FHWA FAST Act Guardrail Training
Highway Barrier Installation, Inspection and Maintenance Training

Participant Notebook

September 18th – 19th, 2018
INTRODUCTION

Today’s program begins the first part of a three day program established under the latest US Highway funding law with the objective of improving the safety of our nation’s highways through improved roadside barrier installations. Tomorrow’s program will be offered by various barrier hardware manufacturers primarily of products included on the Montana Qualified Product List (QP List). They will provide both presentations on the purpose/functionality of their hardware and important aspects for its proper installation, as well as (a most important component of this day’s program) have several of their products available for hands-on viewing and discussions. The objective of today’s training is to assist MDT by providing their personnel and contractors with the appropriate information needed to enhance the probability of optimal total barrier installations. Today’s training is divided into two segments:

- Basic highway barrier design principles for an understanding of HOW/WHY the barrier is designed and should be installed
- Highway barrier Installation, Inspection, and Maintenance training to enhance the likelihood that the installed barrier will perform its intended function

Today’s program provides the State with the following deliverables:

- The Powerpoint presentations and accompanying notebook on Highway Barrier Installation, Inspection and Maintenance Training
- Highway Barrier Pocket Guide (to be printed and distributed by MDT)
- 4 – Technical Briefs
  - Midwest Guardrail System (MGS)
  - Transitioning MGS Guardrail to Existing Bridge Railing
  - Maintenance of High Tension Cable
  - Drive-by Inspections of Barrier Systems
The deliverables are prepared by ARTBA/KLS Engineering, LLC, under direct supervision by Mr. William P Longstreet of FHWA’s Office of Safety Roadway Departure Technology Transfer Team, with review by appropriate MDT staff. The following are responsible for providing this material:

- William P. Longstreet: FHWA Office of Safety (will.longstreet@dot.gov)
- Brad Sant: ARTBA (Agreement Manager) (bsant@artba.org)
- Karen L. Booddal: KLS Engineering, LLC (Project Manager) (karen1.booddal@kls-eng.com)
- Bill Fitzgerald: KLS Engineering, LLC (Technical Expert/Instructor) (william.fitzgerald@kls-eng.com)
- John Durkos: KLS Engineering, LLC (Technical Expert/Instructor) (johndurkos@kls-eng.com)
- Marcee Allen: FHWA Division Office (marcee.allen@dot.gov)
- Damion Kring: MDT – Road Design Standards (dkrings@mt.gov)
- Chad Welborn: MDT – Road Design Standards (cwelborn@mt.gov)
- Marcee Allen: FHWA Division Office (marcee.allen@dot.gov)
- Dustin Rouse: MDT – Pre-Construction (drouse@mt.gov)
- Doug McBroom: MDT – Maintenance (dmcbroom@mt.gov)
- Bob Cloninger: MDT – Maintenance (bcloninger@mt.gov)
- Matt Steveson: MDT – Maintenance (msteveson@mt.gov)
- Lynn Miller: MDT – Training (lymiller@mt.gov)
- Bradley Nelson: MDT – Training (bnelson@mt.gov)

Tomorrow’s program will begin with a short review of the pre/post exam taken at the beginning of day one. This will be followed by the manufacturers’ presentations and the hands on viewing. Manufacturers’ literature handouts will be provided, as well as how to obtain more detailed information on any of the specific products.

**Target Audience**

The target audience for this training includes installers, inspectors and maintenance personal having direct responsibilities for installing, inspecting, or maintaining traffic barriers (including transitions), terminals, and crash cushions for MDT (or local agencies).

**Course Goal and Outcomes**

The overall course goal is to provide installers, inspectors and maintenance personnel with the information needed to install, inspect, or maintain barriers so as to maximize the probability of optimal barrier installations and performance. Specifically, participants should have a better understanding of the following:

- The principles behind good barrier performance
- Identify possible deficiencies in a new barrier design or existing installations.
- Avoid common errors in barrier and terminal installations to optimize crash performance (and reduce liability).
- Know whether damaged hardware can still function as intended and possible remedial actions
Course Contents
The course will be conducted over two days. The first day consists of six sessions:

Session 1: Roadside Safety Problem, Clear Zone, and whether barrier is needed – Brief description of the run-off road (ROR) problem in Montana, short discussion of the Clear Zone concept, and the challenge of determining when barrier should be provided.

Session 2: Testing Requirements and Performance Characteristics of Common Barrier Systems – Identify the crash testing guidelines and performance characteristics of the various barrier systems used in Montana.

Session 3: Testing Requirements and Performance Characteristics of Common Terminals and Crash Cushions – Identify the crash testing guidelines and performance characteristics of the various systems used in Montana.

Session 4: Guardrail Design, Length of Need, and Site-specific Conditions – Provides guidance concerning selecting the barrier type and creating an optimal design based on the five design principles, a quick field check of Length of Need, and some site-specific special designs.

Session 5: Guardrail/Terminal Installation and Common Errors – Illustrate proper barrier installation and show some common installation errors.

Session 6: Maintenance of Systems – Discuss various damage scenarios and their effect on barrier functionality.

Suggestion for Participants
The two days invested in this training course will be more valuable if you ask questions and share your experiences. Please turn your cell phones off during the class. If you are uncomfortable with the lighting, temperature or other features of the facility please let the instructor know.
Resources
Montana Department of Transportation (MDT)

- Standard Specifications
- Detailed Drawings
- Road Design Manual
- Qualified Product List
- Guidelines for Pavement Projects (3R)
  https://www.mdt.mt.gov/publications/docs/GUIDELINES-FOR-PAVEMENT-PROJECTS.PDF
- MASH Design Guidance (W-beam)

Federal Highway Administration (FHWA) https://www.fhwa.dot.gov/

- FHWA Hardware Policy and Guidance
  http://safety.fhwa.dot.gov/roadway_dept/policy_guide/road_hardware/
- FHWA Longitudinal Barriers
  http://safety.fhwa.dot.gov/roadway_dept/policy_guide/road_hardware/barriers/
- FHWA Resource Charts
  http://safety.fhwa.dot.gov/roadway_dept/policy_guide/road_hardware/resource_charts/
- W-Beam Guardrail Repair Guide
  https://safety.fhwa.dot.gov/local_rural/training/fhwasa08002/

American Association of State Highway and Transportation Officials (AASHTO)
https://www.transportation.org/

- AASHTO, Manual for Assessing Safety Hardware, 2016 (MASH16)

AASHTO Task Force 13 website https://www.tf13.org/

- Guide to Standardized Highway Barrier Hardware

TERMINOLOGY

Several terms will be used throughout the course; to ensure no misunderstanding, they are defined here:

Effective barrier: barrier that will satisfactorily perform as tested; i.e. containing and redirecting an impacting vehicle with crashworthy performance criteria
Hazard: an area of concern such as a terrain feature or an obstacle that should be considered for mitigation

Warranting hazard: a hazard that by itself would be determined to be shielded

Secondary hazard: a hazard that by itself would not normally be shielded (such as a typical tree or utility pole)

Head-on versus End-on impact: a head-on impact is essentially at zero degrees to the line of barrier; an end-on impact is hitting the end of the barrier at ANY angle.

Upstream versus Downstream: the upstream point is what the travelling vehicle comes to first; the downstream is as the vehicle is leaving


Adjacent Grading—Adjacent grading refers to the area on which the terminal is installed and the area immediately behind it.

Advance Grading—Advance grading refers to the area over which a vehicle may travel before any contact with a barrier terminal is made.

Anchorage—A device which anchors a flexible or semi-rigid barrier to the ground so as to develop the barrier’s tensile strength during an impact. Anchorages differ from terminals in that they are not considered crashworthy.

Area of Concern—An object or roadside condition that may warrant safety treatment.

Barricade—A device which provides a visual indicator of a hazardous location or the desired path a motorist should take. It is not intended to contain or redirect an errant vehicle.

Barrier—A device which provides a physical limitation through which a vehicle would not normally pass. It is intended to contain or redirect an errant vehicle.

Bi-directional—For the purposes of classifying crash cushions, bi-directional describes the capability of a crash cushion to safely operate the median of a divided highway or an undivided roadway, where it will be exposed to impacts from two different directions of traffic. A bi-directional crash cushion is considered. A bi-directional crash cushion is also a uni-directional crash cushion. A crash cushion is considered to be bi-directional when it has been qualified through a reverse-direction crash test.

Breakaway—A design feature which allows a device such as a sign, luminaire, or traffic signal support to yield or separate upon impact. The release mechanism may be a slip plane, plastic hinges, fracture elements, or a combination of these.

Bridge Railing—A longitudinal barrier whose primary function is to prevent an errant vehicle from going over the side of the bridge structure.

Clearance—Lateral distance from edge of traveled way to a roadside object or feature.
Clear Runout Area—The area at the toe of a non-recoverable slope available for safe use by an errant vehicle.

Clear Zone—The total roadside border area, starting at the edge of the traveled way, available for safe use by errant vehicles. This area may consist of a shoulder, a recoverable slope, a non-recoverable slope, and/or a clear run-out area. The desired width is dependent upon traffic volumes, speeds and roadside geometry.

Conservation of Momentum Principle—A concept of crash cushion design which involves the dissipation of the kinetic energy of an impacting vehicle by transferring the vehicles momentum to the variable masses of materials in the crash cushion, such as sand contained in sand barrels.

Cost-effective—An item or action taken that is economical in terms of tangible benefits produced for the money spent.

Crash Cushion—Device that prevents an errant vehicle from impacting a fixed object by gradually decelerating the vehicle to a safe stop or by redirecting the vehicle away from the obstacle.

Crash Tests—Vehicular impact tests by which the structural and safety performance of roadside barriers and other highway appearances may be determined. Three evaluation criteria are considered, namely (1) structural adequacy, (2) impact severity, and (3) vehicular post-impact trajectory.

Crashworthy—A feature that has been proven acceptable for use under specified conditions either through crash testing or in-service performance.

Design Speed—A selected speed used to determine the various geometric design features of the roadway. The assumed design speed should be a logical one with respect to the topography, anticipated operating speed, the adjacent land use, and the functional classification of the highway.

Drainage Feature—Roadside items whose primary purpose is to provide adequate roadway drainage such as curbs, culverts, ditches, and drop inlets.

End Treatment—The designed modification of the end of a roadside or median barrier.

Flare—The variable offset distance of a barrier to move it farther from the traveled way; generally in reference to the upstream end of the barrier.

Frangible—A structure quality or feature that makes the structure readily or easily broken upon impact.

Fuse Plate—The plate which provides structural reinforcement to the sign post hinge to resist wind loads but which will release or fracture upon impact of a vehicle with the post.

Glare Screen—A device used to shield a driver’s eye from the headlights of an oncoming vehicle.

Hinge—The weakened section of a sign post designed to allow the post to rotate upward when impacted by a vehicle.
Impact Angle—For a longitudinal barrier, it is the angle between a tangent to the face of the barrier and tangent to the vehicle’s path at impact. For a crash cushion, it is the angle between the axis of symmetry of the crash cushion and a tangent to the vehicle’s path of impact.

Impact Attenuator—See Crash Cushion.

Length of Need—Total length of a longitudinal barrier needed to shield an area of concern

Length of Need (LON) Point—That point on the terminal or longitudinal barrier at which it will contain and redirected an impacting vehicle along the face of the terminal barrier.

Level of Performance—The degree to which a longitudinal barrier, including bridge railing, is designed for containment and redirection of different types of vehicles.

Longitudinal barriers—A barrier whose primary function is to prevent penetration and to safely redirect an errant vehicle away from a roadside or median obstacle.

Low Maintenance/Self Restoring Crash Cushions—Crash Cushions that either suffer very little, if any damage, upon impact and are easily pulled back into their full operating condition, or they partially rebound after an impact and may only need an inspection to ensure that no parts have been damaged, misaligned, or otherwise disabled.

Median—The portion of a divided highway separating the traveled ways for traffic in opposite directions.

Multidirectional—The capability of the fracture mechanism of a breakaway support or the plates of a split-base support to work when struck from any direction. These are also referred to as omni-directional.

Median Barrier—A longitudinal barrier used to prevent an errant vehicle from crossing the median.

Non-Recoverable Slope—a slope which is considered traversable but on which an errant vehicle will continue to the bottom of the slope. Embankment slopes between 3H:1V and 4H:1V may be considered traversable but non-recoverable if they are smooth and free of fixed objects.

Offset—Lateral distance from the edge of traveled way to a roadside object or feature.

Omni-directional—See Multidirectional.

Operating Speed—The highest speed at which reasonably prudent drivers can be expected to operate vehicles on a section of highway under low traffic densities and good weather. This speed may be higher or lower than posted or legislated speed limits or nominal design speeds where alignment, surface, roadside development, or other features affect vehicle operations.

Operational Barrier—One that has performed satisfactorily in full-scale crash tests and has demonstrated satisfactory in-service performance.
**Performance Level**—See Level of Performance.

**Recoverable Slope**—A slope on which a motorist may, to a greater or lesser extent, retain, or regain control of a vehicle. Slopes flatter than 4H:1V are generally considered recoverable.

**Recovery Area**—Generally synonymous with clear zone.

**Reusable Crash Cushions**—Reusable crash cushions have some major components that may be able to survive most impacts intact and can be salvaged when the unit is being repaired.

**Roadside**—That area between the outside shoulder edge and the right-of-way limits. The area between roadways of a divided highway may also be considered roadside.

**Roadside Barrier**—A longitudinal barrier used to shield roadside obstacles or non-traversable terrain features. It may occasionally be used to protect pedestrians or “bystanders” from vehicle traffic.

**Roadside Signs**—Roadside signs can be divided into 3 main categories: overhead signs, large roadside signs, and small roadside signs. Large roadside signs may be defined as those greater than or equal to 50ft$^2$ in area. Small roadside signs may be defined as those less than 50ft$^2$ in area.

**Roadway**—The portion of a highway, including shoulders for vehicular use.

**Rounding**—The introduction of a vertical curve between two transverse slopes to minimize the abrupt slope change and to maximize vehicle stability and maneuverability.

**Runout Distance Grading**—Refers to the area into which a vehicle may travel after impacting a terminal ahead of its LON point.

**Sacrificial Crash Cushions**—Sacrificial crash cushions are crashworthy roadside safety devices designed for a single impact. These system’s major components are destroyed in impacts and must be replaced, but many of the other parts of the system can be reused.

**Severity Index**—A severity index (SI) is a number from zero to ten used to categorize accidents by the probability of their resulting in property damage, personal injury, or a fatality, or any combination of these possible outcomes. The resultant number can then be translated into an accident cost and the relative effectiveness of alternate safety treatments can be estimated.

**Shielding**—The introduction of a barrier or crash cushion between the vehicle and an obstacle or area of concern to reduce the severity of impacts of errant vehicles.

**Shy Distance**—The distance from the edge of the traveled way beyond which a roadside object will not be perceived as an obstacle by the typical driver to the extent that the driver will change the vehicle’s placement or speed.

**Slip Base**—A structural element at or near the bottom of a post or pole which will allow release of the post from its base upon impact while resisting wind loads.
**Slope**—The relative steepness of the terrain expressed as a ratio or percentage. Slopes may be categorized as positive (backslopes) or negative (foreslopes) or as a parallel or cross slope (in relation to the direction of traffic).

**Staged Attenuation Device**—A crash cushion that is designed to be progressively stiffer as an impacting vehicle deforms or penetrates it.

**Temporary Barrier**—Temporary barriers are used to prevent vehicular access into construction or maintenance work zones and to redirect an impacting vehicle so as to minimize damage to the vehicle and injury to the occupants while providing worker protection.

**Terminal**—A terminal is essentially a crashworthy anchorage, a device used to anchor a flexible or semi-rigid barrier to the ground. Being crashworthy, terminals are normally used at the end of a barrier that is located within the clear zone or that is likely to be impacted by errant vehicles.

**Traffic Barrier**—A device used to prevent a vehicle from striking a more severe obstacle or feature located on the roadside or in the median or to prevent crossover median accidents. As defined herein, there are four classes of traffic barriers, namely; roadside barriers, median barriers, bridge railings, and crash cushions.

**Transition**—A section of barrier between two different barriers, or more commonly, where a roadside barrier connects to a bridge railing or to a rigid object such as a bridge pier. The transition should produce a gradual stiffening of the approach rail so vehicular pocketing, snagging, or penetration at the connection can be minimized.

**Traveled Way**—The portion of the roadway for the movement of vehicles, exclusive of shoulders.

**Through Traveled Way**—The portion of the roadway for the movement of vehicles, exclusive of shoulders and auxiliary lanes.

**Traversable Slope**—A slope from which a motorist will be unlikely to steer back to the roadway but may be able to slow and stop safely. Slopes between 3H:1V and 4H:1V generally fall into this category.

**Uni-directional**—For the purposes of classifying crash cushions, uni-directional describes the capability of a crash cushion to operate in a location where it will be exposed to traffic impacts from only one direction. Such locations may include gore areas, or roadside locations on a divided highway. A crash cushion is considered to be uni-directional unless it has been qualified as bi-directional through a reverse-direction crash test.

**Vehicle**—A motorized unit for use in transporting passengers or freight, ranging from an 820-kg [1,800-lb] automobile to a 36000-kg [80,000-lb] van-type tractor trailer.

**Warrants**—The criteria by which the need for a safety treatment improvement can be determined.
**Work-Energy Principle**—“A concept of crash cushion design which involves the reduction of an impacting vehicle’s kinetic energy to zero, the condition of a stopped vehicle, through the conversion of kinetic energy into other forms of energy.”

**Working Width**—The distance between the traffic face of the test article before the impact and the maximum lateral position of any major part of the system or vehicle after the impact.

**Zone of Intrusion (ZOI)**—The region measured above and behind the face of a barrier system where an impacting vehicle or any major part of the system may extend during an impact.
Acronyms

AASHTO – American Association of State Highway Transportation Officials
ADT – Average Daily Traffic
AML – Authorized Material List
BIB – Buried In Backslope
CIP – Critical Impact Point
CM – Countermeasure
CRZ – Clear Recovery Zone
FARS – Fatal Analysis Reporting System
FAST Act – Fixing America's Surface Transportation Act
FHWA – Federal Highway Administration
HTC – High Tension Cable
LON – Length of Need
MASH – Manual for Assessing Safety Hardware
MBGR – Metal Beam Guardrail
MDT – Montana Department of Transportation
MGS – Midwest Guardrail System
NCHRP – National Cooperative Highway Research Program
NHTSA – National Highway Transportation Safety Administration
OTS – Office of Traffic Safety
PE – Preliminary Engineering
RDG – Roadside Design Guide
ROW – Right of Way
SHSP – Strategic Highway Safety Plan
SPWB – Strong Post W-Beam
TL – Test Level
TTI – Texas Transportation Institute
VMT – Vehicle Miles Traveled
WZ – Work Zone