MONTANA DEPARTMENT OF TRANSPORTATION WETLAND MITIGATION MONITORING REPORT: YEAR 2004

Circle Mitigation Site Circle, Montana

Prepared for:

MONTANA DEPARTMENT OF TRANSPORTATION 2701 Prospect Ave Helena, MT 59620-1001

Prepared by:

LAND & WATER CONSULTING ~ A DIVISION OF PBS&J
P.O. Box 239
Helena, MT 59624

June 2005

Project No: B43054.00 - 0406

MONTANA DEPARTMENT OF TRANSPORTATION

WETLAND MITIGATION MONITORING REPORT:

YEAR 2004

Circle Mitigation Site Circle, Montana

Prepared for:

MONTANA DEPARTMENT OF TRANSPORTATION 2701 Prospect Ave Helena, MT 59620-1001

Prepared by:

LAND & WATER CONSULTING A DIVISION OF PBS&J P.O. Box 239 Helena, MT 59624

June 2005

Project No: B43054.00 - 0406

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	METHODS	1
	2.1 Monitoring Dates and Activities	1
	2.2 Hydrology	1
	2.3 Vegetation	1
	2.4 Soils	3
	2.5 Wetland Delineation	3
	2.6 Mammals, Reptiles, and Amphibians	3
	2.7 Birds	3
	2.8 Macroinvertebrates	3
	2.9 Functional Assessment	4
	2.10 Photographs	4
	2.11 GPS Data	4
	2.12 Maintenance Needs	4
3.0	RESULTS	5
	3.1 Hydrology	5
	3.2 Vegetation	5
	3.3 Soils	7
	3.4 Wetland Delineation	8
	3.5 Wildlife	8
	3.6 Macroinvertebrates	8
	3.7 Functional Assessment	9
	3.8 Photographs	9
	3.9 Maintenance Needs/Recommendations	10
	3.10 Current Credit Summary	10
4.0	REFERENCES	11

TABLES

Table 1 2001-2004 Circle wetland mitigation vegetation species list.

Table 2 2001-2004 transect data summary.

Table 3 Wildlife species observed on the Circle Mitigation Site.

Table 4 Summary of 2001-2004 wetland function/value ratings and functional points

at the Circle Wetland Mitigation Project.

FIGURES

Figure 1 Project Site Location Map

Figure 2 Monitoring Activity Locations 2004

Figure 3 Mapped Site Features 2004

CHARTS

Chart 1 Length of vegetation communities along Transect 1.

Chart 2 Transect maps showing vegetation types from the start (0 feet) to the end of

Transect (40 feet in 2001 and 132 feet in 2002-2004).

APPENDICES

Appendix A Figures 2 & 3

Appendix B 2004 Wetland Mitigation Site Monitoring Form

2004 Bird Survey Forms

2004 Wetland Delineation Forms

2004 Full Functional Assessment Forms

Appendix C Representative Photographs

2004 Aerial Photograph

Appendix D Bird Survey Protocol

GPS Protocol

Appendix E 2004 Macroinvertebrate Sampling Protocol and Data

Cover Photo: Shallow open water with *Scirpus* and *Puccinella* around circumference.

1.0 INTRODUCTION

This annual report summarizes methods and results from the fourth year (2004) of monitoring for the Montana Department of Transportation's (MDT) Circle mitigation site. The Circle wetland, located in Watershed #12 of the Glendive District, was constructed to mitigate the impacts for 1.7 acres of wetlands associated with MDT improvements to Highway 200. The site is located in McCone County along the northwest side of Highway 200 between highway markers 276.2 and 276.5, Section 20, Township 19 North, Range 48 East (**Figure 1**). Elevations are approximately 2.430 feet above sea level.

The Circle wetland was constructed in 1999 in a former oxbow of the Redwater River (**Figure 2**, **Appendix A**). The pre-project wetland limits are shown on **Figure 3**, **Appendix A** and total approximately 2.98 acres. This project was developed in part to compensate for 1.7 acres of wetland impacts resulting from the Southwest-Brockway East project (Harris 1998).

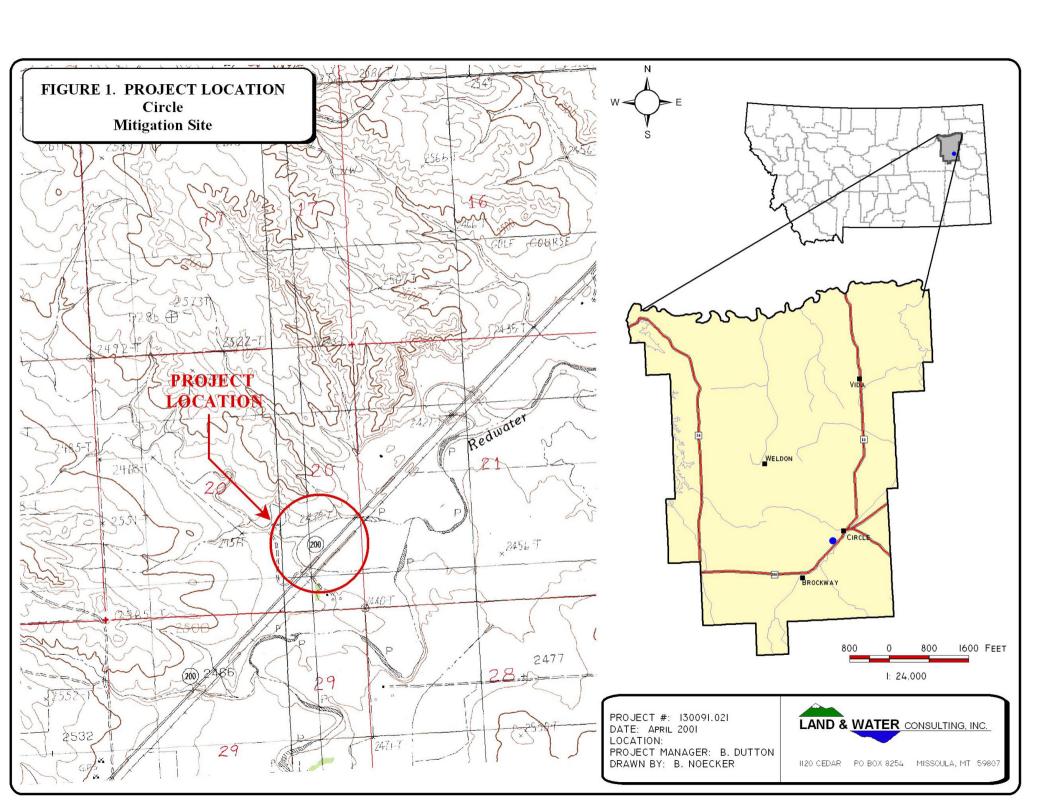
2.0 METHODS

2.1 Monitoring Dates and Activities

The Circle wetland was monitored on July 13, 2004. All information contained within the Wetland Mitigation Site Monitoring Form (**Appendix B**) was collected at this time. Activities and information conducted/collected included: wetland delineation; wetland/open water boundary mapping; vegetation community mapping; vegetation transects; soils data; hydrology data; bird and general wildlife use; photograph points; functional assessment; and maintenance assessment of any inflow/outflow structures.

2.2 Hydrology

Wetland hydrology indicators were recorded using procedures outlined in the US Army Corps (COE) 1987 Wetland Delineation Manual. Hydrology data were recorded on the Routine Wetland Delineation Data Form (**Appendix B**) at each wetland determination point. Precipitation data for the year 2004 were compared to the 1963-2004 average (WRCC 2005).


All additional hydrologic data were recorded on the mitigation site monitoring form (**Appendix B**). The boundary between emergent vegetation and open water was mapped on the aerial photograph (**Figure 3, Appendix A**). There are no groundwater monitoring wells at the site.

2.3 Vegetation

General vegetation types were delineated on an aerial photograph during the site visit (**Figure 3**, **Appendix A**). Coverage of the dominant species in each community type is

listed on the monitoring form (**Appendix B**). A comprehensive plant species list for the entire site was compiled and is updated as new species are encountered. Observations from past years are compared with new data to document vegetation changes over time. Woody species were not planted at this site; consequently, no monitoring of planted woody species survival was conducted.

The vegetation transect established in 2002 and monitored in previous years was again sampled in 2004. The location of the vegetation transect is shown on **Figure 2**, **Appendix A**. Percent cover for each species was recorded on the vegetation transect form (**Appendix B**). Transect ends were marked with metal fence posts and their locations recorded on the vegetation map. Photos of the transect were taken from both ends during the site visit.

2.4 Soils

Soils were evaluated during the site visit according to the procedure outlined in the COE 1987 Wetland Delineation Manual. Soil data were recorded for each wetland determination point on the COE Routine Wetland Delineation Data Form (**Appendix B**).

2.5 Wetland Delineation

A wetland delineation was conducted within the assessment area according to the 1987 COE Wetland Delineation Manual. Wetland and upland areas within the monitoring area were investigated for the presence of wetland hydrology, hydrophytic vegetation and hydric soils. The indicator status of vegetation was derived from the National List of Plant Species that Occur in Wetlands: North Plains Region 4 (Reed 1988). The information was recorded on the COE Routine Wetland Delineation Forms (**Appendix B**). The wetland/upland and open water boundaries were used to calculate the wetland area.

2.6 Mammals, Reptiles, and Amphibians

Mammal, reptile, and amphibian species observations were recorded on the wetland monitoring form during the site visit (**Appendix B**). Indirect use indicators were also recorded including tracks, scat and burrows. A comprehensive wildlife species list for the entire site was compiled and is updated as new species are encountered. Observations from past years are compared with new data to determine if wildlife use is changing over time.

2.7 Birds

Bird observations were recorded during the site visit according to the established bird survey protocol (**Appendix D**). A general, qualitative bird list has been compiled using these observations.

2.8 Macroinvertebrates

One macroinvertebrate sample was collected during the 2004 site visit following the sampling protocol (**Appendix E**). Samples were preserved as outlined in the sampling procedure and sent

to Rhithron Associates for analysis. The approximate sampling location is indicated on **Figure 2**, **Appendix A**. Results are included in **Appendix F**.

2.9 Functional Assessment

A functional assessment form was completed in 2004 for the Circle mitigation site using the 1999 MDT Montana Wetland Assessment Method. Field data necessary for this assessment were collected on a condensed data sheet. The remainder of the assessment was completed in the office (**Appendix B**).

2.10 Photographs

Photographs were taken showing the current land use surrounding the site, the wetland buffer, the monitored area, and the vegetation transect. A description and compass direction for each photograph are recorded on the wetland monitoring form.

During the 2001 monitoring season, each photo-point was marked on the ground with a wooden stake and the location recorded with a resource grade GPS (**Appendix C**). The approximate locations are shown on **Figure 2**, **Appendix A**. Photographs were taken from the same locations during the 2004 site visit. All photographs were taken using a digital camera. A 2004 aerial photo is included in **Appendix C**.

2.11 GPS Data

During the 2001 monitoring season, survey points were collected using a resource grade Trimble, Geoexplorer III hand-held GPS unit (**Appendix D**). Points collected included: the vegetation transect beginning and ending locations; photograph locations; and the jurisdictional wetland boundary. In addition, during the August 2001 monitoring season survey points were collected at four (4) landmarks recognizable on the air photo for purposes of line fitting to the topography. No new GPS data were collected during the 2004 field season; changes in the wetland boundary, vegetation communities, location of the vegetation transect, and the sample point locations were mapped on an aerial photograph.

2.12 Maintenance Needs

No bird boxes or inflow structures occur at this site. There is a small containment structure in the lowest elevation of the oxbow that was installed to maintain water in the wetland for longer periods (Sickerson, pers. comm.). This structure is less than 1.5 feet in height and overflows are conveyed through a box culvert under the roadway and into the Redwater River. The structure was examined (non-engineering) for any obvious maintenance needs.

3.0 RESULTS

3.1 Hydrology

The Circle mitigation site was constructed in 1999 to be a 4.3-acre wetland adjacent to an historic oxbow of the Redwater River. The hydrologic source is primarily groundwater and an unnamed intermittent stream that flows from the upper bench between the cliff bands and into the historic and created wetlands. A containment area was excavated at the lowest elevation of the oxbow to retain water in the wetland for longer periods. Excess water simply flows out through a box culvert under the highway and into the Redwater River. During the July 13, 2004 visit, approximately 6% of the assessment area (including historic wetland) was inundated (<12" depth).

Precipitation data for the Circle station indicate that the yearly average (1963-2004) is 13.32 inches (WRCC, 2005); through the month of July the precipitation average is 9.11 inches. During 2004, precipitation through the month of July was 5.35 inches or 59% of the average.

3.2 Vegetation

Vegetation species identified on the site are presented in **Table 1** and in the monitoring form (**Appendix B**). Five (5) dominant vegetation communities were mapped on the mitigation area (**Figure 3, Appendix A**). The communities include: Type 1, *Agropyron smithii*; Type 2, *Scirpus* species; Type 3, *Scirpus* species/*Distichlis stricta*; *Type 4, Juncus effuses/Carex praegracilis*; and Type 5, *Distichlis stricta/Hordeum jubatum*. Dominant species within each community are listed on the monitoring form (**Appendix B**). The 2001 and 2002 transect data are included for comparison, although the transect was moved to a new location in 2002; **Table 2, Chart 1, and Chart 2** illustrate data trends over time. Percent of the transect length dominated by hydrophytic vegetation has increased from 29% in 2002 to 92% in 2004.

Table 1: 2001-2004 Circle wetland mitigation vegetation species list.

Scientific Name ¹	Region 4 (North Plains) Wetland Indicator Status ²
Agropyron cristatum	-(UPL)
Agropyron smithii	FACU
Artemisia tridentate	-(UPL)
Brassica spp.	FACW+
Bromus japonicus	FACU
Carex praegracilis	FACW
Chenopodium spp.	(FAC-FACW)
Cirsium arvense	FACU
Distichlis stricta	-(FACW)
Elaeagnus angustifolia	FAC
Eleocharis palustris	OBL
Glyceria grandis.	OBL
Grindelia spp.	(likely FACU)
Hordeum jubatum	FACW
Juncus balticus	OBL
Juncus effuses	OBL
Kochia spp.	FAC
Poa fendleriana	FACU
Rumex crispus	FACW
Scirpus acutus	OBL
Scirpus pungens	OBL
Scirpus maritimus	-(OBL)
Stipa spp.	(UPL)
Trifolium spp.	(FACU)
Typha latifolia	OBL

Table 2: 2001-2004 transect data summary.

Monitoring Year	2001 ¹	2002	2003	2004
Transect Length (feet)	40	132	132	132
# Vegetation Community Transitions along Transect	1	5	3	3
# Vegetation Communities along Transect	2	3	2	3
# Hydrophytic Vegetation Communities along Transect	1	2	2	2
Total Vegetative Species	8	9	7	6
Total Hydrophytic Species	3	8	6	5
Total Upland Species	5	1	1	1
Estimated % Total Vegetative Cover	75	36	77	77
% Transect Length Comprised of Hydrophytic Vegetation Communities	50	29.5	67	92
% Transect Length Comprised of Upland Vegetation Communities	50	6	9	8
% Transect Length Comprised of Unvegetated Open Water	0	29.5	0	0
% Transect Length Comprised of Bare Substrate	0	34	24	0

¹ Transect moved in 2002.

¹ **Bolded** species indicate those documented within the analysis area for the first time in 2004.
² Species either not included or classified as "non-indicator" in the *National List of Plant Species that Occur in Wetlands: North* Plains (Region 4) (Reed 1988); status in parentheses are probable and based on biologist's experience.

Chart 1: Length of vegetation communities along Transect 1. The 2001 transect was moved and is not shown in the bar graph.

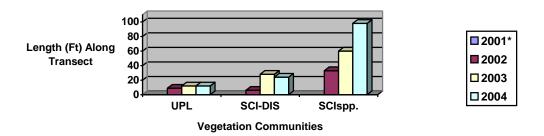
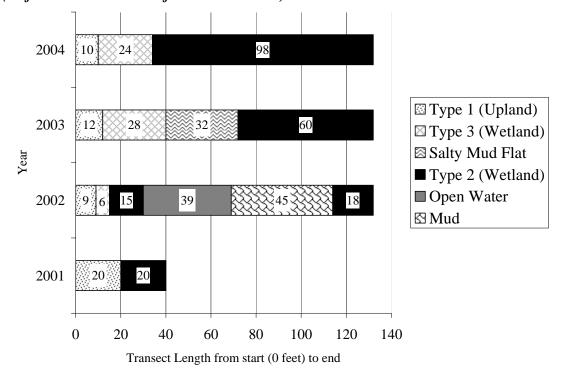



Chart 2: Transect maps showing vegetation types from the start (0 feet) to the end of Transect (40 feet in 2001 and 132 feet in 2002-2004).

3.3 Soils

The site was mapped as part of the McCone County Soil Survey. The dominant soil on the site is the Havrelon loam (Map Unit 86). This deep, well-drained soil is formed in alluvium on low terraces and floodplains of the Missouri and Redwater Rivers and their tributaries. Havrelon soils and the inclusions of Trembles, Cherry, and Ridgelaw soils are not listed on the Montana NRCS Hydric Soil list.

Soils were sampled at one wetland (SP-1) and one upland (SP-2) location. Soils at SP-1 at a depth of 10 inches were a very dark gray (2.5Y 3/1) sandy loam. The soil was saturated to the

surface. Soils at SP-2 were an olive brown (10YR 4/4) sandy loam at 10 inches; no saturation or hydric indicators were noted.

3.4 Wetland Delineation

The delineated wetland boundary is depicted on **Figure 3**, **Appendix A**. According to the MDT, approximately 2.98 acres of wetlands occurred at the site prior to mitigation construction. The gross wetland area has stabilized at 7.6 acres, and wetland vegetation cover has increased to 94%. The unvegetated shallow (<1 foot) open water area (0.49 acre) is included in the 7.6 gross wetland acreage. Observations in past years indicate that these shallow water areas typically evaporate by late summer and become vegetated over time. The COE data forms are included in Appendix B.

3.5 Wildlife

Wildlife species are listed in **Table 3.** Activities and densities associated with these observations area included on the monitoring form in **Appendix B**. Mammal observations were limited to deer tracks. No bird boxes have been installed at this site. A pair of Wilson's Phalaropes were exhibiting defensive behavior in the shallow water pond and this indicates that an active nest may be on site. A spring bird visit would likely result in increased avian observations.

Table 3. Wildlife species observed at the Circle Mitigation Site 1

Birds	
American coot (Fulica Americana)	Killdeer (Charadrius vociferous)
Barn Swallow (Hirundo rustica)	Mallard (Anas platyrhynchos)
Black Tern (Chlidonias niger)	Red-winged Black bird (Agelaius phoeniceus)
Eastern Kingbird (Tyrannus tyrannus)	Spotted sandpiper (Actitis macularia)
Greater Yellow Legs (Tringa melanoleuca)	Tree Swallow (Tachycineta bicolor)
Blue winged teal (<i>Anas discors</i>)	Western Meadowlark (Sturnella neglecta)
Cinnamon teal (Anas cyanoptera)	Willet (Catoptrophorus semipalmatus)
Common Nighthawk (Chordeiles minor)	Wilson's Phalarope (Phalaropus tricolor)
Common snipe (Gallinago gallinago)	

Deer tracks (Odocoileus spp.) Coyote tracks (Canis latrans)

3.6 Macroinvertebrates

Bioassessment scores indicated sub-optimal biotic conditions at this site (Bollman 2004, **Appendix E**), although it should be noted that the site is an alkaline system and was measured against freshwater parameters. The biotic index value for the assemblage, however, was below the median for studied sites, indicating that water quality was better than average here. The dominance by Cricotopus (Isocladius) sp., a midge, and Lestes sp., a damselfly, suggests that macrophytes were an available source of colonizable space. Water column and benthic animals also collected, so habitats were complex.

8

LAND & WATER

Bolded species were observed during the 2004 monitoring. All other species were observed during one or more of the previous monitoring years, but not during 2004.

3.7 Functional Assessment

Completed functional assessment forms are included in **Appendix B** and summarized below in **Table 3**. The 1998 baseline functional assessment resulted in a Category III (43%) rating. In 2001, the site was rated as a Category II (66%) wetland. The wetland has rated as a Category II wetland since 2002. An adjustment was made to the short and long term surface water storage value to acknowledge the water-holding capacity of the nearly fully vegetated wetland. The functional units have therefore increased 25% within the new wetland acreage since 2001. It is unlikely that the rating of this wetland will improve further unless structural diversity is increased by planting with shrubs and trees and maintaining the cattle-exclusion conditions. Providing water-access points for cattle would not damage the wetland as a whole and only disturb a few controlled areas.

3.8 Photographs

Representative photos taken from photo points and transect ends are included in **Appendix C.** The 2004 aerial photograph is also included in **Appendix C.**

Table 4: Summary of 2001-2004 wetland function/value ratings and functional points at the

Circle Wetland Mitigation Project.

Function and Value Parameters From the 1999 MDT Montana Wetland Assessment Method	2001	2002	2003	2004
Listed/Proposed T&E Species Habitat	Low (.3)	Low (.3)	Low (.3)	Low (.3)
MNHP Species Habitat	Moderate (.6)	High (.8)	High (.8)	High (.8)
General Wildlife Habitat	Exceptional (1)	Exceptional (1)	Exceptional (1)	Exceptional (1)
General Fish/Aquatic Habitat	NA	NA	NA	NA
Flood Attenuation	Moderate (.5)	Moderate (.5)	Moderate (.5)	Moderate (.5)
Short and Long Term Surface Water Storage	Moderate (.7)	High (.8)	High (.8)	High (.9)
Sediment, Nutrient, Toxicant Removal	High (1)	High (1)	High (1)	High (1)
Sediment/Shoreline Stabilization	High (1)	High (1)	High (1)	High (1)
Production Export/Food Chain Support	Moderate (.7)	Moderate (.7)	Moderate (.7)	Moderate (.7)
Groundwater Discharge/Recharge	High (1)	High (1)	High (1)	High (1)
Uniqueness	Moderate (.4)	Moderate (.4)	Moderate (.4)	Moderate (.4)
Recreation/Education Potential	Low (.1)	High (1)	High (1)	High (1)
Actual Points/ Possible Points	7.3/11	8.5/11	8.5/11	8.6/11
% of Possible Score Achieved	66%	77%	77%	78%
Overall Category	II	II	II	II
Total Acreage of Assessed Wetlands within Monitoring Area (ac) ¹	7.33	7.60	7.60	7.60
Total Functional Units (acreage x actual points) (fu)	53.73	64.6	64.6	65.4
Net Acreage Gain ("new" wetlands) (ac)	4.35	4.62	4.62	4.62
Net Functional Unit Gain (new acreage x actual points) (fu)	31.76	39.27	39.27	39.73

¹ 2.98 pre-existing wetlands.

3.9 Maintenance Needs/Recommendations

No maintenance is required at this site. The cattle exclusion fence was intact and it is recommended that the fence be maintained in perpetuity while providing watering access points.

3.10 Current Credit Summary

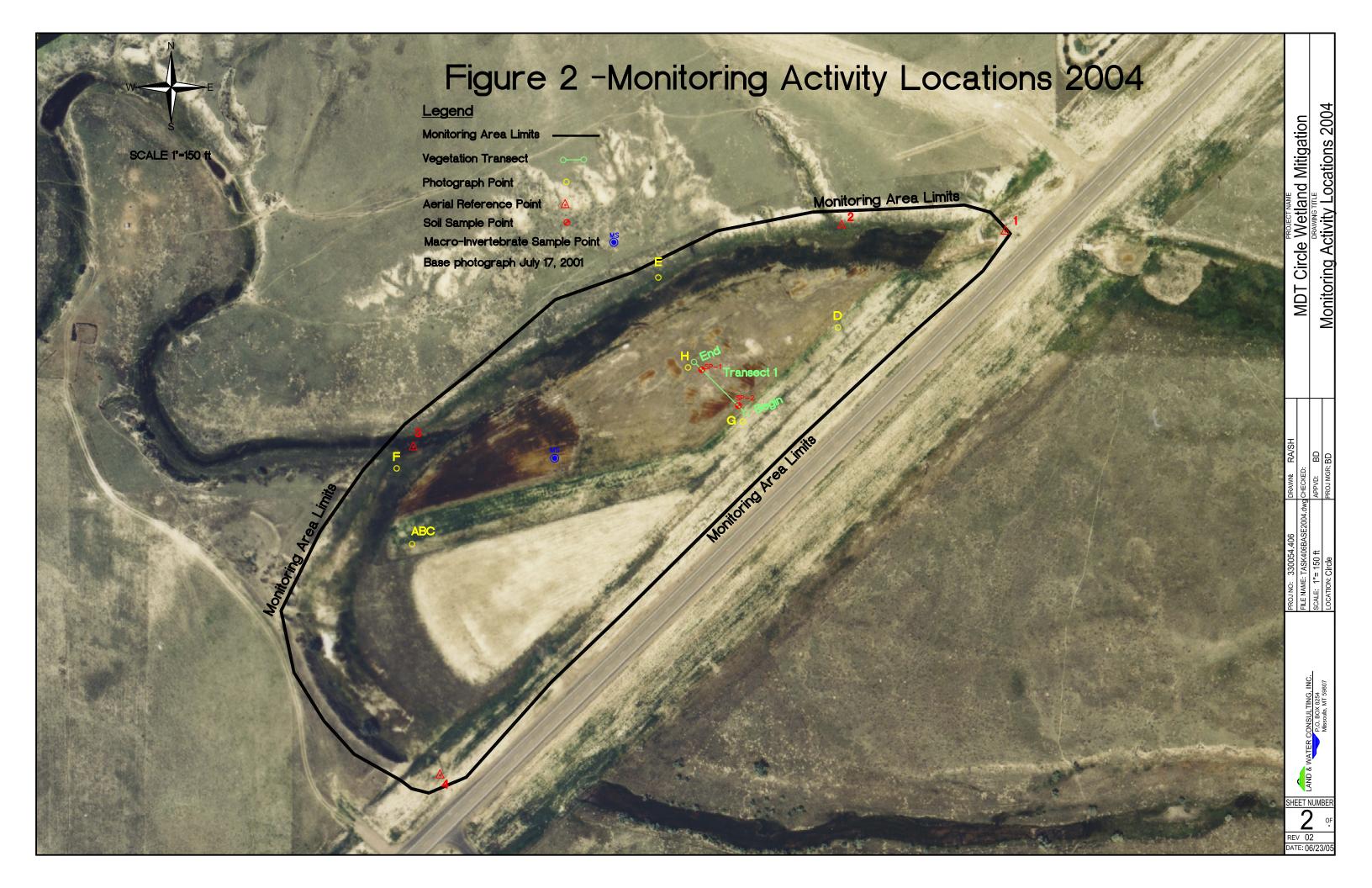
The Circle Wetland has met the 4.3-acre wetland creation goal. The site currently contains 7.11 acres of wetlands and 0.49 acre of open water, for a total of 7.6 acres. Subtracting the pre-existing wetlands (2.98) yields a net gain of 4.62 acres. The shallow open water area provides optimum habitat for shorebirds and is intermittent in nature. Wetlands impacted during the Southwest-Brockway East projects totaled 1.7 acres. Consequently, approximately 2.92 acres of "credit" may remain at this site for application to other projects as of 2004.

The created wetland is 94% vegetated and does include very small saline mud flat areas (see photos D and E) which likely inundate during precipitation events. A wetland mosaic of primarily emergent vegetation with small pools of open water and/or mud flats provides optimal habitat for wildlife.

The wetland has rated as a Category II wetland since 2002. The functional units have increased 25% within the new wetland acreage since 2001. A continuation of the livestock fence around the Circle wetland is highly recommended to protect the sensitive wetland environment. Several watering access points for livestock could be incorporated, which would limit vegetation trampling to a small number of areas.

4.0 REFERENCES

- Berglund, J. 1999. *MDT Montana Wetland Assessment Method*. May. Montana Department of Transportation, Helena, Montana.
- Bollman, W. 2005. MDT Wetland Mitigation Monitoring Project Aquatic Invertebrate Monitoring Summary 2001, 2002, 2003, and 2004. Rhithron Associates Inc., Missoula, Montana.
- Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*. U.S. Army Corps of Engineers, Washington, DC.
- Harris, R. 1998. Biological Memorandum and Wetland Finding, MDT's Circle Southwest-Brockway East Projects, Turnstone Biological, Darby, Montana.
- Reed, P.B. 1988. *National list of plant species that occur in wetlands: North Plains (Region 4)*. Biological Report 88(26.4), May 1988. U.S. Fish and Wildlife Service. Washington, D.C.
- Sickerson, L. 2002. District Biologist, Montana Department of Transportation, Helena, Montana. March telephone conversations.
- U.S. Army Corps of Engineers (COE). 1987. Corps of Engineers Wetlands Delineation Manual. U.S. Army Corps, Washington, DC.
- USDA Natural Resource Conservation Service (NRCS). 1984. Soil Survey of McCone County, Montana.
- Western Regional Climate Center (WRCC). 2005. Circle, Montana Station: http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?mtcirc



Appendix A

FIGURES 2 & 3

MDT Wetland Mitigation Monitoring Circle Mitigation Site Circle, Montana

Appendix B

2004 WETLAND MITIGATION SITE MONITORING FORM 2004 BIRD SURVEY FORMS 2004 WETLAND DELINEATION FORMS 2004 FULL FUNCTIONAL ASSESSMENT FORMS

MDT Wetland Mitigation Monitoring Circle Mitigation Site Circle, Montana

LWC / MDT WETLAND MITIGATION SITE MONITORING FORM

Locati	on: Circle	, MT	MD	T District:	Milep	ost:276	
Weath Initial	er Conditions: Evaluation Da	_clear_(clouds of te:8_/_29_/03	mosquitos!)_ Pe: <u>3</u> _ Visit #:	rson(s) conduct 4 Monitor	ing the assessming Year:20	ent: <u>LBacon</u>	<u> </u>
			НҮІ	DROLOGY			
Inunda Assess Depth If asse Other	ation: Present_sment area undate emergent versesment area is evidence of hy	_X Absent_ er inundation: egetation-open w not inundated and drology on site (Average do 6% vater boundary: et the soils satur	lepths:0.5fi 0.5ft rated w/in 12" c	Range of dep	XNo	ats;
Monit	toring wells: P						
	Well #	Depth	Well#	Depth	Well#	Depth	
X X elevati hand	Map emergent Observe extentions (drift linest-drawn-2004	t vegetation-rece t of (recent) surf , erosion, vegeta GPS survey §	face water durir ation staining et groundwater mo	ng each site visi c.)	t and look for e	-	surface water
COM	MENTS/PRO	BLEMS:					
	Diget Name: Circle						
		Circle, MT					

VEGETATION COMMUNITIES

Community No.:_1_	Community	Title (main species):Agrop	yon smithii_	 _

Dominant Species	% Cover	Dominant Species	% Cover
Agropyon smithii	50		
Cirsium arvense	<10		
Stipa spp.	<10		
Kochia spp.	30		

COMMENTS/PROBLEMS:						
Community No.: 2	Community Title (main species):	Scirpus species				

Dominant Species	% Cover	Dominant Species	% Cover
Scirpus pungens	80	Distichlis stricta	2
Scirpus maritimus	10	Juncus balticus (or effuses)	<1
Scirpus acutus	<1		
Puccinella nutaliana	<5		
Hordeum jubatum	<5		

COMMENTS/PROBLEMS:	Recollect Juncus 2005; investigate whether all is <i>J. effuses</i> or <i>balticus</i> .

Community No.:__3__ Community Title (main species):__ Scirpus species / Distichlis stricta

Dominant Species	% Cover	Dominant Species	% Cover
Scirpus pungens	25	Puccinellia nuttalliana	10
Scirpus maritimus	5	Eleocharis palustris	10
Poa fendlerana	5	Distichlis stricta	15
Chenopodium spp.	5	Carex praegracilis	20
Hordeum jubatum	5		

COMMENTS/PROBLEMS:Glyceria not present; actually Puccinellia sp				

Additional Activities Checklist:

__X__Record and map vegetative communities on air photo

VEGETATION COMMUNITIES (continued)

Dominant Species	% Cover	Dominant Species	% Cove
Carex praegracilis	45	Disticlis stricta	<5
Chenopdium spp.	<5	Poa fendlerana	<1
Hordeum jubatum	<5	Juncus effuses (see note)	40
Scirpus pungens	5	W \	
COMMENTS/PROBLEMS: rec	ollect Juncus 200	95; investigate whether all is <i>J. effuse</i>	s or balticus.
):Disticlis stricta/Hordeum jubatum_	
Dominant Species	% Cover	Dominant Species	% Cove
Disticlis stricta	50		
lordeum jubatum	40		
cirpus pungens/Scirpus spp.	<5		
Juncus effuses	<5		
Juncus effuses	<5 ais area not inves	tigated in 2004; beyond boundary fer	nce of wetland
COMMENTS/PROBLEMS:Thereation	<5 is area not inves itle (main species)):Puccinellia nuttalliana	
COMMENTS/PROBLEMS:Thereation Community No.:6 Community To Dominant Species	itle (main species) % Cover		
COMMENTS/PROBLEMS:Thereation Community No.:6 Community Towns Dominant Species Puccinellia nuttalliana	itle (main species) % Cover 60):Puccinellia nuttalliana	
COMMENTS/PROBLEMS:The reation	itle (main species) % Cover 60 15):Puccinellia nuttalliana	
COMMENTS/PROBLEMS:Thereation	itle (main species) % Cover 60):Puccinellia nuttalliana	

COMPREHENSIVE VEGETATION LIST

Species	Vegetation Community Number(s)	Species	Vegetation Community Number(s)
Agropyron cristatum	1		
Agropyron smithii	1		
Artemisia tridentate	1		
Brassica spp.	1		
Bromus japonicus	1		
Carex praegracilis	3, 4		
Chenopodium spp.	3		
Cirsium arvense	1		
Distichlis stricta	1, 2, 3, 4, 6		
Elaeagnus angustifolia	1		
Eleocharis palustris	3		
Grindelia spp.	1		
Hordeum jubatum	1, 2, 3		
Juncus effuses	2,4		
Kochia spp.	1		
Poa fendlerana	3,4		
Puccinellia nuttaliana	2, 3, 6		
Rumex crispus	1		
Scirpus acutus	2		
Scirpus maritimus	2		
Scirpus pungens	2,3, 4, 6		
Stipa spp.	1		
Trifolium spp.	1		
Typha latifolia	2		
1 Jp na tangeta			
Bold denotes seen for first time in 2004.	1		
			+

COMMENTS/PROBLEMS:		

PLANTED WOODY VEGETATION SURVIVAL

Species	Number Originally Planted	Number Observed	Mortality Causes
NONE			
_			
COMMENTS/PROBLEMS:			

WILDLIFE

BIRDS

(Attach Bird Survey Field Forms)

Were man made nesting structures installed? Yesnesting structures being utilized? YesNo	No_X Do the nest	_Type: ting structure	How many es need repa	? Are	e the No	
MAMMAL	S AND HER	PTILES				
Species	Number	Indirect indication of use				
~ P	Observed	Tracks	Scat	Burrows	Other	
Deer		X				
raccoon		X				
				1		
				-		
Additional Activities Checklist:XMacroinvertebrate sampling (if required) COMMENTS/PROBLEMS:						

PHOTOGRAPHS

points liste each site e	ed in the checklist beloestablish a permanent rearrey the location with	w. Record the direction of the direction	tographs of the following permanen he photograph using a compass. (The inch rebar or fencepost extending a mark the location on the air photo.)	he first time at	
X Aup X A	At least one photo show land use exists, take ad At least one photo show	te 4 cardinal directions surrounding upland use surrounding ditional photos wing buffer surrounding wetland of vegetation transect should be a cardinal direction transect should be a cardinal directions as a cardinal directions surrounding uplants.	wetland – if more than one and		
Location	Photograph Description	on	(2001)		
			Compass Readin	ıgs	
A	wetland view		N		
В	upland use (across W	•	320		
C	WL buffer (across W) wetland view	L)	W W		
D E	wetland view		S		
F	wetland view		E E		
G	Beginning transect (no	ov. 2002)	NW		
H	End transect (new 200	•	SE		
COMME	NTS/PROBLEMS: _				
GPS unit	set at 5 second recordir	•	YING t below. Collect at least 3 location properties fore site in designated GPS field not		
Checklist:					
no-2004 X Sta X Ph	urisdictional wetland be 44-6 landmarks recent and end points of ve oto reference points Groundwater monitoring	ognizable on the air photo egetation transect(s)			
COMMENTS/PROBLEMS: *Data in checklist was hand-drawn for the 2004 investigation.					

WETLAND DELINEATION

(Attach Corps of Engineers delineation forms)

At each site conduct the items on the checklist below:
X Delineate wetlands according to the 1987 Army Corps manual.
X Delineate wetland-upland boundary on the air photo
X* Survey wetland-upland boundary with a resource grade GPS survey
COMMENTS/PROBLEMS: _ *boundary hand-drawn 2004
FUNCTIONAL ASSESSMENT (Complete and attach full MDT Montana Wetland Assessment Method field forms; also attach abbreviated field forms, if used)
COMMENTS/PROBLEMS:
MAINTENANCE Were man-made nesting structures installed at this site? YES NOX If yes, do they need to be repaired? YES NO If yes, describe problems below and indicate if any actions were taken to remedy the problems.
Were man-made structures build or installed to impound water or control water flow into or out of the wetland? YES_X_ NO
If yes, are the structures working properly and in good working order? YES_X_ NO If no, describe the problems below.
COMMENTS/PROBLEMS: Outflow area constructed to slow passage of water out of the wetland and to allow ponding; outlet stream not impeded and culvert clear.

MDT WETLA	ND MONITO	ORING – VEGETATION TRANSECT	
Site: Circle Date:	7/13/04	Examiner: LB Transect # 1	
Approx. transect length: 132'	Compass Dir	rection from Start (Upland): 315 deg.	
Vegetation type A: CT 1		Vegetation type B: CT 3	
Length of transect in this type: 10'	feet	Length of transect in this type: 24'	feet
Species:	Cover:	Species:	Cover:
HORJUB	45	SCIPUN	99
DISSTR	35	SCIMAR	1
AGRSMI	15		
PUCNUT	5		
(soils did not qualify as wetland)			
Total Vegetative Cover:	100%	Total Vegetative Cover:	100%
Vegetation type C: CT2		Vegetation type D:	
Length of transect in this type: 98'	feet	Length of transect in this type:	feet
Species:	Cover:	Species:	Cover:
Saturated mud flat w/ salt deposits	20		
SCIMAR/SCIPUN	65		
DISSTR	15		
Total Vegetative Cover:	80%	Total Vegetative Cover:	

MDT WETLAND MONITORING – VEGETATION TRANSECT (back of form) **Cover Estimate Indicator Class:** Source: 3 = 11-20%+ = Obligate + = <1%P = Planted4 = 21-50%- = Facultative/Wet 1 = 1-5%V = Volunteer0 = Facultative2 = 6-10%5 = >50%100% % developing wetland vegetation – excluding dam/berm structures. Percent of perimeter Establish transects perpendicular to the shoreline (or saturated perimeter). The transect should begin in the upland area. Permanently mark this location with a standard metal fencepost. Extend the imaginary transect line towards the center of the wetland, ending at the 3 food depth (in open water), or at a point where water depths or saturation are maximized. Mark this location with another metal fencepost. Estimate cover within a 10 ft wide "belt" along the transect length. At a minimum, establish a transect at the windward and leeward sides of the wetland. Remember that the purpose of this sampling is to monitor, not inventory, representative portions of the wetland site. Notes: Vegetation coverage is increasing.

3/01 re

BIRD SURVEY - FIELD DATA SHEET

SITE: Circle, MT

Page__1_of__1_ Date: 7/13/04 Survey Time: 2 PM

Bird Species	#	Behavior	Habitat	Bird Species	#	Behavior	Habitat
Wilson's Phalarope	2	defensive	MA/OW				
Killdeer	2	defensive	MA				
				-			

Notes:

Behavior: BP - one of a breeding pair; BD - breeding display; F - foraging; FO - flyover; L - loafing; N - nesting

 $\label{eq:habitat: AB-aquatic bed; FO-forested; I-island; MA-marsh; MF-mud flat; OW-open water; SS-scrub/shrub; UP-upland buffer; WM-wet meadow, US-unconsolidated shoreline$

DATA FORM ROUTINE WETLAND DETERMINATION

(1987 COE Wetlands Delineation Manual)

Project/Site: Circle Wetland	Date: <u>7-13-04</u>			
Applicant/Owner: MDT	County: McCone MT			
Investigator: Lynn Bacon, Land & Water Consulting	Investigator: Lynn Bacon, Land & Water Consulting			
Do Normal Circumstances exist on the site: x		Community ID: Emergent		
Is the site significantly disturbed (Atypical Situation)?	Yes x No	Transect ID:		
Is the area a potential Problem Area?:	Yes x No	Plot ID: SP-1		
(If needed, explain on reverse.)				
VEGE	TATION			
Dominant Plant Species Stratum Indicator		Plant Species Stratum Indicator		
1 Scirpus pungens H OBL	9	Tan Species Statum maisater		
2 .	10			
2	11			
3	12			
5	13			
6	14			
	15			
7				
8	16			
Percent of Dominant Species that are OBL, FACW, or FAC Remarks: SP on the wetland end of the transect. Vegetation				
	ROLOGY			
x Recorded Data (Describe in Remarks):	Wetland Hydrolo			
Stream, Lake, or Tide Gauge	Primary I			
x Aerial Photographs		Inundated		
Other		Saturated in Upper 12 Inches		
No Recorded Data Available		Water Marks		
		Drift Lines		
Field Observations:		Sediment Deposits		
		Drainage Patterns in Wetlands		
Depth of Surface Water: (in.)		ry Indicators (2 or more required):		
Depth to Free Water in Pit: (in.)		Oxidized Root Channels in Upper 12 Inches Water-Stained Leaves		
		vvalei-Slaineu Leaves		
Don'th to Cotympted Coils		Local Soil Survey Data		
Depth to Saturated Soil: surface (in.)	!			
	!	Local Soil Survey Data FAC-Neutral Test		
Depth to Saturated Soil: surface (in.) Remarks:	!	Local Soil Survey Data FAC-Neutral Test		
	!	Local Soil Survey Data FAC-Neutral Test		
Remarks:	!	Local Soil Survey Data FAC-Neutral Test		
Remarks:	!	Local Soil Survey Data FAC-Neutral Test		
Remarks:	!	Local Soil Survey Data FAC-Neutral Test		
Remarks:	!	Local Soil Survey Data FAC-Neutral Test		

SOILS														
Map Unit Name 86 Havrelon loam Drainage Class: well														
(Series a	nd Phase):				Field Observations									
Taxonom	y (Subgrou	p): NA			Confirm Mapped Type? Yes No									
	escription:	1	1		1									
Depth		Matrix Color	Mottle Col		Mottle	Texture, Concretions,								
inches	Horizon	(Munsell Moist)	(Munsell M	1oist)	Abundance/Contrast	Structure, etc.								
10"	A	2.5Y 3/1				sandy loam								
11 12 0	. T. I P													
Hyaric So	oil Indicator			_	`anarationa									
		istosol			Concretions	urface Layer in Sandy Sails								
		istic Epipedon			organic Streaking in Sand	urface Layer in Sandy Soils								
		ulfidic Odor												
		quic Moisture Regime educing Conditions			isted on Local Hydric Soil isted on National Hydric S									
		leyed or Low-Chroma	Coloro		Other (Explain in Remarks)									
	xG	leyed of Low-Chroma	Colors		nner (Explain in Remarks))								
Chroma i	s slightly hi	ah even w/ mattled sa	ils to technica	ally qualify a	s hydric soil however the	re is organic streaking, and								
		quic moisture regime		any quanty o	o ny ano don, nowovor and	no lo organio otroaking, and								
		, <u> </u>												
			WETLAN	D DETERM	INATION									
	tic Vegetat/	ion X Yes	s No											
Present?														
	Hydrology I													
Hydric So	oils Present	:? X Yes	s No	Is this Sa	X Yes No									
				Wetland?										
Damada														
Remarks	•													
Wetland	vegetation	continues to expand w	ithin the WI I	ooundary ai	nd the SE boundary has e	expanded approx 10 feet								
VVOtidila	vogotation	oonandoo to oxpand w		ocurradi y di	ia the GE boardary had o	Apariada approx. 10 100.								

Approved by HQUSACE 2/92

DATA FORM ROUTINE WETLAND DETERMINATION

(1987 COE Wetlands Delineation Manual)

Project/Site: Circle Wetland	Date: <u>7-13-04</u>								
Applicant/Owner: MDT	County: McCone								
Investigator: Lynn Bacon, Land & Water Consulting	State: MT								
Do Normal Circumstances exist on the site: x	Yes No Community ID: UPL								
Is the site significantly disturbed (Atypical Situation)?	Yes x No Transect ID:								
Is the area a potential Problem Area?:	Yes x No Plot ID: SP-2								
(If needed, explain on reverse.)									
VEGE	TATION								
Dominant Plant Species Stratum Indicator	Dominant Plant Species Stratum Indicator								
1 Poa fendlerana H FACU-	9								
2 Grindelia sp. H UPL	10								
3 Agropyron smithii H FACU	11								
4 Hordeum jubatum H FACW	12								
5	13								
6	14								
7	15								
8	16								
Percent of Dominant Species that are OBL, FACW, or FAC (excluding FAC-). $1/4 = 25\%$								
•	<u> </u>								
SP not within the wetland boundary. SCIPUN continues to g	ow into what was the upland edge: saturation zone may be								
expanding.	,								
	DLOGY								
x Recorded Data (Describe in Remarks):	Wetland Hydrology Indicators:								
Stream, Lake, or Tide Gauge	Primary Indicators:								
x Aerial Photographs	Inundated								
Other	Saturated in Upper 12 Inches								
No Recorded Data Available	Water Marks								
	Drift Lines								
Field Observations:	Sediment Deposits								
	Drainage Patterns in Wetlands								
Depth of Surface Water: NA (in.)	Secondary Indicators (2 or more required):								
	Oxidized Root Channels in Upper 12 Inches								
Depth to Free Water in Pit: NA (in.)	Water-Stained Leaves Local Soil Survey Data								
Depth to Saturated Soil: NA (in.)	FAC-Neutral Test								
	Other (Explain in Remarks)								
Pomorko:									
Remarks:									
Soil profile dry this year									
Soil profile dry this year.									

SO	П	C
SU	П	LJ

Map Unit			avrelo	n loar	n Drainage Class: well Field Observations
(Series and Phase): Taxonomy (Subgroup): NA					Confirm Mapped Type? Yes _ X No
		.P). <u>1111</u>			
	escription:	1			
Depth inches	Horizon	Matrix Color (Munsell Moist)		le Colonsell M	, , ,
10"	A	2.5Y 4/4			sandy loam
Hudria Sa	oil Indicator	0.			
Hydric St		s. istosol			Concretions
		istic Epipedon			High Organic Content in surface Layer in Sandy Soils
		ulfidic Odor quic Moisture Regime			Organic Streaking in Sandy Soils Listed on Local Hydric Soils List
		educing Conditions			Listed on National Hydric Soils List
		leyed or Low-Chroma C	Colors		Other (Explain in Remarks)
No hydrid	indicators.				
			WE.	TLAN	D DETERMINATION
Lludrophy	rtic \/ogotot	tion Voc	V	No	
Present?	tic Vegetat	tion Yes	X	No	
	Hydrology I		X	No	
Hydric So	oils Present	? Yes	X	No	Is this Sampling Point Within a Yes x No Wetland?
			-	<u>-</u>	
Remarks	:				
Wetland	has expand	ded on this edge about	10 feet	t, but r	not as high as post where pit was excavated.
				,	3
					Approved by HQUSACE 2/92

MDT MONTANA WETLAND ASSESSMENT FORM (revised May 25, 1999)

1. Project Name: Circle		2. 1	Project #:	<u>43054406</u>	Control #:							
3. Evaluation Date: <u>7/13/2004</u>	4. Eva	luator(s): <u>LB/LWC</u>	<u>.</u>	5. W	/etland / Site #(s):							
6. Wetland Location(s) i. T: 19	<u>9 N</u> R: <u>48 E</u>	S: <u>20</u>		T: <u>N</u> R	R: _ <u>E</u> S:							
ii. Approx. Stationing / Milep	osts:											
iii. Watershed: 10060002		GPS Reference N	o. (if appl	lies):								
Other Location Information	n:											
7. A. Evaluating Agency <u>LWC</u>		8. Wetlar	nd Size (to	otal acres): 760	(visually estimated) measured, e.g. GPS)							
B. Purpose of Evaluation: Wetlands potentially a Mitigation wetlands; p Other	ore-construction	roject 9. Assess	sment Are	ea (total acres):	(visually 7.6 (measured, o							
10. CLASSIFICATION OF WE	TLAND AND AQ	UATIC HABITAT	S IN AA		_		ı	** 0=				
HGM CLASS ¹	SYSTEM ²	SUBSYSTEM ²		CLASS ²	WATER REGIN	IE ²	MODIFIER ²	% OF AA				
Depression	Palustrine	None	Em	nergent Wetland	Intermittently Exp	osed	Excavated	90				
Riverine	Riverine	Lower Perennial	Unco	nsolidated Bottom	Intermittently Floo	oded		10				
1 = Smith et al. 1995. 2 = Cowardi	n et al. 1979.											
Common Common 12. GENERAL CONDITION O i. Regarding Disturbance:		v to select appropriat			diama (ridia 500 F. A)	T- AA						
	Land manag	ged in predominantly na			djacent (within 500 Feet) but moderately grazed		ltivated or heavily grazed	or logged;				
		grazed, hayed, logged, onverted; does not conta			ely logged or has been aring; contains few roads		o substantial fill placeme , or hydrological alteratio					
Conditions Within AA	or buildings			or buildings.	armg, comamo ren roudo		ouilding density.	,g				
AA occurs and is managed in predomin a natural state; is not grazed, hayed, log or otherwise converted; does not contain roads or occupied buildings.	ged,			low di	isturbance							
AA not cultivated, but moderately graze hayed or selectively logged or has been subject to relatively minor clearing, or f placement, or hydrological alteration;												
contains few roads or buildings. AA cultivated or heavily grazed or logg subject to relatively substantial fill placement, grading, clearing, or hydroke alteration; high road or building density	ogical											
Comments: (types of dist	urbance, intensity,	season, etc.) none										
ii. Prominent weedy, alien,	& introduced spe	ecies: kochia										
iii. Briefly describe AA and	l surrounding lan	d use / habitat: catt	le grazing	outside of fenced W	L, hwy to south							
13. STRUCTURAL DIVERSITY	`				_							
Number of 'Cowardin' Vegetated Classes Present in AA		ted Classes or class is forested	2 Vegetar 1 if fores	ted Classes or ted	≤ 1 Vegetated Class							
Select Rating												
Comments:	•	<u>'</u>			•							

14A. H	AA is Documented								NED (OR E	NDAN	GEREI) PLA	NTS	AND	ANIN	MAI	LS								
	Primary or Critical h Secondary habitat (li Incidental habitat (li No usable habitat	st species)		□ D □ D □ D □ D	□ s ⊠ s	Ba	ld Eag	le																		
ii.	Rating (Based on th	e strongest hab	itat cl	hosen	in 14 <i>A</i>	A(i) at	ove, i	find th	e corr	espon	iding r	ating of	High ((H), N	Modera	ite (M), or	Low	(L) fo	or this	func	ion.				
Highe	st Habitat Level	doc/primary	su	ıs/prim	nary	doc	seco	ndary	sus	/seco	ndary	doc/ii	ciden	tal	sus/ir	ciden	tal		none	,						
Funct	ional Point and Rating														.3	(L)										
14B. H	If documented, list IABITAT FOR PLANT Do not include spec AA is Documented of Primary or Critical h Secondary habitat (list Incidental habitat (list No usable habitat	TS AND ANIM cies listed in 14 (D) or Suspecte abitat (list spec st species)	IALS IA(i). ed (S) cies)	RAT	ED AS ntain (S S S S	S S1, check N.l	S2, O	R S3	g	не м	IONT	ANA NA	ATUR	AL H	HERI	ΓAGE	PR	OGR	AM.							
iii	0 \								_	-	_					_	_				funct	ion.				
	est Habitat Level:	doc/primary	su	ıs/prin	_	doc	/seco	ndary	sus		ndary	doc/ii		tal	sus/ir		tal		none	-	4					
Funct	ional Point and Rating If documented, list		- aha	.8 (H		20000																				
Moo	stantial (based on any of observations of abund abundant wildlife sign presence of extremely interviews with local observations of scatter common occurrence of adequate adjacent uple interviews with local of the wildlife Habitat Feat rating. Structural divertheir percent composition T/E = temporary/ephenomerositics.	f the following ant wildlife #s a such as scat, to limiting habitate biologists with the following) and food source for wildlife sign and food source biologists with the following with the following and food source biologists with the food source wildlife sign and food source biologists with the food source wildlife sign and food source wildlife with the food source wildlife with the food source wildlife with the food source wildlife wildlife sign and food source wildlife with the food source wildlife with the food source wildlife wildli	or hig racks, at feat know oups o such a es know from 3. For see #1	gh spec nest s ures no ledge r indivas scat ledge top to r class	cies di tructu ot ava of the viduals , track of the botto cover	versitives, gilable AA sor ress, ness AA m, selector be	y (dur ame tr in the lative et struc-	ing ar rails, e surro ly few ctures,	y speci game	g area es du trails A attr	ring pering peri	Low eak perio	fe fe lit sp in ds	w or the towarse a tervie	no wil no wi adjace ews wi	dlife of Idlife nt upla th loca nal (E	obsersign and and bi	rvation food s fologis gh (H)	source sts wi	es th kno	owled	ge of AA				
	Structural Diversity (fr					□I-	ligh							Mode	rate					⊠I	this function. In peak use periods the knowledge of AA Example 1. Section 1					
	Class Cover Distribution (all vegetated classes)	istribution					Uneven					□Eve	n		Uneven					⊠E	ven					
•	Duration of Surface W 10% of AA	ater in ≥	P/P	S/I	T/E	A	P/P	S/I	T/E	A	P/P	S/I T	E A	A P	P/P S	/I T	/E	A	P/P	S/I	T/E	A				
	Low disturbance at AA	(see #12)											- -	- -	.		-		Е							
_	Moderate disturbance (see #12)												- -				-									
	High disturbance at A	A (see #12)										-	- -	- -	-	- -	-									
iii	. Rating (Using 14C(i) a for this function.)	. ,	ve and	d the n	natrix						•			of exc	ception	nal (E)), hiş	gh (H)), mod	derate	(M),	or low (I				
	Evidence of Wildlife from 14C(i)		□ E-	zaanti -	mo1	Wilc	ınte H			ures		g from 1				Low		\dashv								
	Substantial			ceptic	mal	-	L] Hig	;11		<u> </u>	Moderat	U		<u> — Ц </u>	LOW -		╡								

Comments: Surface water present, 2 Wilson's Phalarope exibiting defensive behavior. Willow sprigs may survivie in location of original stream course location at base of upland bank.

--

Moderate Low

Assess if the AA is used by fish	rically used by fish due to lack of lor the existing situation is "correct in the AA but is not desired from a	able" such t	that the AA	could be us	sed by fisl	n [e.g. fish u	se is preclud				
	d as "Low", applied accordingly in propriate AA attributes in matrix to	. ,	,				w (I) qualit	y rating			
Duration of Surface Water in AA			manent/Per			asonal / Inte			porary / Eph	emeral	
Cover - % of waterbody in AA c				Cililiai		asonai / mic	HIHILICH		porary / Epin	Ciliciai	
submerged logs, large rocks & be floating-leaved vegetation)	oulders, overhanging banks,	>25%	10-25%	<10%	>25%	10-25%	<10%	>25%	10-25%	<10%	
Shading - >75% of streambank or riparian or wetland scrub-shrub or											
Shading – 50 to 75% of streambariparian or wetland scrub-shrub of											
Shading - < 50% of streambank or riparian or wetland scrub-shrub or											
included on the 'MDEQ list of w Y N If yes, rec	Is fish use of the AA precluded or atterbodies in need of TMDL deve duce the rating from 14D(i) by one om 14D(i) and 14D(ii) above and the m	lopment' w level and c	ith 'Probabl heck the mo	e Impaired odified hab	Uses' list	ed as cold o y rating:	r warm wate	er fishery or H	aquatic life	support?	
Types of Fish Known or			Modified	Habitat Q	uality fro	m 14D(ii)					
Suspected Within AA	☐ Exceptional		High	`		Modera	ate		Low		
Native game fish											
Introduced game fish											
Non-game fish									 		
No fish											
Comments:											
i. Rating (Working from top to function.)	bottom, mark the appropriate attrib	ĺ	ve at the fur	nctional poi	nt and rat			te (M), or lo	ow (L) for thi		
Estimated wetland area in AA su		7.50/	□ ≥ 10 ε		7.50	<10, >2 25, 750		7.50/			
% of flooded wetland classified a		75%						75%	25-75%	<25%	
AA contains no outlet or restric		-			-		.5 (M)				
AA contains unrestricted outlet											
☐Y ☑N Comm 14F. SHORT AND LONG TE Applies to wetlands that flo If no wetlands in the AA an i. Rating (Working from top to Abbreviations: P/P = perman	RM SURFACE WATER STOR pod or pond from overbank or in-cresubject to flooding or ponding, obottom, use the matrix below to a ent/perennial; S/I = seasonal/interr	AGE hannel flow check NA al rrive at the a	☐ NA (pro y, precipitati bove.	oceed to 14 on, upland oint and ra	G) surface fl ting of hig	ow, or grour	ndwater flow	V.			
the AA that are subject to period	<u> </u>					□ <5, >1 ac			_ ≤1 acre fo		
Duration of surface water at wetl		P/P	S/I	T/E	P/P	S/I	T/E	P/P	S/I	T/E	
Wetlands in AA flood or pond ≥	5 out of 10 years		.9 (H)							
Wetlands in AA flood or pond <	5 out of 10 years										
Applies to wetlands with p If no wetlands in the AA ar	TOXICANT RETENTION AN otential to receive excess sedimenre subject to such input, check NA bottom, use the matrix below to an	ts, nutrients above.	, or toxicant	C	nflux of s	urface or gro h (H), mode	rate (M), or	low (L) for	this function	ı.)	
Sediment, Nutrient, and Toxicant Inp Levels Within AA	AA receives or surroundir to moderate levels of sedir other functions are not sub sedimentation, sources of	nents, nutrier estantially imp	nts, or compou paired. Minor	ands such tha	develo toxica	nts or AA rec	robable cause eives or surro	s" related to ounding land	sed of TMDL sediment, nutri- use has potenti- compounds suc	al to	

NA (proceed to 14E)

Sediment, Nutrient, and Toxicant Input Levels Within AA	to moderate le other function sedimentation	AA receives or surrounding land use has potential to deliver low to moderate levels of sediments, nutrients, or compounds such that other functions are not substantially impaired. Minor sedimentation, sources of nutrients or toxicants, or signs of eutrophication present.				Waterbody on MDEQ list of waterbodies in need of TMDL development for "probable causes" related to sediment, nutrients, or toxicants or AA receives or surrounding land use has potential to deliver high levels of sediments, nutrients, or compounds such that other functions are substantially impaired. Major sedimentation, sources of nutrients or toxicants, or signs of eutrophication present.					
% cover of wetland vegetation in AA	⊠≥	≥ 70%		< 70%	□ ≥ 70	70%					
Evidence of flooding or ponding in AA		☐ No	☐ Yes	☐ No	☐ Yes	☐ No	☐ Yes	☐ No			
AA contains no or restricted outlet	1 (H)	-		-		-					
AA contains unrestricted outlet											

Comments: ____

14D. GENERAL FISH/AQUATIC HABITAT RATING

					LIZATIO			NA (procee			4. 4:		411.	1:	S4	1:4 1-	- 1 41	- 4 :-
							river, strean NA above.	i, or other	natura	ı or man-ı	nade drai	inage, oi	on the sho	orenne oi	a stanc	iing water o	ody ina	11 IS
					matrix belo	w to arr	rive at the func), or low (L) for th	nis function.		
			d streamb s with dee		ing 🔽	1Darm	Durat anent / Peren	ion of Sur		/ater Adja sonal / Int			Temporar	y / Enha	maral			
roc	otmasse		5 0/			1 Perm		IIIIai			ermittent			y / Epne	illerai			
			5 % 64 %				1 (H)							 				
		< 3	5 %															
Commen	its:																	
 i. Rating A = ac subsur 	(Work	ing from f vegetate tlet; P/P	top to boted compo = perman	ttom, us nent in nent/per mponer	the AA. In	rix belo = stru = seas	ORT ow to arrive a uctural diversional/intermi	sity rating ttent; T/E	from # / A = te	$13. \ \mathbf{C} = \mathbf{Y}$	Yes (Y) o phemeral	r No (N l/absent.) as to whe	ther or n	ot the A		a surfa	
B		High		derate		Low		High		loderate		Low	□ I		_=	Moderate		Low
<i>C</i> P/P	Y	N	Y	N	⊠Y 	N	N □Y	□N 	□Y 	N	Y 	N	□Y 	N	Y 	N	□Y 	N
S/I					.7M													
T/E/A Commen																		
iii. Ra	□ V□ S□ V□ C	Vetland of eeps are p A perma Vetland co other	ccurs at the present at nently flo ontains ar	ne toe of the wet oded du n outlet,	dormant s f a natural land edge. uring droug but no inl 4J(i) and	slopes ght per et.	i.	e table bel	_	Other	he functio	onal poir	out not outl out and ratin I Point and	g of high	ı (H) or	low (L) for	this fu	unction.
AA l	nas kno	wn Disch	arge/Recl	narge ar		or mor	e indicators	of D/R pre	esent		1.1	unctiona	1 (H)	Rating				
			ge indica				4 A A T	\/D44	:_1									
Commen		iscnarge/	Recnarge	iniorma	ation inage	equate	to rate AA D	/K potent	ıaı									
14K. UN i. Rating	~		top to bo				ow to arrive					<u> </u>	(), moderat			/		
	Replace	ment Poter	ntial	(>80 yr-old)	foreste	og, warm springed wetland or page "S1" by the M	lant	e	types and s	tructural d plant asso	iversity (#13) is high sted as "S2"	types	or assoc	contain previous ciations and st i) is low-mode	tructural	
Estimated Low distr					□rare		Common	abun	dant	□rare	□com		abundan	t 🔲r		⊠common .4M		abundant
Moderat)														
High dist		e at AA (#	#12i)															
i. I ii. (iii.	CREA Is the A Check o Based	A a know categorie on the loo es [Proced	wn recrea s that app cation, di ed to 14L	ational ply to the versity (ii) and	, size, and I then 14L	ional s ⊠ Edu other (iv).]	ctional point	ientific stutes, is then look [Rate as	idy re a str s low in	Cons rong pote n 14L(iv)]	umptive: ntial for	rec. recreat	Non-cional or ed	onsumpt lucation	ive rec. al use?	eed to 14L(i ☐ Othe		

iv.	Rating (Use the matrix l	pelow to arrive at the function	low to arrive at the functional point and rating of high (H), moderate (M), or low (L) for the									
		I	Disturbance at AA from #12(i)									
	Ownership	⊠ Low	☐ Moderate	☐ High								
	Public ownership	1(H)										

Public ownership
Private ownership
Comments: bird watching:plant ID

FUNCTION, VALUE SUMMARY, AND OVERALL RATING

Function and Value Variables	Rating	Actual Functional Points	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage)	
A. Listed/Proposed T&E Species Habitat	L	0.30	1		
B. MT Natural Heritage Program Species Habitat	Н	0.80	1		
C. General Wildlife Habitat	Е	1.00	1		
D. General Fish/Aquatic Habitat	NA				
E. Flood Attenuation	M	0.50	1		
F. Short and Long Term Surface Water Storage	Н	0.90	1		
G. Sediment/Nutrient/Toxicant Removal	Н	1.00	1		
H. Sediment/Shoreline Stabilization	Н	1.00	1		
I. Production Export/Food Chain Support	M	0.70	1		
J. Groundwater Discharge/Recharge	Н	1.00	1		
K. Uniqueness	M	0.40	1		
L. Recreation/Education Potential	Н	1.00	1		
	Totals:	8.60	11.00	65	
	Percent of	Total Possible Points:	78% (Actual / Possible) x 100 [rd to nearest whole #]		

Score of 1 funct Score of 1 funct Score of 1 funct funct	Score of 1 functional point for Uniqueness; or Score of 1 functional point for Flood Attenuation and answer to Question 14E(ii) is "yes"; or									
Category II Wetland: (Criteria for Category I not satisfied and meets any one of the following Category II criteria. If not satisfied, proceed to Category IV.) Score of 1 functional point for Species Rated S1, S2, or S3 by the MT Natural Heritage Program; or Score of .9 or 1 functional point for General Wildlife Habitat; or Score of .9 or 1 functional point for General Fish/Aquatic Habitat; or "High" to "Exceptional" ratings for both General Wildlife Habitat and General Fish / Aquatic Habitat; or Score of .9 functional point for Uniqueness; or Percent of total possible points is > 65%.										
☐ Category III Wetland: (Criteria for Categories I, II, or IV not satisfied.)										
☐ Category III W	etland: (Criteria for Categories I, II, or IV not satisfied.)									
Category IV Wetlan "Low" rating for "Low" rating for	etland: (Criteria for Categories I, II, or IV not satisfied.) nd: (Criteria for Categories I or II are not satisfied and all of the following criteria are met; If not satisfied, proceed to Category III.) r Uniqueness; and r Production Export / Food Chain Support; and possible points is < 30%.									
Category IV Wetlan "Low" rating for "Low" rating for Percent of total	nd: (Criteria for Categories I or II are not satisfied and all of the following criteria are met; If not satisfied, proceed to Category III.) r Uniqueness; and r Production Export / Food Chain Support; and									

Appendix C

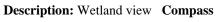
REPRESENTATIVE PHOTOGRAPHS 2004 AERIAL PHOTOGRAPH

MDT Wetland Mitigation Monitoring Circle Mitigation Site Circle, Montana

2004 CIRCLE

Reading: N

Location: B **Description:** Upland us (across WL) **Compass Reading:** 320°

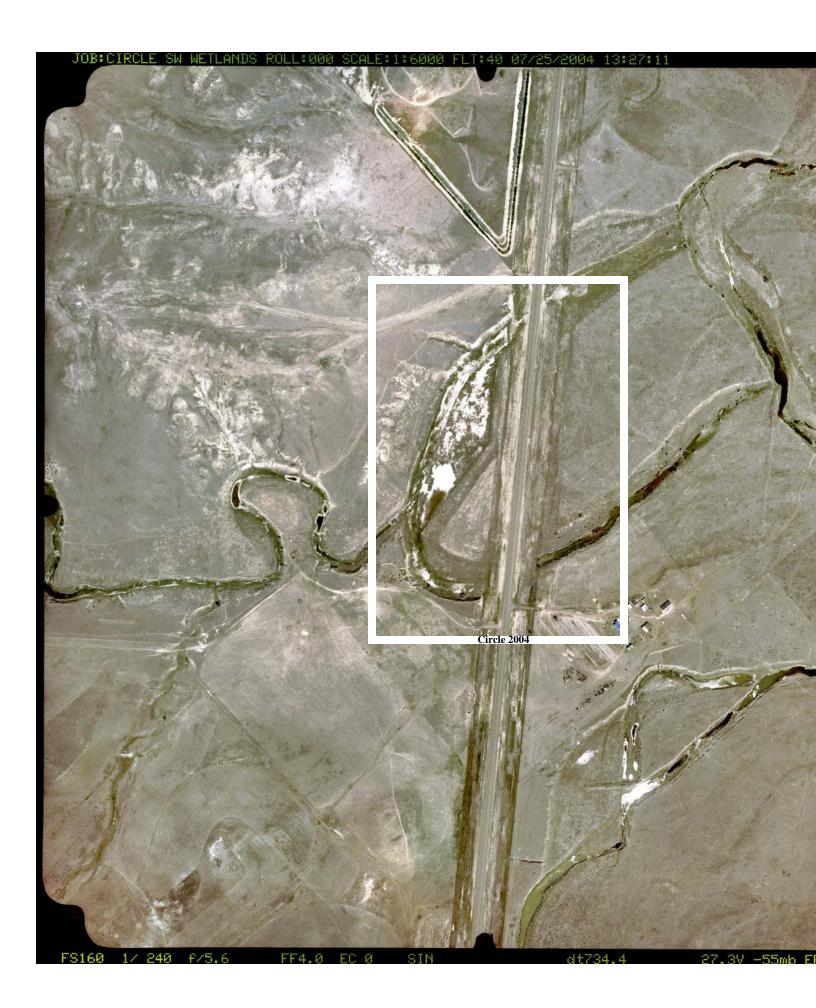

Location: C **Description:** WL buffer (across WL) Compass Reading: W

Description: Wetland view Compass **Location:** D Reading: W

Location: E **Reading:** S

Location: F Description: Wetland view Compass

2004 CIRCLE


Location: G **Description:** Beginning transect **Compass Reading:** NW

Description: End transect **Compass** Location: H

Reading: SE

Appendix D

BIRD SURVEY PROTOCOL GPS PROTOCOL

MDT Wetland Mitigation Monitoring Circle Mitigation Site Circle, Montana

BIRD SURVEY PROTOCOL

The following is an outline of the MDT Wetland Mitigation Site Monitoring Bird Survey Protocol. Though each site is vastly different, the bird survey data collection methods must be standardized to a certain degree to increase repeatability. An Area Search within a restricted time frame will be used to collect the following data: a bird species list, density, behavior, and habitat-type use. There will be some decisions that team members must make to fit the protocol to their particular site. Each of the following sections and the desired result describes the protocol established to reflect bird species use over time.

Species Use within the Mitigation Wetland: Survey Method

Result: To conduct a bird survey of the wetland mitigation site within a restricted period of time and the budget allotment.

Sites that can be circumambulated or walked throughout.

These types of sites will include ponds, enhanced historic river channels, wet meadows, and any area that can be surveyed from the entirety of its perimeter or walked throughout. If the wetland is not uncomfortably inundated, conduct several "meandering" transects through the site in an orderly fashion (record the number and approximate location/direction of the transects in the field notebook; they do not have to be formalized or staked). If a very small portion of the site cannot be crossed due to inundation, this method will also apply. Though the sizes of the site vary, each site will require surveying to the fullest extent possible within a set time limit. The optimum times to conduct the survey are in the morning hours. Conduct the survey from sunrise to no later than 11:00 AM. (Note: some sites may have to be surveyed in the late afternoon or evening due to time constraints or weather; if this is the case, record the time of day and include this information in your report discussion.) If the survey is completed before 11:00 AM and no additions are being made to the list, then the task is complete. The overall limiting factor regarding the number of hours that are spent conducting this survey is the number of budgeted hours; this determination must be made by site by each individual.

In many cases, binoculars will be the only instrument that is needed to identify and count the birds using the wetland. If the wetland includes deep water habitat that can not be assessed with binoculars, then a scope and tripod are necessary. If this is the case, establish as many lookout posts as necessary from key vantage points to collect the data. Depending on the size of the open water, more time may be spent viewing the mitigation area from these vantage points than is spent walking the peripheries of more shallow-water wetlands.

Sites that cannot be circumambulated.

These types of sites will include large-bodied waters, such as reservoirs, particularly those with deep water habitat (>6 ft) close to the shore and no wetland development in that area of the shoreline. If one area of the reservoir was graded in such a way to create or enhance the development of a wetland, then that will be the area in which the ambulatory bird survey is conducted. The team member must then determine the length of the shoreline that will be surveyed during each visit.

As stated above in the ambulatory site section, these large sites most likely will have to be surveyed from established vantage points.

Species Use within the Mitigation Wetland: Data Recording

Result: A complete list of bird species using the site, an estimate of bird densities and associated behaviors, and identification of habitat use.

1. Bird Species List

Record the bird species on the Bird Survey - Field Data Sheet using the appropriate 4-letter code of the common name. The coding uses the first two letters of the first two words of the birds' common name or if one name, the first four (4) letters. For example, mourning dove is coded MODO and mallard is MALL. If an unknown individual is observed, use the following protocol and define your abbreviation at the bottom of the field data sheet: unknown shorebird: UNSB; unknown brown bird (UNBR); unknown warbler (UNWA); unknown waterfowl (UNWF). For a flyover of a flock of unknown species, use a term that describes the birds' general characteristics and include the approximate flock size in parentheses; do not fill in the habitat column. For example, a flock of black, medium-sized birds could be coded: UNBB / FO (25). You may also note on the data sheet if that particular individual is using a constructed nest box.

2. Bird Density

In the office, sum the Bird Survey – Field Data Sheet data by species and by behavior. Record this data in the Bird Summary Table.

3. Bird Behavior

Bird behavior must be identified by what is known. When a species is simply observed, the behavior that it is immediately exhibiting is what is recorded. Only behaviors that have discreet descriptive terms should be used. The following terms are recommended: breeding pair individual (BP); foraging (F); flyover (FO); loafing (L; e.g. sleeping, roosting, floating with head tucked under wing are loafing behaviors); and, nesting (N). If more behaviors are observed that do have a specific descriptive word, use them and we will add it to the protocol; descriptive words or phrases such as "migrating" or "living on site" are unknown behaviors.

4. Bird Species Habitat Use

We are interested in what bird species are using which particular habitat within the mitigation wetlands. This data is easily collected by simply recording what habitat the species was initially observed. Use the following broad category habitat classifications: aquatic bed (AB - rooted floating, floating-leaved, or submergent vegetation); forested (FO); marsh (MA – cattail, bulrush, emergent vegetation, etc. with surface water); open water (OW – primarily unvegetated); scrubshrub (SS); and upland buffer (UP); wet meadow (WM – sedges, rushes, grasses with little to no surface water). If other categories are observed onsite that are not suggested here, we will make a new category next year.

D-2

GPS Mapping and Aerial Photo Referencing Procedure

The wetland boundaries, photograph location points and sampling locations were field located with mapping grade Trimble Geo III GPS units. The data was collected with a minimum of three positions per feature using Course/Acquisition code. The collected data was then transferred to a PC and differentially corrected to the nearest operating Community Base Station. The corrected data was then exported to ACAD drawings in Montana State Plain Coordinates NAD 83 international feet.

The GPS positions collected and processed had a 68% accuracy of 7 feet except in isolated areas of Tasks .008 and .011, where it went to 12 feet. This is within the 1 to 5 meter range listed as the expected accuracy of the mapping grade Trimble GPS.

Aerial reference points were used to position the aerial photographs. This positioning did not remove the distortion inherent in all photos; this imagery is to be used as a visual aide only. The located wetland boundaries were given a final review by the wetland biologist and adjustments were made if necessary.

Any relationship of features located to easement or property lines are not to be construed from these figures. These relationships can only be determined with a survey by a licensed surveyor.

Appendix E

2004 MACROINVERTEBRATE SAMPLING PROTOCOL AND DATA

MDT Wetland Mitigation Monitoring Roundup Wetland Roundup, Montana

AQUATIC INVERTEBRATE SAMPLING PROTOCOL

Equipment List

- D-frame sampling net with 1 mm mesh. Wildco is a good source of these.
- Spare net.
- 1-liter plastic sample jars, wide-mouth. VWR has these: catalog #36319-707.
- 95% ethanol: Northwest Scientific in Billings carries this.

All these other things are generally available at hardware or sporting goods stores. Make the labels on an ink jet printer preferably.

- hip waders.
- pre-printed sample labels (printed on Rite-in-the-Rain or other coated paper, two labels per sample).
- pencil.
- plastic pail (3 or 5 gallon).
- large tea strainer or framed screen.
- towel.
- tape for affixing label to jar.
- cooler with ice for sample storage.

Site Selection

Select the sampling site with these considerations in mind:

- Select a site accessible with hip waders. If substrates are too soft, lay a wide board down to walk on.
- Determine a location that is representative of the overall condition of the wetland.

Sampling

Wetland invertebrates inhabit the substrate, the water column, the stems and leaves of aquatic vegetation, and the water surface. Your goal is to sweep the collecting net through each of these habitat types, and then to combine the resulting samples into the 1-liter sample jar.

Dip out about a gallon of water into the pail. Pour about a cup of ethanol into the sample jar. Fill out the top half of the sample labels, using pencil, since ink will dissolve in the ethanol.

Ideally, you can sample a swath of water column from near-shore outward to a depth of approximately 3 feet with a long sweep of the net, keeping the net at about half the depth of the water throughout the sweep. Sweep the water surface as well. Pull the net through a vegetated area, beneath the water surface, for at least a meter of distance.

Sample the substrate by pulling the net along the bottom, bumping it against the substrate several times as you pull.

This step is optional, but it gives you a chance to <u>see</u> that you've collected some invertebrates. Rinse the net out into the bucket, and look for insects, crustaceans, etc. If necessary, repeat the sampling process in a nearby location, and add the net contents to the bucket. Remember to sample all four environments.

Sieve the contents of the bucket through the straining device and pour or carefully scrape the contents of the strainer into the sample jar.

If you skip the bucket-and-sieve steps, simply lift handfuls of material out of the sampling net into the jars. In either case, please include some muck or mud and some vegetation in the jar. Often, you will have collected a large amount of vegetable material. If this is the case, lift out handfuls of material from the sieve into the jar, until the jar is about half full. Please limit material you include in the sample, so that there is only a single jar for each sample.

Top off the sample jar with enough ethanol to cover all the material in the jar. Leave as little headroom as possible.

It is not necessary to sample habitats in any specified order. Keep in mind that disturbing the habitats prior to sampling will chase off the animals you are trying to capture.

Complete the sample labels. Place one label inside the sample jar and tape the other label securely to the outside of the jar. Dry the jar before attaching the outer label if necessary. In some situations, it may be necessary to collect more than one sample at a site. If you take multiple samples from the same site, clearly indicate this by using individual sample numbers, along with the total number of samples collected at the site (e.g. Sample #3 of 5 total samples).

Photograph the sampled site.

Sample Handling/Shipping

- In the field, keep collected samples cool by storing them in a cooler. Only a small amount of ice is necessary.
- Inventory all samples, preparing a list of all sites and enumerating all samples, before shipping or delivering to the laboratory.
- Deliver samples to Rhithron.

MDT Wetland Mitigation Monitoring Project Aquatic Invertebrate Monitoring Summary 2001 - 2004

METHODS

Among other monitoring activities, aquatic invertebrate assemblages were collected at a number of mitigation wetlands throughout Montana. This report summarizes data generated from four years of collection.

The method employed to assess these wetlands is based on constructing an index using a battery of 12 bioassessment metrics or attributes (Table1) tested and recommended by Stribling et al. (1995) in a report to the Montana Department of Health and Environmental Science. In that study, it was determined that some of the metrics were of limited use in some geographic regions, and for some wetland types. Despite that finding, all 12 metrics are used in this evaluation of mitigated wetlands, since detailed geographic information and wetland classifications were unavailable.

Scoring criteria for metrics were developed by generally following the tactic used by Stribling et al. Boxplots were generated using a statistical software package, and distributions, median values, ranges, and quartiles for each metric were examined. All sites in all years of sampling were used. Camp Creek, which was sampled in 2002, 2003, and 2004, was assessed using the tested metric battery developed for montane streams of Western Montana (Bollman 1998). The fauna at the Camp Creek site was different from that of the other sites, and suggested montane stream conditions rather than wetland conditions. For the wetlands, "optimal" scores were generally those that fell above the 75th percentile (for those metrics that decrease in value in response to stress) or below the 25th percentile (for metrics that respond to stress by an increase in value) of all scores. Additional scoring ranges were established by bisecting the range below the 75th percentile for decreasing scores (or above the 25th percentile for increasing scores) into "sub-optimal" and "poor" assessment categories. A score of 5, 3, or 1 was assigned to optimal, sub-optimal, and poor metric performance, respectively. In this way, metric values were translated into normalized metric scores, and scores for all metrics were summed to produce a total bioassessment score. Total bioassessment scores were classified according to a similar process, using the ranges and distributions of total scores for all sites studied in all years.

The purpose of constructing an index from biological attributes or metrics is to provide a means of integrating information to facilitate the determination of whether management action is needed. The nature of the action needed is not determined solely by the index score, however, but by consideration of an analysis of the component metrics, the taxonomic composition of the assemblages, and other issues. The diagnostic functions of the metrics and taxonomic data need more study; our understanding of the interrelationships of natural environmental factors and anthropogenic disturbances are tentative. Thus, the further interpretive remarks accompanying the raw taxonomic and metric data are offered cautiously.

Sample processing

Aquatic invertebrate samples were collected at mitigation wetland sites in the summer months of 2001, 2002, 2003, and 2004 by personnel of Land and Water Consulting, Inc. Sampling procedures utilized were based on the protocols developed by the Montana Department of Environmental Quality (MT DEQ). Sampling consisted of D-frame net sweeps through emergent vegetation (when present), the water column, over the water surface, and included disturbing and scraping substrates at each sampled sites. Samples were preserved in ethanol at each wetland site and subsequently delivered to Rhithron Associates, Inc. for processing, taxonomic determinations, and data analysis.

At Rhithron's laboratory, Caton subsamplers and stereomicroscopes with 10X magnification were used to randomly select a minimum of 100 organisms, when possible, from each sample. In some cases, the entire sample contained fewer than 100 organisms; in these cases, all organisms from the sample were taken. Taxa were identified in general accordance with the taxonomic resolution standards set out in the MT DEQ Standard Operating Procedures for Sampling and Sample Analysis (Bukantis 1998). All samples were re-identified by a second taxonomist for quality assurance purposes. The identified samples have been archived at Rhithron's laboratory. Taxonomic data and organism counts were entered into an Excel 2000 spreadsheet, and metrics were calculated and scored using spreadsheet formulae.

Bioassessment metrics

An index based on the performance of 12 metrics was constructed, as described above. Table 1 lists those metrics, describes their calculation and the expected response of each to increased degradation or impairment of the wetland.

In addition to the summed scores of each metric and the associated impairment classification described above, each individual metric informs the bioassessment to some degree. The four richness metrics (Total taxa, POET, Chironomidae taxa, and Crustacea taxa + Mollusca taxa) can be interpreted to express habitat complexity as well as water quality. Complex, diverse habitats consist of variable substrates, emergent vegetation, variable water depths and other factors, and are potential features of long-established stable wetlands with minimal human disturbance. In the study conducted by Stribling et al. (1995), all four richness metrics were found to be significantly associated with water quality parameters including conductance, salinity, and total dissolved solids.

Four composition metrics (%Chironomidae, %Orthocladiinae of Chironomidae, %Crustacea + %Mollusca, and %Amphipoda) measure the relative contributions of certain taxonomic groups that may have significant responses to habitat and/or water quality impacts. For example, amphipods have been demonstrated to increase in abundance in alkaline conditions. Short-lived, relatively mobile taxa such as chironomids dominate ephemeral environments; many are hemoglobin-bearers capable of tolerating de-oxygenated conditions.

Two tolerance metrics (the Hilsenhoff Biotic Index and %Dominant taxon) were included in the bioassessment battery. The HBI indicates the overall invertebrate assemblage tolerance to nutrient enrichment, warm water, and/or low dissolved oxygen conditions. The percent abundance of the dominant taxon has been demonstrated to be strongly associated with pH, conductance, salinity, total organic carbon, and total dissolved solids.

Two trophic measures (%Collector-gatherers and %Filterers) may be helpful in expressing functional integrity of the invertebrate assemblage, which can be impacted by poor water quality or habitat degradation. High proportions of filtering organisms suggest nutrient and/or organic enrichment, while abundant collectors suggest more positive functional conditions and well-developed wetland morphology. These organisms graze periphyton growing on stable surfaces such as macrophytes.

RESULTS

In 2001, 29 sites were sampled statewide. Nineteen of these sites were revisited in 2002, and 13 new sites were sampled. In 2003, 17 sites that had been visited in both 2001 and 2002 were re-sampled, and 11 sites sampled for the first time in 2001 were re-visited. In addition, 2 new sites were sampled. In 2004, 25 sites were re-visited, and 6 new sites were sampled. Thus, the 2004 database contains data for 122 sampling events at 50 unique sites. Table 2 summarizes sites and sampling years.

Metric scoring criteria were re-developed each year as new data was added. For 2004, all 122 records were utilized. Ranges of individual metrics, as well as median metric values remained remarkably consistent in each of the 4 years; minimal changes resulted from the addition of new data in 2004. The summary metric values and scores for the 2004 samples are given in Tables 3a-3d.

Literature cited

Bollman, W. 1998. Montana Valleys and Foothill Prairies Ecoregion. Master's Thesis. (M.S.) University of Montana. Missoula, Montana.

Bukantis, R. 1998. Rapid bioassessment macroinvertebrate protocols: Sampling and sample analysis SOP's. Working draft. Montana Department of Environmental Quality. Planning Prevention and Assistance Division. Helena, Montana.

Stribling, J.B., J. Lathrop-Davis, M.T. Barbour, J.S. White, and E.W. Leppo. 1995. Evaluation of environmental indicators for the wetlands of Montana: the multimetric approach using benthic macroinvertebrates. Report to the Montana Department of Health and Environmental Science. Helena, Montana.

Table 1. Aquatic invertebrate metrics employed in the MTDT mitigation wetland monitoring study, 2001-2004.

Metric	Metric Calculation	Expected Response to Degradation or Impairment
Total taxa	Count of unique taxa identified to lowest recommended taxonomic level	Decrease
POET	Count unique Plecoptera, Trichoptera, Ephemeroptera, and Odonata taxa identified to lowest recommended taxonomic level	Decrease
Chironomidae taxa	Count unique midge taxa identified to lowest recommended taxonomic level	Decrease
Crustacea taxa + Mollusca taxa	Count unique Crustacea taxa and Mollusca taxa identified to lowest recommended taxonomic level	Decrease
% Chironomidae	Percent abundance of midges in the subsample	Increase
Orthocladiinae/Chironomidae	Number of individual midges in the sub-family Orthocladiinae / total number of midges in the subsample.	Decrease
%Amphipoda	Percent abundance of amphipods in the subsample	Increase
%Crustacea + %Mollusca	Percent abundance of crustaceans in the subsample plus percent abundance of molluscs in the subsample	Increase
нві	Relative abundance of each taxon multiplied times that taxon's modified Hilsenhoff Biotic Index value. These numbers are summed over all taxa in the subsample.	Increase
%Dominant taxon	Percent abundance of the most abundant taxon in the subsample	Increase
%Collector-Gatherers	Percent abundance of organisms in the collector-gatherer functional group	Decrease
%Filterers	Percent abundance of organisms in the filterer functional group	Increase

Table 2. Montana Department of Transportation Mitigated Wetlands Monitoring Project sites. 2001 – 2004.

2001	2002	2003	2004
Beaverhead 1	Beaverhead 1	Beaverhead 1	Beaverhead 1
Beaverhead 2	Beaverhead 2		
Beaverhead 3	Beaverhead 3		Beaverhead 3
Beaverhead 4	Beaverhead 4	Beaverhead 4	
Beaverhead 5	Beaverhead 5	Beaverhead 5	Beaverhead 5
Beaverhead 6	Beaverhead 6	Beaverhead 6	Beaverhead 6
Big Sandy 1	Detty cilitation 0	Denvernena o	Demicrican o
Big Sandy 2			
Big Sandy 3			
Big Sandy 4			
Johnson-Valier			
VIDA			
Cow Coulee	Cow Coulee	Cow Coulee	
Fourchette - Puffin	Fourchette - Puffin	Fourchette - Puffin	Fourchette - Puffin
Fourchette -	Fourchette -	Fourchette -	Fourchette -
Flashlight	Flashlight	Flashlight	Flashlight
Fourchette -	Fourchette -	Fourchette -	Fourchette -
Penguin	Penguin	Penguin	Penguin
Fourchette -	Fourchette -	Fourchette -	Fourchette -
Albatross	Albatross	Albatross	Albatross
Big Spring	Big Spring	Big Spring	Big Spring
Vince Ames			
Ryegate			
Lavinia			
Stillwater	Stillwater	Stillwater	Stillwater
Roundup	Roundup	Roundup	Roundup
Wigeon	Wigeon	Wigeon	Wigeon
Ridgeway	Ridgeway	Ridgeway	Ridgeway
Musgrave - Rest. 1			
Musgrave - Rest. 2			
Musgrave – Enh. 1			
Musgrave – Enh. 2	_		
	Hoskins Landing	Hoskins Landing	Hoskins Landing
	Peterson - 1	Peterson – 1	Peterson – 1
	Peterson – 2		Peterson – 2
	Peterson – 4	Peterson – 4	Peterson – 4
	Peterson – 5	Peterson – 5	Peterson – 5
	Jack Johnson -	Jack Johnson -	
	main	main	
	Jack Johnson - SW	Jack Johnson - SW	
	Creston	Creston	Creston
	Lawrence Park		
	Perry Ranch		
	SF Smith River	SF Smith River	SF Smith River
	Camp Creek	Camp Creek	Camp Creek
	Kleinschmidt	Kleinschmidt –	Kleinschmidt –
		pond	pond
		Kleinschmidt –	Kleinschmidt –
		stream	stream
		Ringling - Galt	CV1-
			Circle
			Cloud Ranch Pond
			Cloud Ranch
			Stream
			Colloid Ingle Cycels
			Jack Creek
1			Norem

Table 3a.

	BEAVER HEAD #1	BEAVER HEAD #3	BEAVER HEAD #5	BEAVER HEAD #6	BIG SPRING CREEK	CIRCLE	CLOUD RANCH POND	CLOUD RANCH STREAM	COLLOID	CRESTON
Total taxa	27	12	21	18	25	16	16	20	8	18
POET	3	0	2	3	4	2	2	4	2	3
Chironomidae taxa	7	5	5	5	8	5	6	11	1	2
Crustacea + Mollusca	7	3	4	6	7	1	6	1	1	7
% Chironomidae	0.33636	0.18888	0.39285	0.57547	0.44329	0.55855	0.41666	0.84	0.09090	0.06087
Orthocladiinae/Chir	0.05405	0.35294	0.06818	0.36065	0.27907	0.69354	0.4	0.16666	0	0
%Amphipoda	0.03636	0	0.01785	0.05660	0.05154	0	0.00925	0	0	0
%Crustacea + %Mollusca	0.31818	0.73333	0.05357	0.12264	0.18556	0.03603	0.36111	0.01	0.09090	0.73913
HBI	7.97169	7.88888	8.36363	8.15789	7.61855	7.19090	7.32291	4.84	6	6.92173
%Dominant taxon	0.2	0.57777	0.23214	0.25471	0.23711	0.38738	0.13888	0.38	0.27272	0.37391
%Collector-Gatherers	0.40909	0.75555	0.51785	0.62264	0.78350	0.05405	0.67592	0.74	0.18181	0.29565
%Filterers	0.12727	0	0	0	0.01030	0.15315	0.09259	0.17	0	0.06087
Total taxa	5	1	5	3	5	3	3	3	1	3
POET	3	1	1	3	5	1	1	5	1	3
Chironomidae taxa	5	3	3	3	5	3	3	5	1	1
Crustacea + Mollusca	5	1	3	5	5	1	5	1	1	5
% Chironomidae	3	3	3	1	1	1	1	1	5	5
Orthocladiinae/Chir	1	3	1	3	3	5	3	1	1	1
%Amphipoda	5	5	5	3	3	5	5	5	5	5
%Crustacea + %Mollusca	5	1	5	15	15	5	3	5	5	1
HBI	1	1	1	1	1	3	3	5	5	3
%Dominant taxon	5	1	5	15	5	3	5	3	5	3
%Collector-Gatherers	1	3	3	3	3	1	3	3	1	1
%Filterers	1	3	3	3	3	1	1	1	3	1
	40 0.666667	26 0.433333	38 0.633333	38 0.633333	0.733333	0.533333	36 0.6	0.633333	0.566667	32 0.533333
	sub- optimal	0.433333 poor	sub- optimal	sub- optimal	optimal	sub- optimal	sub- optimal	sub- optimal	o.socoo/ sub- optimal	sub-optimal

Table 3b.

	FOURCHETTE CREEK ALBATROSS RESERVOIR	FOURCHETTE CREEK FLASHLIGHT RESERVOIR	FOURCHETTE CREEK PENGUIN RESERVOIR	FOURCHETTE CREEK PUFFIN RESERVOIR	JACK CREEK	MDT CAMP CREEK	MDT HOSKINS LANDING	MDT KLEINSCHMIDT CREEK	MDT KLEINSCHMIDT POND
Total taxa	18	23	19	22	23	35	25	19	19
POET	3	5	4	3	5	12	4	4	6
Chironomidae taxa	6	9	6	4	8	14	4	6	4
Crustacea + Mollusca	3	4	5	8	7	1	6	2	4
% Chironomidae	0.135135	0.265306	0.066116	0.247934	0.352113	0.37963	0.036697	0.438776	0.047619
Orthocladiinae/Chir	0.2	0.346154	0.625	0.3	0.52	0.585366	0.5	0.627907	0.8
%Amphipoda	0.126126	0.336735	0.578512	0.041322	0.028169	0	0.018349	0.010204	0.009524
%Crustacea + %Mollusca	0.684685	0.387755	0.77686	0.371901	0.380282	0.111111	0.541284	0.061224	0.190476
HBI	7.972973	7.216495	7.7	6.950413	7.647059	4.570093	6.59633	6.561224	6.67619
%Dominant taxon	0.495495	0.336735	0.561983	0.140496	0.15493	0.111111	0.366972	0.316327	0.552381
%Collector-Gatherers	0.873874	0.816327	0.702479	0.38843	0.394366	0.416667	0.091743	0.683673	0.114286
%Filterers	0	0.010204	0.132231	0.008264	0.042254	0.12037	0.018349	0.153061	0.047619
Total taxa									
POET	3	5	3	5	5	5	5	3	3
Chironomidae taxa	3	5	5	3	5	5	5	5	5
Crustacea + Mollusca	3	5	3	3	5	5	3	3	3
% Chironomidae	1	3	3	5	5	1	5	1	3
Orthocladiinae/Chir	5	3	5	3	3	3	5	1	5
%Amphipoda	3	3	5	3	5	5	5	5	5
%Crustacea + %Mollusca	3	1	1	3	5	5	5	5	5
HBI	1	3	1	3	3	5	3	5	5
%Dominant taxon	1	3	1	3	1	5	5	5	5
%Collector-Gatherers	1	5	1	5	5	5	3	5	1
%Filterers	5	5	3	1	1	1	1	3	1
	3	3	1	3	3	1	3	1	3
	32	44	32	40	46	46	48	42	44
	0.533333 sub-optimal	0.733333 optimal	0.533333 sub-optimal	0.666667 optimal	0.766667 optimal	0.766667 optimal	0.8 optimal	0.7 optimal	0.733333 optimal

Table 3d.

	ROUNDUP	SOUTH FORK SMITH RIVER	STILLWATER	WIGEON
Total taxa	9	20	23	16
POET	0	5	4	3
Chironomidae taxa	4	7	9	5
Crustacea + Mollusca	3	3	4	3
% Chironomidae	0.55	0.482143	0.466667	0.314815
Orthocladiinae/Chir	0.072727	0.055556	0.244898	0.647059
%Amphipoda	0	0.071429	0.12381	0.481481
%Crustacea + %Mollusca	0.42	0.116071	0.180952	0.574074
HBI	8.89	6.589286	6.47619	7.534653
%Dominant taxon	0.28	0.294643	0.133333	0.481481
%Collector-Gatherers	0.56	0.839286	0.628571	0.657407
%Filterers	0.14	0	0	0.083333
Total taxa				
POET	1	3	5	3
Chironomidae taxa	1	5	5	3
Crustacea + Mollusca	3	5	5	3
% Chironomidae	1	1	3	1
Orthocladiinae/Chir	1	1	1	3
%Amphipoda	1	1	3	5
%Crustacea + %Mollusca	5	3	3	1
HBI	3	5	5	3
%Dominant taxon	1	5	5	3
%Collector-Gatherers	5	5	5	3
%Filterers	3	5	3	3
	1	3	3	1
	26	42	46	32
	0.433333	0.7	0.766667	0.533333
	poor	optimal	optimal	Sub-optimal

Aquatic Invertebrate Taxonomic Data

Site Name CIRCLE Date Collected

Order	Family	Taxon	Count	Percent	Unique	BI	FFG
Coleoptera	Curculionidae						
	Curcunomane	Curculionidae	1	0.90%	Yes	5	SH
	Dytiscidae	I.I. construe	4	3.60%	Yes	5	PR
	Hydrophilidae	Hygrotus	4	3.60%	ies	Э	PK
		Berosus	6	5.41%	Yes	5	PR
		Enochrus Laccobius	1	0.90%	Yes Yes	5 5	CG PR
Diplostraca			-	0.5070	100	Ĭ	
		Cladocera	4	3.60%	Yes	8	CF
Diptera		omasser.	10.5	0.0070	100	•	-
	Ceratopogonidae	Cti	5	4.50%	Yes	6	PR
	Chironomidae	Ceratopogoninae	5	4.50%	ies	0	rĸ
		Chironomus	3	2.70%	Yes	10	CG
		Cladotanytarsus	2	1.80%	Yes	7	CG
		Cricotopus (Isocladius)	43	38.74%	Yes	7	SH
		Psectrotanypus Tanytarsus	1 13	0.90% 11.71%	Yes Yes	10 6	PR CF
	Tabanidae	Tanytarsus	13	11.7170	ies	0	CF
* **********************************		Tabanidae	1	0.90%	Yes	6	PR
Heteroptera	Corixidae						
	Corixidae	Corisella	1	0.90%	Yes	11	PR
Odonata	Tantidan						
	Lestidae	Lestes	23	20.72%	Yes	9	PR
	Libellulidae	***		4.000/			
Grand Total		Libellulidae	111	1.80%	Yes	9	PR

Aquatic Invertebrate Data Summary
Project ID: MDT04LW
STORET Station ID:
Station Name: CIRCLE
Sample type

Activity ID:

Sample Date:

Commonweight Comm	Sample type									
Commonte control con	Bortion of comp	Fral ORGANISM	S				TAYON	ADUNDANCE	DEDCENT	
Committee Comm	Estimated numb	her in total samp	le		167		Cricotopus (Isocladius)		38.74%	
Sammer under 1-course more 24	Conversion factor	or					Lestes			
Commonweight Comm	Estimated numl	ber in 1 square m	neter				Tanytarsus	13	11.71%	
Committee Comm	Sampling effort						Berosus	6	5.41%	
Charlespeed O	Unhitat town						Ceratopogoninae		4.50%	
Transport Tran					0		Cladocera		3 60%	
Souther Diff 1800							Hyprofus		3.60%	
TAXONOME COMPOSITION	Number EPT tax	ĸa			0		Chironomus	3		
TAXONOME COMPOSITION	Percent EPT				0.00%		Libellulidae	2		
GROUP PROCESTY ANATOMNORY PIAA NETTO NATIONAL CONTROLL PROCESSORY PRO							Cladotanytarsus	2		
Section Sect			DUNDANCE "#	A 37 A	TAXONOMIC RATIOS			105	94.59%	
Choosan				1					102.86	
Spingerson				2				Qaj		
	Ephemeroptera	0.00%		0	Hydropsychidae/Tricho	pt #DIV/0!				
Magalagerian 0.00% 0 0 Shamman H Bor2 1.79	Plecoptera	0.00%		0			DIVERSITY			
The content	Heteroptera	0.90%		1			Shannon H (loge)		2.58	
	Megaloptera	0.00%					Shannon H (log2)			
Content		0.00%	0							
Dipters		11.71%	13	5			Evenness		0.21	
Cartonomidae	Diptera	5.41%		2			VOLTINISM		0.11	
Mathewatine 66 6 6 5 50 66	Chironomidae	55.86%		5			TYPE ABUNDANCE		PERCENT	
Semination 14 S 12.6115							Multivoltine 6			
April										
Telegraph Commitment Comm						ŀ	Deminoratie I	т 5	12.01%	
Telegraph Commitment Comm						ŀ	TAXA CHARACTERS	#TAXA	PERCENT	
Big Section						İ	Tolerant		13.51%	
Workinster taxe	0%	20%	40%	60%	80% 1009	v	Sensitive	0	0.00%	
Bitelecopters	1					- [Clinger	2	50.45%	
The Process Street Stree	1		a Udonata	■ Epher	neroptera ⊔Plecoptera	_	DIOASSESSMENT INDICES			
WETRIC VALUE SCORE	I	Coleoptera	■ Megaloptera N Dipters	■ Tricho	ppiera Lepidopter.	а	B-IBI (Karr et al.)			
Fine		■ Coleoptera	M Diptera	L Cilifor	ioiiidae		METRIC VALUE		SCORE	
Predator 39.64% 44 9 Scraper/Filterer 0.00 Prichness 0 1	FUNCTIONAL C	COMPOSITION			FUNCTIONAL RATIOS		Taxa richness 16		1	
Parasite				#TAXA					1	
Common		39.64%	44	9	Scraper/Filterer	0.00			1	
	Cothoror				Scraper/Scraper + Filte				1 5	
	Filterer								1	
Community Tolerances									5	
Community Tolerances	Piercer	0.00%	0	0			%predators 39.64%		5	
Omnivore	Scraper						Clinger richness 2		1	
Unknown 0.00% 0 MONTAN ADEQ (NDICES Bukuntis 1998) Flains Valleys and Mountain METRIC Value Ecoresions Ecor	Shredder	39.64%					%dominance (3) 71.17%	momit acopp	3	100/
METRIC VALUE Ecoresions Foothills	Umnivore						MONTANA DEO INDICES (Bukant	ie 1998)	24	48%
Predator	Ommown	0.0070					MONTH DE CHINE	Plains	Valleys and	Mountain
Predator Boris Index 7,19 0 0 0 0 0 0 0 0 0							METRIC VALUE	Ecoregions	Foothills	Ecoregions
Predator Boris Index 7,19 0 0 0 0 0 0 0 0 0							Taxa richness 16	1	1	0
Sparasite Spanish Sp						■ Predator	EPT richness 0	0		
Gatherer							Biotic Index 7.19			
Gatherer Signature Community Commu						■ Parasite	%Dominant taxon 38.74%	2	2	1
Gatherer Shannon Diversity 1.79 0						•	%FPT 0.00%	0	0	0
Filterer Strapers						Gatherer			<u> </u>	•
Filterer Herbivore Herbivore Herbivore Herbivore Herbivore Herbivore Piercer Scraper							%Scrapers +Shredder 39.64%		3	1
Herbivore Herbivore Figure Figure	1					■ Filterer	Predator taxa 9			
Herbivore Firecer	1					ar merer	%Multivoltine 59.46%	2	#DR7 (0)	
Percent sediment sensitive taxa 0 Percent sediment sensitive taxa 0 Percent sediment sensitive taxa 0 Percent cold stenotherms 0.00% Montana Valleys and Foothills revised index (McGuire) 3.33 Montana Valleys and Foothills revised index (Bollman 1998) Percent sediment sensitive taxa 0 Percent sediment sensitive tax 11.11% Impairment class SEVERE Riffle Pool Tichness 0 Percent services tax 0 Percent services 1 Percent services tax 0 Percent services 1 Percent services 2 Percent services 1 Percent services 2 Percent services 1 Percent services 1 Percent services 2 Percent services 1 Percent services 2 Percent services 2 Percent services 2 Percent services 2 Percent serv	1							1.4		5
Piercer	1					■ Herbivore	PERCENT OF MAXIMUM	46.67	#DIV/0!	23.81
Scraper	1						IMPAIRMENT CLASS	MODERATE	#DIV/0! N	MODERATE
COMMUNITY TOLERANCES Sediment tolerant taxa 0 Percent sediment tolerant taxa 0 Percent max 0,00% Metals tolerance index (McGuire) 3,33 Montana Valleys and Foothills revised index (Bollman 1998) Cold stenotherm taxa 0 Percent max 11,11% Impairment class SEVERE Percent cold stenotherms 0,00% Montana Valleys and Foothills revised index (Bollman 1998) Riffle Pool HABITUS MEASURES EPT richness 0 Erichness 0 Percent EPT 0,00% Trichness 0 Percent Tolisochaetes and Leeches 0,00% Percent EPT 0,00% Percent EPT 0,00% Trichness 0 Percent air-breathers 11,71% Filterer richness 2 Percent intolerant 0,00% Univoltine richness 2 Percent intolerant 0,00% Univoltine richness 4 Percent burrowers 8,11% Univoltine richness 5,4% Percent supertolerant 3,0,63% Swimmer richness 4 Percent clingers 5,545%	1					■ Piercer				
Schiement tolerant taxa 0 Percent sediment sensitive taxa 0 Percent sediment sensitive 1 Percent sediment se									netrio hattorico	
COMMUNITY TOLERANCES Sediment tolerant taxa 0 Percent sediment sensitive taxa 0 Percent max. 11.11% Impairment class Selvere Montana Valleys and Foothills revised index (Bollman 1998) Cold stenotherm taxa 0 Percent max. 11.11% Impairment class SEVERE Montana Valleys and Foothills revised index (Bollman 1998) Repercent max. 11.11% Impairment class SEVERE Percent cold stenotherms 0.00% Montana Valleys and Foothills revised index (Bollman 1998) Repercent max. 11.11% Impairment class SEVERE Percent dold stenotherms 0.00% Montana Plains ecoregions metrics (Bramblett and Johnson 2002) Riffle Pool Percent EFT 0.00% 1.11% Percent EFT 0.00% Percent air-breathers 11.71% Percent air-breathers 11.71% Percent air-breathers 11.71% Percent intolerant 0.00% Percent intolerant 0.00% Percent intolerant 0.00% Percent supertolerant 0.06% Percent supertolerant 0.									metric batteries	
Community Tolerances						Scraper	g 100 T		metric batteries	
Sediment sensitive taxa 0	_					Scraper	5 90		netric batteries	
Sediment sensitive taxa 0							90			
Sediment sensitive taxa 0							90			lains Ecoregions
Sediment sensitive taxa 0						Shredder	90		■ Pl	-
Sediment sensitive taxa 0						Shredder	90		■ Pl	alleys and Foothills
Sediment sensitive taxa 0						Shredder	90		■ Pl	alleys and Foothills
Sediment sensitive taxa						Shredder	90		■ Pl	alleys and Foothills
Percent sediment sensitive 0.00% Montana Valleys and Foothills revised index (Bollman 1998)	Sediment tolera	nt taxa				Shredder	90		■ Pl	alleys and Foothills
Cold stenotherm taxa 0 Percent max 11.11% Impairment class SEVERE	Sediment tolera Percent sedimen	nt taxa nt tolerant		0.00%		Shredder	90		■ Pl	alleys and Foothills
Percent cold stenotherms 0.00% Montan Plains ecoregions metrics (Bramblett and Johnson 2002) Riffle Pool Proposition Propositio	Percent sedimer Sediment sensit Percent sedimer	nt taxa nt tolerant ive taxa nt sensitive		0.00% 0 0.00%		■ Shredder ■ Omnivore	0 90 8 80 mnm 70 60 40 40 20 20 20 40 0	Montana DEQ r	■ PI	alleys and Foothills
Riffle	Sediment tolera Percent sedimer Sediment sensit Percent sedimer Metals tolerance	nt taxa nt tolerant live taxa nt sensitive e index (McGuire)		0.00% 0 0.00% 3.33		■ Shredder □ Omnivore	S 80 90 90 90 90 90 90 90 90 90 90 90 90 90	Montana DEQ r	□ PI □ V:	alleys and Foothills fountain Ecoregions
HABITUS MEASURES	Sediment tolera Percent sedimer Sediment sensit Percent sedimer Metals tolerance Cold stenothern	nt taxa nt tolerant ive taxa nt sensitive e index (McGuire) n taxa		0.00% 0 0.00% 3.33 0		■ Shredder □ Omnivore	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Montana DEQ r	man 1998)	alleys and Foothills fountain Ecoregions s SEVERE
Hemoglobin bearer richness 2 Percent EPT 0.00% Trichness 0	Sediment tolera Percent sedimer Sediment sensit Percent sedimer Metals tolerance Cold stenothern	nt taxa nt tolerant ive taxa nt sensitive e index (McGuire) n taxa		0.00% 0 0.00% 3.33 0		■ Shredder □ Omnivore	Montana Valleys and Foothills re Percent max.	Montana DEQ r	man 1998) Impairment class d Johnson 2002	alleys and Foothills fountain Ecoregions s SEVERE
Percent hemoglobin bearers 3.60% Percent Oligochaetes and Leeches 0.00% Percent EPF 0.00% Air-breather s 5 Percent 2 dominants 59.46% Percent non-insect 3.60% Percent air-breathers 11.71% Filter richness 2 Filter richness 2 Burrower richness 3 Percent intolerant 0.00% Univoltine richness 4 Percent burrowers 8.11% Univoltine richness 4 Percent supertolerant 30.63% Swimmer richness 4 Percent clingers 50.45% Fercent supertolerant 30.63%	Sediment tolera Percent sedimer Sediment sensit Percent sedimer Metals tolerance Cold stenothern Percent cold ste	nt taxa nt tolerant ive taxa nt sensitive e index (McGuire) n taxa notherms		0.00% 0 0.00% 3.33 0		■ Shredder □ Omnivore	Montana Valleys and Foothills re Percent max. 11,11' Montana Plains ecoregions metri	Montana DEQ r	man 1998) Impairment class d Johnson 2002i Pool	alleys and Foothills fountain Ecoregions SEVERE
Percent air-breathers 11.71% Filterer richness 2 Filterer richness 2 Burrower richness 3 Percent intolerant 0.00% Univoline richness 4 Percent burrowers 8.11% Univoltine richness 4 Percent supertolerant 30.63% Swimmer richness 4 Percent clingers 50.45%	Sediment tolera Percent sedimer Sediment sensit Percent sedimer Metals tolerance Cold stenothern Percent cold ste	nt taxa nt tolerant ive taxa nt sensitive e index (McGuire) n taxa notherms		0.00% 0 0.00% 3.33 0 0.00%		■ Shredder □ Omnivore	Montana Valleys and Foothills re Percent max. 11.11' Montana Plains ecoregions metri- Rifle EFT richness	Montana DEQ r	man 1998) Impairment class 4 Johnson 2002i Pool	alleys and Foothills fountain Ecoregions SEVERE 0 0
Burrower richness 3 Percent intolerant 0.00% Univoltine richness 4 Percent burrowers 8.11% Univoltine richness 4 Percent supervolerant 30.63% Swimmer richness 4 Percent clingers 50.45%	Sediment tolera Percent sediment Sediment sensit Percent sedimer Metals tolerance Cold stenotherm Percent cold ste HABITUS MEAS Hemoglobin bea Percent hemoglo	nt taxa nt tolerant ive taxa nt sensitive index (McGuire) n taxa notherms SURES arer richness abin bearers		0.00% 0 0.00% 3.33 0 0.00% 2 3.60%		■ Shredder □ Omnivore	Montana Valleys and Foothills re- Percent Dissochates and Leeches Percent EPT Percent Dissochates and Leeches	wised index (Boll % CS (Bramblett an O 0,00% 0,00%)	man 1998) Impairment class d Johnson 2002i Pool T richness T richness	alleys and Foothills fountain Ecoregions SEVERE 0 0 0 0.00%
Percent burrowers 8.11% Univoltine richness 4 Percent supertolerant 30.63% Swimmer richness 4 Percent dingers 50.45%	Sediment tolera Percent sedimer Sediment sensit Percent sedimer Metals tolerance Cold stenothern Percent cold ste HABITUS MEAS Hemoglobin bea Percent hemogle Air-breather rich	nt taxa nt tolerant ive taxa nt sensitive index (McGuire) n taxa notherms SURES arer richness obin bearers hness		0.00% 0 0.00% 3.33 0 0.00%		■ Shredder □ Omnivore	Montana Valleys and Foothills re Percent max. 11.11* Riffie EFT richness Percent Oligochaetes and Leeches Percent Dominants	wised index (Boll % 0 0,00% 0,00% 59,46%)	man 1998) Impairment class d Johnson 2002i Prool E richness T richness Percent EPT Percent non-inse	alleys and Foothills fountain Ecoregions S SEVERE 0 0 0.00% act 3.60%
Swimmer richness 4 Percent clingers 50.45%	Sediment tolera Percent sedimer Sediment sensit Percent sedimer Metals tolerance Cold stenothern Percent cold six HABITUS MEAS Hemoglobin bea Percent hemogle Air-breather ris- Percent air-brea	nt taxa nt tolerant ive taxa nt sensitive i index (McGuire) n taxa notherms SURES urer richness obin bearers hness thers		0.00% 0 0.00% 3.33 0 0.00% 2 3.60% 5 11.71%		Shredder	Montana Valleys and Foothills re- Percent Digschaetes and Leeches Percent J dominants Percent J dominants Percent Digschaetes and Leeches Percent Digschaetes and Leeches Percent Digschaetes and Leeches Percent J dominants	wised index (Boll) % (Bramblett an 0 0,00% 0,00% 59,46% 2	man 1998) Impairment class Impairment class Into a do Johnson 2002) Pool Trichness Trichness Trichness Percent EPT Percent non-inse	alleys and Foothills fountain Ecoregions SEVERE 0 0 0.00% cct 3.60%
Percent swimmers 30.63% Swimmer richness 4	Sediment tolera Percent sedimer Sediment sensit Percent sedimer Metals tolerance Cold stenothern Percent cold ste HABITUS MEAS Hemoglobin bea Percent hemogle Air-breather ricl Percent air-bre Burrower richn	nt taxa nt tolerant ive taxa nt sensitive e index (McGuire) n taxa notherms SURES rer richness boin bearers hness thers ess		0.00% 0 0.00% 3.33 0 0.00% 2 3.60% 5 11.71% 3		■ Shredder □ Omnivore	Montana Valleys and Foothills re Percent max. 11.11' Montana Plains ecoregions metric Riffle Percent Dijsochaetes and Leeches Percent Johnson Plains Spilter richness Percent Dipsochaetes and Leeches	wised index (Boll % 0 0,00% 0,00% 2 0,00% 2 0,00%	man 1998) Impairment class d Johnson 2002i Prichness Trichness Percent EPT Percent non-inse Filtere richness	alleys and Foothills fountain Ecoregions Servere 0 0 0.00% ect 3.60% 2 2 2 2 2 2 2 3 4
	Sediment tolera Percent sediment Sediment sensit Percent sediment Metals tolerance Cold stenothern Percent cold ste HABITUS MEAS Hemoglobin bea Percent hemogle Air-breather rich Percent air-brea Burrower richne Percent burrowe	nt taxa tt tolerant ive taxa tt sensitive t index (McGuire) t taxa notherms SURES rer richness bin bearers hness tthers ess		0.00% 0 0.00% 3.33 0 0.00% 2 3.60% 5 11.71% 3 8.11% 4		Shredder	Montana Valleys and Foothills re Percent Dissochates and Leeches Percent Jominants Percent Jominants Percent Jominants Percent Unisochates and Leeches Percent Univolties richness	vised index (Boll) % (See Bramblett an 0 0,00% 0,00% 59.46% 2 0,00%	man 1998) Impairment class d Johnson 2002i Prichness Trichness Percent EPT Percent non-inse Filtere richness	alleys and Foothills fountain Ecoregions Servere 0 0 0.00% ect 3.60% 2 2 2 2 2 2 2 3 4
	Sediment tolera Percent sedimer Sediment sensit Percent sedimer Metals tolerance Cold stenothern Percent cold ste HABITUS MEAS Hemoglobin bea Air-breather rich Percent air-brea Burrower richn Percent burrows Swimmer richn Swimmer richn	nt taxa nt tolerant ive taxa nt sensitive index (McGuire) n taxa notherms SURES urer richness bbin bearers thers sess ers		0.00% 0 0.00% 3.33 0 0.00% 2 3.60% 5 11.71% 3 8.11% 4		■ Shredder □ Omnivore	Montana Valleys and Foothills reserved to the served to th	wised index (Boll % 0 0,00% 0,00% 2 0,00% 4 50.45%	man 1998) Impairment class d Johnson 2002i Prichness Trichness Percent EPT Percent non-inse Filtere richness	alleys and Foothills fountain Ecoregions Servere 0 0 0.00% ect 3.60% 2 2 2 2 2 2 2 3 4