	3+07.10						451.5		COYOTE CREEK
TOT	AL	2 045	2 045	530	91.1	201.2	2 430.5	14	

* CONSTRUCTION SURVEY & LAYOUT STATION REMARKS PROJECT SITE TOTAL SEE SPECIAL PROVISIONS

INCLUDES ALL ITEMS NECESSARY TO CONSTRUCT GRADE CONTROL STRUCTURE INCLUDING LOGS. COIR FABRIC AND ANCHOR ROCKS # SUBEXCAVATION FOR RIFFLE MATERIAL AND STREAMBED MATERIAL INCLUDED IN UNCL. CHANNEL EXC

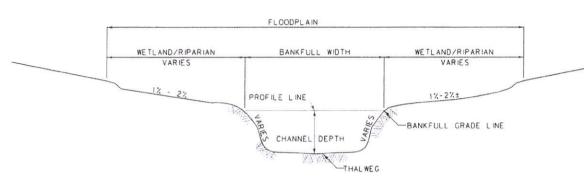
		REVEGE [*]	TATION			
3900	cubic meters	hec	tares	lump sum	square meters	
FOR	TOPSOIL SALVAGING & PLACING	WETLAND SEEDING - UPLAND	WETLAND SEEDING- WETLAND	TREE & SHRUB PLANTING #	WETLAND SOD	REMARKS
WETLAND CELLS			1.87			
SCHRIEBER CREEK SEGMENTS 1 AND 2	107	0.11		0.7		INCL. 2 DIVERSION STRUCTURES
ACCESS ROAD AND OLD HOME SITE	653	0.24				
SCHRIEBER CREEK SEG. 3 AND COYOTE CREEK				0.3	2 326	
TOTAL	760	0.35	1.87	1	2 326	

* GRADING cubic meters STATION REMARKS CELL 1
CELL 2
CELL 3
CELL 4
CELL 5
CELL 6
CELL 7
CELL 8
CELL 9
CELL 9 1 830 673 316 344 1 847 1 170 2 635 986 568 1 694 12 063 117 * ALL UNCL. EXC. NOT USED FOR TOPSOIL TO BE STOCKPILED ON SCHRIEBER MEADOWS SITE

PLANTING LOCATIONS TO BE STAKED BY MDT BOTANIST (SEE SPECIAL PROVISIONS)

		* LOG & ROO1	r WAD	
STATION		LOG & ROOT WAD (each)	BANK HABITAT LOG (each)	REMARKS
FROM	то			
		30	45	SCHRIEBER LAKE PROJECT SITE
		75	100	SCHRIEBER MEADOWS PROJECT SITE
TOT	AL	105	145	

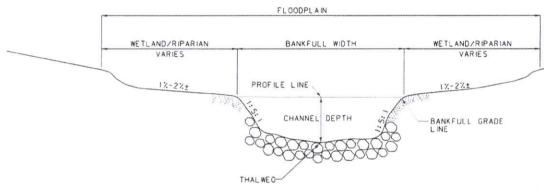
	CL	EARING 8	GRUBBING
		hectares	
STAT	ION	CLEARING AND GRUBBING	REMARKS
FROM	TO	GRUBBING	
		0.23	SCHRIEBER CREEK SEG. 1 AND 2
тот	AL	0.23	

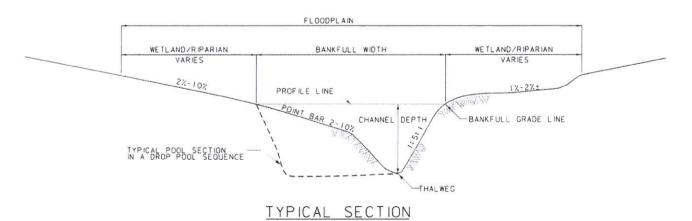

			CULVE	RT SUN	MARY I	RECAP			
		me	ters			cubic	meters		square meters
BASIC					count			CULVERT	GEOTEXTILE
BID	NEW PIPE	RELAY	CLEAN	REMOVE	FOUND- ATION		CLASS *DD*	RIPRAP	PERM. EROS. CNTRL
	(TOTAL)	CULVERT	CULVERT	CULVERT	MATERIAL	MATERIAL	CONCRETE		SURV.
								CLASS	CLASS
914 mm CMP				21					
TOTAL	~ ~	^~		# 21	^ 54	7.~	~~~	~~	~~

		DIVERSION	ON STR	UCTUR	E		
***************************************		cubic r	neters	square	meters		
STAT	TO	DIVERSION STRUCT. FILL #	TRUCT. RIFFLE		EROSION CONTROL BLANKET - BIO	REMARKS	
		59	10.8	FABRIC	135	SCHRIEBER CREEK	
		58		75		COYOTE CREEK	
TOT	AL	# 117	10.8	75	135		

STATE PROJECT NUMBER SHEET NO.

MONTANA NH-27(39) 5


DETAIL


MONTANA DEPARTMENT OF TRANSPORTATION

MOTA

TYPICAL SECTION RUN

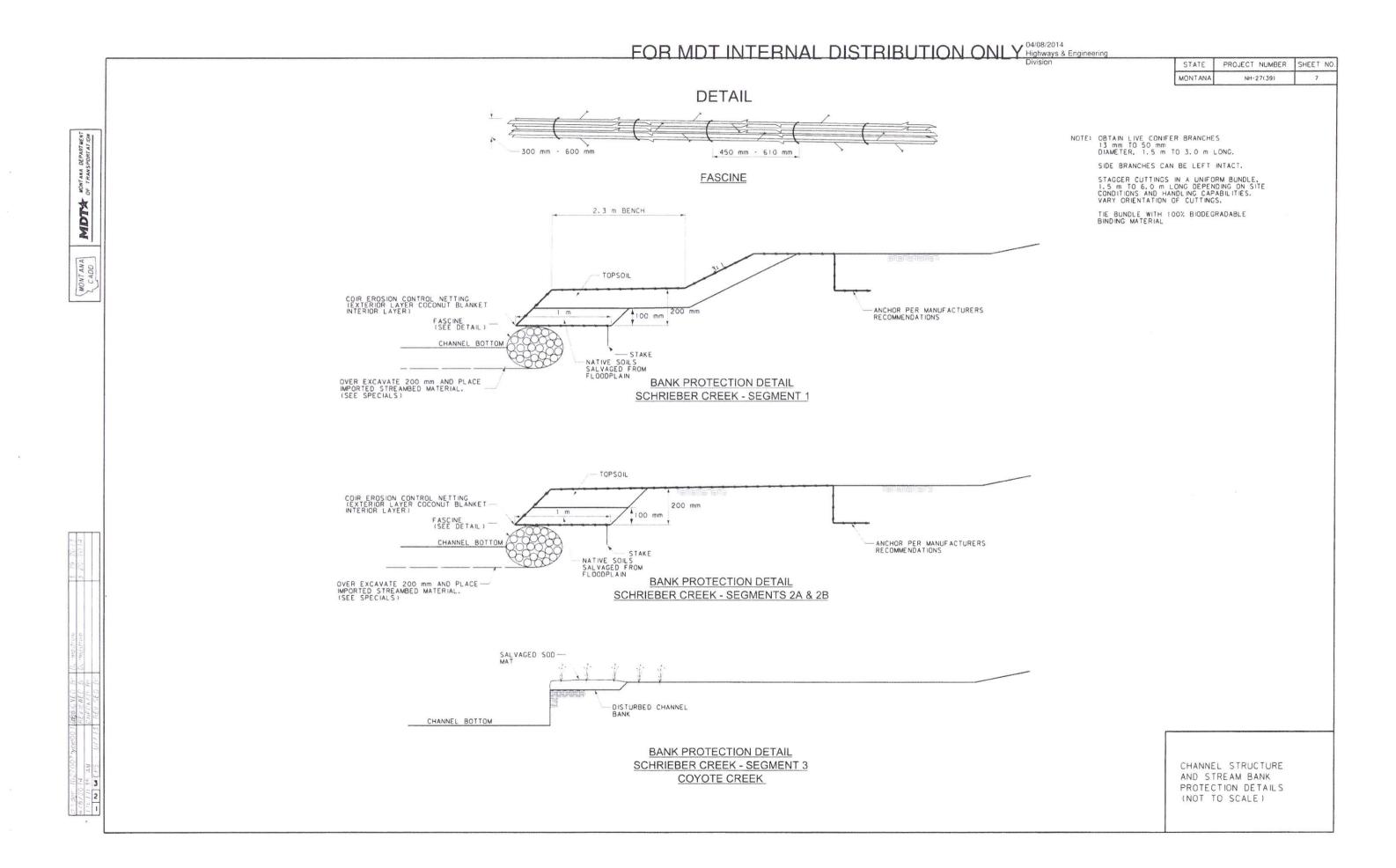
TYPICAL SECTION RIFFLE/DROP

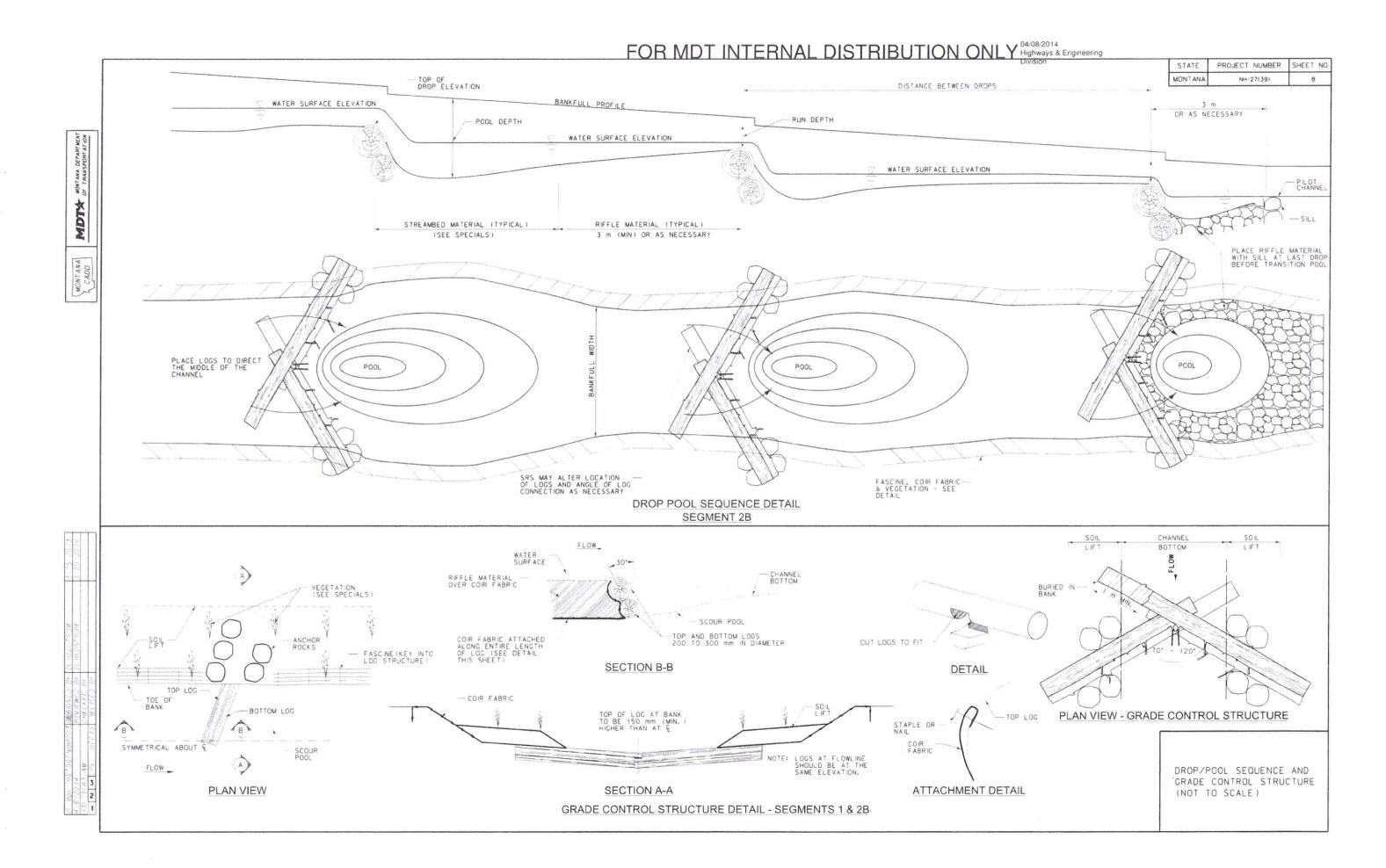
POOL

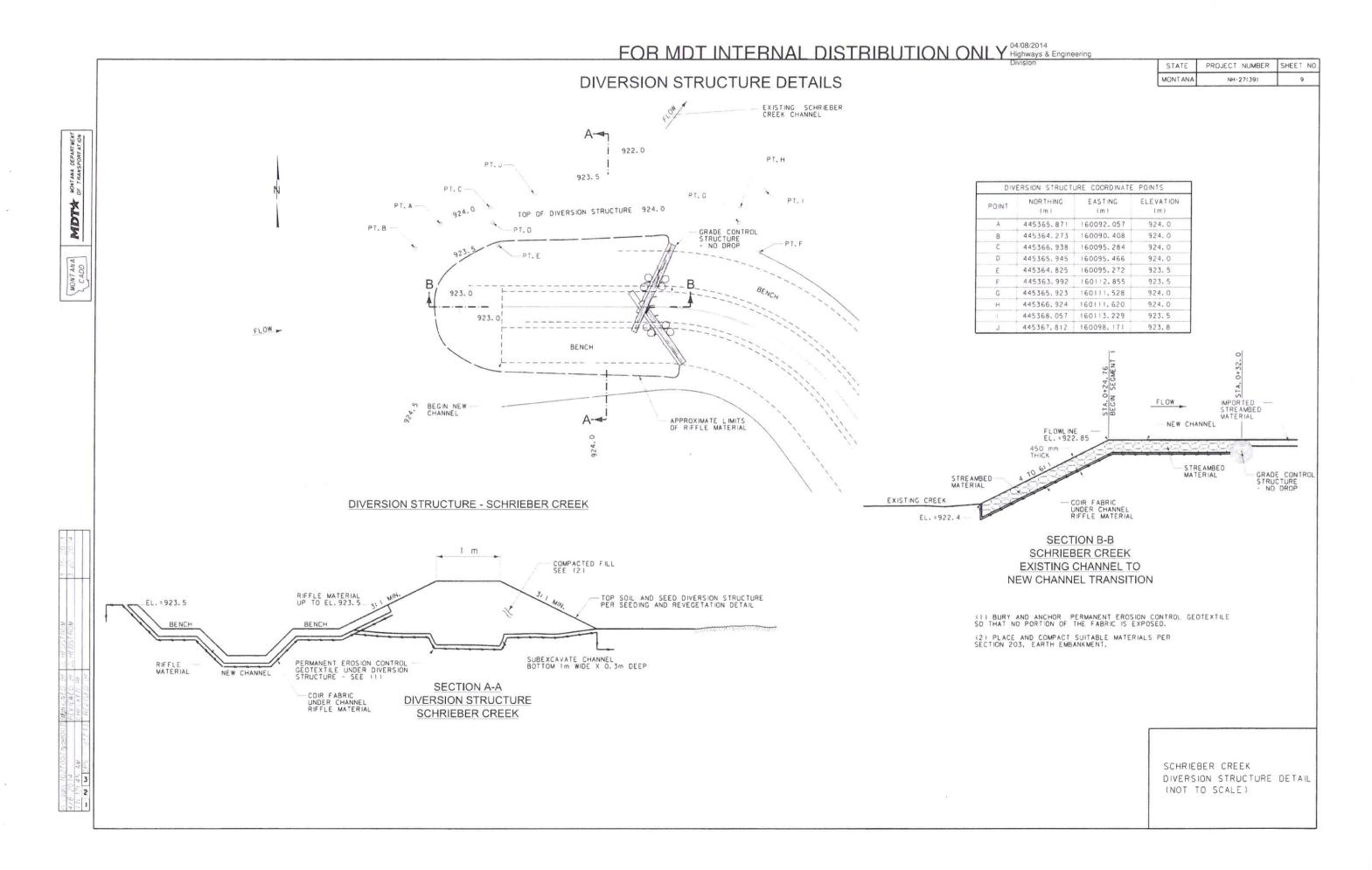
- NOTES: (1) TYPICAL SECTION DRAWINGS ARE PROVIDED TO INDICATE THE GENERAL SHAPE AND ORIENTATION OF THE CROSS-SECTIONAL CHANNEL FEATURES. THEY DO NOT INDICATE THE PLACEMENT OF IN-STREAM STRUCTURES, SUCH AS GRADE CONTROL STRUCTURES, WOODY DEBRIS, LIVE FASCINES, AND SOIL WRAPS.
 - (2) THE TABLES BELOW PROVIDE DIMENSIONS AND SLOPES FOR EACH CHANNEL REACH, SPECIFIC LOCATIONS OF CHANNEL FEATURES (RUN, RIFFLE, DROP, POOL) TO BE DETERMINED DURING CONSTRUCTION BASED ON SITE CONDITIONS AND AT THE DISCRETION OF THE STREAM RESTORATION SPECIALIST (SRS).
 - (3) CHANNEL DIMENSIONS MAY VARY WITHIN THE RANGE SHOWN AT THE DISCRETION OF THE SRS.
 - (4) SEE THE SPECIAL PROVISION FOR CHANNEL CONSTRUCTION SEQUENCING REQUIREMENTS.

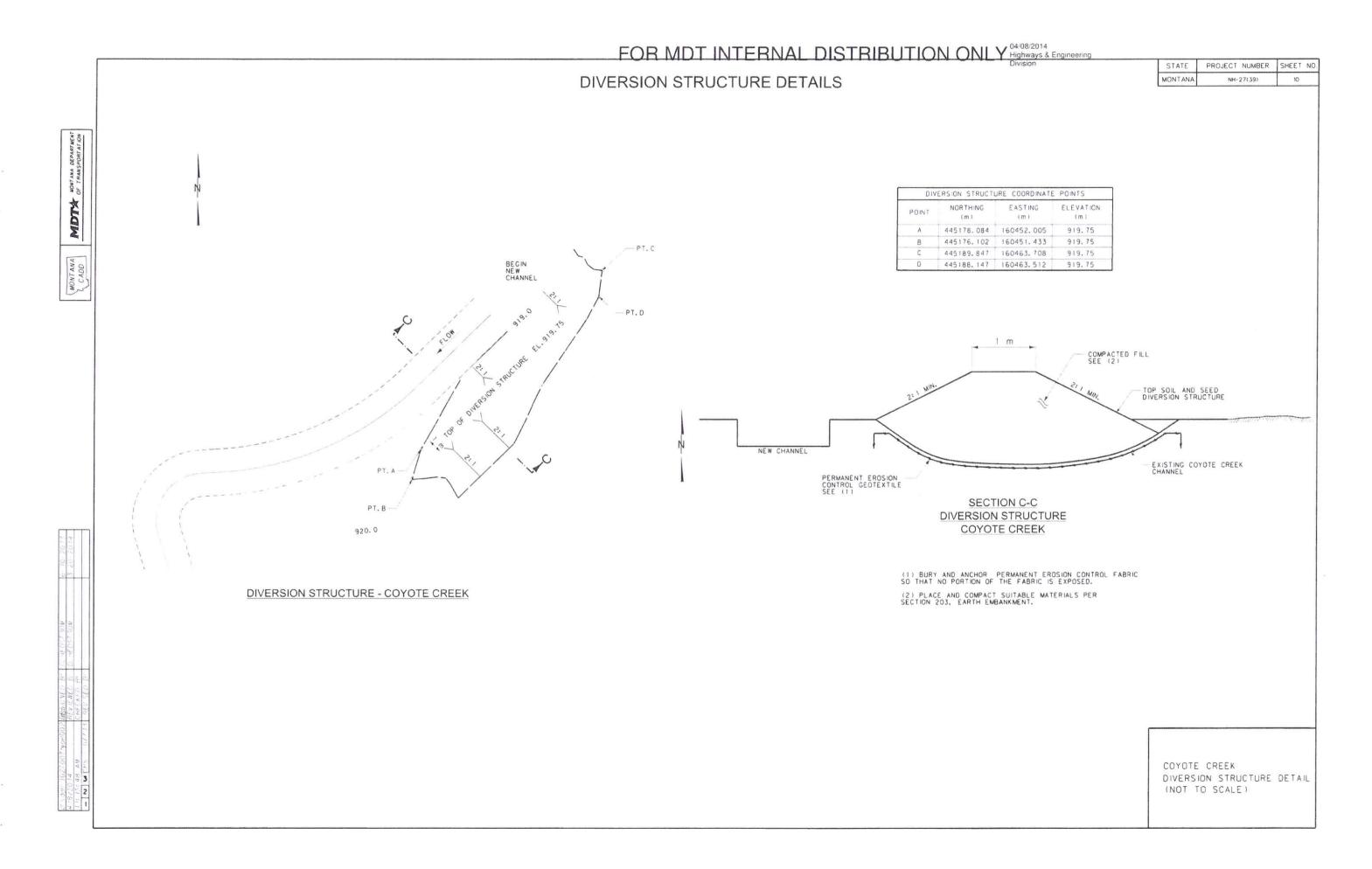
		SCHE	RIEBER CREEK	
	BANKLINE S	LOPE = 0.9%		SEGMENT 1
FLOODPLAIN	POOL	RUN	RIFFLE	STA.0+24.76 TO 1+81.24
8.25 - 10.25	3.0 - 3.8	2.4 - 2.8	2.8 - 3.3	WIDTH
-	0.3 - 0.36	0.25 - 0.29	0.22 - 0.25	DEPTH
-	1.5:1	1.5:1	1.5:1	INSLOPE

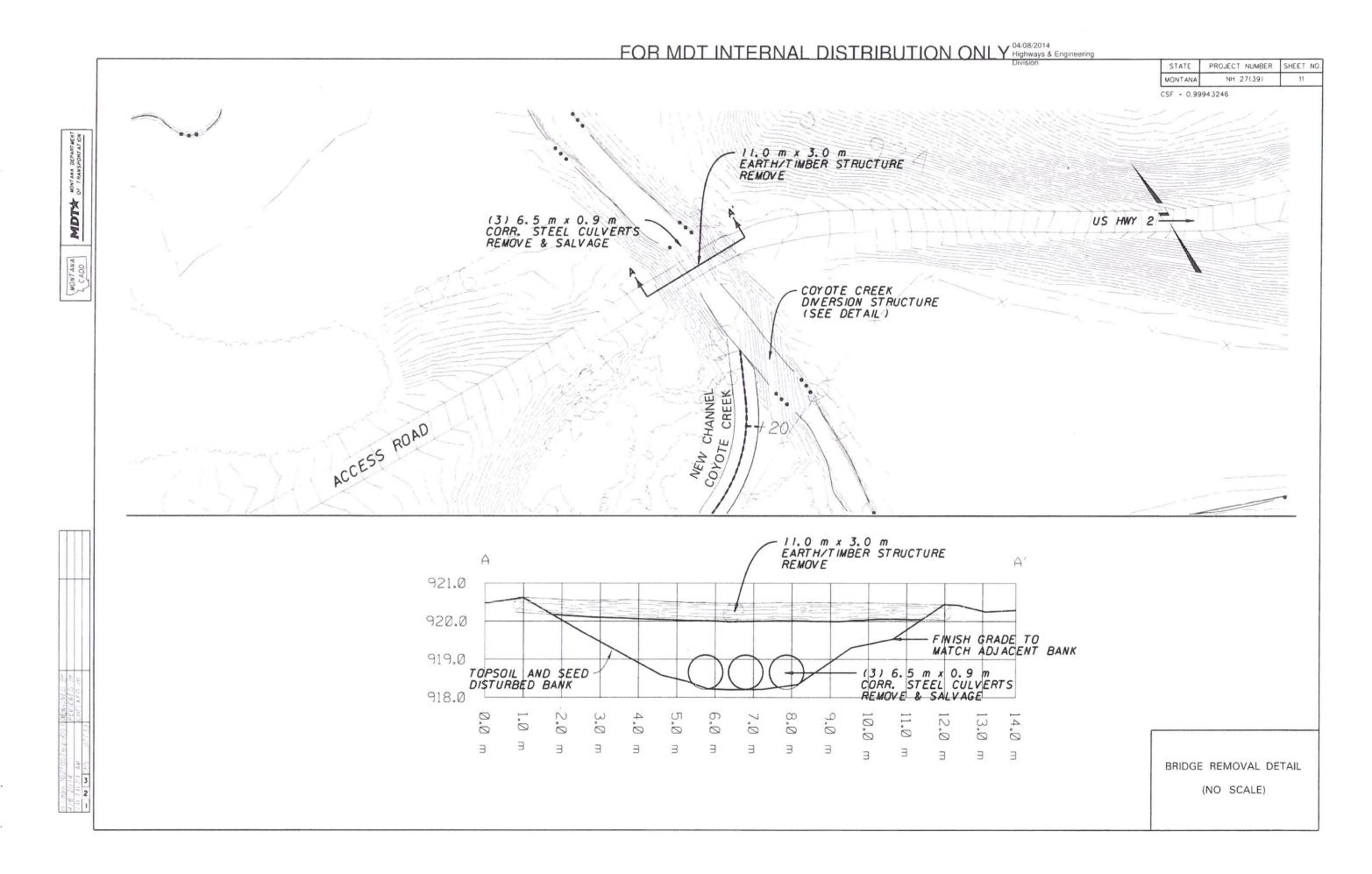
		SCHE	RIEBER CREEK	
	BANKLINE SL	SEGMENT 2A		
FLOODPLAIN	POOL	RUN	RIFFLE	STA.1+81.24 TO 3+52.82
~	3.6 - 4.2	2.6 - 3.1	3.3 - 3.9	WIDTH
~	0.34 - 0.40	0.28 - 0.34	0.23 - 0.26	DEPTH
-	1.5:1	1.5:1	1,5:1	INSLOPE

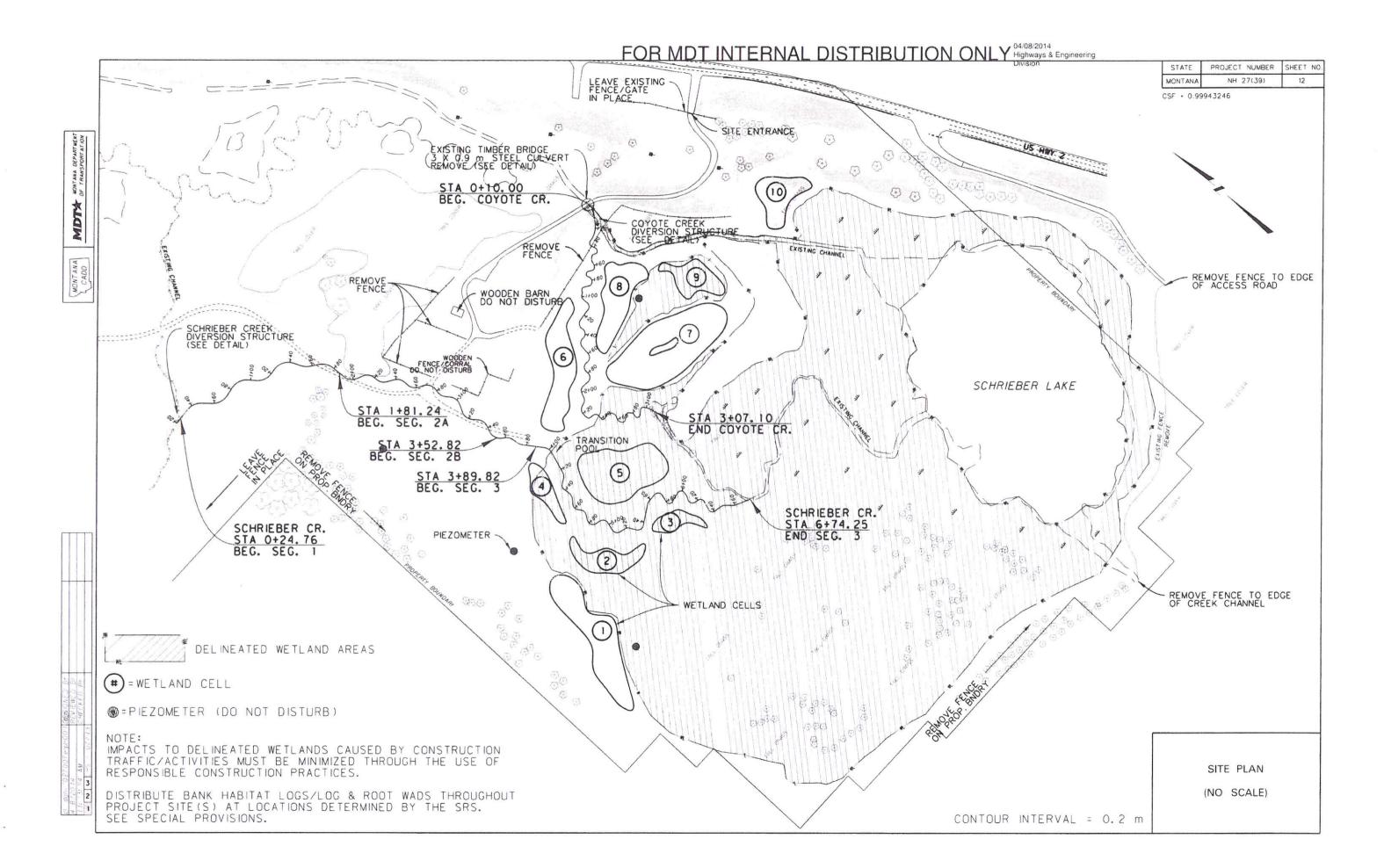

		SCHR	IEBER CREEK	
	BANKLINE SL	OPE = 0.50%		SEGMENT 2B
FLOODPLAIN	POOL.	RUN	RIFFLE	STA.3+52.82 TO 3+89.82
-	3.6 - 4.2	2.6 - 3.1	-	WIDTH
~	0.34 - 0.40	0.28 - 0.34	-	DEPTH
-	1,5:1	1,5:1	~	INSLOPE


		SCHR	IEBER CREEK	
	BANKLINE SL	OPE = 0.19%		SEGMENT 3
FLOODPLAIN	POOL	RUN	RIFFLE	STA.3+89.82 TO 6+74.25
-	*3.6	3.1	~	WIDTH
-	0.70	0.35	~	DEPTH
-	VERTICAL	VERTICAL	~	INSLOPE


		COY	OTE CREEK		
	BANKLINE SL	OPE = 0.10%			
FLOODPLAIN	POOL	RUN	RIFFLE	STA.0+10.00 TO 3+07.10	
-	2.5	2.0	-	WIDTH	
-	0.72	0.38	~	DEPTH	
-	VERTICAL	VERTICAL	-	INSLOPE	


TYPICAL CHANNEL SECTION DIMENSIONS (NOT TO SCALE)


FOR MDT INTERNAL DISTRIBUTION ONLY Highways & Engineering PROJECT NUMBER SHEET NO. MONTANA NH-27(39) CHANNEL DETAILS MONTANA OF TRANS FASCINE/SOIL LAYER BANK PROTECTION SEE DETAIL MOTA RIFFLE POOL -WIDTH (3) GRADE CONTROL STRUCTURE (2) FLOOD PLAIN FLOW __ FLOW , RIFFLE WIDTH (3) FLOOD PLAIN POINT RUN WIDTH (3) FASCINE/SOIL LAYER — BANK PROTECTION SEE DETAIL POOL NOTES (1) THIS DETAIL SHOWS TYPICAL BANK PROTECTION INSTALLATION.
SEE PLANS, SPECIALS, AND SUMMARIES FOR MORE INFORMATION. SCHEMATIC - CHANNEL BANK PROTECTION PLAN (2) GRADE CONTROL STRUCTURES IN SEGMENT I WILL BE LOCATED PER PLANS OR AS DIRECTED BY THE SRS. SEGMENTS 1 AND 2A (3) SEE TYPICAL CHANNEL SECTION DIMENSIONS DETAIL FOR CHANNEL DEPTHS & WIDTHS. (4) SEE SPECIAL PROVISIONS FOR MATERIAL AND CONSTRUCTION REQUIREMENTS FOR IMPORTED STREAMBED AND RIFFLE MATERIALS. (5) RIFFLE LENGTH VARIES BUT IS APPROXIMATELY 2 TIMES THE BANKFULL WIDTH. THE EXACT LENGTH TO BE DETERMINED BY THE SRS. TOP OF BANK (BANKFULL PROFILE) --- RIFFLE CREST RUN DEPTH (3) GRADE CONTROL STRUCTURE RIFFLE CREST SETS POOL ELEVATION 200 mm IMPORTED STREAMBED MATERIAL (4) 450 mm IMPORTED RIFFLE MATERIAL (4) RIFFLE (5) POOL RIFFLE (5) POOL SCHEMATIC - CHANNEL PROFILE - SEGMENTS 1 AND 2A BANK PROTECTION PLAN NOT TO SCALE (NOT TO SCALE)



FOR MDT INTERNAL DISTRIBUTION ONLY Highways & Engineering

STATION	DESCRIPTION	N OR Y COORDINATE	E OR X COORDINATE	REMARKS
2+50, 10	Р	445,070.825	160, 330, 424	
2+51, 62	FT FT	445,069,093	160, 331, 361	
2.52.50	PC	445, 068, 319	160, 331, 784	
2+55.12	ts1	445, 066, 015	160, 333, 034	
2+51.33	F1	445, 063, 676	60,331.851	
2+60.53	PC PC	445,060,821	160, 330, 406	
2+61.15	Pi	445.060.065	160, 330, 125	
2-61.73	p)	445, 059, 648	160, 330, 209	
2-63.48	PC	445,057.920	160, 330, 444	
2+67,69	P	445, 053, 752	160, 331, 010	
2+69.19	P.T.	445,055,646	160, 334, 767	
2+73.56	PC	445, 057, 614	60, 333, 671	
2+75.26	PI	445,058.380	160, 340, 190	
2+76.38	PT	445,057.003	160, 341, 190	
2+78.17	PÇ	445,055,553	160, 343, 243	
2+80,29	PI	445,053.838	160, 343, 488	
2+82.07	PT	445, 051, 244	160, 342, 768	
1+83.54	PC	445,050,458	160, 342, 268	
2+85.20	P	115,048.898	160, 341, 705	
2186.51	F 7	445,048,056	160, 343, 133	
2+86.61	PC PC	445,047.902	160, 343, 393	
2+88,22	PI	145, 047, 088	160, 314, 721	
2+89,47	pr	445,048.003	60,346,091	
2+93.64	PC I	445, 050, 388	160,349,520	
1+96,55	PI	445,052,049	160, 351, 908	
2+97.95	P f	445,049,438	60, 353, 191	
3+00.58	PC	445.047.072	160, 384, 353	
3+02,10	μř.	445, 045, 712	160, stac 022	
3+03.59	PT	445,044.615	160, 355, 257	
3-07 10	P9"	445, 040, 745	167 745 867	END COYOTE CREEK

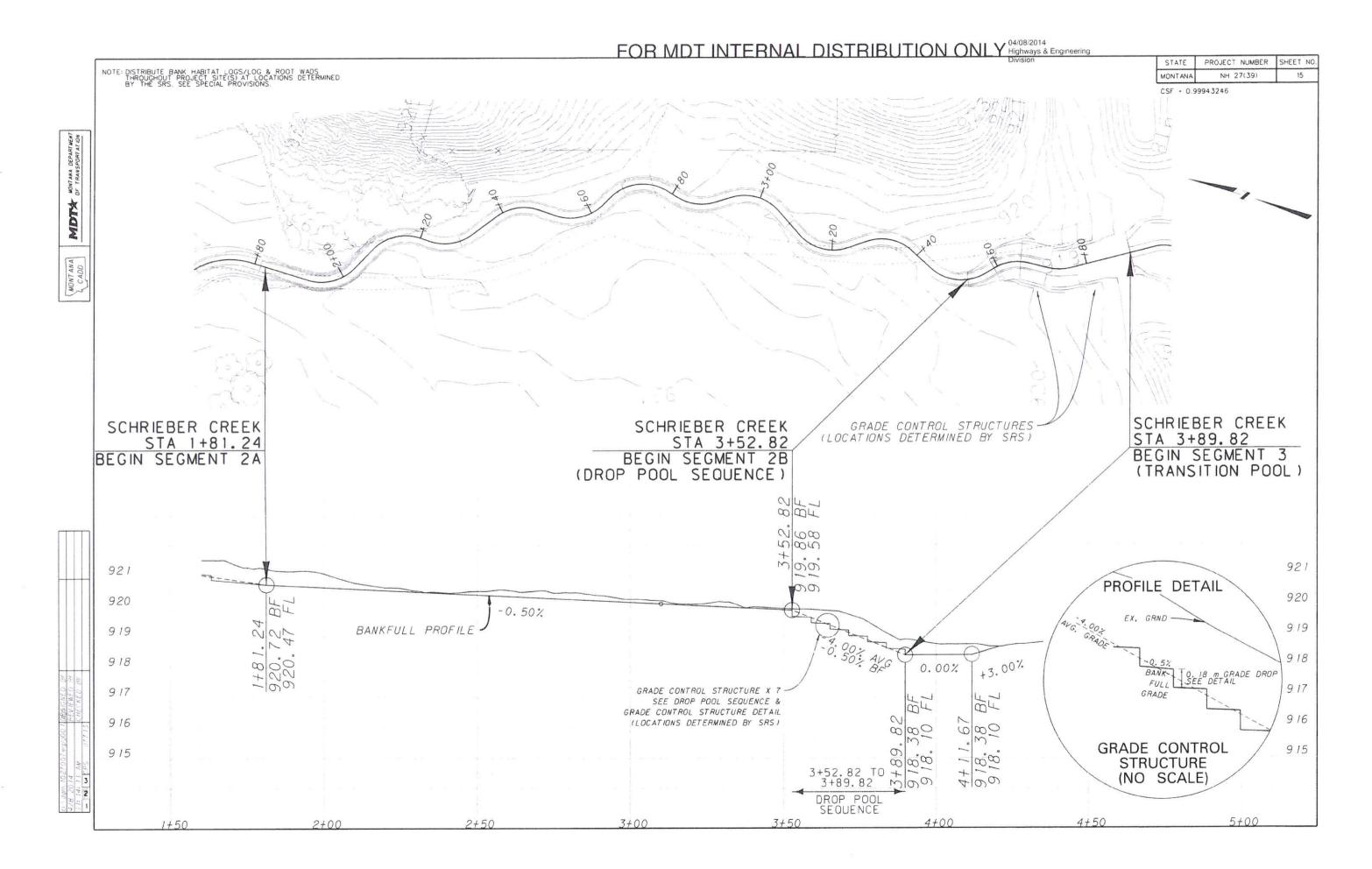
TE TABLE				
REMARKS	E OR X COORDINATE	N OR Y COORDINATE	DESCRIPTION	STATION
EESIN SCHRIEBER CR-SE	60, 996, 114	445, 360, 438	ROT	0+24.76
PERSON DELLA SERVICIONE SERVICIONE AND THE SERVICE SERVICES.	160, 106, 386	445, 160, 418	PC	0+35,03
	160, 113, 932	445,360,404	2	0+42.58
	60, 118, 418	445.354.337	2.7	0+49.01
	160, 123, 861	445, 345, 977	PC	0+53, 17
	60, 129, 03?	445, 339, 977	2	0+66, 87
	60, 137, 682	445, 340, 999	PT	0+73, 94
	160, 144, 650	445.341.847	PC PC	0+31.16
	160,163,935	449, 342, 928		0+90.54
	60, 159, 017	445.335.293	Pī	0+97.64
	160, 163, 095	445, 329, 289	200	1+04, 67
	60, 167, 906	445, 322, 697	fi fi	1+13,52
	60, 167, 906 60, 176, 544	415, 322, 664	21	1+20.56
*	60, 180, 202	445, 322, 904	P.*	1424.23
	160.191.860	445, 323, 669	23	1+35.91
	160, 190, 156	115, 312, 551	aT I	1+14.08
	6G. 197. 188	445,307.201	pr	1149.71
	60, 198, 534	445, 303, 038	31	+54.08
	160, 201, 909	445.300.252	41	1+88.22
	60, 207, 644	446, 295, 516	p^	1+65.66
	160, 213, 197	445, 290, 932	2.1	1+72.86
	160, 213, 092	445, 283, 734	- P	1+19,09
END LOSEFBER CRIVES	160, 213, 061	445, 281, 579	Ent.	1+81,24

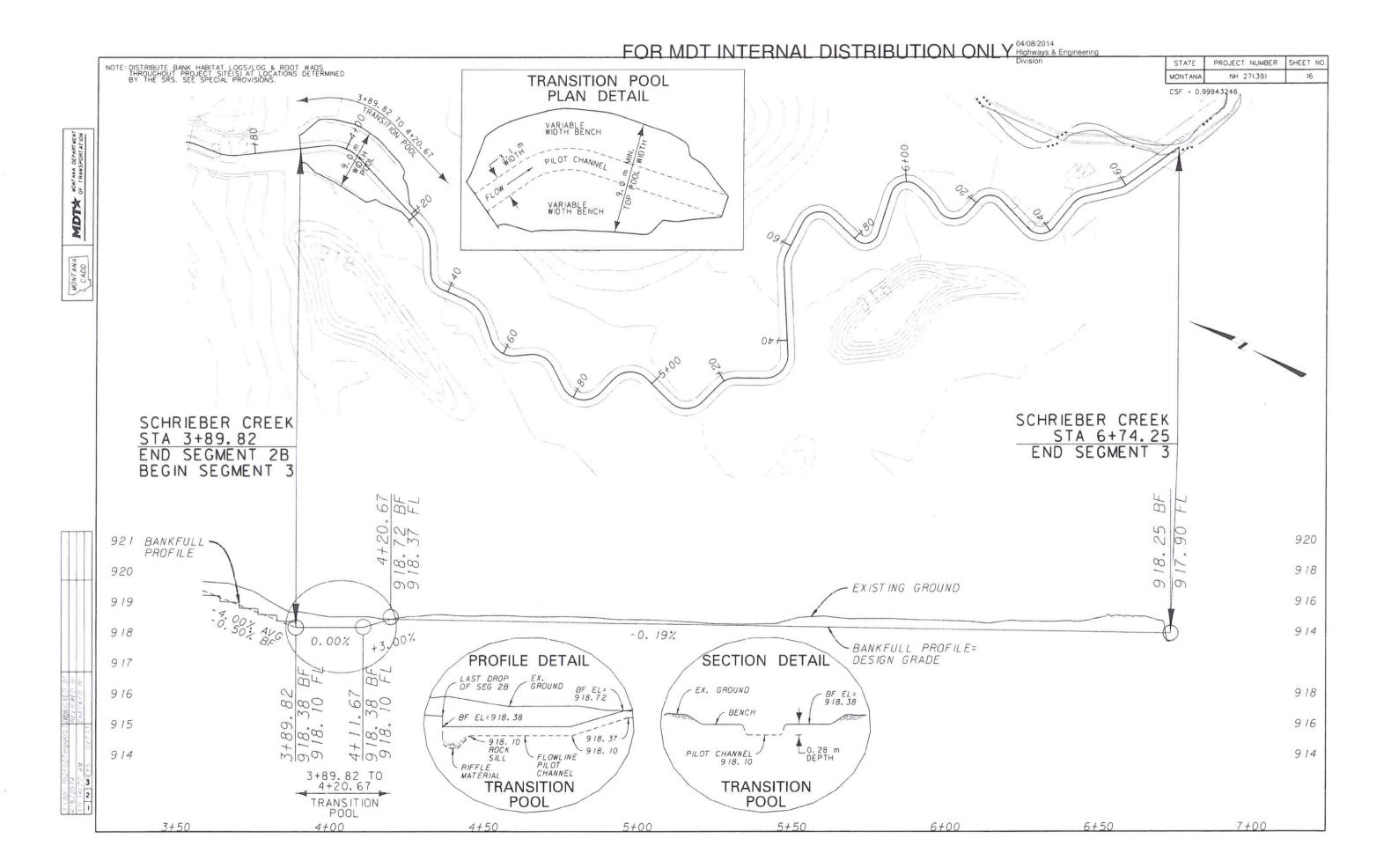
	STREA	AM ALIGNMENT	COORDINAT	E TABLE
STATION	DESCRIPTION	N OR Y COORDINATE	E OR X COORDINATE	REMARKS
1+81.24	PCT	445,281,579	160, 213, 06! BE	U. SCHREBER CR-SEU ZA
1+92.06	υį	445,270.761	160.212.903	
1+98.23	P	445, 264, 596	160,212,314	
2+03.11	PT	445, 261, 347	160,218.282	
2+08,71	P(445, 259, 158	160, 223, 251	
2-15.18	2	445, 356, 169	160, 328, 985	
2-10-10	PT	235 720 711	160, 228, 614	
2-21,94	20	445, 247, 969	160, 228, 513	
2+27.34	P	445, 242, 679	160,223,201	
2+31.84	14	445,239,361	160, 132, 636	
7+39,33	50	445, 235, 493	160, 237, 748	
2+43.68	D:	445.232.309	160,242,036	
2+49.15	PŢ	115, 226, 972	160,241,276	
2151.91	P.C	445, 223, 218	160, 241, 591	
2+58.31	ρ.	445, 216, 826	169, 241, 277	
2+59, 71 2-63, 29	PT	145, 213, 863	160, 016, 916	
2+65.14	9.6	445, 213, 007	160, 248, 582	
2+73.23	ρ.	445, 209, 258	160, 255, 753	
2+19,14	þs.	445, 201, 463	160, 253, 582	
2+61.33	PC	445, 198, 973	160, 252, 889	
2+65.87	P	445, 194, 597	160, 251, 671	
2+89,8€	9.1	445, 190, 800	160, 254, 165	
2+93.55	P(445, 187, 715	160, 256, 191	
2+99,97	PI	445, 182, 347	160, 259, 717	
3+04.9€	ρ†	445, 176, 908	160, 256, 302	
3-11.01	PC	445, 171, 790	180, 253, 089	

Division	STATE	PROJECT NUMBER	SHEET NO
NOTE: ALL STATIONS/ COORDINATES ARE METRIC	MONTANA	NH 27(39)	13
STATE PLANE ON CHANNEL CENTERLINE.	CSF • 0.99	943246	

3+'8.32 P1 145, 65, 911 160, 248, 690 3123, 64 P1 445, 59, 962 160, 252, 928 3127, 82 P1 445, 56, 515 160, 255, 350 3-33, 76 P1 445, 146, 390 160, 256, 184 3-44, 09 P0 445, 414, 407 60, 253, 749 3+01, 47 P1 445, 14, 73 160, 255, 596 END 563, 2A/BEG 560, 23, 756, 83 3+52, 82 P00 445, 42, 73 160, 253, 596 END 563, 2A/BEG 560, 23, 756, 83 3+56, 81 P1 445, 28, 26, 9160, 253, 596 END 563, 2A/BEG 560, 23, 756, 386 3+58, 50 F0 445, 488, 600 160, 257, 703 3+63, 38 P1 445, 25, 224 160, 260, 680 3+67, 05 P1 445, 14, 41 160, 260, 6848 3+71, 38 P2 445, 16, 823, 160, 261, 027	STATION	DESCRIPTION	N OR Y COORDINATE	E OR X COORDINATE	REMARKS
3123,64 P1 445,59,982 160,252,928 3127,82 P1 445,56.515 180,255.350 3133,76 P1 445,146,390 160,256.184 3144,09 P0 445,446,390 160,256.184 3144,09 P0 445,44,09 60,253,749 3151,47 P1 445,473 160,250,509 3152,82 P00 445,32,952 160,253,596 END 563,2A/8E6 SEG, 2 3156.81 P1 445,23,721 160,253,596 END 563,2A/8E6 SEG, 2 3156.81 P1 445,23,721 160,253,596 END 563,2A/8E6 SEG, 2 3156.81 P1 445,28,000 160,257,703 3163,38 P1 445,25,224 160,260,680 3167,05 P1 445,144 160,260,680 317,05 P1 445,144 160,260,680					
3-27.82 P1 445. 56.575 160.255.350 3-33.76 P1 445.56.350 160.255.350 3-33.76 PT 445.66.350 160.256.184 5-44.03 P0 445.41.407 60.253.749 3-51.82 P0C 445.31.407 60.253.749 3-52.82 P0C 445.32.952 160.253.596 END 283.2A/BEG SEG.2 3-56.81 PT 445.24.727 160.253.596 END 283.2A/BEG SEG.2 3-56.33 P1 445.24.727 160.255.886 3-63.38 P1 445.22.24 160.260.680 3-67.05 P1 445.11.44 160.260.6848 3-71.38 P7 445.11.44 160.260.6848	3+18.32	Pr	145, 65, 941	160, 248, 690	
3+35,78 P1 145,151,720 160,258,795 3+38,55 PT 445,166,390 160,256,184 3+34,09 90 445,44,43 60,253,749 3+31,47 P1 445,24,73 60,253,596 3+52,82 P0C 445,32,952 160,253,596 END 563,2A/866 SEU, 23,550 P1 445,28,727 160,255,886 3+58,30 F0 445,28,00 160,257,703 3+63,38 P1 445,22,224 160,260,680 3+67,05 P1 445,21,144 160,260,680 3+7,38 P1 445,21,144 160,260,848 3+7,38 P2 445,16,323 160,261,027	3123.64	PI	445, 59, 982	160, 252, 928	
3+38.55 PT 445,146,390 160,256,184 3+44.09 PC 445,41,407 60,253,294 3+51,47 P1 445,24.73 160,253,596 END 563,2A/BEG 560,23 3+56,82 POC 44B,32,952 160,253,596 END 563,2A/BEG 560,23 3+56,81 PT 445,281,727 160,555,886 3+55,50 FC 445,128,000 160,257,705 3+63,38 P1 445,25,224 160,260,680 3+67,05 P1 445,21,44 160,260,6848 3+71,38 P2 445, 16,523 160,261,027	3+27.82	PC	445. 56. 575	160, 255, 350	
3.44,09 P0 445, 41,407 60,253,749 3.51,47 P1 445,54,73 160,253,596 END 583, 2A/BEG 580, 2 3.52,82 P00 445,32,952 160,253,596 END 583,2A/BEG 580, 2 3.56,81 PT 445,24,727 160,555,886 3.56,81 PT 445,24,727 160,555,886 3.56,38 P1 445,28,000 160,257,03 3.66,05 P1 445,21,144 160,260,680 3.67,05 P1 445,21,144 160,260,848 3.67,05 P1 445,16,923 160,261,027	3+35.76	Pi	445, 151, 730	160,258,795	
3+51,47 P1 445, 24,73 160,250,509 3+52,82 P0C 445,32,352 160,253,536 END 563, 2A/866 SEU, 2 3+56,81 P1 445,28,727 160,055,886 3+58,50 F0 445,28,000 160,257,703 3+63,38 P1 445,22,224 160,260,680 3+67,05 P1 445,11,44 160,260,680 3+71,38 P1 445,16,323 160,261,027	3+38.55	PT	445, 146, 390	160, 256, 184	
3+52.82 PDC 448, 32.952 160,253.596 END 523, 2A/BEG SEC. 2 3+56.51 PT 445, 29.727 160,555.886 5+59.50 FC 4451,48,000 160,257.703 3+63.38 P1 445, 25.224 160,260.680 3+67.05 P1 445, 11.44 160,260.6848 3+71.38 PC 445, 16.523 160,261.027	3+44, 09	PG PG	445, 41,407	60, 253, 749	
3+52.82 PDC 448, 32.952 160,253.596 END 523, 2A/BEG SEC. 2 3+56.51 PT 445, 29.727 160,555.886 5+59.50 FC 4451,48,000 160,257.703 3+63.38 P1 445, 25.224 160,260.680 3+67.05 P1 445, 11.44 160,260.6848 3+71.38 PC 445, 16.523 160,261.027	3+51, 47	Pi	445, 14, 7/3	160, 250, 509	1
5 to 9, 50 FC 445, 128, 029 160, 257, 703 3 to 63, 38 P1 445, 25, 224 160, 260, 680 3 to 7, 05 P1 445, 21, 144 160, 260, 848 3 to 7, 38 P2 445, 16, 323 160, 261, 927	3+52,82	P05			END SEG. PAZBEG SEG. 26
3+63, 38 P1 445, 25, 224 160, 260, 680 3+67, 05 P1 445, 21, 144 160, 260, 848 3+71, 38 PC 445, 16, 323 160, 261, 027	3+56.81	PT	445, 29, 727	160, 255, 886	
3+67,05 P1 445, 21,144 160,260,848 3+7,38 P0 445, 16,923 160,261,027	3+09,30	FS	445.128.020	160, 257, 703	1
3+71.38 92 445, 16.823 160,261.02	3+63,38	PI	445.125.224	160, 260, 680	
3+71.38 P2 445, 16.823 160,261.023	3+67,05	0.1	445, 121, 144	160, 260, 848	
	3+71.38	90	445, 16,823		
	3+73,88	64	445, 14, 326	160, 261, 130	
3+76, 28 PT 445, 112, 130 160, 262, 396	3+89.82	25.4	445, 00, 384		END SCHREDER CE-SEC 28

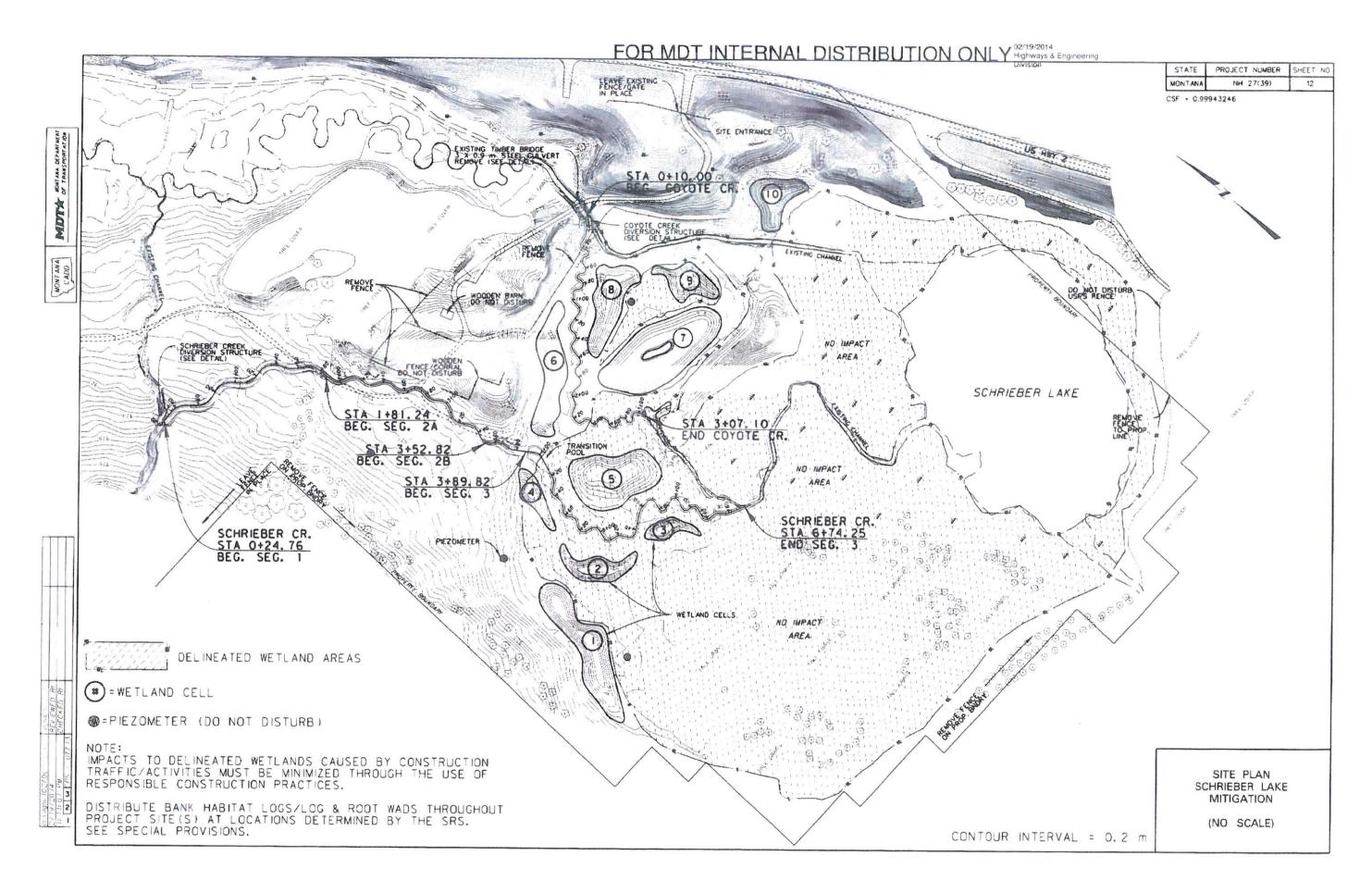
	STRE	AM ALIGNMEN	T COORDINA	TE TABLE
STATION	DESCRIPTION	N OR Y COORDINATE	E OR X COORDINATE	REMARKS
3-89.82	POT	445,100,495 445,095,174 445,091,880 445,088,449	160, 269, 261	BEGIN SCHREBER OR SEG
3+89.82 3-95.99	HC E	445.096.174	160, 269, 261 160, 272, 369 160, 273, 945 160, 272, 717	
3+99.64 4+02.90	F. D.T	445, 091, 880	160, 273, 945	
4+02,90	PCT FVL	445.088.449	160, 272, 717	
4+22.53 4+25.75 4+23.65	FIL.	445,070,352	160, 265, 111 160, 263, 392 160, 261, 095	
4+78 65	8.7	445,061.334 445,065.331	160 161 094	
4-14 09	Pξ	445 057 564	166, 256, 265	
4+36.62	φ.	445,063,564 445,062,459	160, 253, 923	
4+38.60	FT	445, 052, 459 445, 053, 924 445, 053, 920 445, 050, 920 445, 046, 514 445, 046, 552 446, 046, 871 446, 047, 872 447, 037, 306 444, 037, 570	160, 256, 225 160, 253, 923 160, 253, 948 160, 254, 002 160, 254, 038 160, 254, 442	
1-31 57	PC	445,054,460	160, 254, 002	
4+47.61 4+50.73 2-65.09 2+59.03 3+61.37	P F F F	445,050,920	160, 254, 038	
4+50,73	87.5	445,048,514	160, 254, 038 160, 248, 347 26, 248, 347 26, 248, 386 160, 247, 288 160, 248, 787 160, 250, 248 160, 248, 424 160, 248, 424 160, 248, 424 160, 248, 424	
4-55.04	F1	442, 042, 534	160.048.041	
1.07.47	P.T	112,012,07	12/14/31/32/1	
4+61.37 4+65.03	pr pr	235 745 441	150 249 287	
4100.4	To the state of	445,033,641	160, 250, 545	
1+70.58	P *	115.031.306	120,218, 121	**************************************
4+76,00	pr pr	445, 027, 095	160, 245, 276	
4-93.09	Pi Pi	445, 021, 510 115, 019, 238 445, 011, 903 445, 018, 205		
4.85.57 4-89.63 4-94.79	D.	145, 019, 238	160, 247, 528 150, 251, 362	
4+83.63	FI	445, 017, 901	150, 251, 362	
4-94.75		445,016,205 445,011,384 445,004,744 448,000,000	160, 256, 241	
4+97.64 5+04.75	27	145,004,764	160, 254, 384 165, 251, 321 160, 250, 000	
5+03, 84	ρi	445.000,000	66.250.354	
5+12 70	PT I		160, 254, 773	
5+17.82	PC	444, 996, 491	160, 254, 773 60, 253, 580 180, 261, 601	
5+13 57	p.	444, 995, 350	180, 261, 601	
5+21.88 5+27.95 5-33.29 5+36.13	PT pr	144, 993, 773 444, 983, 196 444, 983, 196 444, 983, 196 444, 985, 197 444, 994, 230 444, 994, 266 111, 994, 665 144, 994, 414 444, 984, 414 444, 984, 414	160, 264, 453 160, 264, 853 160, 166, 962 160, 271, 715 160, 371, 715	
5+27, 95	Pi	444, 368, 196	160,264,853 160,166,962 160,271,715 160,271,715	
5 - 33, 29 5 + 36, 13	PT	777, 702, 775	160, 200, 302	
5+36,13	POT	364 925 713	188 191 718	
5-54.89	o'C	444, 994, 230	160,088,408	A CONTRACTOR OF THE PROPERTY O
5.455 77	Pi	444, 995, 089	160, 290, 074	
5+58,50	PI	444,994.986	160, 291, 921	
5+65.77	PC	141, 991, 655	160,299,183	
5+65.77 5+71.17 5+73.24 5+80.38	91	444, 994, 414	160, 304, 576	
2+13.24	5	444, 383, 3/6	60.307.113	
5+80,38 5+85,21	201	144 079 073	160,100,166	
5+86.47	21	214 979 211	701 528	
1+91 67	97	343 979 893	120 31 707	
5+95.67 6+00.87		444, 980, 303	160, 317, 869	
P + Ox . 52	PT	444,975.29!	160, 271, 715 160, 271, 715 160, 288, 408 160, 290, 074 160, 291, 921 160, 299, 183 160, 304, 576 160, 302, 773 160, 302, 773 160, 302, 326 160, 298, 774 160, 303, 368 160, 312, 869 160, 312, 869 160, 316, 489	
6+04.50	FL	191, 991, 698 144, 984, 414 444, 985, 326 111, 985, 595 144, 978, 642 444, 978, 694 444, 978, 694 444, 978, 291 444, 977, 742 444, 977, 742 444, 977, 742 444, 977, 742 444, 978, 344 444, 978, 344	160,315,964	<u> </u>
6+06,20 6+07,87	21	444, 971, 742	160, 316, 613 160, 314, 546 160, 313, 542	
6+07.87	PT P/	444, 970, 344		
6+09.63	5	100 950 053	160, 313, 342	The second secon
6+15.03 6+17.10	PT PT	444,968,89! 444,964,463 444,962,806	160, 313, 542 160, 310, 472 160, 315, 611	
6+20.61	PC	444, 961, 135	160, 318, 959	
6+24.38	(9.1	444,960,562 444,957,086	160.322.552	
6+26,37	2.1	444,957.086	160, 318, 959 160, 322, 552 160, 321, 135	
6+35.01	PC PC	444,949,077	60 517 900 1	
6-38, 99	P) ET	444 945 387	160, 316, 396	
6+40.96 6+47.57	p^	144, 944, 377	160, 316, 396 160, 320, 246 160, 326, 641 160, 328, 323	
6+49, 31	P. P.	444, 942, 699 444, 943, 258	160, 328, 323	
6+50,92	- Fi	1-11, 940, 869	160, 329, 368	
6-58.29		444, 934, 975	160 333 200	- The state of the
6+59.30	P)	444, 934, 167	60, 334, 410	
6-60.09	12.1	444, 933, 658	160, 335, 284	NO SCHRIBER OR SEG 3
6+74, 26	PC T	444, 926, 641	160, 347, 355 (NO SCHRIFRER OR SEC. 3


	STATION	DESCRIPTION	N OR Y COORDINATE	E OR X COORDINATE
	0 * 10.00	P01	445, 186, 948	160, 456, 4
1	0 - 16.56	PΩ	445, 182, 331	160, 456, 4 160, 451, 9
	0+24, 11	Fi	445, 177, 016	180, 446, 4
15 €	0+30, 99	PT	445, 178, 568	160, 438, 9
DEPARTMENT PORTATION	0+32.31	P.º	445, 176, 490	160.437.8
RTA	0+33,79	£1	445, 176, 401	160,436.1
8 8	0+35.07	PI	445, 175, 170	160, -35, 3
SPORT,	0+35, 18	Pr.	445, 175, 073	160, 436. 2
A X X	0+36.60	F)	445, 173, 827	160, 434, 4
7 8 I	0+37.83	PT	445, 172, 538	160, -34.8
WONT ANA OF TRANS	0:40,66	Pf"	445, 169, 826	160, 435. 6
0	0+42.30	p.	445, 168, 258	160, 436. 1
4	0+43,66	PI	445, 167, 015	160,435.0
	0+44,52	P.:	445, 166, 366	160, 434. 5
8	0+46,41	F	445, 164, 925	160, 433.2
₩DT%	0+44,55	PI	445, 166, 080	160.431.7
	0+49.24	P.C.	445, 167, 109	160, 430, 4
	V+50.53	P:	445, 167, 932	160, 429, 3
	0+51.52	PT	445, 167, 244	160, 428. 2
	0+53, 45	P.C.	445, 166, 3, 4	160, 426. 6
MONT ANA	0+55,60	F	445, 165, 220	160, 424, 7
VO	0+57.51	P?	445, 163, 125	160,424.3
15 8	0+57,80	re I	445, 162, 840	160, 424, 2
18 11	0+53, 78	p)	445, 161, 883	160, -24, 0;
	0+59, 73	PT	445, 161, 088	160, 423, 4
	Q+60.93	TIC .	445, 160, 107	160, 425.7
1	0+64,17	P1	145, 157, 448	60, 425, 7 60, -20, 9
	0+65,87	PT	446 159 516	160,418.4
	0+68.79	E	445, 161, 373	160, 416, 11
	0+71.15	e l	145, 160, 866	160, 416, 11 160, 411, 3
	0+72,56	p.t.	445, 151, 156	150, 412.7
	0+73.09	P.1	445, 160, 774	160,412.3
	0+:4.06	p.	445, 160, 067	160, 411, 7
	0+74.81	PT	445, 159, 171	160,412.09
	0+75.45	0.0	445, 158, 575	160, 418, 3,
1	0+80,67	4.	445, 153, 762	160,414,5
	0+83.18	PI	445, 152, 483	160, 409, 28
	3+82,31	67,	445, 152, 452	160, 409, 10
	0+84,82		445, 152, 082	150, 407, 70
	0+85.10	Pγ	445,153,032	160, 406, 5.


0+58	78	P)	445, 161, 883	160, -24, 000	
0+59	. 78 . 73	PT	445 161 082	160 423 469	
1 2123	0.7	Tri-	445 150 177	16 0 10 2 2 2 3	
0+54 0+62 0+64 0+65 0+71 0+72 0+74 0+74 0+74 0+74 0+82	172	P	445, 161, 883 445, 161, 388 445, 160, 107 135, 157, 442 446, 153, 516 445, 161, 372	160, -24, 020 160, 473, 459 160, 422, 772 160, -20, 909	
3 * 6 4		P.	135, 157, 442	160, -20, 909	
0+65	. 87	PT	445, 153, 515	160, 418, 405	
0+68	. 73	PT EC	445, 159, 8, 6 445, 161, 372 145, 160, 866 445, 161, 156 445, 160, 774 445, 160, 774 445, 159, 171 445, 159, 171 445, 159, 171 445, 153, 764 446, 152, 462 445, 153, 764 445, 153, 764 445, 154, 767 445, 154, 767 445, 154, 778 445, 154, 778 445, 153, 787 445, 153, 787 445, 153, 787 445, 153, 787 445, 153, 543 145, 154, 157 145, 154, 154, 154 145, 154, 154 145, 154, 154 145, 154, 154 145, 154 145, 154 145, 154 145, 154 145, 154 145, 154	160, -20, 909 160, 418, 405 160, 416, 154 160, 412, 740 160, 412, 740 160, 412, 741 160, 412, 381 160, 412, 381 160, 412, 381 160, 412, 381 160, 412, 381 160, 402, 281 160, 402, 281	
0+71	. 1	P	145, 160, 866	160, 111, 316	
01, 77	5.6	0.7	14E 151 1ES	150 /15 7/0	
3.77	100		772, 10 - 120	1004	
- A * 6 A	. 02	P1.	945, 160, 7:4	160,414,321	
0+:4	. 06	P	445, 160, 067	160, 411, 717	
0+74	. 81	PT	445, 159, 171	160, 412, 090	
0 + 75	. 45	6.5	445, 158, 575	160, 412, 338	
0.80	5.7	p.7	245 153 260	160 414 541	
0.63	1.0	C 7	440 153 785	100 400 307	
		F/	440, 102, 480	974 9774 68	
2+51	. 23	100	945, 152, 452	160, 409, 162 160, 407, 703 160, 406, 535	
0+84 0+85 0+30 0+33	82		445, 152, 082	50, 407, 703	
0+85.	0	Pγ	445, 153, 032	160, 406, 535	
0+90	5.6	FC	445 155 857	160 403 057	
0+93	0.7	P	6/5 167 / 27	100 401 104	***************************************
7.51		P I	773, 23, 76		
17.74	201		447, 23,200	60, 377, 347	
0+96.	98	PC	445, 154, 176	160, 398, 544	
0+96.	77	F/	445, 153, 783	160, 409, 162 60, 407, 703 160, 406, 535 160, 403, 057 160, 403, 057 160, 309, 547 160, 398, 544 160, 398, 146	
0+97.	33	PT	445, 153, 543	160, 597, 649	
0+92	88	F f	445 152 969	160 396 100	
0+86 0+37 0+33 0+94 0+96 0+97 0+88 1+06 1+07 1+11 1+12 1+11 1+26 1+30	7 :	F (845 157 355	160, 406, 585 160, 403, 597 160, 309, 547 160, 398, 544 160, 398, 548 160, 597, 40 160, 50 160, 50 160	
1	47	21 20 21 21 201	445, 150, 315	0:4, 134, 201	
1+07.	9:	E (*)	145, 111, 676	160, 393, 905	
1411.	56	2.	445, 141, 069	60, 393, 677	
1+13	82	97	445 147 437	180 390 085	
1 4 1 1	12	OAY	132 130 607	100 390 400	
1.35	45	pr.			
	47		445, 147, 482	190,378,943	
1120	33	E	445, 140, 294	160, 373, 549	
*52.	301	P i	445, 155, 396	160, 375, 636	
1+34.	83	F/	446, 133, 769	160, 373, 666	
1+41	2.7	P)	345 197 781	160 373 780	
- 4 3	9.5	1507	1/15 1/2 2/31	100 101 551	
		FC			
1 - 4 - 4 - 4	U-	25	441,128,538	150, 157, 411	
1+30 +34 1+41 +43 1+43 1+43 1+43 1+65 1+66 1+68 1+68 1+78	1.5	£ 1	445, 141, 069 445, 140, 937 145, 140, 907 445, 140, 482 445, 140, 294 143, 133, 395 445, 133, 769 345, 127, 387 445, 128, 806 445, 128, 806	160,381,460	
1+51,	98	PT	445, 124, 991	160, 361, 403	
+60.	40	F1 P1	245, 116, 760	120 750 671	
1+56	27	0.1	105 111 505	107 850 523	
1.00	2.7	20 T	776 113 163	100, 200, 200	
1.190.	177		-43, 14, 154	169, 333, 993	
ithy.	00	5.2	445, 113, 135	160, 352, 911	
1+75.	.00	P1	445.114.745	160.347.036	
+77.	7.9	PΥ	445, 103, 811	160, 346, 623	
148/	47	63	435 106 143	160 346 348	PER TENENT CONTRACTOR
1 4 0 5	70	D (115 100 300	100,040,040	
		p ·		Q	
1.57	23		445,101.725	50, 140, 157	
1+94.	46	F.C.	445, 102, 672	160, 334, 902	
1+98.	13	P) P1	145, 103, 267	160, 331, 189	
2100	70	0.1	445, 130, 337	160, 329, 631	
+77, +87, +96, +94, +94, +94, 2+25, 2+25, 2+32, 2+33, 2+13, 2+13,	46	F.	445, 12, 462 445, 113, 105 445, 106, 143 445, 106, 143 445, 106, 143 445, 107, 810 445, 107, 87 445, 107, 87 445, 107, 87 445, 107, 87 445, 108, 82 449, 925, 82 449, 925, 82 449, 925, 82 445, 083, 807 445, 083, 807 445, 083, 807 445, 087, 428 445, 088, 602 445, 088, 602	160, 373, 549 160, 373, 606 160, 373, 606 160, 373, 606 160, 367, 411 160, 361, 403 160, 351, 403 160, 353, 566 160, 353, 566 160, 353, 566 160, 353, 566 160, 353, 566 160, 353, 566 160, 353, 603 160, 503, 603 160, 503, 603 160, 503, 603 160, 603, 603 16	
1	0:	PÏ	100 100 100		
4.0	52		445, J33, 106	160, 226, 222	
2+09	91	P1	445,093,207	160, 324, 601	
2+13. 2+11. 2+20.	48	PC	445, 092, 462	160, 324, 001 160, 320, 517 160, 316, 413 160, 315, 830 160, 315, 512 160, 315, 512 160, 315, 512	
2+1+.	€ /	P	445.091.584	160, 316, 413	
2+20	80	J2 T	445 087 428	160 315 830	***************************************
2+23	5.6	FC	145 395 661	160 315 595	***************************************
2,32	77	Pi	773.003.001	100,012,000	
57521	27		447,084,602	60,015,433	
2+24.	16	N. I	445,083,535	160, 315, 512	
2+25.	98	FC FC	445,082.278	160, 315, 605	
2+21.	07	PI	445,081,183	180.315.686	
2+27	86	PT	446 080 931	160 316 747	
2+30, 2+22, 2+24, 2+24, 2+27, 2+31, 2+31, 2+31, 2+37, 2+37, 2+37, 2+43, 2+43,	32	90	445, 080, 931 4-5, 080, 140 445, 079, 148	160, 316, 413 160, 315, 830 160, 315, 433 160, 315, 433 160, 315, 512 160, 315, 686 160, 316, 147 160, 324, 933 160, 324, 933 160, 324, 933 160, 324, 315 160, 324, 315 160, 324, 315 160, 324, 315	
	4.3	Pi	4-0, 050, 140	100. 200. 004	
L	4/		445, 374, 148	160, 124, 093	
2+37.	70	PT	445.075.1 4 445.072.842	160, 322, 895	
2+40.	07	FC	445,072.842	160, 321, 220	
7+43	02	P .	445,070,019	160, 321, 382	
2+43	97	ργ	445,070.281 145,070.650	318 NOS 031	
	Marian		779, 717, 491	10/4 26 4 4 2 2	
2+43, 2+18.	1 2	27			

STREAM ALIGNMENT COORDINATE TABLE


REMARKS


FOR MDT INTERNAL DISTRIBUTION ONLY Highways & Engineering PROJECT NUMBER SHEET NO. NOTE: DISTRIBUTE BANK HABITAT LOGS/LOG & ROOT WADS THROUGHOUT PROJECT SITE(S) AT LOCATIONS DETERMINED BY THE SRS. SEE SPECIAL PROVISIONS. MONTANA NH 27(39) CSF • 0.99943246 MONTANA DEPARTMENT OF TRANSPORTATION SCHRIEBER CREEK DNERSION STRUCTURE (SEE DETAIL) MDTA GRADE CONTROL STRUCTURES. (LOCATIONS DETERMINED BY SRS) SCHRIEBER CREEK SCHRIEBER CREEK STA 0+24.76 STA 1+81.24 BEGIN SEGMENT 1 END SEGMENT 1 BF 10 5 ω 923. 925 925 GRADE CONTROL STRUCTURE X 7 SEE DROP POOL SEQUENCE &
GRADE CONTROL STRUCTURE DETAIL PROFILE DETAIL 924 924 (LOCATIONS DETERMINED BY SRS) EX. GRND 923 923 0.90% (BANKFULL GRADE) 922 922 1. 52% (AVG. GRADE) 10.16 m GRADE DROP BANKFULL PROFILE 921 921 920 920 GRADE CONTROL 919 919 **STRUCTURE** (NO SCALE) 0+00 0+50 1+00 1+50

FOR MDT INTERNAL DISTRIBUTION ONLY Highways & Engineering PROJECT NUMBER SHEET NO. NOTE: DISTRIBUTE BANK HABITAT LOGS/LOG & ROOT WADS THROUGHOUT PROJECT SITE(S) AT LOCATIONS DETERMINED BY THE SRS. SEE SPECIAL PROVISIONS. NH 27(39) MIDTA WONTANA DEPARTMENT
OF TRANSPORTATION COYOTE CREEK DN ERSION STRUCTURE (SEE DETAIL) COYOTE CREEK COYOTE CREEK STA 3+07.10 END NEW CHANNEL STA 0+10.00 BEGIN NEW CHANNEL BF BF 50 921 38 921 00 18 18. 920 18 920 EXISTING GROUND 00 919 919 918 -0.10% 918 BANKFULL PROFILE = DESIGN GRADE 9 17 9 17 916 916 915 915 0+00 3+00 2+50 2+00 1+50 1+00 0+50

