OT PHASE ACTIVITY 106 PRELIMINARY GEOTECHNICAL AND MATERIALS REPORT

Lockwood Interchange – Billings STPX 90-8(91)450, MDT UPN 9588000 Billings, Montana Project 19-3792S

Submitted by

2511 Holman Avenue P. O. Box 80190 Billings, Montana 59108-0910

Prepared for

HDR Engineering, Inc. 970 South 29th Street West Billings, Montana 59102

July 27, 2020

2511 Holman Avenue P. O. Box 80190 Billings, Montana 59108-0190 p: 406.652.3930; f: 406.652.3944 www.skgeotechnical.com

July 27, 2020 Project 19-3792S

Mr. Timothy Erickson, PE HDR Engineering, Inc. 970 South 29th Street W Billings, Montana 59102 Via Email: timothy.erickson@hdrinc.com

Dear Mr. Erickson:

Re: OT Phase Activity 106 Preliminary Geotechnical and Materials Report, Lockwood Interchange – Billings, Yellowstone County, Montana, STPX 90-8(191)450, MDT UPN 9588000

The geotechnical and materials work for the OT Phase Activity 106 for the above-referenced project has been completed. Our report was completed in general accordance with Montana Department of Transportation (MDT) Procedure MT-207, MDT's Consultant Design Guidelines for Activity 106, MDT's Geotechnical Manual, and MDT's Pavement Design Manual. This work has also been conducted and prepared in accordance with our internal Geotechnical Engineering Quality Plan.

The attached report contains the following information.

- Results of soil borings performed along the existing I-90 present travelled way, median, and existing on- and off-ramps.
- Results of soil borings performed on US Highway 87.
- Results of laboratory tests performed on recovered representative samples.
- Culvert inspection, corrosion tests, and topsoil survey results.
- Recommendations for constructing new roadway widened embankments and median infilling.
- Recommendations for pavement design for both total reconstruction and minor rehabilitation.
- Recommendations for future fill slopes as well as shrinkage.

Project stationing was very preliminary during the development of this report and is not final. Therefore, station and offset information was not included on the boring logs. After final alignment is set and project stationing becomes available, project stationing will be incorporated into our future work.

Thank you for using SK Geotechnical. If you have any questions regarding this report, or require additional services, please contact Dustin Hutzenbiler or Cory Rice at (406) 652-3930.

Sincerely,

Dustin P. Hutzenbiler, PE Geotechnical Engineer

Cory G. Rice, PE Senior Engineer

Attachment:

Draft OT Phase Activity 106 Geotechnical and Materials Report

Table of Contents

De	scription	Page
A.	Introduction	1
	A.1. Project	1
	A.2. Scope of Services and Background	
	A.3. Available Information.	
В.	Reconnaissance and Review of Available Information.	
	B.1. General	
	B.2. General Site Conditions and Geology	
	B.3. Boring Locations	
	B.4. Existing Fill Slopes/Embankments	
	B.5. Pavement and Soils	
	B.6. Drainage	
	B.7. Groundwater Observations	
C.	Laboratory Soil Survey Property Tests	15
	C.1. Results.	
	C.2. Procedures	15
D.	Culverts and Corrosion Samples	16
	D.1. Culvert Inspection	16
	D.2. Corrosion Tests	
	D.3. Culvert Service Life	18
E.	Topsoil Survey	18
	E.1. Field Procedures.	18
	E.2. Results	
F.	Geotechnical Recommendations.	
	F.1. General	19
	F.2. Cut Slopes	
	F.3. Fill Slopes.	
	F.4. Embankment Settlement and Stabilization.	
	F.5. Shrinkage	
G.	Pavement Thickness Design	
	G.1. Traffic Data	
	G.2. Method	
	G.3. Design R-Value	
	G.4. Pavement Design Alternatives	
	Asphalt Content	
	Additional Geotechnical Work	
	Special Provisions	
	Activity 440 Review	
L.	General Recommendations	
	L.1. Basis of Recommendations	
	L.2. Review of Design	
	L.3. Groundwater Fluctuations	
	L.4. Use of Report	
	L.5. Level of Care	29

Table of Contents (continued)

Appendix 1

Site Location Sketch

Geologic Map

Alternative 1: I-90 Widening Inside, dated 6/2/2020, with approximate boring locations

Alternative 2: Lockwood Diverging Diamond Interchange, dated 6/1/2020, with approximate boring locations

Descriptive Terminology - Soils and Rock

Log of Boring Sheets ST-42 through ST-76

I-90 Yellowstone R - Billings – Billings Log of Boring Sheets ST-16, ST-17, ST-32 and 33, ST-40 and 41, ST-138, ST-140 through ST-142

Billings Bypass Log of Boring Sheets BH-20, BH-22, and BH-29

Boring Photographs

Appendix 2

Summary of Soil Index Test Results

Form 111

Appendix 3

Topsoil Survey Map

Culvert Inspection Map

Culvert Inspection Report

Culvert Corrosion Test Results

Culvert Photographs

Appendix 4

MDT Traffic Memorandum, dated February 18, 2020

Sheet 12, Mill, Fill, and Cover data 1, dated 3/13/18, W. BLGSINTCH – PINE HILLS INTCH.

Core Stripping Analysis Results

Asphalt Core Photos

Pavement Condition Photographs

Pavement Design Outputs

Appendix 5

Activity 440 Preliminary Geotechnical and Materials Review Checklist

A. Introduction

A.1. Project

The project is located in east Billings, Yellowstone County, Montana, and extends from just west of the Lockwood Interchange at about reference point (RP) 452.75 to the Johnson Lane Interchange at approximately RP 455.1. The project also includes major improvements to US Highway 87 with the preliminary preferred major improvement to include a new diverging diamond interchange. The improvements to US Highway 87 generally extend from the intersection of US Highway 87 and Lockview Lane to about 500 feet west of the intersection of US Highway 87 and Interstate 90 Frontage Road. The improvements also include major upgrades to Ramps A and C. The relative extent of the project improvements are shown on the attached Alternative Design Sheets in Appendix 1.

The project is currently being evaluated under the Other (OT) Phase to evaluate improvement options to the Lockwood Interchange and prepare preliminary construction estimates. It is desired to widen I-90 to three lanes in both the eastbound (EB) and westbound (WB) directions as a continuation of the I-90 Yellowstone R - Billings project to the west. The alignment is generally planned to follow the existing Present Traveled Way (PTW) with added capacity in all directions.

A.2. Scope of Services and Background

SK Geotechnical is providing the geotechnical and soil survey services for the OT Phase of the Lockwood Interchange – Billings project in accordance with our revised proposal to HDR Engineering, Inc., dated July 15, 2019. Our scope of services for the OT Phase Activity 106 work consists of the following.

- Performing an engineering reconnaissance of the proposed alignments, as well as reviewing available project information, and topographic and geologic maps of the area.
- Performing topsoil survey, culvert inspection, and obtaining soil samples for corrosion tests at existing culverts.
- Conducting the following borings along the project (The boring number sequence was started at ST-42, since the adjacent I-90 Yellowstone R Billings project used ST-1 through ST-41):
 - Borings ST-42 through ST-50 along the eastbound PTW.
 - Borings ST-55 through ST-62 along the westbound PTW.
 - Borings ST-67 through ST-70 along the existing median between the eastbound and westbound lanes.
 - Boring ST-71 along the eastbound on-ramp and ST-72 along the westbound off-ramp.
 - Borings ST-73 through ST-76 along US Highway 87.
- Conducting laboratory tests consisting of moisture content, sieve analysis, Atterberg limits, specific gravity, moisture-density curves, corrosion, and California bearing ratio.

HDR Engineering, Inc.

Project 19-3792S

July 27, 2020

Page 2

- Provide pavement sections for the following areas:
 - US Highway 87
 - Lockwood Interchange on- and off-ramps
 - I-90 eastbound and westbound main line and widening
 - 30-year bridge ends
- Preparing this OT Phase Activity 106 Preliminary Geotechnical and Material Report containing the following:
 - Summary of our engineering reconnaissance,
 - Log of Boring sheets,
 - Summary of laboratory test results, and
 - Preliminary pavement typical section alternatives, and
 - Preliminary geotechnical recommendations for cut and fill slopes, shrinkage, and asphalt cement content.

A.3. Available Information

HDR provided us with the following documents as this project proceeded. The documents are summarized below.

- Preliminary Geotechnical and Materials Report Consultant Activity 106 report for the Billings Bypass, prepared by DOWL, dated March 2017.
- Alternative I-1: I-90 Widening Inside Conceptual Plan, dated June 2, 2020.
- Alternative 2: Lockwood Diverging Diamond Interchange Concept Plan, dated June 1, 2020.
- Traffic information data for Lockwood Interchange given to HDR by the Montana Department of Transportation (MDT), dated February 18, 2020.
- Preliminary Typical Sections for I-90 widening.

Additionally, SK Geotechnical provided geotechnical services for the adjacent I-90 Yellowstone R - Billings project, and several documents were reviewed for this project. Some of the data is included in Appendix 1, particularly pertinent boring logs performed at the Lockwood Interchange.

B. Reconnaissance and Review of Available Information

B.1. General

Mr. Cory G. Rice, PE, a senior engineer with our firm, and Mr. Dustin P. Hutzenbiler, PE, a geotechnical engineer with our firm, reviewed the topographic and geologic maps of the area and reviewed the project

area during the initial project scoping. An engineering reconnaissance of the alignment was then performed by our personnel. Boring locations and depths were selected at that time. Topsoil survey, culvert inspection, and current pavement conditions were later performed and observed by Mr. Hutzenbiler and Mr. Brandon R. Western, EI, an engineering intern with our firm.

B.2. General Site Conditions and Geology

B.2.a. Geology. A portion of the *Geologic Map of the Billings 30' x 60' Quadrangle, Montana*, by David A. Lopez, prepared by the United States Geological Survey (USGS), 2000, is included in Appendix 1. The geologic map suggests the entire project is situated within the Second Terrace alluvial deposits of the Yellowstone River. Also, the map indicates some colluvium may be present near the eastbound off-ramp at the Lockwood Interchange.

The Second Terrace alluvial deposits are described as having "Gravel underlying terraces about 20 to 40 feet above present elevation of Yellowstone River. Mostly cobbles and pebbles with minor amounts of sand and silt. Clasts are mainly granitic igneous rocks, granitic gneiss, schist, and quartzite, with much less limestone and sandstone. 40 to 60 feet thick."

B.2.b. Topography. The topographic map prepared by USGS indicates the existing PTW generally travels through relatively flat to gently sloping terrain.

B.3. Boring Locations

Table 1 below summarizes the alignment boring locations and gives a brief description of each surrounding area. Photographs of each boring were taken and are included in Appendix 1 of this report. The boring locations are shown on the preliminary plan drawings also included in Appendix 1.

Table	1.	Alignment	Soil	Borings

HDR Engineering, Inc.

Project 19-3792S

Table 1. Alignment Soil Borings									
Boring	Reference Point	Description							
I-90 and Ramp Align	ments								
ST-42	453.2, EB, Left	PTW Boring							
ST-43	453.4, EB, Shoulder	Pavement Shoulder Boring							
ST-44	453.6, EB, Right	PTW Boring							
ST-46	454.0, EB, Shoulder	Pavement Shoulder Boring							
ST-47	454.3, EB, Right	PTW Boring							
ST-48	454.7, EB, Left	PTW Boring							
ST-49	454.8, EB, Shoulder	Pavement Shoulder Boring							
Borings Designated S Activity 130	ST-51, 52, 53, 54 are being reserved for the 6	eastbound lanes to be performed during							
ST-55	453.1, WB, Shoulder	Pavement Shoulder Boring							
ST-56	453.4, WB, Left	PTW Boring							
ST-57	453.7, WB Shoulder	Pavement Shoulder Boring							
ST-58	453.8, WB, Right	PTW Boring							
ST-59	454.1, WB, Left	PTW Boring							
ST-60	454.4, WB, Shoulder	Pavement Shoulder Boring							
ST-61	454.5, WB, Right	PTW Boring							
ST-62	454.9, WB, Left	PTW Boring							
Borings Designated S Activity 130	6T-63, 64, 65, 66 are being reserved for the v	westbound lanes to be performed during							
ST-67	453.5, Median	Off-Road Boring							
ST-68	453.8, Median	Off-Road Boring							
ST-69	454.3, Median	Off-Road Boring							
ST-70	454.8, Median	Off-Road Boring							
ST-71	452.9, EB On-Ramp, Ramp B	Lockwood Interchange PTW Boring							
ST-72	452.9 WB Off-Ramp, Ramp A	Lockwood Interchange PTW Boring							
Old US Highway 87	Alignment								
ST-73	Old US Highway 87 North Approach	PTW Boring							
ST-74	Old US Highway 87 North Approach	PTW Boring							
ST-75	Old US Highway 87 South Approach	PTW Boring							
ST-76	Old US Highway 87 South Approach	PTW Boring							

Boring locations were selected in the office by our personnel during scoping and later staked in the field by Mr. Western and Mr. Eddie K. Coldwell, EI, an engineering intern with our firm. Sanderson Stewart then surveyed the drilled locations and provided us with the locations and elevations of each boring and these locations are shown on the Log of Boring sheets in Appendix 1. We wish to point out that at the time of this report, project stationing has not been finalized. Therefore, project stationing and offset at each boring location will be added as the project progresses.

In addition to these Borings, pertinent borings from the adjacent I-90 Yellowstone R - Billings and Billings Bypass projects were also reviewed. For the I-90 Yellowstone R - Billings project, Borings ST-16 and ST-17 were performed in the eastbound I-90 PTW and Borings ST-32 and ST-33 were performed in the existing westbound PTW. At the Lockwood Interchange, Borings ST-40, ST-138, and ST-140 through ST-142 were performed for Ramp C and Boring ST-41 was performed for Ramp D. Borings ST-206 and ST-207 were performed along US Highway 87 in the eastbound lane southeast of the overpass.

For the Billings Bypass project, DOWL performed several borings near the Johnson Lane Interchange. Borings BH-20, BH-22, BH-29, and BH-30 were performed for the Billings Bypass project in the existing I-90 eastbound and westbound PTW and are included in this report.

B.4. Existing Fill Slopes/Embankments

Along I-90, the existing embankments and side slopes are generally limited to less than about 5 to 10 feet with the exception of the Lockwood Interchange where embankment heights are much taller. Two larger existing embankments were observed along the interchanges, one along the westbound off-ramp, Ramp A, and one along the eastbound on-ramp, Ramp B. The existing sideslopes along Ramp A are currently standing at approximately 2H:1V (Horizontal:Vertical) with some areas appearing to be slightly steeper. During our field reconnaissance, vegetation was relatively thick, which made observations of the existing slopes for any instability difficult to observe. However, signs of slope stability were not readily observed in the fill slopes or on available aerial image. On the south side of Ramp A, two larger erosion channels were observed. One of these channels was created by heavy rains in late June 2020 and extend vertically from the pavement edge just behind the guardrail.

At Ramp B, current sideslopes were generally noted to be 3H:1V, or flatter and appeared stable. Additionally, the vegetation was mowed and the surface more readily observed. Based on the anticipated construction of the new diverging diamond interchange, significant widening of Ramp A will be required to construct the westbound off-ramp approach to US Highway 87. This will likely require the use of retaining walls and/or steeper sideslopes in order to limit the need for additional right-of-way (ROW).

Along Ramps B and D, total reconstruction of the pavement surface is anticipated, to accommodate new lane configurations and improve vertical and horizontal grades.

B.5. Pavement and Soils

Log of Boring sheets indicating the depth and identification of various pavement, soil strata, penetration resistances, laboratory test data, and water level information are included in Appendix 1 and summarized on Form 111. Photographs of borings and features are also included in Appendix 1. It should be noted, the depths shown as boundaries between the strata are only approximate. The actual changes may be transitions, and the depths of changes vary between borings.

B.5.a. Existing Pavement. Along the I-90 eastbound and westbound alignments, the existing plant mix surfacing (PMS) ranged in thickness from about 8 1/4 to 11 1/4 inches. The PMS was generally underlain by existing crushed top surfacing and base/subbase coarse ranging from about 34 1/2 to 60 inches below current grades. Along Ramps A and B, the existing PMS ranged in thickness from 11 to 11 1/2 inches and was underlain by existing base/subbase extending to depths ranging from about 19 to 21 1/2 inches. Along Ramp C and D, the existing PMS ranged in thickness from 10 1/2 to 11 1/4 inches and was underlain by crushed top surfacing and base course to depths of about 3 1/2 feet. Along Old Highway 87 the existing PMS ranged in thickness from 5 1/2 to 7 1/2 inches and was underlain by existing base/subbase extending to depths ranging from about 23 1/4 to 36 inches. Portland cement concrete pavement (PCCP) was also encountered along US Highway 87 near the western limits of the project and consisted of 9 1/2 inches of PCCP over 3 1/2 inches of sand leveling course followed by existing base course to about 4 feet. We wish to point out differentiating between existing base and subbase materials could not be clearly identified in all of the borings as the materials are fairly similar.

B.5.b. Existing Pavement Condition. We observed the existing pavement condition along the eastbound and westbound lanes of I-90, Ramps A and B at the Lockwood Interchange and US Highway 87. Along the eastbound lane of I-90, we judged the existing pavement to generally be in good condition with rutting generally noted to be less than 1/4-inch, and transverse cracking generally noted to be on about 75- to 150-foot centers. However, in some isolated areas the transverse cracking was observed at a closer spacing of about 25- to 50-foot centers. The majority of the transverse cracks were also noted to only extend partially into the eastbound lanes from the shoulder. It appears that a recent chip seal may have covered the original cracks and/or reflection cracking from the underlying PMS is beginning to reflect through.

Along the I-90 westbound lanes, rut depths were generally noted to be less than 1/4-inch. Transverse cracking was generally more frequent than the eastbound lanes and was observed on about 50- to 100-foot centers with some isolated areas noted to be 25- to 50-foot centers. Minor longitudinal cracking was also observed and was primarily isolated to the transitions from the interstate to the ramps at Johnson Lane Interchange. It appears that the longitudinal cracks are predominantly associated with past overlay projects at the longitudinal joints from the overlay ribbons. We judged the westbound lanes to generally be in good condition with some areas of fair condition.

We also observed the pavement conditions at Ramp A and B for the project. Along Ramp A, transverse cracks were observed on 25- to 50-foot centers and rut depths were generally noted to be less than 1/4-inch. Crack widths were generally observed to be between 1/4- and 1 inch and some were crack sealed. We judged Ramp A to be in generally fair to good condition. Along Ramp B, transverse cracks were observed on 30- to 60-foot centers and rut depths were generally observed to be less than 1/4-inch. Crack widths were generally less than about 3/4-inch. We judged the pavement condition at Ramp B to also be in primarily fair to good condition.

We also observed the pavement condition along US Highway 87. The surface of US Highway 87 within the project limits was recently improved northwest of the bridge with a 0.20-foot mill and fill and southwest of the bridge with a seal and cover as part of the West Billings Interchange – Pine Hills Interchange project completed in 2018/2019. We judged the existing pavement along US Highway 87 to be in generally good condition at the surface, but frequent transverse and longitudinal cracks were beginning to reflect through to the surface southwest of the bridge. Also, a few minor patches and potholes were observed. Based on the observed pavement distress, the condition of the recovered core samples and stripping analysis, we judged the deeper pavement to generally be in poor to fair condition with extensive cracking likely present between the east bridge end and Coburn Road. Between the north bridge end and the intersection of the I-90 Frontage Road, the pavement was judged to be in good condition. Additionally, PCCP is present from the intersection of I-90 Frontage Road to the end of the project. The PCCP is judged to be in good condition, however surface wearing of the traction grooves was readily observed in wheel paths.

B.5.c. Soils Beneath Existing Pavement. Beneath the existing pavement section at the 26 borings performed for this project along the main lines, center median, shoulders, and ramps, and the relevant borings from the I-90 Yellowstone – R and Billings Bypass projects, the general soil profile encountered was primarily fine-grained sandy lean clay, lean clay with sand, and clayey sand. Of the 26 borings performed, 20 of the borings had subgrade soils classifying as A-6 or A-7 soils. The remaining borings classified as A-2 or A-1 over A-2 soils. These soils were encountered at isolated locations along the alignment, however. Additionally, of the most relevant borings from nearby projects, the subgrade soils were all classified as A-6 or A-7 soils. The subgrade soils beneath the pavement section along I-90 were generally found to be moist to wet and ranged from about 3 percent below optimum to 11 percent over optimum moisture content, but were primarily found to be wet and 3 to 7 percent over optimum. Additionally, liquidity indexes ranged from -1.2 to 0.38, indicating there is a higher risk of subgrade failure during total reconstruction. Table 2 contains a more detailed summary of the subgrade conditions encountered at the PTW boring locations. This table has assisted us in evaluating subgrade conditions anticipated along the alignment for total reconstruction and whether or not subgrade stabilization is recommended.

Table 2. Existing P	TW Pavement	and Anticipate	d Subgrade Co	nditions – 1-90	PTW			
Boring	ST-42	ST-43	ST-44	ST-45	ST-46	ST-47	ST-48	ST-49
Location	I-90E, Passing Lane	I-90E, Shoulder	I-90E, Driving Lane	I-90E, Passing Lane	I-90E, Shoulder	I-90E, Driving Lane	I-90E, Passing Lane	I-90E, Shoulder
Date Drilled	5/5/20	5/4/20	5/4/20	5/6/20	5/5/20	5/5/20	5/6/20	5/5/20
Station, Offset	Not Available	Not Available	Not Available	Not Available	Not Available	Not Available	Not Available	Not Available
Existing PMS	0.9' (10½")	0.6' (7½")	0.7' (8¾")	0.9' (101/2")	0.8' (9")	0.9' (10½")	0.7' (8½")	0.7' (81/4")
Existing Top Surfacing	0.1'(13/4")	0.2' (1½")		0.1' (1½")		0.1'(1")	0.2' (2")	0.1' (1½")
Existing Base/Subbase	4.2'	2.7'	3.1'	3.0'	3.0'	3.5'	3.2'	3.2'
Total Thickness	5.2'	3.5'	3.8'	4.0'	3.8'	4.5'	4.1'	4.0'
Subgrade ⁽¹⁾								
Description	Sandy Lean Clay/Clayey Sand	Sandy Lean Clay/Clayey Sand	Fill: Clayey Sand with Gravel/Fill: Lean Clay with Sand	Fill: Sandy Lean Clay/Lean Clay	Fill: Sandy Lean Clay/Lean Clay with Sand	Fill: Lean Clay with Sand/Lean Clay	Fill: Lean Clay with Sand/Sandy Lean Clay	Sandy Lean Clay/Clayey Sand
ASTM Class	CL/SC	CL/SC	SC/CL	CL	CL	CL	CL	CL/SC
AASHTO Class	A-6	A-6	A-2/A-6	A-6	A-6	A-6	A-6	A-6/A-2
N-Values	26/5,4	30, 14/4	12/10	11/10	13/7	14, 10	8, 13	10/4
Consistency	Very Stiff/Loose	Very Stiff to Stiff/Loose	Medium Dense/Stiff	Stiff	Stiff/Medium Stiff	Stiff	Medium Stiff/Stiff	Stiff/Loose
Moisture Content	11%, 12%	16%, 11%	13%, 16%	16%, 15%	19%, 22%	20%, 21%	20%, 16%	19%, 14%
Optimum Moisture Content (Approximate)	13%	13%	11%	15%	11%	14%	18%	14%
Liquidity Index		0.06	0.21	0.04	0.38	0.35	-0.01	0.11
Risk of Subgrade Failure During Total Reconstruction	Low	Low	Moderate	Low	High	High	Low	Moderate

⁽¹⁾ Anticipated subgrade at a depth of about 2 to 3 feet below existing pavement surface/topsoil.

Table 2. Existing PTW Pavement and Anticipated Subgrade Conditions – I-90 PTW Continued.

Table 2. Existing PTW Pavement and Anticipated Subgrade Conditions – 1-90 PTW Continued.									
Boring	ST-55	ST-56	ST-57	ST-58	ST-59	ST-60	ST-61	ST-62	
Location	I-90W, Shoulder	I-90W, Passing Lane	I-90W, Shoulder	I-90W, Driving Lane	I-90W, Passing Lane	I-90W, Shoulder	I-90W, Driving Lane	I-90W, Passing Lane	
Date Drilled	5/8/20	5/11/20	5/8/20	5/8/20	5/11/20	5/8/20	5/8/20	5/11/20	
Station, Offset	Not Available	Not Available	Not Available	Not Available	Not Available	Not Available	Not Available	Not Available	
Existing PMS	0.9' (1114")	0.7' (8½")	0.7' (81/4")	0.7' (8½")	0.7' (8½")	0.7' (91/4")	0.8' (10")	0.7' (8½")	
Existing Top Surfacing		0.1' (1½")	0.2' (1¾")	0.2' (1¾")	0.1'(1")	0.14' (1")	0.2' (1½")	0.1' (1½")	
Existing Base/Subbase	3.1'	3.3'	3.2'	3.3'	3.7'	3.2'	3.3'	3.2'	
Total Thickness	4.0'	4.1'	4.0'	4.2'	4.5'	4.0'	4.3'	4.0'	
Subgrade ⁽¹⁾									
Description	Fill: Poorly Graded Gravel with Silt and Clay	Clayey Sand	Fill: Sandy Lean Clay	Fill: Sandy Lean Clay/Sandy Lean Clay	Fill: Sandy Lean Clay/Fill: Clayey Sand	Fill: Sandy Lean Clay/Clayey Sand	Fill: Sandy Lean Clay	Fill: Lean Clay with Sand /Clayey Sand	
ASTM Class	GP-GC	SC	CL	CL	CL/SC	CL/SC	CL	CL/SC	
AASHTO Class	A-1	A-6	A-6	A-6	A-6/A-2	A-6/A-2	A-6	A-6/A-2	
N-Values	26, 6	14, 5	13, 10	9/17	23/18	7/15	10	8/6	
Consistency	Medium Dense to Loose	Medium Dense to Loose	Stiff	Stiff/Very Stiff	Very Stiff/Medium Dense	Medium Stiff/Medium Dense	Stiff	Medium Stiff/Loose	
Moisture Content	6%, 13%	15%, 18%	17%, 20%	21%, 17%	17%, 11%	3%, 21%	15%, 20%	23%, 19%	
Optimum Moisture Content (Approximate)	6%	13%	15%	14%	13%	16%	13%	19%	
Liquidity Index		0.30	0.16	0.34	0.21	0.12	0.12	0.22	
Risk of Subgrade Failure During Total Reconstruction	Low	Moderate	Moderate	High	Moderate	Moderate	Moderate	Moderate	

HDR Engineering, Inc.
Project 19-3792S July 27, 2020 Page 10

Table 2 Existing PTW Pa rada Canditions I-00 PTW Cantin

Table 2. Existing PTW Pavement and Anticipated Subgrade Conditions – I-90 PTW Continued.									
Boring	ST-16 ⁽²⁾	ST-17 ⁽²⁾	ST-32 ⁽²⁾	ST-33 ⁽²⁾	BH-20 (3)	BH-22 ⁽³⁾	BH-29 ⁽³⁾	BH-30 ⁽³⁾	
Location	I-90 EB	I-90 EB	I-90 WB	I-90 WB	I-90E, Driving Lane	I-90E, Diving Lane	I-90E, Passing Lane	I-90W, Diving Lane	
Date Drilled	4/7/16	4/8/16	4/11/16	4/11/16	6/28/16	6/20/16	5/17/16	5/20/16	
Station, Offset	N/A	N/A	N/A	N/A	Not Available	Not Available	Not Available	Not Available	
Existing PMS	0.8' (9½")	0.9' (101/4")	0.8' (91/4")	0.8' (91/4")	0.8' (10")	0.9' (11")	0.9' (10½")	0.9' (10½")	
Existing Base/Subbase	3.2'	1.6'	3.2'	3.2'	4.2'	3.6'	3.1'	3.1'	
Total Thickness	4.0'	2.5'	4.0'	4.0'	5.0'	4.5'	4.0'	4.0'	
Description	Sandy Lean Clay, Weathered Sandstone	Fill: Clayey Sand with Gravel	Clayey Sand, Weathered Sandstone	Fill: Clayey Sand with Gravel	Sandy Lean Clay	Lean Clay	Sandy Lean Clay	Sandy Lean Clay	
ASTM Class	CL/Sandstone	SC	SC/Sandstone	SC	CL	CL	CL	CL	
AASHTO Class	A-6	A-2	A-2	A-4	A-6	A-6	A-6	A-6	
N-Values	50+	52, 27	32, 50+	9, 6	31, 18	8, 11	9, 18	19	
Consistency	Hard	Medium Dense to Very Dense	Dense to Very Dense	Loose	Hard to Very Stiff	Medium Stiff to Stiff	Stiff to Very Stiff	Very Stiff	
Moisture Content	9%, 7%	9%, 7%	9%	11%, 7%	4%, 18%	22%, 19%	17%, 20%	12%, 16%	
Optimum Moisture Content (Approximate)	11%	6%	7%	9%	14%	15%	14%	14%	
Liquidity Index	-0.50	-0.44	-0.36	-0.25		0.21	-0.04	-0.07	
Risk of Subgrade Failure During Total Reconstruction	Low	Low	Low	Low	Low	Low	Low	Low	

⁽i) Anticipated subgrade at a depth of about 2 to 3 feet below existing pavement surface/topsoil.
(ii) Borings performed by SK Geotechnical for I-90 Yellowstone R - Billings project.
(iii) Borings performed by Dowl for Billings Bypass project.

B.5.d. Soils Outside PTW – Median. Borings ST-67 through ST-70 were performed in the existing median between the eastbound and westbound lanes. The anticipated subgrade conditions are summarized in Table 3 below.

Table 3. Anticipated Subgrade Conditions – I-90 Median

Table 5. Anticipated Sub	grade Conditions –	1-90 Median		
Boring	ST-67	ST-68	ST-69	ST-70
Date Drilled	5/6/2020	5/6/2020	5/11/2020	5/11/2020
Existing PMS	N/A	N/A	N/A	N/A
Existing Base/Subbase	N/A	N/A	N/A	N/A
Total Thickness	N/A	N/A	N/A	N/A
Subgrade(1)				
Description	Fill: Poorly Graded Gravel with Silt and Sand/Sandy Lean Clay	Fill: Poorly Graded Gravel with Silt and Sand/Fill: Sandy Lean Clay	Fill: Clayey Gravel with Sand	Fill: Sandy Lean Clay
ASTM Class	GP-GM/CL	GP-GM/CL	GC	CL
AASHTO Class	A-1/A-6	A-1/A-6	A-2	A-6
N-Values	10, 12	18, 10	18, 12	8, 9
Consistency	Loose/Stiff	Medium Dense/Stiff	Medium Dense	Medium Stiff to Stiff
Moisture Content	6%, 20%	9%, 22%	5%, 23%	9%, 21%
Optimum Moisture Content	15%	16%	16%	15%
Liquidity Index	0.14	0.34	0.09	0.11
Risk of Subgrade Failure During Total Reconstruction	Moderate	High	Moderate	Moderate

B.5.e. Soils Outside Main Line PTW – Lockwood Interchange Ramps. Boring ST-40 was performed along Ramp C. The boring encountered 11 1/4 inches of existing PMS underlain by crushed top surfacing and base course to a depth of about 3 1/2 feet. Sandy lean clay was then encountered to a depth of 8 1/2 feet followed by shale bedrock to the boring termination depth of 9.8 feet. The clays were considered hard and 3 to 6 points below optimum moisture content.

Boring ST-41 was performed along Ramp D. The boring encountered 10 1/2 inches of existing PMS underlain by crushed top surfacing and base course to a depth of about 3 1/2 feet. Clayey sand with gravel was then encountered to a depth of 6 feet followed by weathered sandstone bedrock to the boring termination depth of 9.3 feet. The clayey sand with gravel was judged to be medium dense and was 2 to 6 points above optimum moisture content.

Boring ST-71 was performed along Ramp B. The boring encountered 11 inches of existing PMS underlain by base/subbase coarse to a depth of about 2 1/2 feet. Mixed layers of existing fill consisting of clayey gravel with sand and clayey sand was then encountered to the boring termination depth of 10 1/2 feet. The clayey gravel with sand and clayey sand fill was judged to be medium dense and was about 5 points under to 7 points over optimum moisture content.

Boring ST-72 was performed along Ramp A. The boring encountered 11 1/2 inches of existing PMS underlain by existing base/subbase coarse to a depth of 3 feet. Sandy lean clay and clayey sand with gravel fill was then encountered to the boring termination depth of 10 1/2 feet. The existing sandy lean clay fill was judged to be stiff and the clayey sand with gravel fill was judged to be medium dense. These soils were estimated to be about 2 points under to 5 points over optimum moisture content.

The results of the borings performed for the Lockwood Interchange are summarized in Table 4 below.

Table 4. Existing Pavement and Anticipated Subgrade Conditions -Lockwood Interchange Ramps

Table 4. Existing I avenient and Anticipated Subgrade Conditions –Lockwood Interchange Ramps								
Boring	ST-40 ⁽¹⁾	ST-41 ⁽¹⁾	ST-71	ST-72				
Date Drilled	4/21/16	4/21/16	5/4/2020	5/12/2020				
Ramp	Ramp C	Ramp D	Ramp B	Ramp A				
Existing PMS	0.9' (11¾")	0.9' (10½")	0.9' (11")	1.0' (11½")				
Existing Base/Subbase	2.6'	2.4'	1.6'	1.8'				
Total Thickness	3.5'	3.3'	2.5'	2.8'				
Subgrade ⁽¹⁾								
Description	Sandy Lean Clay	Clayey Sand with Gravel	Fill: Clayey Gravel with Sand/Fill: Clayey Sand	Fill: Sandy Lean Clay/Clayey Sand with Gravel				
ASTM Class	CL	SC	GC/SC	CL/SC				
AASHTO Class	A-6	A-6	A-6/A-2	A-1/A-6				
N-Values	67, 47	18	25, 30, 20	12, 18				
Consistency	Hard	Medium Dense	Medium Dense	Stiff/Medium Dense				
Moisture Content	13%, 10%	15%, 11%	3%, 15%	18%, 11%				
Approximate Optimum Moisture Content	16%	9%	8%	13%				
Liquidity Index	0.05	0.17	-1.19	-0.23				
Risk of Subgrade Failure During Total Reconstruction	Low	Moderate	Low	Low				

Note: Risk of subgrade failure in clay soils is highly dependent on weather and construction practices. Risk evaluated based on assumption of best construction practices during inclement weather.

(1)Borings performed by SK Geotechnical for I-90 Yellowstone R - Billings Project.

B.5.f. US Highway 87. Borings ST-73 through ST-76 and ST-206 and ST-207 were performed along US Highway 87. Borings ST-75, ST-76, ST-206, and ST-207 were performed east of the existing bridge and Borings ST-73 and ST-74 were performed west of the existing bridge. The borings east of the bridge encountered 5 1/2 to 7 inches of existing PMS underlain by base/subbase course to depths ranging from about 2 1/2 to 3 feet. Beneath the pavement sections, primarily existing fill classifying as A-6 soils consisting of sandy lean clay and clayey sand was encountered. The clayey soils were generally found to be loose to medium dense and medium stiff to very stiff. The soils were considered moist and ranged from about 1 to 3 points above optimum.

West of the bridge to the intersection of the I-90 Frontage Road, Boring ST-74 encountered 7 1/2 inches of existing PMS underlain by base/subbase course to a depth of about 3 feet. Beneath the base/subbase, the boring encountered an existing clayey sand fill subgrade. The clayey sand was found to be medium dense, moist, and about 1 to 3 points above optimum. Boring ST-73 was performed west of the I-90 Frontage Road intersection. The boring encountered 9 1/2 inches of PCCP underlain by base/subbase course to a depth of about 4 feet. Beneath the base/subbase, sandy lean clay and clayey gravel fill was encountered in the subgrade. The subgrade was found to be stiff and medium dense, moist, and 2 to 5 points above optimum. The anticipated subgrade conditions for US Highway 87 are summarized in Table 5 below.

Table 5. Existing Pavement and Anticipated Subgrade Conditions - US Highway 87

Table 5. Existing Pavement and Anticipated Subgrade Conditions – US Highway 87									
Boring	ST-73	ST-74	ST-75	ST-76	ST-206 ⁽¹⁾	ST-207 ⁽¹⁾			
Date Drilled	5/12/20	5/12/20	5/13/20	5/12/2020	9/9/19	9//19			
	Hwy 87W, Driving Lane	Hwy 87W, Passing Lane	Hwy 87W, Driving Lane	Ramp A	Hwy 87E, Driving Lane	Hwy 87E, Driving Lane			
Existing PMS	0.8' (9½") PCCP	0.6' (7½")	0.6' (6¾")	0.6' (6¾")	0.6' (7")	0.5' (5½")			
Existing Base/Subbase	3.2'	2.4'	3.4'	4.4'	2.3'	2.5'			
Total Thickness	4.0'	3.0'	4.0'	5.0'	2.9'	3.0'			
Subgrade ⁽¹⁾									
Description	Fill: Sandy Lean Clay over Clayey Gravel	Fill: Clayey Sand	Fill: Sandy Lean Clay	Fill: Sandy Lean Clay/Clayey Sand with Gravel	Fill: Sandy Lean Clay	Fill: Clayey Sand			
ASTM Class	GP-GM/CL	SC	CL	CL/SC	CL	SC			
AASHTO Class	A-1/A-6	A-6	A-6	A-1/A-6	A-6	A-6			
N-Values	8, 12	22, 28	6, 16	12, 18	9, 14	26, 7			
Consistency	Loose/Stiff	Medium Dense	Medium Stiff to Very Stiff	Stiff/Medium Dense	Medium Stiff to Stiff	Medium Dense to Loose			
Moisture Content	11%	14%, 18%	11%, 15%	18%, 11%	4%, 11%	13%, 10%			
Approximate Optimum Moisture Content	13%	15%	14%	13%	15%	13%			
Liquidity Index	0.0	-0.07	-0.29	-0.29	-0.57	0.0			
Risk of Subgrade Failure During Total Reconstruction	Low	Low	Low	Low	Low	Low			

Note: Risk of subgrade failure in clay soils is highly dependent on weather and construction practices. Risk evaluated based on assumption of best construction practices during inclement weather.

(1)Borings performed for I-90 Yellowstone R - Billings Project

B.6. Drainage

Surface water drainage off the existing PTW appears to be moderate to good. The surface water is generally accommodated by ditches on the outside of the existing PTW. In the median, surface water is generally carried down the median to drop inlets along the alignment, then discharged outside the existing PTW.

B.7. Groundwater Observations

Groundwater was not encountered in any of the borings at the time of our evaluation. It appears groundwater levels are beyond the termination depths of our borings.

C. Laboratory Soil Survey Property Tests

C.1. Results

The results of the laboratory tests for the project are shown on Form 111 and Summary of Soil Index Test Results in Appendix 2. As can be seen in Form 111, 24 representative subgrade samples were classified for the project. Below is a brief summary of these classifications.

- Twenty-one soil samples classified as A-6 clay soils,
- One soil sample classified as A-7-6 clay soils,
- One soil sample classified as A-2-4 silty sand,
- One soil sample classified as A-1-b poorly graded gravel with silt and sand.

In addition to the classification tests, Proctor (standard and modified), moisture content, and specific gravity tests were performed on 24 of these samples. The results of these tests are also shown on the attached Form 111 and Summary of Soil Index Test Results in Appendix 2. The moisture content tests, classification tests, and Proctor results are also indicated on the Log of Boring sheets included in Appendix 1.

C.2. Procedures

Laboratory tests were conducted in accordance with the MDT procedures outlined in the *Montana Materials Manual of Test Procedures* and AASHTO procedures. The test methods are outlined in Table 6 below.

Table 6. Summary of Test Procedures

Test	Procedure
Moisture Contents	MDT MT-218*
Atterberg Limits	MDT MT-208*
Sieve Analysis	MDT MT-202*
Specific Gravity	MDT MT-205*
Proctors	MDT MT-210 and MT-230*
Corrosion	MT 232–16 and MT 532-16
California Bearing Ratio	ASTM D 1883*
Asphalt Core Stripping Analysis	MDT MT-331-14

^{*} SK Geotechnical has AASHTO or equivalent ASTM accreditation for these tests.

D. Culverts and Corrosion Samples

D.1. Culvert Inspection

Twenty-four culverts were inspected along the existing PTW between the Lockwood and Johnson Lane interchanges. The results of our culvert inspection are summarized on the Culvert Inspection Report in Appendix 3. Thirteen of the culverts were judged to be in good condition, three were judged to be in fair to good condition, four were judged to be in fair condition, three were judged to be in fair to poor condition, and one was judged to be in good to poor condition. We wish to point out that the inlet at culvert C18 at mile post 454.29 could not be located during our reconnaissance.

D.2. Corrosion Tests

D.2.a. Sampling. Twenty-four soil samples and six water sample were obtained during our field reconnaissance for corrosion testing. The results of the corrosion tests are summarized in the tables below and included in Appendix 3.

Table 7. Corrosion Test Results from Culvert Water Sample

Culvert	Reference Point	Resistivity (Ω•cm)	Conductivity (m.mhos/cm) MT 232-16 Probe	pН	Marble pH	Sulfate (wt/%)
C6	453.54	575	1.74	7.94	8.02	0.0131
C11	455.25	1,000	1.00	6.55	6.63	0.0012
C12	455.27	983	1.017	6.92	7.36	0.0013
C13	455.25	578	1.73	7.37	7.45	0.0026
C14	455.23	1,064	0.940	6.90	6.97	0.0011
C16	455.25	592	1.690	6.25	6.41	0.0024

Table 8. Corrosion Test Results from Culvert Soil Samples

		Calculated	Conductivity			C16-4-
Culvert	Reference Point	Resistivity (Ω•cm)	(m.mhos/cm) MT 232-16 Probe	pН	Marble pH	Sulfate (%)
C1	452.84	1,047	0.955	8.01	8.25	0.0035
C2	452.91	4,878	0.205	8.30	8.63	0.0020
СЗ	453.36	4,348	0.230	8.30	8.69	0.0027
C4	453.53	4,034	0.248	8.02	8.61	0.0026
C5	453.55	2,740	0.365	8.59	8.59	0.0028
C6	453.55	4,405	0.227	8.29	8.66	0.0076
C7	453.77	3,597	0.278	8.20	8.33	0.0052
C8	454.15	2,667	0.375	8.23	8.43	0.0038
C9	454.75	7,519	0.133	8.33	8.81	0.0031
C10	454.75	4,132	0.242	8.05	8.63	0.0032
C11	455.27	2,304	0.434	8.48	8.58	0.0050
C12	455.27	1,241	0.806	7.94	8.52	0.0585
C13	455.26	2,315	0.432	7.97	8.86	0.0068
C14	455.23	3,356	0.298	7.98	8.85	0.0016
C15	455.29	5,236	0.191	7.89	8.55	0.0012
C16	455.29	3,953	0.253	7.86	8.78	0.0014
C17	454.73	4,695	0.213	8.19	8.56	0.0074
C18	454.29	3,704	0.270	8.07	8.42	0.0038
C19	453.55	3,086	0.324	8.12	8.26	0.0039
C20	453.21	5,319	0.188	8.32	8.42	0.0022
C21	452.92	8,264	0.121	8.15	8.65	0.0015
C22	452.83	9,009	0.111	8.08	8.70	0.0022
C24	454.39	14,493	0.069	8.24	8.66	0.0019
C25	455.94	9,901	0.101	8.61	9.00	0.0018

Note: Culvert C23 skipped due to renumbering.

D.2.b. Test Procedures. The corrosion tests performed on the soil samples were performed in accordance with MDT 232-16 Soil Corrosion Test Procedures. The sulfate tests were performed in accordance with MDT 532-16 procedures. The corrosion tests consist of pH, marble pH, conductivity, and sulfate. The resistivity is calculated based on the results of the conductivity tests. The sulfate tests were performed by Energy Laboratories of Billings.

D.3. Culvert Recommendations

We reviewed Appendix E – Culvert Service Life Guidelines of Chapter 9 of the AASHTO Model Drainage Manual adopted by MDT's hydraulics section. We reviewed the culvert corrosion test results from the soil and water samples recovered from the culvert inspections. In general, the results of the corrosion tests performed on the soil samples indicate the soils are moderately corrosive to steel pipe and are generally not corrosive to Type II Aluminized steel, aluminum, or reinforced concrete pipes.

The results of the corrosion tests performed on the recovered water samples indicate the water is corrosive to steel, Type II aluminized steel, and aluminum but were not corrosive to concrete. Even so, the two culverts within the project limits found to have water were culverts C6 and C13. Both of these culverts were 90-inch diameter corrugated metal pipe. Assuming both pipes are galvanized steel with an original wall thickness of 0.079 inches (minimum for that pipe size), we estimate the original service life to be about 52 years, if subjected to this corrosive water for its entire life. During our observations we only observed minor amounts of surface corrosion on the inside of the culvert. Since the water observed was stormwater, the culvert is only periodically exposed to the water and appears to only have had a small effect on the pipe. We wish to point out that we were not able to observe the entire culvert and more extensive corrosion could be present within the culvert.

Additionally, the tests suggest the corrosivity of the soils increased around the Johnson Lane Interchange. Therefore, for new culverts, it is our opinion the following can be used:

- Steel with approved bituminous or polymeric coating
- Type II aluminized steel or aluminum,
- Or Class B wall reinforced concrete pipe (RCP).

E. Topsoil Survey

E.1. Field Procedures

The topsoil survey was performed by Mr. Western and Mr. Cody C. Hopkins, EI, an engineer intern with our firm, during the engineering reconnaissance. The topsoil survey consisted of performing shallow test holes at intervals of about 500 to 1,000 feet along the proposed alignments to measure the topsoil thickness. After completion of the field measurements, the measurements were plotted on a topsoil survey map included in Appendix 3.

E.2. Results

The thickness of the topsoil along the alignment ranged from about 4 1/2 to 10 inches but primarily ranged from about 5 to 7 inches. It is currently planned to perform the I-90 widening completely within

the existing median between the eastbound and westbound lanes and only minimal, if any, work will be done on the outside shoulders and slopes. In the median between the eastbound and westbound lanes, the average topsoil thickness was about 6 1/4 inches. Based on Alternative I-1, approximately 12,100 feet of the median will be reconstructed to accommodate the future widening. Additionally, Google Earth indicates that the median is approximately 39 feet in width. Therefore, assuming a total width of 39 feet, a length of 12,100 feet and an average topsoil thickness of 6 1/4 inches, we estimate about 9,100 cubic yards of topsoil will need to be stripped along the alignment. However, similar to the adjacent I-90 Yellowstone – R project, this topsoil is likely not good topsoil and contains excessive refuse and other unsuitable materials. Therefore, we recommend all topsoil be wasted for the project. If topsoil is needed along the project, we recommend a clean source of topsoil be imported for all areas of the project. During the Activity 130 work when the alignment and construction limits are defined, we will reevaluate our topsoil survey estimates.

F. Geotechnical Recommendations

F.1. General

Design of the project is still in the OT phase and is still very preliminary. However, based on the anticipated construction, we anticipate the majority of the earthwork will consist of stripping the topsoil and root zone from the median and some sideslopes, down to native subgrade or existing embankment fill, importing and placing embankment material in widened areas, and importing Special Borrow for roadway sections. At this time, it is planned the new interchange improvements will utilize the existing bridge, with some minor modifications to the bridge anticipated. Evaluation of the suitability of the existing bride to support the proposed project is still being conducted.

F.2. Cut Slopes

Based on the Diverging Diamond Interchange Alternative, we anticipate the proposed Ramp C widening will require cutting into the existing cut slopes south of Ramp C. For cut slopes within the ramps, we generally recommend following the Montana Department of Transportation Geometric Design Standards of the Montana Road Design Manual, Figure 12-2 for National Highway System - Interstate. The standard cut slopes for freeways and level/rolling terrain should be used for the project. Our recommended cut slopes are in Table 9 below.

	Table 9.	Recommended	Cut Slor	es for	Interstates –	Level/Rolling	Terrain
--	----------	-------------	----------	--------	---------------	---------------	---------

Cut Depth (feet)	Slope (Horizontal:Vertical)
0'-5'	5:1
5'-10'	4:1
10'-15'	3:1
>15'	2:1

As part of the I-90 Yellowstone R - Billings Project, we evaluated cut slopes for global stability for Ramp C. Based on our analysis, it is our opinion cut slopes up to 2H:1V can be constructed along Ramp C to limit ROW. Our analysis indicates a 2H:1V cut slope will provide a minimum factor of safety of 1.3 for long term and short term performance. We also evaluated several retaining wall alternatives. Based on our and Sanderson Stewart's analysis, a gravity block wall system was determined to be the preferred retaining wall system at this location, if a wall was needed.

The planned improvements to Ramp C have not been fully defined to date due to the planned improvements of Ramp C for the adjacent I-90 Yellowstone – R project. The improvements to Ramp C will generally be developed depending on the needs of either the I-90 Yellowstone River project or the Lockwood Interchange project, whichever has the greater need. This will be evaluated further as design progresses.

F.3. Fill Slopes.

Fill slopes of the largest heights will generally be constructed around the Lockwood Interchange approaches and ramp embankments. Outside of the interchange areas, embankment heights will generally be less than about 5 to 10 feet. Fill slopes should meet the requirements of Figure 12-2 of Chapter 12 of the Road Design Manual for Urban Freeways. We anticipate retaining walls or steeper slopes will be needed to limit ROW acquisition and/or stay within current ROW limits at the larger fill areas around the interchange.

We anticipate widened embankments constructed of A-1-a Special Borrow can likely be constructed as steep as 2H:1V. After the project is better defined and cross sections become available, specific global stability analysis will need to be performed to determine if 2H:1V side slopes will be stable and will provide adequate factors of safety. We recommend fill slopes not exceed 2H:1V for maintenance, erosion, stability, and safety considerations. If slope steeper than 2H:1V are desired to limit ROW, geosynthetic reinforced soil slopes or retaining walls will be required. The type and extent of reinforcement will be determined in our Activity 130 when the project is better defined and cross sections become available.

F.4. Embankment Settlement and Stabilization.

Widened embankments with the largest heights will generally be constructed along Ramp A with the largest heights being near the intersection of Ramp A and US Highway 87. We estimate widened embankment heights in this area will be up to 25 feet. Soils encountered along the alignment were primarily clayey and sandy soils and were generally found to be loose to medium dense. The soil borings shown in the as-built information for the existing bridge indicate that from the base of the embankment, primarily loose clayey sands exist to about 20 feet, underlain by medium dense sands and gravels to about 30 feet. Beneath the gravels, sandstone bedrock is indicated.

We estimate settlements under the planned widened embankment for Ramp A will be approximately 4 to 6 inches. Since the clayey sands are generally not saturated, we anticipate the soils will drain relatively rapidly, and it is our opinion the majority of the settlement will occur during construction of the widened embankments and surcharging will likely not be required.

Since the subgrade in the median will be primarily clays and clayey sands, it is our opinion the subgrade can quickly become unstable if subjected to heavy rubber-tired construction equipment. Therefore, we recommend placing a stabilization geotextile beneath the Special Borrow layer. This will also reduce future fines contamination of the Special Borrow from long term traffic and the clayey subgrade. A Special Provision for moisture sensitive subgrades should also be included.

F.5. Shrinkage.

Fill areas along the project are relatively limited and are primarily anticipated at the ramp improvements at the intersections of the ramps and US Highway 87. We recommend all embankments be constructed using Special Borrow as we anticipate steeper slopes to limit ROW acquisition and encroachment will be desired. We anticipate shrinkage of imported Special Borrow will be near 10 to 20 percent. We therefore recommend assuming 15 percent shrinkage for the project from the "bank condition" to the "compacted embankment condition" for Special Borrow.

G. Pavement Thickness Design

G.1. Traffic Data

A Traffic Memorandum was provided to HDR from MDT for the project and is included in Appendix 4. Table 10 summarizes the design traffic data provided in the memorandum from MDT dated February 18, 2020.

Table 10. Summary of MDT Design Traffic Memorandum

Segment	Equivalent Single Axle Load (ESAL's) (per day)
I-90 EB and WB	1,305
Ramp A	154
Ramp B	153
Ramp C	265
Ramp D	270
Old US Highway 87 East of Frontage Road	292
Old US Highway 87 West of Frontage Road	269
Frontage Road	219
Old US Highway 87 Between Ramps	277
Old US Highway 87 Between I-90 and Coburn Road	182
Coburn Road South of Old US Highway 87	52

Due to the similar traffic volumes for Ramps A and B, Ramps C and D, US Highway 87, and I-90, one ESAL value for each of these segments was used to simplify design. Table 11 summarizes the design traffic data used to develop typical sections for each segment for the project.

Table 11. Summary of Design ESAL's

Segment	Design ESAL's
I-90	1,305
Ramps A and B	154
Ramps C and D	270
US Highway 87	292

Also, we request these values be reviewed as they are substantially lower than the design values provided for the I-90 Yellowstone - R Project.

G.2. Method

The pavement design was analyzed using the software DARWin® and an Excel spreadsheet created by MDT based on the AASHTO 1993 *Pavement Design Manual* and the results of our analyses are attached. We also incorporated MDT's Pavement Design Manual, dated 2018, for material thicknesses, bridge end pavements, and surfacing coefficients. We also submitted a preliminary pavement design memo dated

June 2, 2020, for review and comment by MDT Surfacing Design. The results of our analyses are included in Appendix 4 and are discussed in further detail below.

G.3. Design R-Value

Twenty-six soil borings were performed along the project as previously discussed. Each of the borings encountered similar subgrade material consisting primarily of lean clay, sandy lean clay, and clayey sand. Of the 26 borings performed, only two subgrades classified as something other than A-6 or A-7 soils. Therefore, we have assumed the entire project to haveA-6 or A-7 subgrade soils. MDT's Pavement Design Manual indicates an R-value of 5 can be assumed for soils classifying as A-6 or A-7. The Pavement Design Manual also indicates a resilient modulus (M_R) of 3,250 pounds per square inch (psi) can be assumed for design. For sections incorporating 2 feet, or more, of Special Borrow below the crushed aggregate course (CAC), and M_R of 12,000 psi was used for the subgrade strength. We have assumed existing and future Special Borrow will have a minimum R-value of 30.

G.4. Pavement Design Alternatives

G.4.a. Main Line. It is currently anticipated that the widening of the I-90 eastbound and westbound lanes will be entirely accommodated by widening into the existing center median. To provide a better pavement section, simplify construction, and to better match existing pavement sections along the main line, we recommend the 2.00-foot Special Borrow section in the median be used for the project. It is our opinion the 2.00-foot Special Borrow section will better bridge over the clay subgrade and provide a better performing pavement section over the long term. A thinner CAC section was also analyzed for comparison. Table 12 below summarizes the pavement section alternatives for the median widening as well as total reconstruction areas for the project.

Table 12. Summary of Pavement Sections – I-90 Eastbound and Westbound Widened and Reconstructed Areas

	Alternative			
Pavement Layer	Special Borrow Section	Crushed Aggregate Course Section		
PMS	0.60'	0.60'		
CAC	0.90'	2.25'		
Special Borrow	2.00', minimum			
Non-woven Stabilization Geotextile	Yes	Yes		
Total	3.50'	2.85'		

Depending on final grades through the total reconstruction area planned for the future stepped median barrier, consideration may be given to reusing the existing base/subbase as future special borrow to reduce import requirements. This will be further evaluated as design progresses and cross sections become available, if feasible.

Based on the results of our pavement evaluation and stripping analysis, it appears mill and overlay will be acceptable for the existing eastbound and westbound lanes where total reconstruction is not planned. The results of our stripping analysis indicate the pavement beneath the top layer has an average stripping rating of 2.2 and the average total pavement section is about 4.1 feet thick. The results of our stripping analysis are attached in Appendix 4. Based on the results of the stripping analysis, the observed existing pavement condition, and the required structural resistance, we recommend performing a 0.25-foot mill and overlay for the eastbound and westbound lanes where changes in grade are not planned. The 0.25-foot mill, will, on average, extend through the top layers of the existing plant mix as measured by the asphalt cores. It should be noted, reflection cracking will eventually redevelop in the new overlay. MDT has used mastic products with some success to fill cracks before overlaying, and some quantity of this material should be warranted to reduce/delay reflection cracking.

As mentioned, the 0.25-foot mill would generally, on average, extend through the top pavement layer and would remove joint cracks that are present only in the top lift. However, it is our opinion, a 0.20-foot mill and overlay can also be considered to reduce costs. A 0.20-foot mill and overlay would still provide a 20-year pavement design life, however, the reflection cracking would develop somewhat sooner. Regardless, for both options, some amounts of reflection cracking will occur, and future maintenance will be required. We recommend cost estimates for each alternative be determined and the benefits/disadvantages be discussed at AGR to determine if additional costs for the 0.25-foot mill is warranted. The use of mastic material should also be discussed.

G.4.b. Lockwood Interchange Ramps. We also performed a pavement design for the Lockwood Interchange ramps for total reconstruction. Based on the traffic volumes, anticipated construction, and to provide a better performing pavement section over the long term, we recommend the 2.00-foot Special Borrow section for total reconstruction areas. An alternative crushed aggregate course section was also evaluated for comparison. Table 13 and 14 below summarize our recommended pavement sections for the Lockwood interchange ramps.

Table 13. Summary of Pavement Sections – Lockwood Interchange Ramps A and B

Pavement Layer	Special Borrow Section	Crushed Aggregate Course
PMS	0.40'	0.40'
CAC	0.75'	1.85'
Special Borrow	2.00', minimum	
Non-woven Stabilization Geotextile	Yes	Yes
Total	3.15'	2.25'

Table 14. Summary of Pavement Sections – Lockwood Interchange Ramps C and D

Pavement Layer	Special Borrow Section	Crushed Aggregate Course
PMS	0.40'	0.40'
CAC	0.90'	2.10'
Special Borrow	2.00', minimum	
Non-woven Stabilization Geotextile	Yes	Yes
Total	3.30'	2.50'

We judged the existing surfacing on-ramps A and B to be in good condition. These ramps were also recently improved with a 0.20-foot mill and overlay as part of the West Billings Interchange – Pine Hills Interchange project. For areas where the PTW follows the existing alignment, it is our opinion minor rehabilitation consisting of mill and overlay can be considered. Our analysis indicates a 0.25-foot mill and overlay will provide a sufficient structural capacity to support the anticipated traffic and provide a 20-year design life. The 0.25-foot depth corresponds to the average top lift thickness of the existing PMS, which is typically desired to be removed on minor rehabilitation projects. However, in our opinion, a 0.20-foot mill and overlay can also be considered.

Along Ramps C and D, total reconstruction is anticipated. However, depending on the improvements at these ramps planned for the adjacent I-90 Yellowstone – R Project, a mill and overlay may be acceptable where the future PTW will follow the future alignment. This will be further evaluated as both projects develop.

G.4.c. US Highway 87. Pavement sections for widening and reconstruction areas along US Highway 87 were also developed and are indicated in Table 15 below.

Table 15. Summary of Pavement Sections – US Highway 87

Pavement Layer	Special Borrow Section	Crushed Aggregate Course
PMS	0.40'	0.40'
CAC	0.80'	1.95'
Special Borrow	2.00', minimum	
Non-woven Stabilization Geotextile	Yes	Yes
Total	3.20'	2.35'

To provide better long term performance, we recommend the 2.00-foot Special Borrow section be used for reconstruction areas along US Highway 87.

We also developed a Portland cement concrete pavement (PCCP) section for total reconstruction west of the I-90 Frontage Road and the recommended section is shown in Table 16 below.

Table 16. Summary of Pavement Sections – US Highway 87

Pavement Layer	40-Year Design
PCCP	0.65'*
CAC	0.50'*
Special Borrow	2.00', minimum
Non-woven Stabilization Geotextile	Yes
Total	3.15'

^{*}Minimum thicknesses per MDT Pavement Design Manual, 2018

For US Highway 87, it is our opinion a 0.20-foot mill and overlay can also be considered to reduce costs. Our analysis indicates a 0.20-foot mill and overlay will provide adequate structural capacity to support the anticipated traffic and provide a 20-year design life. However, we wish to point out during our pavement reconnaissance we observed reflection cracking beginning to occur along US Highway 87, particularly east of the bridge. These cracks were most likely present prior to the seal and cover project performed in 2018/2019 southwest of the bridge. Northwest of the bridge, the recent 0.20-foot mill and overlay improvement appears to be in good condition. We would like to note that this is only a year or two old and long term performance of this mill and overlay will be observed as the project progresses.

G.4.d. Additional Considerations. Mill and overlays are useful to improve performance and appearance and generally considered to provide an expected life of about 7 to 10 years. For this project, we have evaluated the mill and overlay for a calculated life of about 20 years. However, mill and

overlays do not, and will not, prevent the existing cracks from reflecting though the new surfacing. In other words, all the existing cracks will reflect through the new surfacing within a few years following the improvement. While the analysis indicates the pavement will have a surface life of 20 years, due to the assumed underlying pavement condition and our review of the asphalt cores, it is likely another mill and overlay will be necessary in about 10 years to address cracking and improve performance. If reflection cracking is not acceptable then total reconstruction or major rehabilitation using pulverization will be necessary.

G.4.e. 30-Year Bridge Ends. We also developed preliminary pavement sections for the 30-year bridge ends and our recommendations are indicated in Table 17 below.

Table 17. Summary of Pavement Sections – 30-Year Bridge Ends

Pavement Layer	Special Borrow Section
PMS	0.60'
CAC	0.65'*
Special Borrow	2.00', minimum
Non-woven Stabilization Geotextile	Yes
Total	3.25'

^{*}Minimum CAC thickness in MDT's Pavement Design Manual, 2018.

H. Asphalt Content

To determine project specific asphalt content, we reviewed the "MDT Percent Asphalt Content Map" available on the MDT website. Three nearby projects utilizing 3/4-inch aggregate were considered representative as summarized in Table 18 below.

Table 18. Summary of Historic Asphalt Contents

Year	Project	PG Mix	Asphalt Content (%)
2018 IM 94-1(83)0 70-28, Grade S		4.69	
2011	IM 90-8(159)457	70-28, Grade S	5.77
2010	ARRA 90-9(98)466	70-28, Grade S	5.56
		Average	5.34

Based on the average of the three similar projects, we recommend using an asphalt content of 5.3 percent for anticipated design costs. The actual asphalt content will depend on the specific gravel source and mix design strength parameters during construction.

I. Additional Geotechnical Work

Once the alignment has been defined and the preferred alternatives selected, additional borings will be performed. The additional borings will include additional pavement borings as well as specific borings related to future embankments, possible cut slopes, culverts, retaining walls, and potential bridge improvements. The results of the additional work will be presented in our Activity 130 report.

J. Special Provisions

We anticipate two standard Special Provisions will be needed addressing geotechnical concerns along the project at this time. These Special Provisions are outlined below.

- Special Borrow (4-inch minus A-1-a or better sandy gravels)
- Moisture Sensitive Clay Subgrades

K. Activity 440 Review

An Activity 440 form was completed by our firm and is also included in Appendix 5.

L. General Recommendations

L.1. Basis of Recommendations

The preliminary analyses and recommendations submitted in this report are based upon the data obtained from the soil borings performed at the locations indicated on the attached plan and profile sheets. Often, variations occur between the borings, the nature and extent of which will not become evident until additional exploration or construction is conducted. A reevaluation of the recommendations in this report should be made after performing on-site observations during construction to note the characteristics of any variations. The variations may result in additional earthwork and construction costs, and it is suggested that a contingency be provided for this purpose.

It is recommended that we be retained to perform the observation and testing program for the project. This will allow correlation of the soil conditions encountered during construction to the soil borings, and will provide continuity of professional responsibility.

L.2. Review of Design

This report is based on the preliminary design of the proposed roadway and structures as related to us for preparation of this report. It is recommended that we be retained to review the geotechnical aspects of the

designs and specifications. With the review, we will evaluate whether any changes in design have affected the validity of the recommendations, and whether our recommendations have been correctly interpreted and implemented in the design and specifications.

L.3. Groundwater Fluctuations

We made water level observations in the borings at the times and under the conditions stated on the boring logs. These data were interpreted in the text of this report. The period of observation was relatively short, and fluctuation in groundwater levels may occur due to rainfall, flooding, irrigation, spring thaw, drainage, and other seasonal and annual factors not evident at the time the observations were made. Design drawings and specifications and construction planning should recognize the possibility of fluctuations.

L.4. Use of Report

This report is for the exclusive use of HDR Engineering, Inc., Sanderson Stewart, and the Montana Department of Transportation to use to design the proposed roadway and prepare construction documents. In the absence of our written approval, we make no representation and assume no responsibility to other parties regarding this report. The data, analyses and recommendations may not be appropriate for other structures or purposes. We recommend that parties contemplating other structures or purposes contact us.

L.5. Level of Care

Services performed by SK Geotechnical personnel for this project have been conducted with that level of care and skill ordinarily exercised by members of the profession currently practicing in this area under similar budget and time restraints. No warranty, expressed or implied, is made.

Professional Certification

I hereby certify that this report was prepared by me and that I am a duly Licensed Professional Engineer

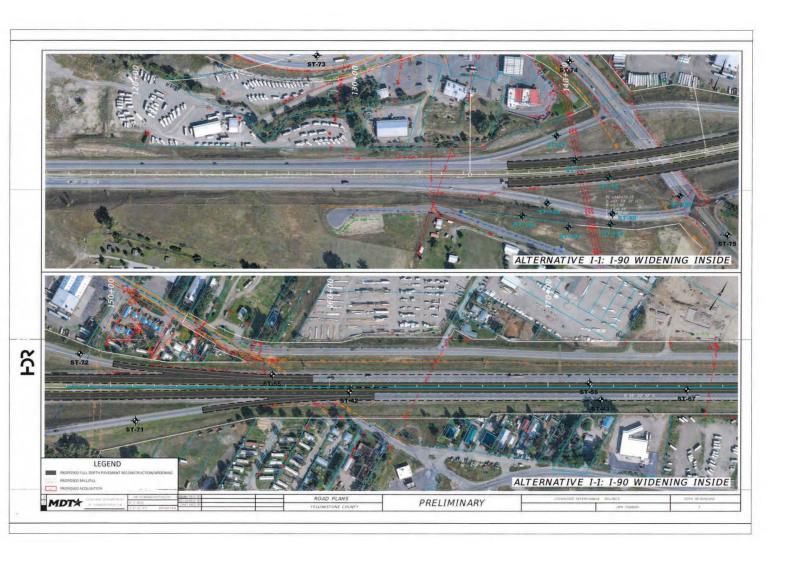

under the laws of the State of Montana

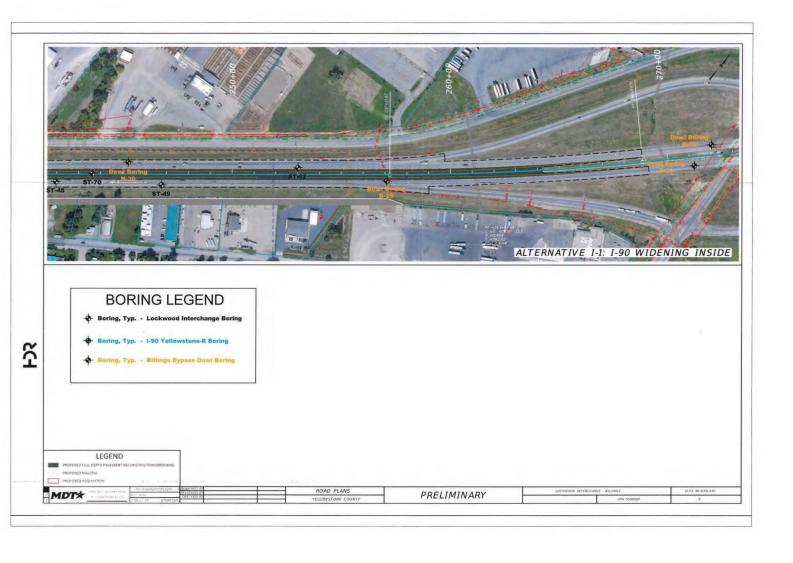
Dustin P. Hutzenbiler, PE

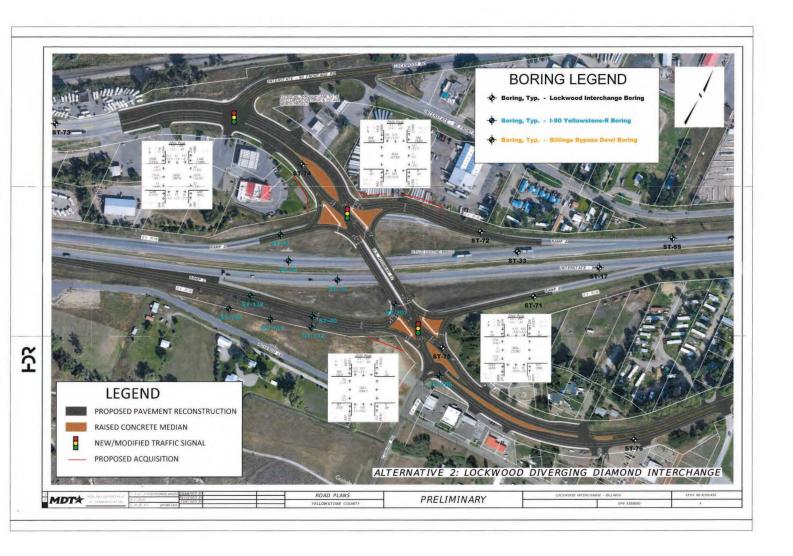
Geolechnical Engineer Registration Number 41795PE

HUTZENBILER






SITE LOCATION SKETCH Lockwood Interchange - Billings STPX 90-8(191)450, UPN 9588000 Yellowstone County, Montana


Drawn by:	USGS/SKGeo			Date	7/2/2020
Project:	19-3792S				
Scale:	NTS				FIGURE
Sheet	1	of	1		1

12/06/12

GEOTECHNICAL

SK Geotechnical Boring Log Descriptive Terminology Key to Soil Symbols and Terms

SOIL CLASSIFICATION CHART

	4 IOD DIVIOIO	2010	SYME	BOLS	TYPICAL
l M	AJOR DIVISIO	ONS .	GRAPH	LETTER	DESCRIPTIONS
	GRAVEL	CLEAN GRAVELS		GW	Well-graded gravels, gravel sand mix- tures, little or no fines.
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	Poorly graded gravels, gravel-sand mix- tures, little or no fines.
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	Silty gravels, gravel-sand-silt mixtures.
00120	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	Clayey gravels, gravel-sand-clay mixtures.
	SAND	CLEAN SANDS		SW	Well-graded sands, gravelly sands, little or no fines.
MORE THAN 50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	Poorly graded sands, gravelly sands, little or no fines.
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	Silty sands, sand-silt mixtures.
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	Clayey sands, sand-clay mixures.
				ML	Inorganic silts and very fine sands, rock flour, silty or dayey fine sands or dayey silts with slight plasticity.
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	Inorganic days of low to medium plasticity, gravelly clays, sandy days, silty days, lean days.
SOILS	CLATS			OL	Organic silts and organic silty clays of low plasticity.
MORE THAN 50% OF MATERIAL IS				MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.
SMALLER THAN NO. 200 SIEVE SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	Inorganic days of high plasticity, fat days.
				ОН	Organic clays of medium to high plasticity, organic silts.
HI	GHLY ORGANIC SO	DILS	77 77 77 77 77 77 77 77 7 77 77 77 77	PT	Peat and other highly organic soils.

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

See Soil Boring Information Special Provision.

SPT (Standard Penetration Test-ASTM D1586): The number of blows of a 140 lb (63.6 kg) hammer falling 2.5 ft (750 mm) used to drive a 2 in (50 mm) O.D. Split Spoon sampler for a total of 1.5 ft (0.45 m) of penetration.

Written as follows:

first 0.5 ft (0.15 m) - second 0.5 ft (0.15 m) - third 0.5 ft (0.15 m) (ex: 1-3-9)

Note: if the number of blows exceeds 50 before 0.5 ft (0.15 m) of penetration is achieved, the actual penetration rounded to the nearest 0.1 ft (0.03 m) follows the number of blows in parentheses (ex: 12-24-50 (0.09 m),

34-50 (0.4 ft), or 100 (0.3 ft)).WR denotes a zero blow count with the weight of the rods only.

WH denotes a zero blow count with the weight of the rods plus the weight of the hammer.

MC=Moisture Content, LL=Liquid limit, PL=Plastic Limit -200%=percent soil passing 200 sieve, DD=Dry Density

Soil Classifications are Based on the Unified Soil Classification System, ASTM D2487 and D2488. Also included are the AASHTO group classifications (M145). Descriptions are based on visual observation, except where they have been modified to reflect results of laboratory tests as deemed appropriate.

Order of Descriptors

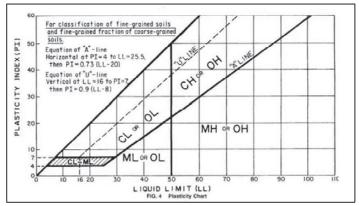
- Group Name
- Consistency or Relative Density
- Moisture Condition
 Color
- Particle size descriptor(s) (coarse grained soils only)
- Angularity of coarse grained soils
- Other relevant notes

Criteria For Descriptors Consistency of Fine Grained Soils

JULISISIELICY	in-value (uncorrected)
Very Soft	< 2
Soft	2 - 4
Medium Stiff	5 - 8
Stiff	9 - 15
	16 - 30
Hard	> 30
Stiff Very Stiff	2 - 4 5 - 8 9 - 15 16 - 30

Apparent Density of Coarse Grained Soils Relative Density

Relative Delibity	14- Value (uncorrected
Very Loose	< 4
Loose	4 - 10
Medium Dense	11 - 30
Dense	31 - 50
Very Dense	> 50


Moisture Condition

Dry -Absence of moisture, dusty, dry to the touch. Móist Damp, but no visible water. Wet Visible free water.

Definition of Particle Size Ranges

oonent Size Range
> 12 in (300 mm)
3 in (75 mm) - 12 in (300 mm)
No. 4 Sieve (4.75 mm) to 3 in (75 mm)
No. 200 (0.075 mm) to No. 4 Sieves (4.75 mm)
< No. 200 Sieve (0.075 mm)*
< No. 200 Sieve (0.075 mm)*

*Atterberg limits and chart below to differentiate between silt and clay.

Angularity of Coarse-Grained Particles

-Particles have sharp edges and relative Angular plane sides with unpolished surfaces.

Subangular Particles are similar to angular description,

but have rounded edges.

Subrounded-Particles have nearly plane sides, but have

Rounded

no edges.
-Particles have smoothly curved sides and well-rounded corners and edges.

Example soil description: Sandy FAT CLAY (CH), soft, wet, brown. (A-7)

SK Geotechnical Boring Log Descriptive Terminology Key to Rock Symbols and Terms

Rock Type	Symbol	Rock Type	Symbol	Rock Type	Symbol
Argillite		Dolomite		Quartzite	
Basalt		Gneiss		Rhyolite	
Bedrock (other)		Granitic	/ / - /	Sandstone	
Breccia		Limestone		Schist	
Claystone		Siltstone		Shale	
		Conglomerate	0		

Order of Descriptors

- Rock Type
- Color
- Grain size (if applicable)
- Stratification/Foliation (as applicable)
- Field Hardness
- Other relevant notes

Criteria For Descriptors Grain Size

Characteristic Description

Coarse Grained -Individual grains can be easily

distinguished by eye

-Individual grains can be dis-Fine Grained

tinguished with difficulty

Stratum Thickness

3-10 ft (1-3 m) Thickly Bedded 1-3 ft (300 mm - 1 m) Medium Bedded 2-12 in (50-300 mm) Thinly Bedded < 2 in (50 mm) Very Thinly Bedded

Rock Field Hardness

-Can be carved with knife. Can be excavated readily with point of rock hammer. Can be scratched readily by fingernail. Very Soft

-Can be grooved or gouged readily by knife or point of rock hammer. Can be excavated in fragments from

chips to several inches in size by moderate blows of the point of a rock hammer.

-Can be grooved or gouged 0.05 in (2 mm) deep by firm pressure of knife or rock hammer point. Can be Medium excavated in small chips to pieces about 1 in (25 mm) maximum size by hard blows of the point of a rock hammer.

-Can be scratched with knife or pick. Gouges or grooves to 0.25 in (6 mm) can be excavated by hard blow of rock Moderately hard

hammer. Hand specimen can be detached by moderate blows.

-Can be scratched with knife or pick only with difficulty. Hard hammer blows required to detach hand specimen. Hard Very Hard -Cannot be scratched with knife or sharp rock hammer point. Breaking of hand specimens requires several hard

> Notes: UCS = Unconfined Compressive Strength obtained from laboratory testing at the given depth. See Soil Boring Information Special Provision.

Miscellaneous Soil/Rock Symbols and Terms

Soft

Concrete

Explanation of Text Fields in Boring Logs: Material Description: Lithologic Description of soil or rock encountered.

Types:

Asphalt

Remarks: Comments on drilling, including method, bit type, and problems encountered. Unless stated on logs as being surveyed by district survey, all locations are considered approximate.

General Notes

Water

Coal

Boulders and Cobbles

the time the borings were made. These logs are not warranted to be representative of subsurface conditions at other locations or times. Water level observations apply only at the specific boring, and at the time the

- Descriptions on these boring logs apply only at the specific boring, and at the time

borings were made. Due to the variability of groundwater measurements given the type of drilling used, and the stratification of the soil in the boring, these logs are not warranted to be representative of groundwater conditions at other locations or times.

- Other terms may be used as descriptors, as defined by the profession.

 Soil and Rock descriptions are based on visual observation, except where they have been modified to reflect results of laboratory tests as deemed appropriate

Operation Barrel Drive Casing Sample Split Types: Spoon Shelby

Sample Grab Sample

Cone Penetrometer Vane Shear

Special Samplers Testpit

Example Rock Log SANDSTONE, gray, fine grained, thickly bedded, hard field hardness.

Sheet 1 of 1

	7							Boring 9588	3000-ST-42							Sheet 1 of 1
Projec					iterchange - B 191)450	illing	S	Rig: CME75 Hammer: Auto	Boring Location N Coordinates E	: 56645 : 22359					Stat	tion: set:
Projec		mb	er:		UPN:			Boring Diameter:	System: MT S.P. (E)						o of Boring
19-379	2S				95880	000		9"	Datum: NAD83						Ele	vation: 3137.1 ft
Date S	tarte	ed:			Date Finished	d:		Drilling Fluid:	Location Source:						Elev	vation Source:
5/5/20	_				5/5/20			None	Sanderson Stewart			_		\Box		nderson Stewart
Driller: Logge				_	1			Abandonment Meth Backfilled with Cutti		Towns		•		•	and	I Section:
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Desc		Depth (ft) Elev. (ft)	MC (%)		PL	-200 (%)	DD	Remarks and Other Tests
5 3132.1 10 3127.1			89 72 72 72		16 - 32 - 35 12 - 27 - 25 6 - 15 - 13 3 - 2 - 3	The state of the s	BAS gra gra 105 BAS and bro sub Sar [A-6	/2" Existing PMS. SE COURSE, Poorly-Grad vel (SP-SM), brown, moist ined, subangular to subrou. /2"-121/4" Crushed Top Surf SE COURSE, Poorly-Grad al sand (GP-GM), very dens wn to gray, moist, fine to co pangular to subrounded, [A ndy Lean CLAY (CL), very 6]. (Alluvium). yey SAND (SC), loose, bro ined, subangular, [A-6]. (Al	, fine to coarse unded, [A-1]. Facing. led GRAVEL with silt se to medium dense, oarse grained, [-1]. stiff, brown, moist, own, moist, fine lluvium).	3136.2 1.0 3136.1 5.2 3131.9 6.0 3131.1	2 2 1 11		NP	7		Crushed Top Surfacing Bag 101/2"-121/4"
								Boring Depth: 10.5 ft, E	levation: 3126.6 ft	3126.6						

(2) MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 7/7/20 13:14 - Z:\GINT\GINT\PROJECTS\3701-3800\3792.GPJ

 □ During
 □ Drilling: Not Encountered
 □ After
 □ Drilling: Not Encountered. Augers Out Water Level Observations After
Drilling: Not Encountered, Augers In

Remarks: Water not encountered to dry cave-in depth of 6½ immediately after withdrawal of auger.

		_	1						Boring 958	8000-ST-43								Sheet 1 of 1
Projec					iterchan 191)450		illings	6	Rig: CME75 Hammer: Auto	Boring Location Coordinates		56699 22369						tion: set:
Projec 19-379		mb	er:			UPN: 95880	000		Boring Diameter: 9"	System: MT S.F Datum: NAD83	•	=)						o of Boring vation: 3139.2 ft
Date St 5/4/20 Driller:			libo	uah	Date Fi 5/4/20	nished	d:		Drilling Fluid: None Abandonment Met	Location Source Sanderson Stew		Town	shi	n E	Don	200	Sar	vation Source: nderson Stewart
Logge				_	ı				Backfilled with Cutt			1N 26		•		_	anc	J Section.
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count		Lithology		Material Des	cription		Depth (ft) Elev. (ft)	MC (%)		PL	-200 (%)	DD	Remarks and Other Tests
-		X	83		9 - 28	- 24		BAS and grai	" Existing PMS. SE COURSE, Poorly-Grad I sand (GP-GM), brown, n ined, subangular to subro ished Top Surfacing.	noist, fine to coarse		0.6 3138.6 0.8 3138.4	4		NP	11		Crushed Top Surfacing Bag 7½"-9"
5 3134.2	{	X	28 89		16 - 15 3 - 7			BAS and brov [A-1	SE COURSE, Poorly-Grad I sand (GP-GM), very den wn, moist, fine to coarse g 1].	se to medium dense, grained, subrounded,		3.5 3135.7	ı	1	15	62		Bulk Bag 3½'-10' MDD=120.8 pcf OMC=13%
- - -	ł	X	89		1 - 2	- 2		moi Cla	ndy Lean CLAY (CL), very ist, [A-6]. (Alluvium). yey SAND (SC), loose, br ined, rounded, [A-6]. (Allu	rown, moist, fine		7.0 3132.2	11					
10 3129.2	}	X	44		1 - 2	- 2			Daving Davids 10.5 ft /	Touristan 2420.7#		10.5	15					
10 3129.2 [ł		44		1-2	- 2			Boring Depth: 10.5 ft, E	Elevation: 3128.7 ft		10.5 3128.7						

(2) MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 7/7/20 13:14 - Z.\GINT\GINT\PROJECTS\3701-3800\3792.GPJ

Water Level Observations

☐ During
☐ Drilling: Not Encountered
☐ After
☐ Drilling: Not Encountered, Augers In
☐ Drilling: Not Encountered, Augers Out

Remarks: Water not encountered to dry cave-in depth of 5½ immediately after withdrawal of auger.

Boring 9588000-ST-44

Sheet 1 of 1

						Borning 5000	0000-31-4-							0001 . 0
				nterchange - B 191)450	Billing	Rig: CME75 Hammer: Auto	Boring Location N Coordinates E	: 56751 : 22377					Stat	tion: set:
Project N 19-3792S		oer:		UPN: 9588		Boring Diameter: 9"	System: MT S.P. (Datum: NAD83	E)						o of Boring vation: 3141.6 ft
Date Star	ted:			Date Finishe	d:	Drilling Fluid: None	Location Source: Sanderson Stewart	t						vation Source:
Driller: E Logger: 0			_	1		Abandonment Meth Backfilled with Cutt		Towns				•	and	Section:
Depth (ft) Oberation (ft)	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Des	cription	Depth (ft) Elev. (ft)	MC (%)	LL	PL	-200 (%)	QQ	Remarks and Other Tests
-		56		16 - 21 - 18		83/4" Existing PMS. BASE COURSE, Poorly-Grad and sand (GP-GM), dense to moist, fine to coarse grained,	medium dense, brown,	0.7 3140.9	3					
5 136.6	X	11		11 - 17 - 8 3 - 5 - 7		FILL, Clayey SAND with grav dense, brown, moist, fine to o subangular, [A-6].		3.8 3137.8		29	13	47		Bulk Bag 3.8'-5½' MDD=124.6 pcf OMC=11%
- - -		67		2 - 4 - 6		FILL, Lean CLAY with sand (moist, [A-6].	,	3135.6	16					Pen: 3½ tsf
10 131.6		56		1-2-2		Sandy Lean CLAY (CL), soft, (Alluvium).	brown, moist, [A-6].	3133.1	16					
						Boring Depth: 10.5 ft, E	Elevation: 3131.1 ft	3131.1						

(2) MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 7/7/20 13:14 - Z.\GINT\GINT\PROJECTS\3701-3800\3792.GPJ

Water Level Observations

□ During
□ Drilling: Not Encountered
□ After
□ Drilling: Not Encountered, Augers In
□ During

Remarks: Water not encountered to dry cave-in depth of 5½ immediately after withdrawal of auger.

Boring 9588000-ST-45

Sheet 1 of 1 Rig: CME75 Project: Lockwood Interchange - Billings Boring Location N: 568513.7 ft Station: STPX 90-8(191)450 **Coordinates** E: 2239451.1 ft Hammer: Auto Offset: **Project Number:** UPN: **Boring Diameter:** System: MT S.P. (E) **Top of Boring** 19-3792S 9588000 Datum: NAD83 Elevation: 3141.6 ft Date Finished: **Date Started: Drilling Fluid: Location Source: Elevation Source:** 5/6/20 5/6/20 Sanderson Stewart None Sanderson Stewart Driller: E. Hollibaugh **Abandonment Method:** Township, Range, and Section: Logger: C. Hopkins **Backfilled with Cuttings** 1N 26E 25 - CAB

	Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Description	Depth (ft) Elev. (ft)	(%) DM	רד	PL	-200 (%)	QQ	Remarks and Other Tests
	-					:	, • (101/2" Existing PMS. BASE COURSE, Poorly-Graded SAND with gravel	0.9 3140.7	2					
ŀ	_	1	A	72		8 - 32 - 37	X	(SP), brown, moist, fine to coarse grained, subrounded, [A-1]. 101/2"-12" Crushed Top	1.0 3140.6	3					
L	_	1	X	56		16 - 27 - 25	t	Surfacing. BASE COURSE, Poorly-Graded GRAVEL with silt	4.0	16					Pen: 3½ tsf
3	5 136.6	1	X	100		1 - 5 - 6		and sand (GP-GM), very dense, brown, moist, fine to coarse grained, subangular, [A-1].	3137.6	. •	40	16	64		Bulk Bag 4'-6' MDD=114.3 pcf
-	_	1						FILL, Sandy Lean CLAY (CL), stiff, brown to gray, moist, [A-6].	6.0 3135.6	15					OMC=15%
ļ	_	1	X	56		2 - 6 - 4		Lean CLAY with sand (CL), stiff, brown, moist, [A-6]. (Alluvium).							
ŀ	_	1						Clayey SAND (SC), loose, light brown, moist, fine grained, subangular, [A-2]. (Alluvium).	8.5 3133.1	12					
.92.GPJ	10 131.6		X	28		1 - 2 - 2		Boring Depth: 10.5 ft, <i>Elevation: 3131.1 ft</i>	10.5						
37								Bulling Depth. 10.5 it, Elevation. 3131.1 it	3131.1						

MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 7/7/20 13:14 - Z.\GINT\GINT\PROJECTS\3701-3800\3792.GPJ

During
Drilling: Not Encountered Water Level Observations After
Drilling: Not Encountered, Augers In ▼ After Drilling: Not Encountered, Augers Out

Remarks: Water not encountered to dry cave-in depth of 31/2' immediately after withdrawal of auger.

Boring 9588000-ST-46

Sheet 1 of 1

								Dorning 3300	3000-01-40							011001 1 01 1
Project					nterchange - I 191)450	Billing	S	Rig: CME75 Hammer: Auto	Boring Location N Coordinates E	: 56873 : 22399					Stat	tion: set:
Project 19-3792		mb	er:		UPN 9588	-		Boring Diameter: 9"	System: MT S.P. (Datum: NAD83	E)						of Boring vation: 3138.7 ft
Date St 5/5/20	arte	ed:			Date Finishe	ed:		Drilling Fluid: None	Location Source: Sanderson Stewart							vation Source:
Driller: Logger				_	1			Abandonment Meth Backfilled with Cutti		Towns				_		Section:
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Desc	cription	Depth (ft) Elev. (ft)	MC (%)	4	PL	-200 (%)	DD	Remarks and Other Tests
· - (X	72 72		21 - 30 - 34 11 - 17 - 8		BA and bro	Existing PMS. SE COURSE, Poorly-Grad d sand (GP-GM), very dens own to gray, moist, fine to co cangular to subrounded, [A	se to medium dense, oarse grained,	0.8 3137.9	2					
5 3133.7	ł		72		4 - 7 - 6		[A-			3.8 3134.9 - 6.0		35	14	59		Pen: 2 tsf Bulk Bag 3.8'-6½' MDD=125.2 pcf OMC=11%
	}	X	56		2 - 3 - 4		mo	an CLAY with sand (CL), mist, [A-6]. (Alluvium).		3132.7						Pen: ¾ tsf
10 3128.7	}	X	50		2-2-3			ayey SAND (SC), loose, brouined, subangular, [A-2]. (A Boring Depth: 10.5 ft, E	lluvium).	3130.2 10.5 3128.2	14					
										<u> </u>						

(2) MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 7/7/20 13:14 - Z.\GINT\GINT\PROJECTS\3701-3800\3792.GPJ

Water Level Observations

□ During
□ Drilling: Not Encountered
□ After
□ Drilling: Not Encountered, Augers In
□ Drilling: Not Encountered, Augers Out

Remarks: Water not encountered to dry cave-in depth of 4' immediately after withdrawal of auger.

Boring 9588000-ST-47

Sheet 1 of 1 Rig: CME75 Project: Lockwood Interchange - Billings Boring Location N: 569356.8 ft Station: STPX 90-8(191)450 **Coordinates** E: 2241216.8 ft Hammer: Auto Offset: **Project Number:** UPN: **Boring Diameter:** System: MT S.P. (E) **Top of Boring** 19-3792S 9588000 Datum: NAD83 Elevation: 3137.2 ft Date Finished: **Date Started: Drilling Fluid: Location Source: Elevation Source:** 5/5/20 5/5/20 Sanderson Stewart None Sanderson Stewart Driller: E. Hollibaugh **Abandonment Method:** Township, Range, and Section: Logger: C. Hopkins **Backfilled with Cuttings** 1N 26E 25 - ACD

Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Description	Depth (ft) Elev. (ft)	(%) DM	רר	PL	-200 (%)	QQ	Remarks and Other Tests
- 5 3132.2 - 3132.2 - 10 3127.2	-		89 33 39 89		18 - 36 - 37 10 - 31 - 50/0.3ft 24 - 8 - 6 2 - 4 - 6		BASE COURSE, Poorly-Graded SAND with silt and gravel (SP-SM), brown, moist, fine to coarse grained, subangular to subrounded, [A-1]. 10½"-11½" Crushed Top Surfacing. BASE COURSE, Poorly-Graded GRAVEL with silt and sand (GP-GM), very dense, brown to gray, moist, fine to coarse grained, subangular to subrounded, [A-1]. FILL, Sandy Lean CLAY (CL), stiff, brown, moist, [A-6]. Lean CLAY (CL), stiff to soft, dark gray to brown, moist, [A-6]. (Alluvium).	0.9 3136.3 1.0 3136.2 4.5 3132.7 6.0 3131.2	16 20		13			Crushed Top Surfacing Bag 10½"-11½" Bulk Bag 4½'-6½' MDD=117.9 pcf OMC=14% Pen: 3½ tsf
0/375							Boring Depth: 10.5 ft, Elevation: 3126.7 ft	3126.7						

MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 7/7/20 13:14 - Z.\GINT\GINT\PROJECTS\3701-3800\3792.GPJ

During
Drilling: Not Encountered Water Level Observations After
Drilling: Not Encountered, Augers In After
Drilling: Not Encountered, Augers Out

Remarks: Water not encountered to dry cave-in depth of 41/2' immediately after withdrawal of auger.

Boring 9588000-ST-48

Sheet 1 of 1

Project Project	S	TP	(90		iterchange - B 191)450 UPN:		Rig: CME75 Hammer: Auto Boring Diameter:	Boring Location N Coordinates E System: MT S.P. (: 22428	2.4 92.	ft 6 ft		- 1	Offs	
19-379			···		95880		9"	Datum: NAD83							o of Boring vation: 3135.7 ft
Date S t 5/6/20	tarte	ed:			Date Finished 5/6/20	d:	Drilling Fluid: None	Location Source: Sanderson Stewart	t _.						vation Source: nderson Stewart
Driller: Logge				_	1		Abandonment Meth Backfilled with Cutt		Towns 1N 27				•	and	Section:
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Des	cription	Depth (ft) Elev. (ft)	MC (%)	LL	PL	-200 (%)	OO	Remarks and Other Tests
	}	X	44		18 - 22 - 21	Ş	8½" Existing PMS. BASE COURSE, Poorly-Grac gravel (SP-SM), brown, moist grained, subrounded, [A-1]. 8 Surfacing.	t, fine to coarse	0.7 3135.0 0.9 3134.8			NP	7		Crushed Top Surfacing Bag 8½"-10½"
5 3130.7	ł	X	50 39		11 - 20 - 7 1 - 4 - 4	•••	BASE COURSE, Poorly-Grad and sand (GP-GM), dense to moist, fine to coarse grained, subangular, [A-1].	medium dense, brown,	4.1 3131.6	21 20	45	20	83		Bulk Bag 4.1'-6' MDD=108.0 pcf OMC=18%
	}	X	89		2 - 5 - 8		FILL, Lean CLAY with sand (obrown, moist, [A-7]. Sandy Lean CLAY (CL), stiff, (Alluvium).		6.0 3129.7 8.5	16					Pen: 11/2 tsf
10 10 3125.7	}	X	78		3 - 4 - 3		Clayey SAND (SC), loose, lig grained, subangular, [A-2]. (A Boring Depth: 10.5 ft, E	lluvium).	3127.2 10.5 3125.2	16					

F BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 7/7/20 13:14 - Z:\GINT\GIN

Water Level Observations

□ During
□ Drilling: Not Encountered
□ After
□ After
□ Drilling: Not Encountered, Augers In
□ During

Remarks: Water not encountered to dry cave-in depth of 4½ immediately after withdrawal of auger.

roject Num 9-3792S ate Started:			nterchange - B 191)450		5	Rig: CME75 Hammer: Auto		: 2	70820 24328					Stat Offs	tion: set:
ato Startod	ber:		UPN: 95880			Boring Diameter: 9"	System: MT S.P. Datum: NAD83	(E)						Top	of Boring vation: 3136.5 ft
	:		Date Finished	d:		Drilling Fluid:	Location Source:								vation Source:
/5/20)riller: E. Ho . ogger: C. H		_	<u>5/5/20</u> า			None Abandonment Metl Backfilled with Cutt		T	owns	-	-		_		derson Stewart
Oberth (ft) Oberation Oberation Oberation Ive	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Des	ecription		Depth (ft) Elev. (ft)	MC (%)	LL	PL	-200 (%)	DD	Remarks and Other Tests
	67		11 - 18 - 19		BAS (SP sub	angular to subrounded, [A	arse grained,		0.7 135.8 0.8 135.7	4 5					
5 131.5	28 72		9 - 13 - 5 2 - 4 - 6		BAS and to g	SP), brown, moist, fine to coarse grained, ubangular to subrounded, [A-1]. 81/4"-93/4" Crushed op Surfacing. ASE COURSE, Poorly-Graded GRAVEL with silt and sand (GP-GM), dense to medium dense, brown or gray, moist, fine to coarse grained, subangular to ubrounded, [A-1].				19 16	28	14	54		Bulk Bag 4'-6' MDD=116.0 pcf OMC=14%
	50		2-3-1		(Allı Cla	ndy Lean CLAY (CL), stiff, uvium). yey SAND (SC), loose, br ined, subangular, [A-6]. (A	rown, moist, fine	3	6.0 130.5	14					
10 126.5	56		2-2-2						10.5	13					
						Boring Depth: 10.5 ft, E	Elevation: 3126.0 ft		126.d						

Water Level Observations

☐ During
☐ Dirling: Not Encountered
☐ After
☐ Dirling: Not Encountered, Augers In
☐ During
☐

Remarks: Water not encountered to dry cave-in depth of 5½ immediately after withdrawal of auger.

Boring 9588000-ST-55

Sheet 1 of 1

Project					iterchan 191)450		illings	S	Rig: CME75 Hammer: Auto	Boring Location N Coordinates	l: 56635 : 22356					Stat	tion: set:
Project 19-3792		ımb	er:			UPN: 95880	000		Boring Diameter: 9"	System: MT S.P. (Datum: NAD83	(E)						of Boring vation: 3135.7 ft
Date St 5/8/20					Date Fi 5/8/20	nished	l:		Drilling Fluid: None	Location Source: Sanderson Stewar		• • • • •		·		San	vation Source:
Driller: Logger				_	1				Abandonment Meth Backfilled with Cutting		1N 26		-		_	and	Section:
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count		Lithology		Material Desc	cription	Depth (ft) Elev. (ft)	MC (%)	LL	PL	-200 (%)	QQ	Remarks and Other Tests
		X	72 39		18 - 27 15 - 2			BAS and brow	4" Existing PMS. SE COURSE, Poorly-Grade d sand (GP-GM), very dens wn, moist, fine to coarse gr prounded, [A-1].	se to medium dense,	0.9 3134.8	3 4					
- 5 3130.7 			83 56		5 - 11 2 - 3			(GF fine	L, Poorly-Graded GRAVEL P-GC), medium dense to lo e to coarse grained, subano 1]. Hydrocarbon odor.	ose, dark gray, moist,	3131.7	I ~					Boring terminated due to potentially contaminated
-		<u> </u>					XXXXX		Boring Depth: 8.0 ft, Ele	evation: 3127.7 ft	3127.7						soils.

BORING - MD1_KEVISED_Z009+(CP1_IMPORT):GD1 - 777/Z0 13:14 - Z:\GINT\GINT\PROJECTS\3\

Water Level Observations

□ During
□ Drilling: Not Encountered
□ After
□ Drilling: Not Encountered, Augers In
□ Drilling: Not Encountered, Augers Out

Remarks: Water not encountered to dry cave-in depth of 3½ immediately after withdrawal of auger.

2		-	1		The state of the s			Boring 9588	3000-ST-56							Sheet 1 of 1
Projec	t: Lo	ockv TPX	voo (90	d In	iterchange - B 191)450	illing	S	Rig: CME75 Hammer: Auto	Boring Location N Coordinates E	: 56703 : 22368					Stat	tion: set:
Projec 19-379		ımbe	er:		UPN : 9588			Boring Diameter: 9"	System: MT S.P. (Datum: NAD83	E)					Top	of Boring vation: 3139.4 ft
Date S 5/11/20		ed:			Date Finished	d:		Drilling Fluid: None	Location Source: Sanderson Stewar	t						vation Source:
Driller: Logge				_	1			Abandonment Meth Backfilled with Cutti		Towns				_	and	Section:
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Des	cription	Depth (ft) Elev. (ft)	MC (%)	LL	PL	-200 (%)	DD	Remarks and Other Tests
			83 33 56 67		15 - 29 - 29 11 - 16 - 11 2 - 6 - 8 2 - 2 - 3		BAS (SF sub Sur BAS and bro sub Cla	"Existing PMS. SE COURSE, Poorly-Grad P), brown, moist, fine to coa rounded, [A-1]. 8½" to 10" facing. SE COURSE, Poorly-Grad d sand (GP-GM), very dens wn, moist, fine to coarse g brounded, [A-1]. Byey SAND (SC), medium of the brown, moist, fine graine uvium).	arse grained, Crushed Top led GRAVEL with silt se to medium dense, rained, subangular to dense to very loose,	3730.3	3 5 15 18 15	26	14	49		Pen: 1½ tsf Bulk Bag 4.1'-6½ MDD=118.8 pcf OMC=13%
3723.4		v N						Boring Depth: 10.5 ft, E	levation: 3128.9 ft	10.5 3128.9						

Boring Depth: 10.5 ft, Elevation: 3128.9 ft

| Water Level Observations | Value | Valu

Remarks: Water not encountered to dry cave-in depth of 3' immediately after withdrawal of auger.

After Drilling: Not Encountered, Augers In

LOG OF BORING

	CMOC	nd In	terchange - B	Rillings	Boring 95	Boring Location	n Ni	567920) / ·	F+		Ct-	41 a.m.
	Y 90		191)450		Hammer: Auto	Coordinates	E:	22381				Offs	tion: set:
Project Num 19-3792S	ber:		UPN: 9588		Boring Diameter: 9"	System: MT S. Datum: NAD8	•	Ξ)				Top	o of Boring vation: 3142.3 ft
ate Started	:		Date Finishe	d:	Drilling Fluid:	Location Source	ce:					Elev	vation Source:
/8/20			5/8/20		None	Sanderson Stev	wart						nderson Stewart
Driller: E. H Logger: C. H		_	1		Abandonment Me Backfilled with Cu			1N 26	_		_	and	l Section:
Jogger. C. T	Оркі	113			Dackilled Willi Ct	ittirigs		111 201		 			1
Depth (ft) Oberation (ft) Coepth (ft) Oberation Oberatio	Recovery (%)	RQD (%)	Blow Count	Lithology	Material De	escription		Depth (ft) Elev. (ft)	MC (%)	ᆸ	-200 (%)	00	Remarks and Other Tests
-	83		13 - 26 - 24 12 - 25 - 13		81/4" Existing PMS. BASE COURSE, Poorly-Gi (SP), brown, moist, fine to subrounded, [A-1]. 81/4" to a Surfacing. BASE COURSE, Poorly-Gi	coarse grained, 10" Crushed Top		0.7 3141.6 0.8 3141.5	2				
5 137.3	94		3-6-7		and sand (GP-GM), dense coarse grained, subangula FILL, Sandy Lean CLAY (Cmoist, [A-6].	brown, moist, fine to r to subrounded, [A-1].		4.0 3138.3		34 16	62		Pen: 3½ tsf Bulk Bag 4'-8' MDD=118.3 pcf OMC=15%
10	56		1 - 4 - 6 2 - 3 - 5		Sandy Lean CLAY (CL), m [A-6]. (Alluvium). Boring Depth: 10.5 ft,			8.0 <i>3134.3</i> 10.5	24				Pen: 1½ tsf
								\ <u>3131.</u> 8					
								<u> </u>					

Boring 9588000-ST-58

Sheet 1 of 1

									3000 31 00							
Project					nterchange 191)450	- Billing	js	Rig: CME75 Hammer: Auto	Boring Location N: Coordinates E:	568019 223840			:		Stat	tion: set:
Project 19-379		mb	er:		UP 95	N: 88000		Boring Diameter: 9"	System: MT S.P. (EDatum: NAD83	Ξ)						of Boring vation: 3143.2 ft
Date St 5/8/20					Date Finis 5/8/20	hed:		Drilling Fluid: None	Location Source: Sanderson Stewart						San	vation Source:
Driller: Logge				_	1			Abandonment Meth Backfilled with Cutti		1N 26				_	and	Section:
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Des	cription	Depth (ft) Elev. (ft)	MC (%)	1	PL	-200 (%)	00	Remarks and Other Tests
			83 89 78 100		21 - 32 - 36 14 - 22 - 26 7 - 5 - 4 2 - 6 - 11	A	BA gra gra Su BA (G co FIII	2" Existing PMS. ASE COURSE, Poorly-Grad avel (SP-SM), brown, moist ained, subrounded, [A-1]. 8 urfacing. ASE COURSE, Poorly-Grad IP-GM), very dense to dens arse grained, subangular to LL, Sandy Lean CLAY (CL) bist, [A-6]. andy Lean CLAY (CL), very own, moist, [A-6]. (Alluvium)	t, fine to coarse 1/2"-101/4" Crushed Top led with silt and sand se, brown, moist, fine to o subrounded, [A-1]. , stiff, brown to gray, stiff to stiff, gray to				NP	64		Crushed Top Surfacing Bag 8½"-10½" Pen: 2 tsf Bulk Bag 4.2'-6½' MDD=117.8 pcf OMC=14% Pen: 2 tsf Pen: 1 tsf
								Boring Depth: 10.5 ft, E	Elevation: 3132.7 ft	3132.7						

(2) MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 7/7/20 13:14 - Z.\GINT\GINT\PROJECTS\3701-3800\3792.GPJ

Water Level Observations

□ During
□ Drilling: Not Encountered
□ After
□ Drilling: Not Encountered, Augers In
□ Drilling: Not Encountered, Augers Out

Remarks: Water not encountered to dry cave-in depth of 5' immediately after withdrawal of auger.

Boring 9588000-ST-59

Sheet 1 of 1

	S	TP)	(90		iterchange - B 191)450		s	Rig: CME75 Hammer: Auto		22402					Stat Offs	tion: set:
Project 19-379		mp	er:		UPN: 95880			Boring Diameter: 9"	System: MT S.P. (I Datum: NAD83	=)						of Boring vation: 3138.4 ft
Date St 5/11/20)				Date Finished 5/11/20	d:		Drilling Fluid: None	Location Source: Sanderson Stewart						San	vation Source:
Driller: Logge				_	1			Abandonment Meth Backfilled with Cutti		Towns 1N 26				•	and	Section:
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Desc	cription	Depth (ft) Elev. (ft)	MC (%)	-	PL	-200 (%)	QQ	Remarks and Other Tests
		X	78		14 - 28 - 26	X	BA: gra gra	" Existing PMS. SE COURSE, Poorly-Grad wel (SP-SM), brown, moist, ined, subrounded, [A-1]. 89 facing.	, fine to coarse	0.7 3137.7 0.8 3137.6	3		NP	12		Crushed Top Surfacing Bag 8½"-9½"
_ 5 3133.4		X	3		13 - 20 - 23 9 - 12 - 9		BAS and moi sub	SE COURSE, Poorly-Grad d sand (GP-GM), very dens ist, fine to coarse grained, prounded, [A-1].	se to dense, brown, subangular to	4.5 3133.9	5 17	30	14	58		Bulk Bag 4½'-6' MDD=120.0 pcf
 		X	83		3 - 7 - 11		[A-6	L, Sandy Lean CLAY (CL), 6]. L, Clayey SAND (SC), med wn, moist, fine grained, sul	dium dense, light	6.0 3132.4 8.5	11 15					OMC=13%
_ 10 3128.4		X	56		2 - 5 - 5			an CLAY with sand (CL), st y, moist, [A-6]. (Alluvium).		3129.9	19					Pen: 3½ tsf
								Boring Depth: 10.5 ft, El	levation: 3127.9 ft	3127.9						

SED_2009+(CP1_IMPOR1).GD1 - ////20 13:14 - Z:\GIN1\GIN1\PROJEC1

Water Level Observations

□ During
□ Drilling: Not Encountered
□ After
□ Drilling: Not Encountered, Augers In
□ During

Remarks: Water not encountered to dry cave-in depth of 3½ immediately after withdrawal of auger.

								Boring 95	88	3000-ST-60								Sheet 1 of 1
	S	TPX	90		terchange - B 91)450		S	Rig: CME75 Hammer: Auto		Boring Location Coordinates	E:	22419			ft		Stat	tion: set:
Projec 19-379		mbe	er:		UPN: 95880			Boring Diameter: 9"		System: MT S Datum: NAD8	•	Ξ)					Top	of Boring vation: 3136.3 ft
Date State S	: E.	Holl		ugh	Date Finished 5/8/20	d:		Drilling Fluid: None Abandonment Me								_	Sar	vation Source: derson Stewart Section:
Logge	e r: C.		_	ns				Backfilled with Cu	utti	ngs		1N 26	E 2	25 -	AE	OC		
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material De	esc	cription		Depth (ft) Elev. (ft)	MC (%)	1	Ч	-200 (%)	OO	Remarks and Other Tests
 3131.3 3126.3			56 28 6 89 56		13 - 28 - 28 20 - 27 - 8 5 - 3 - 4 1 - 6 - 9 1 - 4 - 5		BAS (SP sub BAS and moi sub FILI moi Cla moi	Existing PMS. SE COURSE, Poorly-Gi), brown, moist, fine to rounded, [A-1]. 8½"-9½ SE COURSE, Poorly-Gi I sand (GP-GM), very di st, fine to coarse graine rounded, [A-1]. L, Sandy Lean CLAY (Ci st, [A-6]. yey SAND (SC), mediuist, fine grained, subang in CLAY with sand (CL) ki gray, moist, [A-6]. (All Boring Depth: 10.5 ft,	coa rad rad ens ed, : CL), m c gula i, ve	arse grained, crushed Top Surfaci ed GRAVEL with sile se to dense, brown, subangular to medium stiff, brown, ar, [A-6]. (Alluvium). ery stiff to stiff, browum).	ing. It	0.7 3135.6 0.8 3135.5 4.0 3132.3 6.0 3130.3 7.5 3128.8	3 6 3 19	40				Bulk Bag 4.1'-6' MDD=114.7 pcf OMC=16%
		1/1/04-	, ,	01:51	Observetions		— Du	ring			Do-	orko: \^/	nto:	· na			ntor	ad to dry save in
- After		Water	' Lo	evel	Observations	-		lling: Not Encountered										ed to dry cave-in thdrawal of auger.
	g: No	t Ence	ount	ered	, Augers In	-		lling: Not Encountered.	Au	gers Out								

Boring 9588000-ST-61

Sheet 1 of 1

					Borning 9	388000-31-61							SHEEL FOILE
				illing	s Rig: CME75 Hammer: Auto	Boring Location Coordinates						Stat	tion: set:
ımb	er:		UPN: 95880		Boring Diameter 9"	-	. (E)						of Boring vation: 3138.0 ft
ed:				d:	Drilling Fluid:								vation Source:
		ugh			Abandonment N	Method:	Town				-		
Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material I	Description	Depth (ft) Elev. (ft)	MC (%)	1	PL	-200 (%)	QQ	Remarks and Other Tests
X	93		21 - 42 - 43	X	gravel (SP-SM), brown, n grained, subrounded, [A-	noist, fine to coarse	1.0			NP	11		Crushed Top Surfacing Bag 10"-111½"
X	50		16 - 20 - 16 6 - 5 - 5		BASE COURSE, Poorly-(and sand (GP-GM), very moist, fine to coarse grain subrounded, [A-1].	dense to dense, brown, ned, subangular to	4.3 3133.7	20 16	30	14	63		Bulk Bag 4.3'-8' MDD=117.8 pcf OMC=13%
X	94		1-5-5		[A-6]. Clayey SAND (SC), loose	subrounded, [A-1]. FILL, Sandy Lean CLAY (CL), stiff, brown, moist, [A-6]. Clayey SAND (SC), loose, light brown, moist, fine 8.0 3130 0							
X	22		1 - 3 - 2			Clayey SAND (SC), loose, light brown, moist, fine grained, subangular, [A-2]. (Alluvium).							
	ed: . Ho	ed: Holliba Hopkir Hospinal Hopkir 93 72 50 94	ed: Hollibaugh Hopkins 93 72 50 94	### STPX 90-8(191)450 Jamber: UPN: 95886 95886	### STPX 90-8(191)450 Jamber: UPN: 9588000 9588000 9588000 9588000 9588000 100 100	Cockwood Interchange - Billings CTPX 90-8(191)450 Imber: UPN: 9588000 Politing Fluid: None Abandonment M Backfilled with CO Material I 10" Existing PMS. Poly Poly Poly Poly Poly Poly Poly Poly	Hammer: Auto Coordinates System: MT S.P 9588000 Polatum: NAD83 Polatum: Nade Natime Polatume Polatum: Nade Natime Polatume Polatum: Nade Natime Polatume Polatum: Nade Na	Rig: CME75 Boring Location N: 57002 Coordinates E: 22420 Coo	Rig: CME75 Boring Location N: 570020.2 Coordinates E: 2242070. Coordinates E: 2242070.	Rig: CME75 Boring Location N: 570020.2 ft Coordinates E: 2242070.8 ft Coordinates E: 242070.8 ft Coordinates E: 2242070.8 ft Coordinates E: 2242	Rig: CME75	Rig: CME75 Boring Location N: 570020.2 ft Coordinates E: 2242070.8 ft	Rig: CME75 Hammer: Auto UPN: 9588000 9" Boring Diameter: System: MT S.P. (E) Datum: NAD83 ed: Date Finished: 5/8/20 None Sanderson Stewart Hollibaugh Hopkins Abandonment Method: Backfilled with Cuttings Material Description 10" Existing PMS. BASE COURSE, Poorly-Graded SAND with silt and gravel (SP-SM), brown, moist, fine to coarse grained, subrounded, [A-1]. 1-5-5 Clayey SAND (SC), loose, light brown, moist, fine grained, subangular, [A-2]. (Alluvium). System: MT S.P. (E) Datum: NAD83 Elev System: MT S.P. (E) Datum: NAD83 Tomship, Range, and Township, Range, and Township, Range, and N 26E 25 - ADA 10" Existing PMS. BASE COURSE, Poorly-Graded SAND with silt and gravel (SP-SM), brown, moist, fine to coarse grained, subrounded, [A-1]. FILL, Sandy Lean CLAY (CL), stiff, brown, moist, fine grained, subangular, [A-2]. (Alluvium).

(2) MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 7/7/20 13:14 - Z:\GINT\GINT\PROJECTS\3701-3800\3792.GPJ

Water Level Observations

□ Drilling: Not Encountered
□ After
□ Drilling: Not Encountered, Augers In
□ Drilling: Not Encountered, Augers Out

Remarks: Water not encountered to dry cave-in depth of 4' immediately after withdrawal of auger.

	1		_				Boring 9588	8000-ST-62							Sheet 1 of 1
				nterchange - B 191)450	illing	5	Rig: CME75 Hammer: Auto	Boring Location N Coordinates	l: 57124 :: 22437					Stat	tion: set:
Project N 19-37929		oer:		UPN: 95880	000		Boring Diameter: 9"	System: MT S.P. (Datum: NAD83	(E)					Top	of Boring vation: 3140.4 ft
Date Star	rted			Date Finished	d:		Drilling Fluid:	Location Source:						Ele	vation Source:
5/11/20 Driller: E			_	5/11/20 า			Abandonment Meth		Towns		-		ge,		derson Stewart Section:
Logger: (С. Н	орки	าร				Backfilled with Cutti	ngs	1N 27	E 3	0 -	BE	SA.		T .
Depth (ft) contraction of the second of the	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Desc	cription	Depth (ft) Elev. (ft)	MC (%)	רר	PL	-200 (%)	DD	Remarks and Other Tests
5 3135.4 		83 50 78 56		22 - 39 - 3 10 - 13 - 7 1 - 3 - 5 2 - 3 - 3		BAS (SF sub BAS and bro sub FIL bro	"Existing PMS. SE COURSE, Poorly-Grad '), brown, moist, fine to coarrounded, [A-1]. 8½"-10" C SE COURSE, Poorly-Grad I sand (GP-GM), very dens wn, moist, fine to coarse g rrounded, [A-1]. L, Lean CLAY with sand (0 wn, moist, [A-6]. yey SAND (SC), loose, bro ist, fine grained, subangula	arse grained, rushed Top Surfacing. led GRAVEL with silt se to medium dense, rained, subangular to CL), medium stiff, own to light brown, ar, [A-2]. (Alluvium).	0.7 3139.7 0.8 3139.6 4.0 3136.4 6.0 3134.4	23 20		16	77		Pen: 1 tsf Bulk Bag 4'-6' MDD=110.0 pcf OMC=19%

(2) MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 7/7/20 13:14 - Z:\GINT\GINT\PROJECTS\3701-3800\3792.GPJ

 □ During
 □ Drilling: Not Encountered
 □ After
 □ Drilling: Not Encountered. Augers Out Water Level Observations After
Drilling: Not Encountered, Augers In

Remarks: Water not encountered to dry cave-in depth of 3' immediately after withdrawal of auger.

Boring 9588000-ST-67

Sheet 1 of 1 Rig: CME75 Project: Lockwood Interchange - Billings Boring Location N: 567247.8 ft Station: STPX 90-8(191)450 **Coordinates** E: 2237251.8 ft Hammer: Auto Offset: **Project Number:** UPN: **Boring Diameter:** System: MT S.P. (E) **Top of Boring** 19-3792S 9588000 Datum: NAD83 Elevation: 3137.9 ft **Date Started: Date Finished: Drilling Fluid: Location Source: Elevation Source:** 5/6/20 5/6/20 Sanderson Stewart None Sanderson Stewart Driller: E. Hollibaugh **Abandonment Method:** Township, Range, and Section: Logger: C. Hopkins **Backfilled with Cuttings** 1N 26E 26 - DDA

	Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Description	Depth (ft) Elev. (ft)	(%) DM	רר	PL	(%) 007-	aa	Remarks and Other Tests
F	_	}	X	28		2 - 5 - 5		\ 2" Topsoil and Root Zone. FILL, Poorly-Graded GRAVEL with silt and sand (GP-GM), loose, brown, moist, fine to coarse	0.2 3137.7 1.0 3136.9		34	15	64		
F	_	}	A	67		2-6-6		grained, subangular to subrounded, [A-1]. FILL, Sandy Lean CLAY (CL), stiff, brown to gray, moist, [A-6].		17 20					Bulk Bag 2'-5' MDD=113.0 pcf OMC=15% Pen: 4+ tsf
	5 3132.9	}	X	83		3 - 4 - 6			6.0	20					
-	-	}	X	72		1 - 2 - 1		Clayey SAND (SC), very loose, brown, moist, fine grained, subangular, [A-2]. (Alluvium).	3131.9	16					
2.GPJ	10 3127.9		X	61		WH - 1 - 2		Lean CLAY with sand (CL), soft, brown, moist, [A-6]. (Alluvium).	9.0 3128.9	20					Pen: ½ tsf
(379)	•							Boring Depth: 10.5 ft, Elevation: 3127.4 ft	3127.4						

MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 7/7/20 13:14 - Z.\GINT\GINT\PROJECTS\3701-3800\3792.GPJ

During
Drilling: Not Encountered Water Level Observations After
Drilling: Not Encountered, Augers In After Drilling: Not Encountered, Augers Out

Remarks: Water not encountered to dry cave-in depth of 5' immediately after withdrawal of auger.

Boring 9588000-ST-68

Sheet 1 of 1

Project					iterchange - E 191)450	Billing	s	Rig: CME75 Hammer: Auto	Boring Location N Coordinates E	: 56825 : 22389					Stat	tion: set:
Project 19-379		mb	er:		UPN 9588	•		Boring Diameter: 9"	System: MT S.P. (Datum: NAD83	E)					Top	o of Boring vation: 3141.0 ft
Date St 5/6/20 Driller: Logge	Ε.	Но		_	Date Finishe 5/6/20	d:		Drilling Fluid: None Abandonment Meth Backfilled with Cutti						ge,	Sar	vation Source: nderson Stewart I Section:
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Desc	cription	Depth (ft) Elev. (ft)	MC (%)	LL	PL	-200 (%)	00	Remarks and Other Tests
 - 5 3136.0 10 3131.0			28 83 100 78		3 - 6 - 12 5 - 5 - 5 1 - 2 - 2 1 - 2 - 3		FIL (GF coa FIL bro Sar bro Cla	Topsoil and Root Zone. L, Poorly-Graded GRAVEL 2-GM), medium dense, bro arse grained, subangular, [. L, Lean CLAY with sand (C wn, moist, [A-6]. ndy Lean CLAY (CL), stiff t wn, moist to wet, [A-6]. (All an CLAY with sand (CL), m ist, [A-6]. (Alluvium). yey SAND (SC), very loos ined, subangular, [A-6]. (A	own, moist, fine to A-1]. CL), stiff, brown to light o soft, gray to light luvium). nedium stiff, brown, e, brown, moist, fine Illuvium).	3137.5 6.0 3135.0 8.5 3132.5	22 17 27 26		16	70		Pen: 2½ tsf Bulk Bag 1.8'-3½' MDD=113.7 pcf OMC=16% Pen: ¾ tsf
								Boring Depth: 10.5 ft, E	ievation: 3130.5 π	3130.5						

(2) MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 7/7/20 13:14 - Z.\GINT\GINT\PROJECTS\3701-3800\3792.GPJ

	During Drilling: Not Encountered
▼ After Drilling: Not Encountered, Augers In	After Drilling: Not Encountered, Augers Out

Remarks: Water not encountered to dry cave-in depth of 1½' immediately after withdrawal of auger.

Boring 9588000-ST-69

Sheet 1 of 1

								Donng 9500	3000-31-03							Sheet 1011
Project					iterchange - B 191)450	illings	S	Rig: CME75 Hammer: Auto	Boring Location N Coordinates E	: 56927 : 22409					Stat	tion: set:
Projec 19-379		ımb	er:		UPN : 95880			Boring Diameter: 9"	System: MT S.P. (Datum: NAD83	E)						of Boring vation: 3135.2 ft
Date S t 5/11/20		ed:			Date Finished	d:		Drilling Fluid: None	Location Source: Sanderson Stewart	t						vation Source:
Driller: Logge				_	1			Abandonment Meth Backfilled with Cutti		Towns 1N 26				•	and	Section:
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Desc	cription	Depth (ft) Elev. (ft)	MC (%)	LL	PL	-200 (%)	DD	Remarks and Other Tests
 - 5 3130.2			22 33 94		WH - 3 - 15 4 - 4 - 8 4 - 4 - 5		FIL der sub	Fopsoil and Root Zone. L, Clayey GRAVEL with sales, brown, moist, fine to concurred to the	oarse grained, CL), stiff, brown, moist, ium stiff, brown to light	4.0 3131.2 - 6.0 3129.2	15 23 17	37	15	64		Bulk Bag 4'-6' MDD=113.5 pcf OMC=16%
10 3125.2		X	39		1 - 3 - 2			Boring Depth: 10.5 ft, E	Tlevation: 3124.7 ft	10.5 3124.7	11					

Boring Depth: 10.5 ft, Elevation: 3124.7 ft

Water Level Observations

Water Level Observations

| During Dilling: Not Encountered | Alders In | During: Not Encountered | Alders Out

Remarks: Water not encountered to dry cave-in depth of 1' immediately after withdrawal of auger.

Sheet 1 of 1

								Boring 9588	3000-ST-70							Sheet 1 of 1
Projec					iterchange - B 191)450	illing	S	Rig: CME75 Hammer: Auto		22430					Stat	tion: set:
Projec 19-379		ımbo	er:		UPN: 95880			Boring Diameter: 9"	System: MT S.P. (Datum: NAD83	E)					Top	of Boring vation: 3133.5 ft
Date S 5/11/20		ed:			Date Finished 5/11/20	d:		Drilling Fluid: None	Location Source: Sanderson Stewart							vation Source: iderson Stewart
Driller: Logge				_	1			Abandonment Meth Backfilled with Cutti		Towns 1N 27				_	and	Section:
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Des	cription	Depth (ft) Elev. (ft)	MC (%)	LL	PL	-200 (%)	00	Remarks and Other Tests
			78 89 83 78		2 - 4 - 4 2 - 3 - 6 3 - 4 - 7 3 - 5 - 5		FIL stiff	Topsoil and Root Zone. L, Lean CLAY with sand (0 f, brown to dark gray, mois gyey SAND (SC), loose, gra grained, rounded, [A-2]. (t, [A-6]. ay to dark gray, moist, Alluvium).	0.2 3133.3 - 6.0 3127.5	9 21 16 20	34	14	71		Pen: 2½ tsf Bulk Bag ½-6' MDD=112.5 pcf OMC=15% Pen: 3½ tsf
								Boring Depth: 10.5 ft, E	levation: 3123.0 ft	3123.d						

(2) MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 7/7/20 13:14 - Z:\GINT\GINT\PROJECTS\3701-3800\3792.GPJ

Water Level Observations	□ During □ Drilling: Not Encountered
fter rilling: Not Encountered, Augers In	After Drilling: Not Encountered Augers Out

Remarks: Water not encountered to dry cave-in depth of 3' immediately after withdrawal of auger.

Borina 9588000-ST-71

Sheet 1 of 1

									Boring 958	8000-51-71							Sheet 1 of 1
Project					nterchan 191)450		illings	3	Rig: CME75 Hammer: Auto	Boring Location N Coordinates	: 56583 : 22351						tion: set:
Project 19-3792		mbo	er:			UPN: 95880	000		Boring Diameter: 9"	System: MT S.P. (Datum: NAD83	E)						o of Boring vation: 3145.8 ft
Date St 5/4/20					Date Fi 5/4/20	nished	d:		Drilling Fluid: None	Location Source: Sanderson Stewar						Sar	vation Source: nderson Stewart
Driller: Logger				_	1				Abandonment Meth Backfilled with Cutt		Towns 1N 26					and	l Section:
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count		Lithology		Material Des	cription	Depth (ft) Elev. (ft)	MC (%)	LL	PL	-200 (%)	OO	Remarks and Other Tests
((((3140.8			72 39 100		15 - 24 9 - 9 - 10 - 15	- 16	Š.	BA and coa FIL der sub	'Existing PMS. SE COURSE, Poorly-Grad d sand (GP-GM), dense, b arse grained, subrounded, L, Clayey GRAVEL with sa nse, brown, moist, fine to c bangular, [A-2]. L, Clayey SAND (SC), me own, moist, medium graine	rown, moist, fine to [A-1]. and (GC), medium oarse grained, dium dense, light	0.9 3144.9 2.5 3143.3 5.0 3140.8	3 5 15	23	15	20		Bulk Bag 2½'-5' MDD=134.7 pcf OMC=8%
		X	100 56		4 - 7 2 - 5			me	ayey SAND (SC), loose, lig dium grained, subangular, an CLAY with sand (CL), s 6]. (Alluvium).	[A-2]. (Alluvium). tiff, light brown, moist,	7.5 3138.3 8.5 3137.3						Pen: 21/4 tsf
									Boring Depth: 10.5 ft, E	Elevation: 3135.3 ft	3135.3						

(2) MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 717/20 13:14 - Z.\GINT\GINT\PROJECTS\3701-3800\3792.GPJ

Water Level Observations

□ During
□ Drilling: Not Encountered
□ After
□ Drilling: Not Encountered, Augers In
□ Drilling: Not Encountered, Augers Out

Remarks: Water not encountered to dry cave-in depth of 5½ immediately after withdrawal of auger.

Boring 9588000-ST-72

Rig: CME75 Project: Lockwood Interchange - Billings Boring Location N: 565966.2 ft Station: STPX 90-8(191)450 Coordinates E: 2234780.6 ft Hammer: Auto Offset: **Project Number:** UPN: **Boring Diameter:** System: MT S.P. (E) **Top of Boring** 19-3792S 9588000 Datum: NAD83 Elevation: 3138.5 ft **Date Started: Date Finished: Drilling Fluid: Location Source: Elevation Source:** 5/12/20 5/12/20

Sanderson Stewart None Sanderson Stewart Driller: E. Hollibaugh **Abandonment Method:** Township, Range, and Section:

Logger: C. Hopkins **Backfilled with Cuttings** 1N 26E 35 - ABB

Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Description	Depth (ft) Elev. (ft)	(%) DW	רר	PL	-200 (%)	QQ	Remarks and Other Tests
	1						11½" Existing PMS.	1.0	4					
-	}	X	83		12 - 23 - 16	以	BASE COURSE, Poorly-Graded GRAVEL with silt and sand (GP-GM), dense, brown, moist, fine to coarse grained, subangular to subrounded, [A-1].	3137.5		28	16	65		
	1	X	100		10 - 4 - 8		FILL, Sandy Lean CLAY (CL), stiff, gray to brown, moist, [A-6].	3135.7 4.0	18 11					Bulk Bag 2.8'-4' MDD=123.5 pcf
5 3133.5	1	X	73		2 - 6 - 12		FILL, Clayey SAND with gravel (SC), medium dense, gray to brown, moist, fine to coarse grained, subangular to subrounded, [A-2].	3134.5 6.0						OMC=13%
	}	X	100		4 - 8 - 10		FILL, Clayey GRAVEL with sand (GC), medium dense, gray to brown, moist, fine to coarse grained, subangular to subrounded, [A-2].	3132.5 8.5	12					
	1	X	56		5 - 6 - 6		FILL, Clayey SAND (SC), medium dense, gray to light brown, moist, fine grained, subangular to subrounded, [A-2].	3130.0	20					
1375							Boring Depth: 10.5 ft, Elevation: 3128.0 ft	3128.d						

MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 7/7/20 13:14 - Z.\GINT\GINT\PROJECTS\3701-3800\3792.GPJ

During
Drilling: Not Encountered Water Level Observations After
Drilling: Not Encountered, Augers In After
Drilling: Not Encountered, Augers Out

Remarks: Water not encountered to dry cave-in depth of 2' immediately after withdrawal of auger.

Sheet 1 of 1

3 1	GE	OTEC	HNICAL)			BORING 88000-ST-73							Sheet 1 of
			Interchange - (191)450	Billings		Boring Locati							tion:
Project N			UPI	N:	Hammer: Auto Boring Diameter	Coordinates System: MT		<u>22328</u>)	18.6	π			set: o of Boring
9-37928			958	8000	9"	Datum: NAD	083						vation: 3130.3 ft
Oate Star	ted:		Date Finish	ed:	Drilling Fluid:	Location Sou							vation Source:
5/12/20 Driller: E	: 🎞 🖰	llibou	5/12/20		None Abandonment Me	Sanderson St		Town	ahin	Dai	200		nderson Stewart I Section:
ogger: (Backfilled with Cu			1N 26			•	ano	i Section.
					·	<u> </u>					T		
Depth .e.	Type	y (%)	onut	ogy				Depth (ft)					Remarks
(ft) (ft) containing (ft)	Sample Type	Recovery (Blow Count	Lithology	Material D	escription		Elev. (ft)	MC (%)	1 곱	-200 (%)	00	and Other Tests
	,			P 5 4	9½" Existing PCCP.			0.8	1		+		
-		0.4	10.00.10		BASE COURSE, Poorly-G		vel	3129.5	4				
4		94	10 - 22 - 13		(SP), brown, moist, fine to subrounded, [A-1]. 91/2"-13			1.1 3129.2	8				Bulk Bag 2'-5'
-		83	7 - 6 - 4		BASE COURSE, Poorly-G	raded GRAVEL with s	silt		7	NF	P 7		MDD=138.1 pcf OMC=6%
-	\rightarrow				and sand (GP-GM), dense fine to coarse grained, sub		i d	4.0 3126.3	11				
5 125.3	X	73	4 - 7 - 5		[A-1].			4.5					
-)				FILL, Sandy Lean CLAY (0 [A-6].	JL), stiff, dark gray, m	noist,	3125.8	11				
-	abla	39	4 - 11 - 12		FILL, Clayey GRAVEL with								
K	/	00	7 11 12		dense, brown to dark gray grained, subangular to sub	, moist, fine to coarse prounded. [A-2].		ر 8.0 3122.3					
, After		er Lev			During Drilling: Not Encountered After								ed to dry cave-in withdrawal of aug
			ed, Augers In		Drilling: Not Encountered.		1 ' ''		_	_	, -		-9

 □ During
 □ Drilling: Not Encountered
 □ After
 □ Drilling: Not Encountered. Augers Out Water Level Observations After
Drilling: Not Encountered, Augers In

Borina 9588000-ST-74

								Boring 9588	3000-ST-74							Sheet 1 of 1
Projec					iterchange - B 191)450	illing	S	Rig: CME75 Hammer: Auto		: 22339					Sta	tion: set:
Projec		ımb	er:		UPN:			Boring Diameter:	System: MT S.P. (E)						o of Boring
19-379	92S				95880			9"	Datum: NAD83							vation: 3140.5 ft
Date S		ed:			Date Finished	d:		Drilling Fluid:	Location Source:							vation Source:
5/12/20 Driller :		Ца	lliba		5/12/20			None Abandonment Meth	Sanderson Stewart		. hir		200	~		nderson Stewart I Section:
Logge				_	1			Backfilled with Cutti		1N 26		•		•	ano	i Section:
Logge		110	PKII	10	I			Dackinica With Outil	ngs	1111 20		<u> </u>				I
Depth	<u>_</u>	/be	(%)	<u>.</u>	ž,	λ				Depth						
(ft)	Operation	le T	/ery	RQD (%)	Š	Lithology		Material Desc	cription	(ft)	(%)			(%)		Remarks and
Elev. (ft)	o	Sample Type	Recovery (%)	8 S	Blow Count	Lit				Elev. (ft)	MC (Ľ	Ы	-200 (%)	9	Other Tests
(11)		0,	ď		<u> </u>					(11)	2	_	Δ.	٠,٠		
	P					, ,		" Existing PMS.	ad CDAV/EL with ailt	0.6 3139.9	3					
	1	\bigvee	67		18 - 27 - 13			SE COURSE, Poorly-Grad I sand (GP-GM), dense, br		3139.9						
-)		10 21 10			rse grained, subangular, [/			14					
-	1	X	73		3 - 9 - 13			L, Clayey SAND (SC), med		3.0 3137.5						Bulk Bag 3'-5'
-	1	$\langle \cdot \rangle$						wn to gray, moist, fine to co			18 14	33	15	43		MDD=117.0 pcf OMC=15%
_ 5 3135.5		X	100		9 - 15 - 13		Sub	rounded to subangular, [A	-0].							oo
			1					L. Danarda Oranda d CAND	:#1	6.0	4.5					
_	1	7						L, Poorly-Graded SAND w P-SC), medium dense, light		3134.5	15					
	4	X	78		13 - 20 - 15		fine	to coarse grained, subrou								
_							[A-2	2].			16					
- 10	1	7	1		0 40 45						10					
10 3130.5		\triangle	83		8 - 13 - 15					10.5						
								Boring Depth: 10.5 ft, E	levation: 3130.0 ft	3130.d						

(2) MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 7/7/20 13:14 - Z.\GINT\GINT\PROJECTS\3701-3800\3792.GPJ

Water Level Observations

☐ Drilling: Not Encountered
☐ After
☐ Drilling: Not Encountered, Augers In
☐ Drilling: Not Encountered, Augers Out

Remarks: Water not encountered to dry cave-in depth of 2' immediately after withdrawal of auger.

	S ⁻	TPX	90		iterchange - 191)450		Hammer: Auto		22348					Sta	tion: set:
Projec 19-379		mbe	er:		UPN 9588	: 3000	Boring Diameter: 9"	System: MT S.P. (I Datum: NAD83	E)					Top	o of Boring vation: 3170.9 ft
Date S 5/13/20 Driller:) E.	Holl		ugh	Date Finish 5/13/20	ed:	Drilling Fluid: None Abandonment Meth		Towns				_	Sar	vation Source: nderson Stewart I Section:
_ogge Depth					ţ	<u>></u>	Backfilled with Cutti	ings	1N 26	E 3	35 -	AE	BC		
(ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Des	cription	(ft) Elev. (ft)	MC (%)	님	7	-200 (%)	DD	Remarks and Other Tests
-	}	X	83		21 - 30 - 30		63/4" Existing PMS. BASE COURSE, Poorly-Grac and sand (GP-GM), very den- coarse grained, subangular to	se, brown, moist, fine to	0.6 3170.3	2 19					
5	}	$\langle \cdot \rangle$	56 61		8 - 7 - 5 1 - 3 - 3	₹ ***	BASE COURSE, Silty GRAVI medium dense, brown, moist, subangular to subrounded, [A	, fine to coarse grained, A-1]. Subbase Course.	3.0 3167.9 4.0 3166.9	l		NP	23		Subbase Bag 3'-4' Bulk Bag 4'-7½' MDD=118.5 pcf
165.9 - -			73		1 - 8 - 9		FILL, Sandy Lean CLAY (CL) stiff, brown, moist, [A-6].	,	7.5	11 15	33	16	51		OMC=14%
_ _ 10 _ [60.9		X	78		4 - 3 - 3		FILL, Clayey GRAVEL with sa dense to loose, brown, moist, subangular to subrounded, [A	fine to coarse grained,	3163.4	15					
- 1							Boring Depth: 10.5 ft, E	Elevation: 3160.4 ft	3160.4						

IDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 7/7/20 13:14 - Z:\GIN

Water Level Observations

□ Drilling: Not Encountered
□ After
□ Drilling: Not Encountered. Augers In
□ Drilling: Not Encountered. Augers Out

Remarks: Water not encountered to dry cave-in depth of 2½ immediately after withdrawal of auger.

After Drilling: Not Encountered, Augers In

LOG OF BORING

Duningty I -	-1		Line	4 D	:11:		8000-ST-76		50540		.		1		Sheet 1 of
				terchange - B l91)450	IIIIngs	Rig: CME75 Hammer: Auto	Boring Locatio Coordinates		565430 223582					Stat Offs	
Project Nun 9-3792S				UPN: 95880		Boring Diameter: 9"	System: MT S. Datum: NAD8	.P. (E						Тор	of Boring vation: 3167.5 ft
Date Started	d:			Date Finished	d:	Drilling Fluid:	Location Source								ation Source:
5/13/20				5/13/20		None	Sanderson Ste	wart							derson Stewart
Oriller: E. H			_			Abandonment Met							_	and	Section:
ogger: C. I	Нор	kın	s			Backfilled with Cutt	ings		1N 26	E 3	5 -	AB	שׁ		
Depth (ft) Depth (ft) Control (Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Des	scription		Depth (ft) Elev. (ft)	MC (%)	L,	PL	-200 (%)	DD	Remarks and Other Tests
-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	83		18 - 28 - 22		6¾" Existing PMS. BASE COURSE, Poorly-Graand sand (GP-GM), medium fine to coarse grained, subar	dense, brown, moist,		0.6 3166.9	2					
		72		4 - 6 - 17		[A-1]. BASE COURSE, Silty GRAV (GC-GM), medium dense, br	own, moist, fine to	y	3165.0	12 5 4	21	14	28		Bulk Bag 3'-5' MDD=135.2 pcf OMC=8%
162.5	X	6		9 - 13 - 10		coarse grained, subangular t Subbase Course. FILL, Sandy Lean CLAY (CL moist, [A-6].			5.0 3162.5	14 6	34	13	68		Bulk Bag 5'-7' MDD=120.7 pcf OMC=13%
	X	61		6 - 19 - 8		FILL, Poorly-Graded GRAVE medium dense, brown, moist subangular to subrounded, [/	t, fine to coarse graine	ed,	7.0 3160.5	_					
	1	00		22 - 50/0.4ft	<u> </u>	Silty SAND with gravel (SM), brown, moist, fine to coarse subrounded, [A-2]. (Decomposition of the coarse of the coarse)	very dense, light grained, subangular to	ا ٥	9.0 3158.5 9.9 3157.6	7					
					ı	Boring Depth: 9.9 ft, E			<u>0107.9</u>						
	/ater	Le	evel	Observations		7 During - Drilling: Not Encountered									d to dry cave-in
After Drilling: Not				l Augoro In		After Drilling: Not Encountered. A		depth	of 2' im	nme	diat	tely	afte	er wit	hdrawal of auger.

I-90 Yellowstone R – Billings Log of Boring Sheets

Boring 7972000-ST-16

Sheet 1 of 1

Projec					tone R - 176)450		gs,		Rig: Diedrich D-120 Hammer: Auto	Boring Location N Coordinates	: 56548 : 22343	8.2 12.	ft 6 ft				tion: 252 + 78 set: 45 ft R
Projec 14-326		ımb	er:			UPN: 79720			Boring Diameter: 9"	System: MT S.P. (I Datum: NAD83	E)						of Boring vation: 3138.2 ft
Date S 4/7/16 Driller: Logge	: M	. Lu		rn	Date Fir 4/7/16	nished	:k		Drilling Fluid: None Abandonment Meth Backfilled with Cutti			shi			_	Sar	vation Source: nderson Stewart I Section:
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count		Lithology		Material Desc	cription	Depth (ft) Elev. (ft)	MC (%)	L	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
 5 3133.9 			• •		20 - 32 18 - 36 37 - 50/ 50/0.3	- 50 /0.2ft		CRU sand grain BAS very suba FILL olive	"PMS. USHED TOP SURFACING d (GM), dense, dark brown ined, subrounded, [A-1]. SE COURSE, Clayey SAN y dense, brown, moist, fine angular, [A-2]. L, Sandy Lean CLAY with ge, moist, [A-6]. athered SANDSTONE, bro ined, medium to hard field	D with gravel (SC), to coarse grained, gravel (CL), hard, bwn to gray, coarse	0.8 3136.2 1.1 3136.1 4.0 3132.9 4.5 3133.6	3 9 7			14		Base Bag 1.1'-1.3' Bulk Bag 4'-41/2' MDD=125.7 pcf OMC=11%
			9_		50/0.	Jic	15-25		Boring Depth: 8.5 ft, Ele	evation: 3129.7 ft	8.5 3197.6			<u> </u>			Auger Refusal 8½'

OF BORING - MDI_KEVISED_2009+(CPT_IMPORT).GDT - ////20 13:25 - Z:\GINT\GINT\PROJEC

Water Level Observations

□ During
□ Drilling: Not Encountered
□ After
□ Drilling: Not Encountered, Augers In
□ Drilling: Not Encountered, Augers Out

Remarks: Water not observed to dry cave-in depth of 5.3' immediately after withdrawal of auger.

Boring 7972000-ST-17

Project: I-90 Yellowstone R - Billings, NHPB 90-8(176)450 Rig: Diedrich D-120 Boring Location N: 565954.8 ft **Station:** 262 + 19 Hammer: Auto **Coordinates** E: 2235133.0 ft Offset: 45 ft R **Project Number:** UPN: **Boring Diameter:** System: MT S.P. (E) **Top of Boring** 14-3269S 7972000 9" Datum: NAD83 Elevation: 3135.1 ft Date Started: Date Finished: **Drilling Fluid: Location Source: Elevation Source:** 4/8/16 4/8/16 Sanderson Stewart Survey Sanderson Stewart None Driller: M. Luce **Abandonment Method:** Township, Range, and Section: Logger: B. Western **Backfilled with Cuttings** 1N 26E 35 - ABB

Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Description	Depth (ft) Elev. (ft)	MC (%)	LL	PL	-200 (%)	DD (bcf)	Remarks and Other Tests
5 3138.1			89 72 78		23 - 24 - 29 17 - 28 - 24 7 - 9 - 18 4 - 3 - 3	P.	CRUSHED TOP SURFACING, Silty GRAVEL with sand (GM), dense, dark brown, moist, fine to coarse grained, subrounded, [A-1]. BASE COURSE, Poorly-Graded GRAVEL with silt and sand (GP), very dense, brown, moist, fine to coarse grained, subrounded to subangular, [A-1]. FILL, Clayey SAND with gravel (SC), medium dense to very dense, olive, moist, fine to coarse grained, subrounded to subangular, [A-2]. FILL, Silty SAND (SM), loose, olive, moist, [A-2].	0.9 3132.9 1.1 3132.8 2.5 3139.4	2 2 4 9	22	13	27		Bulk Bag 2½'-3½' MDD=133.9 pcf OMC=6% CBR=9.7
10 <u>10 3190.1</u>		X	94		6 - 4 - 2		Boring Depth: 10.5 ft, Elevation: 3124.6 ft	10.5 3192.4						

.OG OF BORING - MDT_REVISED_2009+(CPT_IMPORT).GDT - 7/7/20 13:25 - Z.\GINT\GINT\PROJECTS\32201-3300\3269S.GPJ

DTL		Observations		During Drilling: Not Encountered
∑ V <u>V</u>	After Drilling: Not Encountered	, Augers In	Ţ	After Drilling: Not Encountered, Augers Out

Remarks: Water not observed to dry cave-in depth of 5.6' immediately after withdrawal of auger.

Sheet 1 of 1

NHPB roject Number		tone R - Billir	igs,	Rig: Diedrich D-120	Boring Location N	: 56546	.6 ft			Stat	tion: 250 + 37
		176)450 UPN	:	Hammer: Auto Boring Diameter:	Coordinates E System: MT S.P. (: 223405	7.3 f	<u>t </u>		Offs	set: 44 ft L
4-3269S		7972	2000	9"	Datum: NAD83	,				Elev	vation: 3141.4 ft
ate Started:		Date Finishe	ed:	Drilling Fluid:	Location Source:						vation Source:
<u>/11/16</u> riller: M. Luce		4/11/16		None Abandonment Met	Sanderson Stewar		hin	Dan			derson Stewart Section:
ogger: B. Wes				Backfilled with Cutt		1N 26	_		_	una	Occilon.
epth _ 8_ 8	(%)	±				Depth					
Operation Sample Type	RQD (%)	Blow Count	Lithology	Material Des	scription	(ft)			(%	(bct)	Remarks and
lev. Ober	ROLL STORY	NOIS	Lith	Material Des	oription .	Elev.	MC (%)	7	-200 (%)	d) QQ	Other Tests
(ft) S S	ř	ш		1/II DN 40		(ft)	2 _	Δ.	'7		
				1¼" PMS. CRUSHED TOP SURFACIN	G. Silty GRAVEL with	0.8 3128.4	2				
10	00	35 - 42 - 48	• A• s	and (GM), very dense, dark oarse grained, subrounded	brown, moist, fine to	1.1	2				
- 1	00	25 - 38 - 50		SASE COURSE, Poorly-Grad	ded GRAVEL with clay,	3120.3					
	20	40 50/0.0%		and, and cobbles (GP-GC), rown, moist, fine to coarse of		4.0	9				Bulk Bag 4'-4½'
5 134.2	00	16 - 50/0.3ft		A-1].		3136.2 4.5	3 28	14	25		MDD=133.7 pcf
				ILL, Clayey SAND with graverown, moist, fine to coarse of		3134.7	4				OMC=7% CBR=8.1
10	<u> </u>	50/0.2ft	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Veathered SANDSTONE, of		6.7 3132.6	4				
			<u> </u>	nedium field hardness. Boring Depth: 6.7 ft, E	Tevation: 3134 7 ft	1					

 □ During
 □ Drilling: Not Encountered
 □ After
 □ Drilling: Not Encountered. Augers Out Water Level Observations After
Drilling: Not Encountered, Augers In

Remarks: Water not observed to dry cave-in depth of 3.4' immediately after withdrawal of auger.

Boring 7972000-ST-33

Sheet 1 of 1

Projec					tone R - Billin 176)450	gs,		Rig: Diedrich D-120 Hammer: Auto	Boring Location N Coordinates E	: 56586 : 22348	9.2 11.:	ft 2 ft				tion: 258 + 98 set: 44 ft L
Projec 14-326		ımb	er:		UPN: 7972			Boring Diameter: 9"	System: MT S.P. (Datum: NAD83	E)						of Boring vation: 3134.2 ft
Date S 4/11/16 Driller:	3		ce		Date Finishe 4/11/16	d:		Drilling Fluid: None Abandonment Meth	Location Source: Sanderson Stewar			n R	?an	_	San	vation Source: derson Stewart
				rn				Backfilled with Cutti		1N 26E 35 - BAA						
Depth (ft) Elev. (ft)	Depth (ft) (%) (%) (%) Material Descrip								cription	Depth (ft) Elev. (ft)	MC (%)	LL	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
			100 72 50 89		28 - 34 - 34 16 - 23 - 14 5 - 5 - 4 4 - 3 - 3		CR san coa BAS and moi sub Cla fine	"PMS. USHED TOP SURFACING (GM), very dense, dark tarse grained, subrounded, less COURSE, Poorly-Grad dense to sand (GP-GM), dense to sist, fine to coarse grained, sangular, [A-1]. In the same of t	brown, moist, fine to [A-1]. ed GRAVEL with silt very dense, gray, subrounded to c), loose, brown, moist, some seams lean clay.	3138.9	3	21	13	38		Pen: 2¾ tsf Bulk Bag 4'-10' MDD=128.3 pcf OMC=9% CBR=7.6
								Boring Depth: 10.5 ft, E	ievaτion: 3123.7 π	3193.d						

(2) MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT), GDT - 7/7/20 13:25 - Z:\GINT\GINT\PROJECTS\3201-3300\3269S.GPJ

Water Level	Observations	☐ During ☐ Drilling: Not Encountered
After Drilling: Not Encountered.	, Augers In	After Drilling: Not Encountered, Augers Out

Remarks: Water not observed to dry cave-in depth of 7.5' immediately after withdrawal of auger.

Boring 7972000-ST-40

Sheet 1 of 1

2011ing 1012000 31 10																
Project					tone R - Billir 176)450	ıgs,		Rig: Diedrich D-120 Hammer: Auto	Boring Location N Coordinates	: 56529 : 22343	3.2 12.	ft 8 ft				tion: 251 + 94 set: 220 ft R
Project	t Nu	ımb	er:		UPN	:		Boring Diameter:	System: MT S.P. (E)					Top	of Boring
14-326	98				7972	2000		9"	Datum: NAD83							/ation: 3159.5 ft
Date St	tart	ed:			Date Finishe	d:		Drilling Fluid:	Location Source:						Elev	vation Source:
4/21/16					4/21/16			None						_		derson Stewart
Driller:						Abandonment Method: Township, Rang Backfilled with Cuttings 1N 26E 35 - BAI							and	Section:		
Logge	r: B.	We	este	rn				Backfilled with Cutti	ngs	1N 26	E 3	5 -	ВА	۱D		
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Desc	Depth (ft) Elev. (ft)	MC (%)	LL	PL	-200 (%)	DD (pcf)	Remarks and Other Tests	
 5 3102.0 			83 100 100 100		12 - 34 - 31 10 - 12 - 28 19 - 37 - 30 7 - 17 - 30 37 - 50/0.3ft		CR sar coa BA sar gra sub FIL [A-	7/4" PMS. RUSHED TOP SURFACING and (GM), very dense, dark harse grained, angular, [A-1] ase COURSE, Poorly-Grad and, and cobbles (GP-GM), and to brown, moist, fine to cobangular to subrounded, [A.L., Sandy Lean CLAY (CL), 6]. ALE, olive, fine grained, veedium to hard field hardness	brown, moist, fine to l. led GRAVEL with silt, dense to very dense, parse grained, -1]. ly very stiff, olive, moist, ery thinly bedded,	0.9 3105.4 1.2 3105.3 3.5 3104.8	15 13 10	32	12	69		Bulk Bag 3½'-4½' MDD=113.3 pcf OMC=16%
		~						Boring Depth: 9.8 ft, Ele	evation: 3149.7 ft	3127.6						

(2) MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT),GDT - 7/7/20 13:25 - Z:\GINT\GINT\PROJECTS\3201-3300\3269S.GPJ

Water Level Observations	□ During □ Drilling: Not Encountered
▼ After Drilling: Not Encountered, Augers In	After Drilling: Not Encountered, Augers Out

Remarks: Water not observed to dry cave-in depth of 1.8' immediately after withdrawal of auger.

Boring 7972000-ST-41

Sheet 1 of 1

Project 14-326	N t N u	HP	B 90		tone R - Billing 176)450 UPN: 79720			Boring Diameter:	Boring Location N Coordinates E: System: MT S.P. (I Datum: NAD83	22339	7.4 97.	ft 3 ft			Offs	tion: 250 + 24 set: 161 ft L of Boring vation: 3145.7 ft
Date St 4/21/16 Driller: Logge	M.	. Lu		rn	Date Finished 4/21/16	d:		Drilling Fluid: Location Source: None Sanderson Stewart Survey Abandonment Method: Township, Rang Backfilled with Cuttings 1N 26E 35 - BAG						ge,	Elev San	vation Source: nderson Stewart
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Desc	Depth (ft) Elev. (ft)	MC (%)	1	PL	-200 (%)	DD (pcf)	Remarks and Other Tests	
 5 			83 67		21 - 37 - 30 17 - 16 - 13 8 - 7 - 11 48 - 50/0.5ft		CR san gra BAS and bro [A-7] FIL der sub	/2" PMS. USHED TOP SURFACING and (GM), dense, dark gray, ined, rounded to subrounded to subrounded to sand (GP-GM), medium down, moist, fine to coarse graph. L, Clayey SAND with grave use, olive, moist, fine to coarse, olive, moist, olive, ol	moist, fine to coarse ed, [A-1]. ed GRAVEL with silt dense to very dense, rained, subangular, el (SC), medium arse grained, /e, fine grained, thinly	3.3 3129.2 6.0 3137.6	15 11		13	37		Bulk Bag 4'-5' MDD=127.8 pcf OMC=9.0%
Boring Depth: 9.3 ft, <i>Elevation: 3136.4 ft</i>																

KING - MDI_KEVISED_2009+(CPI_IMPORI).GDI - 7/7/20 13:25 - 2:\GINT\GINT\PROJEC

Water Level Observations

□ Drilling: Not Encountered
□ After
□ Drilling: Not Encountered, Augers In
□ Drilling: Not Encountered, Augers Out

Remarks: Water not observed to dry cave-in depth of 2.2' immediately after withdrawal of auger.

	stone R - Billings, (176)450	Rig: CME 75HT Hammer: Auto	Boring Location N Coordinates	N: 56524 E: 22340					ion: 249 + 17
Project Number:	UPN:	Boring Diameter:	System: MT S.P.		20.0	п			set: 142 ft R
14-3269S	7972000	9"	Datum: NAD83	` /					of Boring vation: 3150.8 f
Date Started:	Date Finished:	Drilling Fluid:	Location Source:						/ation Source:
3/26/18	3/26/18	None	Sanderson Stewar	rt Surve	_		_		derson Stewart
Oriller: C. Larsen		Abandonment Met				, Rar	nge,	and	Section:
Logger: S. Kuhn		Backfilled with Cut	tings	1N 26	E 35	5 - BA	٩C		
0 0				Davida					
Operation Operation Sample Type Recovery (%)	Blow Count			Depth (ft)				اےا	Remarks
Operation ample Typ (9)	low Coun	Material Des	scription		(%)		%)	(bct	and Other Teets
Elev. o lim o o o o o o o	Blo Lit			Elev. (ft)	145	긥귙	-200 (%)	DD (pcf)	Other Tests
		41/!! DMC			\sqcup	_	Η.		
	44 40 00	4½" PMS. BASE COURSE, Poorly-Gra	aded GRAVEL with cilt	0.4 3150.4	5				
72	11 - 16 - 22	and sand (GP-GM), dense, I	ight brown to gray,		3				
	17 24 22	moist, fine to coarse grained							
- 67	17 - 21 - 23	[A-1].							
		FILL Clayer CAND	vol (CC)	4.0	11				
5 72	9 - 12 - 14	FILL, Clayey SAND with gradense, light brown to gray, n	vei (SC), medium noist, fine to coarse	3146.8					
145.8		grained, subrounded to suba							
25	50/0.3ft	sandstone chunks.	4- E. L.C.	6.5	10				
	30,0.0t	Weathered SANDSTONE, becoarse grained, medium becoarse	rown to light brown,	3144.3					
		field hardness.		8.0					
8	50/0.2ft	SANDSTONE, light brown, f		3142.8	8				
	30/0.211	bedded, medium field hardn	ess.	$\int \frac{3.2}{3141.6}$				-	
		Boring Depth: 9.2 ft, E	Elevation: 3141.6 ft	3 3141.0					
		Boring Depth: 9.2 ft, E	Elevation: 3141.6 ft	3141.0					

Boring 7972000-ST-206																Sheet 1 of 1	
	N	HPE	3 90		tone R - 176)450				Hammer: Auto		: 22349						tion: 257 + 17 set: 504 ft R
Projec 14-326		ımb	er:			UPN: 79720			Boring Diameter: 8"	System: MT S.P. (Datum: NAD83	E)						of Boring vation: 3176.2 ft
Date S 9/9/19		ed:			Date Fir 9/9/19	nished	d:		Drilling Fluid: None	Location Source: Sanderson Stewar	t Surve\	,					vation Source:
	Oriller:S. RobertsonAbandonment Method:Township, RarLogger:D. HutzenbilerBackfilled with Cuttings1N 26E 35 - AB											•	and	Section:			
Depth (ft) Elev. (ft)	Depth (ft) Blev. (ft) WC (%) WC (ft) Blow Count Description Blow Count Depth (ft) Blev. (ft) Blow Count Depth (ft) Blow Count Depth (ft) Blev. (ft) Blow Count Depth (ft) Blow C										-200 (%)	DD (bcf)	Remarks and Other Tests				
 5 3171.2		X	100 8 18		50/0.s 20 - 32 5 - 5 -	- 17		BAS and coa BAS (GF sub	arse grained, subrounded SE COURSE, Poorly-Gra P), dense, brown, moist, f pangular to subrounded, [L, Sandy Lean CLAY (CL	nse, brown, moist, fine to , [A-1]. ded GRAVEL with sand ne to coarse grained, A-1].	0.6 3175.6 1.5 3174.7 2.9 3173.3	12 14		12	8 58		
 	}	X	18		2 - 7 -			moi	L, Lean CLAY with grave ist, [A-6]. L, Sandy Lean CLAY with wn, moist, [A-6].	7.5 3168.7 8.5 3167.7	l						
3166.2		V							Boring Depth: 10.5 ft,	Elevation: 3165.7 ft	10.5 3165.7	<u> 111</u>					

(2) MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT),GDT - 7/7/20 13:25 - Z:\GINT\GINT\PROJECTS\3201-3300\3269S.GPJ

 □ During
 □ Drilling: Not Encountered
 □ After
 □ Drilling: Not Encountered. Augers Out Water Level Observations After
Drilling: Not Encountered, Augers In

Remarks: Water not observed to dry cave-in depth of 3' immediately after withdrawal of auger

Boring 7972000-ST-207

Sheet 1 of 1

	Ν	HPI	B 90		tone R - Billin 176)450			Rig: Diedrich D-120 Hammer: Auto		22345						tion: 255 + 12 set: 160 ft R
Project 14-326		ımb	er:		UPN: 79720			Boring Diameter: 8"	System: MT S.P. (EDatum: NAD83	≣)						of Boring vation: 3163.2 ft
Date St 9/13/19 Driller:) S.	Ro			Date Finished 9/13/19	d:		Drilling Fluid: None Abandonment Meth	Location Source: Sanderson Stewart nod:	Towns	shi			•	Sar	vation Source: derson Stewart Section:
Logge	r: C.	Hop	okin	S				Backfilled with Cutti	ngs	N 26E 35 - BAD						
Depth (ft) Elev. (ft)	ebth (tt) Operation Sample Type (be) (left) Operation Sample Type (left) Operation Ope								PL	-200 (%)	DD (pcf)	Remarks and Other Tests				
5 - 3158.2 			33 50 56		31 - 28 - 17 7 - 17 - 13 3 - 3 - 4 18 - 33 - 19		BAS (GF coa FILI coa	" PMS. SE COURSE, Poorly-Grad P), medium dense to dense trse grained, subangular, [L, Clayey SAND (SC), loos trse grained, subrounded to L, Silty SAND with sandsto tlense, light brown, moist, fi pangular to angular, [A-2].	e, brown, moist, fine to A-1]. se, brown, moist, fine to o subangular, [A-6]. one gravel (SM), loose	3.0 3162.7 3.0 3160.2 5.0 3158.2	13 10 8	27		5 42		MDD=120.6pcf OMC=12.2%
10 3153.2		\bigwedge	67		17 - 21 - 23			Boring Depth: 10.5 ft, E	levation: 3152.7 ft	10.5 3152.7	8					

(2) MDT LOG OF BORING - MDT_REVISED_2009+(CPT_IMPORT), GDT - 7/7/20 13:25 - Z:\GINT\GINT\PROJECTS\3201-3300\3269S.GPJ

Water Level Observations	During Drilling: Not Encountered
After Drilling: Not Encountered, Augers In	After Drilling: Not Encountered, Augers Out

Remarks: Water not observed to dry cave-in depth of 4½ immediately after withdrawal of auger

Thilling: Not Encountered, Augers In

LOG OF BORING

Boring 7972000-ST-140 Sheet 1 of 1 Boring Location N: 565149.1 ft Project: I-90 Yellowstone R - Billings, Rig: CME 75HT Station: 248 + 41 NHPB 90-8(176)450 Coordinates E: 2233975.1 ft Hammer: Auto Offset: 215 ft R UPN: **Boring Diameter:** System: MT S.P. (E) **Project Number:** Top of Boring 14-3269S 7972000 9" Datum: NAD83 Elevation: 3170.1 ft **Date Started: Date Finished: Drilling Fluid: Location Source: Elevation Source:** 3/30/18 3/29/18 None Sanderson Stewart Survey Sanderson Stewart Driller: C. Larsen **Abandonment Method:** Township, Range, and Section: Logger: S. Kuhn 1N 26E 35 - BAC Backfilled with Cuttings Recovery (%) Depth Depth Sample Type **Blow Count** Operation Lithology 8 (ft) (ft) Remarks (pcf) જી RQD (**Material Description** and -200 (Elev. **Other Tests** Elev. S Ы 2 Ⅎ (ft) (ft) Topsoil and root zone. 0.5 18 69 WH - 2 - 2 3169.6 Lean CLAY with sand (CL), soft, brown, moist, [A-6]. 13 1.0 (Alluvium). 3169.1 1-2-2 53 Clayey SAND (SC), very loose, light brown, moist, fine to coarse grained, subangular, [A-2]. (Alluvium). 3.5 Poorly-Graded GRAVEL with silt, sand, and cobbles 3166.6 1 (GP), dense to very dense, brown to gray, moist, fine 5 56 11 - 22 - 29 to coarse grained, subangular, [A-1]. (Alluvium). 3165.1 3 16 - 40 - 50/0.4ft 78 2 27 - 50/0.5ft 75 10 3160.1 3 39 50/0.5ft 13.0 Weathered SANDSTONE, light gray-brown to 3157.1 Z:\GINT\GINT\PROJECT 10 orange, fine grained, thinly bedded, medium to 72 27 - 50/0.4ft moderately hard field hardness. 15 3155. ī 8 50/0.3ft 17 20 3150. Ī REVISED_2009+(CPT_IMPORT).GDT 12 50/0.3ft 24.3 Boring Depth: 24.3 ft, Elevation: 3145.8 ft 3145.8 Added 35 gallons of water to free auger, let sit overnight. During
Drilling: Not Encountered Water Level Observations Remarks:

Drilling: Not Encountered, Augers Out

Boring 7972000-ST-141

Sheet 1 of 2

Project: I-90 Yellowstone R - Billings, Rig: CME 75HT Boring Location N: 565183.4 ft Station: 249 + 98																	
	N	HPE	3 90		176)450			Rig: CME 75HT Hammer: Auto	Boring Location Coordinates	E:	223413						tion: 249 + 98 set: 247 ft R
Project 14-326		mb	er:		UPN: 7972			Boring Diameter: 9"/31/4"	System: MT S Datum: NAD8	`	Ξ)					Top	o of Boring vation: 3171.5 ft
Date Si 3/30/18 Driller: Logge	3 C.	Lar		l	Date Finishe 3/30/18	d:		Drilling Fluid: None/Water Abandonment Meth Backfilled with Cutti	Location Sour Sanderson Ste nod:	ce:		shi			_	Ele Sar	vation Source: nderson Stewart I Section:
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Des	cription		Depth (ft) Elev. (ft)	MC (%)		PL	-200 (%)	DD (pcf)	Remarks and Other Tests
	F	X	75		1 - 2 - 2	21 1 _N 3		osoil and root zone. y SAND (SM), loose to me	dium dense light		0.6 <i>3170.9</i>	18					
	ł	\forall	69		2-2-3		bro	own, moist, fine grained, su 2]. (Alluvium).	,	3110.3	10						
5 3166.5		X	25 61		5 - 6 - 7			an CLAY with sand (CL), mown, moist, [A-6]. Seams of			3.5 3168.0	6	22	12	53		
 	}	X	50		11 - 21 - 30		(GF gra	orly-Graded GRAVEL with P-GM), dense to very dens yy-brown, moist, fine to coa	e, light brown to rse grained,	oles	6.5 3165.0	2					
10 3161.5	ł	X	50		31 - 50/0.4ft		sub	oangular to subrounded, [A	1]. (Alluvium).			1					
 	ł	X	67		29 - 50/0.5ft							2					
10 3161.5 15 3156.5		X	89		25 - 31 - 40		(GF fine We thin	orly-Graded GRAVEL with P), dense to very dense, lige to coarse grained, subroue athered SANDSTONE, lightly bedded, medium to moodness.	ht brown, moist to v inded, [A-1]. (Alluviu ht brown, fine graine	um)	14.0 3157.5 15.5 3156.0	5					
- 20 3151.5	N	×	78 96	46	40 - 50/0.3ft							11 8				137	UCS: 1040 psi
 25			100	41								17				125	UCS: 2289 psi
20 3151.5 25 3146.5 30 3141.5			100	89			SAI me	NDSTONE, light brown to dium bedded, hard field ha		26.5 3145.0							
30 3141.5																	
√ ■ After		Vate		evel		-	<u> </u>	ring illing: Not Encountered									o wet cave-in depth of val of auger.
Drilling	: No	Enc	oun	terec	d, Augers In			ter illing: Not Encountered, Au	igers Out				,				

~	4	-	1					Boring 7972				Sheet 2 of 2			
Projec					tone R - Billin 176)450	gs,		Rig: CME 75HT Hammer: Auto	Boring Location Na Coordinates Ea	: 56518 : 22341					tion: 249 + 98 set: 247 ft R
Projec	t Nu			, 0(UPN:			Boring Diameter:	System: MT S.P. (I		30	+ 11		1	o of Boring
14-326					7972			9"/31/4"	Datum: NAD83					Ele	vation: 3171.5 ft
Date S 3/30/18		ed:			Date Finishe	d:		Drilling Fluid: None/Water	Location Source:	Survey	,				vation Source: nderson Stewart
Driller		Lar	sen		3/30/18			Abandonment Meth	Sanderson Stewart), R	ange		Section:
Logge								Backfilled with Cutti	ngs	1N 26	_		_		
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Des	Depth (ft) Elev. (ft)	MC (%)	1	PL -200 (%)	DD (pcf)	Remarks and Other Tests	
		П					Sar	ndstone Continued.		21.0					
-					ı	The Provide		Boring Depth: 31.0 ft, E	levation: 3140.5 ft	31.0 3140.5			_		
OF BORING - MIDI_KEVISED_ZOUGH(CFT_IMPORT); GDI - 777/20 13:20 - 2:\GINT\GINT\PROJECTIS\GZOUSZOUSZOUS.GFJ															

 □ During
 □ Drilling: Not Encountered
 □ After
 □ Drilling: Not Encountered. Augers Out Remarks: Water not observed to wet cave-in depth of 14.5' immediately after withdrawal of auger. Water Level Observations After
Drilling: Not Encountered, Augers In

Boring 7972000-ST-142

Sheet 1 of 1

-	te Started: Date Finished:						Hammer: Auto Boring Diameter:	System: MT S.P	E: 22343 . (E)		<u> </u>			Тор	set: 285 ft R of Boring
	Started: Date Finished:						9"	Datum: NAD83							vation: 3168.4
				l		d:	Drilling Fluid:	Location Source							vation Source:
3/28/18				3/28/18			None Abandonment Me	Sanderson Stew							derson Stewart
			ı				Backfilled with Cu		1N 26					anu	Section:
Logger	. 0. 1	JIIII					Dackilled With Cu	ungs	1111 20			<i>D</i> /			I
Depth (ft) Elev. (ft)	Operation Sample Type	Recovery (%)	RQD (%)	Blow Count		Lithology	Material De	escription	Depth (ft) Elev. (ft)	MC (%)	H	P	-200 (%)	DD (pcf)	Remarks and Other Tests
		61		WH - 1	1 - 2	<u>\!\</u>	Topsoil and root zone. Lean CLAY with sand (CL),	medium stiff brown to	0.5 3167.9	18					Pen: ½ tsf
-		39		1 - 2	- 6		dark brown, moist, [A-6]. (A		2.5	17					
5 3163.4 89				16 - 31	- 38		Poorly-Graded GRAVEL wi (GW-GC), very dense, brow grained, subangular, [A-1]. (Alluvium). Poorly-Graded GRAVEL wi (GP), very dense, light brow coarse grained, subangular	vn, moist, fine to coarse trace FeOx at 3'. th sand and cobbles vn to gray, moist, fine to	3165.9 3.0 3165.4	L					
10 94				22 - 44 - 5	50/0.5ft		(Alluvium).	to angular, [· · ·].		4					
10 3158.4		94		16 - 42 41 - 50		SQ.			12.0	13					
 		7		41-30	/U.SIL		SANDSTONE, light orange thinly bedded, soft field hard -FeOx staining on bedding	dness.	3156.4	22					
15 3153.4 - –		83		11 - 15	- 22		SHALE, dark brown, fine gr bedded, very soft field hard -FeOx staining on bedding	ained, very thinly ness.	15.0 3153.4						
	}						SHALE, light gray to dark g	ray, fine grained, very	18.0 3150.4						
		83	Щ	50/0.	3ft		thinly bedded, medium field Boring Depth: 19.3 ft,		19.3 3149.1	8					
	Wo.	.		Observa			√ During								o dry cave-in depi

DOWL – Billings Bypass Log of Boring Sheets

Boring 4199000-BH-20

Sheet 1 of 3

-		_	V V		<u> </u>			Borning 4 19	200 200 20								Silect 1 Of 3
Projec	ct: N	ICDI	56	6(55	5) Billings E	Bypass		Rig: BK-81 Hammer: Auto	Boring Location Coordinates	on N: 57 E: 22							on: 23 + 67 t: 173 ft L
Projec	t Nu	ımb	er:			UPN:		Boring Diameter:	System: MT S	.P. (E)						Groui	
4024.2	2094	6.0	1			41990	00	8.25"	Datum: NAD8	33						Eleva	tion: 3149.412 ft
Date S	Start	ed:			Date Finis	hed:		Drilling Fluid:	Location Sour	ce:						Eleva	tion Source:
6/27/1					6/28/16			None	Surveyed							Surve	
Driller					N	lotes:											N 27E 19 - CD
Logge	er: A	. ZW	emk	е									Ab	and	donm	ent: (Cuttings
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Desci	ription	Depth (ft) Elev. (ft)	MC (%)	Ⅎ	П	-200 (%)	Qu (psi)	DD (pcf)	Remarks and Other Tests
	1					_ 000] ====	nalt (10").	1.1000/51 :::	0.8 3148.6	3						
	1		36.6		14 - 24 - 2	80		E COURSE, Well-Grad and sand (GW-GM), me		3140.0	4						
			55.5		13 - 11 - 1	8		st, brown, fine to coarse									
5 3144.4 - -		X	48.0 22.2		25 - 15 - 1	6	subr San	ounded to subangular, dy Lean CLAY (CL), so st to wet, brown, fine gra	[Å-1]. It to very stiff,	5.0 3144.4	14 4						
3139.4 3139.4	}	X	88.8		3 - 4 - 14						18						
Depth (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	1	X:	77.7		5 - 11 - 14	1					15						
20 3129.4 -			76.0 44.4		3-3-5						18						
25		X	33.3		4 - 4 - 4												
30 3119.4	1	X	66.6		5-6-5						11						
5 _ 35 _ 2 3114.4 3		<u> </u>	77.7		5 - 4 - 5												
30 _ 30 _ 3119.4 - 3		X	66.6		5 - 4 - 5						19						
45																	
3104.4		147-1			Ob "		— Du	ring	I	Dem - "	· · ·						
After		vvate	r Le	evel	Observation	ns	⊥— Dri	lling: 55.0 ft (3094.4 ft)		Remark	is:						
After Drillin	ıg:						▼ Af Dr	illing:									

- 1			W					Boring 41	199000-6	DIT-2U									Sheet 2 of 3
Projec	t: N	ICD	P 56	6(55	5) Billings l	Bypass		Rig: BK-81 lammer: Auto	Borir Coor	g Locati dinates		N: 57 E: 22							on: 23 + 67 t: 173 ft L
Projec						UPN:	В	oring Diameter		m: MT S							(Grour	nd
4024.2	094	6.0	1		I	41990	000 8	.25"	Datu	m: NAD	83						E	Eleva	tion: 3149.412 ft
Date S		ed:			Date Finis	shed:		rilling Fluid:	Loca	tion Sou	rce:								tion Source:
6/27/16					6/28/16		N	lone	Surve	eyed								Surve	
Driller:					ľ	Notes:													N 27E 19 - CD
Logge	r: A.	. ∠w	emi	ke											Ab	and	nnon	ent: C	Cuttings
Depth (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Des	scription	1		epth (ft)	MC (%)	1	PL	-200 (%)	Qu (psi)	DD (pcf)	Remarks and Other Tests
(ft)	0	Sai	Rec		Ē							(ft)							Other rests
	T	X	66.6		6 - 6 - 7														
[]	ł																		
- ₅₀ -	1												29						
3099.4	1	X	100		3 - 3 - 3														
<u> </u>																			
<u> </u>																			
55 3094.4	1									Z	Z								
3094.4	1	X	100		1 - 1 - 2														
	ŀ																		
	1																		
60 _3089.4	I		400		1 2 4														
	ŀ		100		1 - 3 - 4														
	1																		
 65	1																		
3084.4	ŀ	\bigvee	100		1-5-6														
	1																		
-	1																		
70	ŀ										7	0.0							
3079.4	1	X	88.8		9 - 10 - 3	9	Poorly-	Graded GRAVEL	with silt a	nd sand	30	79.4							
<u> </u>							fine to	M), dense to very coarse grained, su	uense, we ubrounder	ι, prown, to									
								gular, [A-1].											
75 3074.4	1							-											
3074.4	1	\bowtie	33.3		1 - 16 - 2	3													
[]																			
- 00	1																		
80 3069.4	1		22.2		35 - 45 - 3	31													
		high ho	~~.2		33-43-3														
 -	1																		
- 85			_				3												
3064.4		~	0		50														
<u> </u>	1						3												
	1																		
90																			
3059.4		Wətr	ar I	AVAI	Observation	ne	During	3			Re	mark	s.						
After Drilling		rract	,, L	.5761	ODSEI VALIO	// IS	✓ Drillin ✓ After ✓ Drillin	g: 55.0 ft (3094.4 ft)			- 1	mark	٥.						
LV Drilling							I ▼ Daillia	a.			1								

Boring 4199000-BH-20

Sheet 3 of 3

- 03	יי		VV	_				Borning 4198	7000-Di 1-20								Sheet 3 of 3
Projec	t: N	CDI	P 56	6(55	5) Billings I	3ypass		Rig: BK-81 Hammer: Auto	Boring Location Coordinates	on N: 57 E: 22					t S		on: 23 + 67 t: 173 ft L
Projec						UPN:		Boring Diameter:	System: MT S	S.P. (E)						Grour	
4024.2	2094	6.0	1			41990	000	8.25"	Datum: NAD8	83					E	Eleva	tion: 3149.412 ft
Date S		ed:			Date Finis	shed:		Drilling Fluid:	Location Sour	rce:					E	Eleva	tion Source:
6/27/1					6/28/16	_		None	Surveyed							Surve	
Driller					1	lotes:											N 27E 19 - CD
Logge	Fr. A.	ZW	emi	(e							Т		AD	and	aonm	ent: C	Cuttings
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Desc	ription	Depth (ft) Elev. (ft)	MC (%)	님	П	-200 (%)	Qu (psi)	DD (pcf)	Remarks and Other Tests
Depth (ft) Elev. (ft)			98 96	9 20 80 48 74			SAN bedd hard	ing Depth: 125.0 ft, Ele	hard field	91.5 3057.9	5				2032		
120		Wate	er L	evel	Observatio	ns	<u></u> → Dr	ring Illing; 55.0 ft (3094.4 ft)		Remark	KS:						
After Drillin		Wate	er L	evel	Observatio	ns		illing: 55.0 ft (3094.4 ft)		Remark	(S:						

Sheet 1 of 3

								2011119 110	9000-DH-22								Silect 1 01 3
Projec	t: N	ICD	P 56	6(5	5) Billings	Bypass		Rig: BK-81 Hammer: Auto	Boring Location Coordinates	on N: 5 E: 22							on: 22 + 47 t: 164 ft L
Projec	t Nu	ımb	er:			UPN		Boring Diameter:	System: MT S	.P. (E)						Groui	
4024.2	2094	16.0	1			4199	000	8.25"	Datum: NAD8	33						Eleva	tion: 3149.814 ft
Date S	tart	ed:			Date Finis	shed:		Drilling Fluid:	Location Sour	ce:						Eleva	tion Source:
6/20/1					6/21/16			None	Surveyed							Surve	
Driller	: Н	az-T	ech		ı	Notes:			•				PL	S T	RS-C	Q : 1	N 27E 19 - CD
Logge	r: A	. Zw	eml	κе									Ab	and	donm	ent: (Cuttings
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Desc	ription	Depth (ft) Elev. (ft)	MC (%)	=======================================	P	-200 (%)	Qu (psi)	DD (pcf)	Remarks and Other Tests
- ASS	1	X#	77.7		18 - 26 - 3	37		halt (11"). SE COURSE, Poorly-Gr	adod CDAVEI	0.9 3148.9	4	15	0	8			
A	1					K C	with	silt and sand (GP-GM)	, dense, moist,	0110.0	3						
5 - 5	1	ŹŚ	66.6		17 - 25 - 1	17		vn, fine to coarse graine angular, [A-1].	ed, subrounded to	4.5	22						
3144.8	1		77.7		3 - 4 - 4		Lea	n CLAY (CL), soft to ve	ry stiff, moist,	3145.3		44	16	88			
	1	Z.Z.	68				brov	vn, [A-6].			22						
10 - 10	1	¥#									19						
3139.8	ŀ	*	66.6		5 - 5 - 6												
Depth (fft) Depth (fft) Elev. (fft) Elev. (fft)			88.8 77.7		4 - 7 - 9 5 - 13 - 1			dy Lean CLAY (CL), me moist to wet, brown, fir		- 20.0 3129.8	21						
	{		33.3		11 - 11 -	9											
3119.8	1		84								14	27	19	60	7	94	
	1	X	66.6		5 - 6 - 9												
35 _ 35 _ 49 3114.8 55	1		66.6		4 - 6 - 8												
30 3119.8 3114.8 3109.8 3109.8 3104.8 3104.8 3104.8	}		77.7		3 - 4 - 6						21						
45 3104.8						V///	<u> </u>										
<u> </u>		Wate	r I	eve	Observation	ากร		uring		Remark	s.						
After		· · alt	., L	5 V CI	CDSCIVALIC	,,,,,		illing: 62.0 ft (3087.8 ft) fter		A COLLIGIT	υ.						
After Drillin	g:						▼ D	fter rilling:									

Sheet 2 of 3

Hammer: Auto Coordinates E: 2245157.206 ft Offset: 16 Project Number: 4024.20946.01		טי						Borning 4											Officer 2 of 3
A024.20946.01				6(5	5) Billings			Hammer: Auto	Co	ordinates	E	E: 22					t S		on: 22 + 47 t: 164 ft L
Date Started: 6/20/16	Project I	Numb	er:			UPN:		Boring Diamete	r: Sy	stem: MT S	S.P.	(E)							
Surveyed Surveyed	4024.20	946.0)1			41990	000	8.25"	Da	itum: NAD	83						l l	Eleva	tion: 3149.814 ft
Surveyed Surveyed	Date Sta	rted:			Date Fini	shed:		Drilling Fluid:	Lo	cation Sou	rce:						ı	Eleva	tion Source:
Driller: Haz-Tech Logger: A. Zwemke Notes: PLS TRS-QQ: 1N 27 Abandonment: Cutting Abandonment: Cutting					6/21/16			_											
Depth (th) (th) (th) (th) (th) (th) (th) (t		Haz-	Tech	1		Notes:									PL	S T			
77.7 6-6-8 77.7 6-6-8 100 3-4-5 100 5-7-10 25 3089.8 100 2-2-4 Poorly-Graded GRAVEL with silt and sand 3079.8	Logger:	A. Zv	veml	ke											Ab	and	donm	ent: (Cuttings
77.7 6-6-8 77.7 6-6-8 100 3-4-5 3099.8 100 5-7-10 100 2-2-4 100 1-3-4 Poorly-Graded GRAVEL with silt and sand (GP-GM), dense to very dense, wet, brown, fine to coarse grained, subrounded to subangular, [A-1].	Depth (ft) Elev. (ft)	Operation Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material De	escript	ion	EI	ft) lev.	(%) DW	11	PL	-200 (%)	Qu (psi)	DD (pcf)	Remarks and Other Tests
3099.8			77.7		6 - 6 - 8	3													
3094.8 100 5-7-10 2-2-4 2 100 2-2-4 2 100 1-3-4 2 2 2 2 2 17-19-21 3064.8 22.2 50 3059.8 22.2 50	50 3099.8 		100		3 - 4 - 5	5							25						
3089.8 100 2-2-4	3094.8 3094.8		100		5 - 7 - 10	0													
3084.8 100 1-3-4 Poorly-Graded GRAVEL with silt and sand (GP-GM), dense to very dense, wet, brown, fine to coarse grained, subrounded to subangular, [A-1].	3089.8 60 60 60 60 60 60 60 60 60 60 60 60 60		100		2 - 2 - 4	1				Ž	<u> </u>								
70.0 3079.8 66.6 1-1-3 Poorly-Graded GRAVEL with silt and sand (GP-GM), dense to very dense, wet, brown, fine to coarse grained, subrounded to subangular, [A-1].	3084.89 3084.89 - - - - -		100		1 - 3 - 4	1													
75 3074.8 3069.8 33.3 43-35-36 85 3064.8 22.2 50 3059.8	3079.8 3079.8		66.6	6	1 - 1 - 3		(GP- fine t	-GM), dense to very to coarse grained, s	y dense,	wet, brown,									
33.3 43-35-36 3069.8 33.3 43-35-36 3064.8 3064.8 3059.8	3074.8		22.2	2	17 - 19 - 2	21													
22.2 50 3064.8 - 90 3059.8	3069.8 		33.3	3	43 - 35 - 3	36													
3059.8	3064.8 		22.2	2	50														
	3059.8																		
Water Level Observations □ During □ Drilling: 62.0 ft (3087.8 ft) Remarks:		Wat	er L	.eve	l Observation	ons	—— Dri	lling: 62.0 ft (3087.8 ft			Rer	mark	s:		_	_			
After Drilling: After Drilling:	≥ After Drillina:						▼ Aft	ter illina:											

LOG OF BORING Boring 4199000-BH-22

Sheet 3 of 3

Project 4024.2	t Nu	ımb	er:	6(55	5) Billings	UPN: 4199		Rig: BK-81 Hammer: Auto Boring Diameter: 8.25"	Boring Locati Coordinates System: MT S Datum: NAD	E: 22 S.P. (E)	723 245	43. 15	.49 7.20	1 ft 06 f	t	Offset Grour	on: 22 + 47 t: 164 ft L nd tion: 3149.81
Date S 6/20/16 Driller:	3		-ech	1	Date Fin i 6/21/16	shed: Notes:		Drilling Fluid: None	Location Sou Surveyed				DI	S T		Surve	tion Source: eyed N 27E 19 - C
Logge						Notes.											Cuttings
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Desc	ription	Depth (ft) Elev. (ft)	MC (%)	Ⅎ	P.	-200 (%)	Qu (psi)	DD (pcf)	Remarks and Other Tes
95 3054.8			66.6		23 - 37 -	31		IDSTONE, gray, fine gr ded, soft to hard field ha		92.5 3057.3							
100 3049.8 105 3044.8			60	60							5				936	137	
 110 3039.8			84														
115 3034.8 120 3029.8			97	97													
			96	86			Do	ring Depth: 125.0 ft, Ele	ovation: 2024 0 #	125.0 3024.8							
										<u> </u>							
✓ After Drilling		Wate	er L	.evel	Observati	ons	⊢ ⊻ Dr	uring illing: 62.0 ft <i>(3087.8 ft)</i> ter illing:		Remark	(S:						

		W	/L				Boring 4199	9000-BH-29								Sheet 1 of 1
Project:	NC)P 5	6(5	5) Billings	Bypass		Rig: BK-81 Hammer: Auto	Boring Location	on N: 57 E: 22							n: 16 + 10 t: 903 ft L
Project I 4024.20					UPN: 41990	00	Boring Diameter: 8.25"	System: MT S Datum: NAD8	.P. (E)					(Groun	
Date Sta				Date Fini		00	Drilling Fluid:	Location Sour								tion Source:
5/17/16 Driller:	Haz-	Tecl		5/17/16	Notes:		None	Surveyed				ΡI	S T		Surve	<u>yed</u> N 27E 30 - BA
Logger:																Cuttings
Depth (ft)	Operation Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Desc	ription	Depth (ft) Elev. (ft)	MC (%)	77	PL	-200 (%)	Qu (psi)	DD (pcf)	Remarks and Other Tests
		77.	7	16 - 22 - 3	33		nalt (10.5"). E COURSE, Poorly-Gr	aded GRAVFI	0.9 3145.0	3						
		44.4		14 - 14 -		with	silt and sand (GP-GM), ery dense, dry to moist,	, medium dense		4						
5 3140.9		66.0	6	2 - 4 - 5			se grained, subrounded		4.0 3141.9	19 17	44	18	68			
						San	dy Lean CLAY (CL), me moist, brown, fine grair			20						
10		66.0	6	3 - 6 - 12	2	oun,	moot, brown, mic grain	ioa, [/ t /].		20						
3135.9		66.0	6	3 - 6 - 7												
3130.9 3130.9		55.	5	4 - 4 - 4	1					18						
20 3125.9		66.0	6	3 - 4 - 5	5				21.5	21						
Depth (ft) Section 1985 1							ring Depth: 21.5 ft, Ele		3124.4							
After Drilling:	Wa	ter	Level	Observation	ons		ring illing: Not Encountered ter illing:		Remark	s:						

1		וכ		N	L					Boring 419	99	000-BH-30								Sheet 1 of 1
P	rojec	t: N	CDF	56	6(55	5) Billings	Вура	ass		Rig: BK-81 Hammer: Auto		Boring Location Coordinates	on N: 57 E: 22							on: 220 + 92 t: 2258 ft L
	rojec 1 024.2							PN: 1990	00	Boring Diameter: 8.25"	-	System: MT S Datum: NAD8	S.P. (E)					(Groui	
D	ate S	tart				Date Fini			00	Drilling Fluid:		Location Sour						ı	Eleva	tion Source:
	20/16 riller:		az-Te	ech		5/20/16	Note	es:		None		Surveyed				PL	S T		Surve :Q : 1	eyed IN 27E 30 - BB
止	ogge	r: A	Zwe	emk	е											Ak	and	lonm	ent: C	Cuttings
PKAF E	epth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count		Lithology		Material Des	cri	iption	Depth (ft) Elev. (ft)	MC (%)		Ч	-200 (%)	Qu (psi)	(bct)	Remarks and Other Tests
ASS I	-	F				00.00	20			halt (10.5").	_	1 10DAV/51	0.9	3		_				
S BYP		ŀ		7.7		23 - 32 -				SE COURSE, Poorly-G silt and sand (GP-GM			3135.0	2	0	0	7			
WELLING WELLING	5 130.9	}		2.2		12 - 10 -			coa	ery dense, dry to mois rse grained, subround	st, b led	orown, fine to to subangular,	4.0 3131.9	16 14	44	16	59			
	130.9	ŀ	28	8.8		4 - 8 - 1	1		[A-1 San	J. dy Lean CLAY (CL), s	soft	to very stiff,		14						
<u> </u>	_	1		80						st, brown, fine grained						18	50			
37 H 37	10 125.9	1	×6	6.6		2-2-2	2						44.0	13						
NOT I								<u>/////</u>	Вс	ring Depth: 11.0 ft, E	lev	vation: 3124.9 ft	11.0 3124.9							
E/0106																				
SCIENC																				
31GEO:																				
1946-01/																				
S\24\20																				
SOJEC																				
SIRI-PI																				
IBIL-F.																				
9:31																				
/1//1/																				
3DI -3																				
16+ 2.0																				
V2 20																				
N N																				
Insuo																				
SING-C																				
			Water	· L	evel	Observati	ons			iring			Remark	s:						
	After Drilling								→ Dr	illing: Not Encountered ter illing:										

Boring ST-42, eastbound lane, looking east.

Boring ST-43, eastbound lane, looking east.

Boring ST-42, eastbound lane, looking west.

Boring ST-43, eastbound lane, looking west.

Boring ST-44, eastbound lane, looking east.

Boring ST-45, eastbound lane, looking east.

Boring ST-44, eastbound lane, looking west.

Boring ST-45, eastbound lane, looking west.

Boring ST-46, eastbound lane, looking east.

Boring ST-47, eastbound lane, looking east.

Boring ST-46, eastbound lane, looking west.

Boring ST-47, eastbound lane, looking west.

Boring ST-48, eastbound lane, looking east.

Boring ST-49, eastbound lane, looking east.

Boring ST-48, eastbound lane, looking west.

Boring ST-49, eastbound lane, looking west.

Boring ST-55, westbound lane, looking east.

Boring ST-56, westbound lane, looking east.

Boring ST-55, westbound lane, looking west.

Boring ST-56, westbound lane, looking west.

Boring ST-57, westbound lane, looking east.

Boring ST-58, westbound lane, looking east.

Boring ST-57, westbound lane, looking west.

Boring ST-58, westbound lane, looking west.

Boring ST-59, westbound lane, looking east.

Boring ST-60, westbound lane, looking east.

Boring ST-59, westbound lane, looking west.

Boring ST-60, westbound lane, looking west.

Boring ST-61, westbound lane, looking east.

Boring ST-62, westbound lane, looking east.

Boring ST-61, westbound lane, looking west.

Boring ST-62, westbound lane, looking west.

Boring ST-67, I-90 center median, looking east.

Boring ST-68, I-90 center median, looking east.

Boring ST-67, I-90 center median, looking west.

Boring ST-68, I-90 center median, looking west.

Boring ST-69, I-90 center median, looking east.

Boring ST-70, I-90 center median, looking east.

Boring ST-69, I-90 center median, looking west.

Boring ST-70, I-90 center median, looking west.

Boring ST-71, Ramp B, eastbound on-ramp, looking east.

Boring ST-72, Ramp A, westbound off-ramp, looking east.

Boring ST-71, Ramp B, eastbound on-ramp, looking west.

Boring ST-72, Ramp A westbound off-ramp, looking west.

Boring ST-73, US 87 westbound lane, looking east.

Boring ST-74, US 87 eastbound lane, looking east.

Boring ST-73, US 87 westbound lane, looking west.

Boring ST-74, US 87 eastbound lane, looking west.

Boring ST-75, US 87 westbound lane, looking east.

Boring ST-76, US 87 eastbound lane, looking east.

Boring ST-75, US 87 westbound lane, looking west.

Boring ST-76, US 87 eastbound lane, looking west.

SK GEOTECHNICAL CORPORATION SUMMARY OF SOIL INDEX TEST RESULTS

Name:Lockwood Interchange - BillingsProject Number:STPX 90-8(191)450, UPN 9588000

Davina Na		Depth		les ID	МС		ы		G	RAIN SIZ	ZE DISTF	RIBUTIO	N		AASHTO	0.1
Boring No.		(feet)		Jar ID	(%)	LL	PL	11/2"	3/4"	No. 4	No. 10	No. 40	No. 100	No. 200	Class	GI
ST-42	1.0	-	2.5	31	2.0											
	2.5	-	4.0	32	1.9											
	4.0	-	5.5	33	1.3											
	6.5	-	8.0	34	10.6											
	9.0	-	10.5	35	12.4											
	0.9	-	1.0	CTS	2.4	NP	NP	100	96	63	48	28	12	7	A-1-a	(0)
ST-43	1.0	_	2.5	6	1.6											
-	2.5	-	4.0	7	3.8											
	4.0	-	5.5	8	12.2											
	6.5	-	8.0	9	10.9											
	9.0	-	10.5	10	14.8											
	0.7	-	0.8	CTS	2.3	NP	NP	100	84	52	42	28	15	10	A-1-a	(0)
	3.5	-	10.0	Bulk	15.8	28	15	100	100	97	94	91	84	62	A-6	(5)
																, ,
ST-44	1.0	-	2.5	11	3.2											
	2.5	-	4.0	12	4.5											
	4.0	-	5.5	13	12.6											
	6.5	-	8.0	14	15.6											
	9.0	-	10.5	15	15.7											
	3.8	-	5.5	Bulk	16.4	29	13	100	96	80	75	70	61	47	A-6	(4)
ST-45	1.0	_	2.5	46	1.6											
01-40	2.5	-	4.0	47	2.9											
	4.0	-	5.5	48	15.9				 							
	6.5	-	8.0	49	15.2											
	9.0	 _	10.5	50	11.7											
	4.1	<u> </u>	6.0	Bulk	16.9	40	16	100	100	97	94	88	78	64	A-6	(13)

SK GEOTECHNICAL CORPORATION SUMMARY OF SOIL INDEX TEST RESULTS

Name: Lockwood Interchange - Billings Project Number: STPX 90-8(191)450, UPN 9588000

Darina Na		Depth		Jar ID	МС	LL	PL		G	RAIN SIZ	ZE DISTR	RIBUTIO	N		AASHTO	GI
Boring No.		(feet)		Jarid	(%)	LL	PL	11/2"	3/4"	No. 4	No. 10	No. 40	No. 100	No. 200	Class	GI
ST-46	1.0	-	2.5	16	1.9											
	2.5	-	4.0	17	5.7											
	4.0	-	5.5	18	18.9											
	6.5	-	8.0	19	21.6											
	9.0	-	10.5	20	13.5											
	3.8	-	6.5	Bulk	21.9	35	14	100	100	93	89	84	76	59	A-6	(9)
ST-47	1.0	_	2.5	21	3.6											
	2.5	-	4.0	22	3.9											
	4.0	-	5.5	23	15.8											
	6.5	-	8.0	24	20.5											
	9.0	-	10.5	25	20.4											
	0.9	-	1.0	CTS	2.2	NP	NP	100	99	67	50	28	13	8	A-1-a	(0)
	4.5	-	6.5	Bulk	20.3	34	13	100	100	100	98	95	87	64	A-6	(10)
ST-48	1.0	_	2.5	51	3.7											
	2.5	<u> </u>	4.0	52	6.3											
	4.0	-	5.5	53	21.1											
	6.5	_	8.0	54	15.9											
	9.0	<u> </u>	10.5	55	15.5											
	0.7	<u> </u>	0.9	CTS	3.5	NP	NP	100	100	76	59	32	14	7	A-1-b	(0)
	4.1	-	6.0	Bulk	19.8	45	20	100	100	98	97	93	87	83	A-7-6	(21)
ST-49	1.0	_	2.5	26	3.7											
01 70	2.5	<u> </u>	4.0	27	4.5											
	4.0	-	5.5	28	18.6											
	6.5	-	8.0	29	13.5											
	9.0	-	10.5	30	13.3											
	4.0	<u> </u>	6.0	Bulk	15.5	28	14	100	100	95	93	88	71	54	A-6	(4)

Name: Lockwood Interchange - Billings Project Number: STPX 90-8(191)450, UPN 9588000

B. J. N.		Depth		LUID	МС	LL			G	RAIN SIZ	E DISTR	IBUTIO	N		AASHTO	
Boring No.		(feet)		Jar ID	(%)	LL	PL	1½"	3/4"	No. 4	No. 10	No. 40	No. 100	No. 200	Class	GI
ST-55	1.0	-	2.5	76	2.8											
	2.5	-	4.0	77	3.5											
	4.0	-	5.5	78	5.8											
	6.5	-	8.0	79	12.6											
ST-56	1.0	-	2.5	100	2.6											
	2.5	-	4.0	101	4.8											
	4.0	-	5.5	102	14.8											
	6.5	-	8.0	103	15.0											
	9.0	-	10.5	104	13.7											
	4.1	-	6.5	Bulk	17.6	26	14	100	100	91	78	75	68	49	A-6	(3)
ST-57	1.0	-	2.5	71	2.1											
	2.5	-	4.0	72	9.3											
	4.0	-	5.5	73	17.0											
	6.5	-	8.0	74	19.5											
	9.0	-	10.5	75	24.3											
	4.0	-	8.0	Bulk	18.8	34	16	100	100	95	94	91	83	62	A-6	(8)
ST-58	1.0	-	2.5	66	2.7											
	2.5	-	4.0	67	4.8											
	4.0	-	5.5	68	21.3											
	6.5	-	8.0	69	17.0											
	9.0	-	10.5	70	17.0											
	0.7	-	0.9	CTS	2.1	NP	NP	100	95	61	45	23	11	6	A-1-a	(0)
	4.2	-	6.5	Bulk	20.5	33	14	100	100	97	94	89	79	64	A-6	(7)

 Name:
 Lockwood Interchange - Billings
 Project Number:
 STPX 90-8(191)450, UPN 9588000

Davina Na		Depth		Jar ID	МС	LL	PL		G	RAIN SIZ	ZE DISTR	RIBUTIO	N		AASHTO	GI
Boring No.		(feet)		Jarid	(%)	LL	PL	1½"	3/4"	No. 4	No. 10	No. 40	No. 100	No. 200	Class	GI
ST-59	1.0	-	2.5	95	3.9											
	2.5	-	4.0	96	4.6											
	4.0	-	5.5	97	11.1											
	6.5	-	8.0	98	14.8											
	9.0	-	10.5	99	19.4											
	0.7	-	0.8	CTS	2.9	NP	NP	100	93	59	47	31	17	12	A-1-b	(0)
	4.5	-	6.0	Bulk	17.4	30	14	100	100	92	89	86	79	58	A-6	(5)
ST-60	1.0	_	2.5	61	3.2											
	2.5	-	4.0	62	5.9											
	4.0	-	5.5	63	3.0											
	6.5	-	8.0	64	21.1											
	9.0	-	10.5	65	23.9											
	4.1	-	6.0	Bulk	18.9	40	16	100	100	93	90	85	77	67	A-6	(10)
ST-61	1.0	_	2.5	56	3.2											
0.01	2.5	_	4.0	57	3.1											
	4.0	_	5.5	58	19.6											
	6.5	-	8.0	59	14.8											
	9.0	-	10.5	60	12.7											
	0.8	-	1.0	CTS	2.9	NP	NP	100	99	72	57	35	17	11	A-1-b	(0)
	4.3	-	8.0	Bulk	15.9	30	14	100	100	97	94	89	79	63	A-6	(6)
ST-62	1.0	_	2.5	80	3.2											
31-02	2.5	-	4.0	81	7.8											
	4.0	-	5.5	82	22.9											
	6.5	-	8.0	83	18.6						 					
	9.0	_	10.5	84	16.4											
	4.0		6.0	Bulk	20.0	34	16	100	100	95	92	87	81	77	A-6	(11)

Name: Lockwood Interchange - Billings Project Number: STPX 90-8(191)450, UPN 9588000

Davis s Na		Depth		Jar ID	МС	LL	PL		G	RAIN SIZ	ZE DISTR	IBUTIO	N		AASHTO	GI
Boring No.		(feet)		Jarib	(%)	LL	PL	11/2"	3/4"	No. 4	No. 10	No. 40	No. 100	No. 200	Class	GI
ST-67	1.0	-	2.5	36	6.3											
	2.5	-	4.0	37	16.7											
	4.0	-	5.5	38	20.4											
	6.5	-	8.0	39	16.0											
	9.0	-	10.5	40	19.8											
	2.0	-	5.0	Bulk	17.6	34	15	100	99	96	95	93	84	64	A-6	(7)
ST-68	1.0	-	2.5	41	9.3											
	2.5	-	4.0	42	17.3											
	4.0	-	5.5	43	26.6											
	6.5	-	8.0	44	26.1											
	9.0	-	10.5	45	17.1											
	1.8	-	3.5	Bulk	22.4	35	16	100	99	98	97	96	89	70	A-6	(9)
OT 00	4.0		0.5	00	4.5						-					
ST-69	1.0	-	2.5	90	4.5											
	2.5	-	4.0	91	14.9					-						
	4.0	-	5.5	92	23.2						-					
	6.5	 -	8.0	93	19.1					-						
	9.0	-	10.5	94	16.9	37	15	100	06	92	91	88	80	64	Λ.6	(0)
	4.0	-	6.0	Bulk	16.9	31	15	100	96	92	91	00	80	04	A-6	(8)
ST-70	1.0	-	2.5	85	8.5											
	2.5	-	4.0	86	21.0											
	4.0	-	5.5	87	19.5											
	6.5	-	8.0	88	20.0											
	9.0	-	10.5	89	11.6											
	0.5	-	6.0	Bulk	16.1	34	14	100	98	95	94	93	85	71	A-6	(8)

Name: Lockwood Interchange - Billings Project Number: STPX 90-8(191)450, UPN 9588000

B. J. N.		Depth		115	МС				G	RAIN SIZ	ZE DISTF	RIBUTIO	N		AASHTO	
Boring No.		(feet)		Jar ID	(%)	LL	PL	1½"	3/4"	No. 4	No. 10	No. 40	No. 100	No. 200	Class	GI
ST-71	1.0	-	2.5	1	2.0											
	2.5	-	4.0	2	2.9											
	4.0	-	5.5	3	14.8											
	6.5	-	8.0	4	15.4											
	9.0	-	10.5	5	14.9											
	2.5	-	5.0	Bulk	5.5	23	15	100	94	50	44	37	28	20	A-2-4	(0)
ST-72	1.0	-	2.5	114	3.7											
	2.5	-	4.0	115	18.1											
	4.0	-	5.5	116	11.2											
	6.5	-	8.0	117	12.4											
	9.0	-	10.5	118	19.9											
	2.8	-	4.0	Bulk	13.3	28	16	100	99	97	94	90	81	65	A-6	(7)
																
ST-73	1.0	-	2.5	105	3.7											<u> </u>
	2.5	-	4.0	106	8.0											
	4.0	-	5.5	107	11.0											
	6.5	-	8.0	108	10.7											<u> </u>
	2.0	-	5.0	Bulk	7.3	NP	NP	100	92	52	37	31	19	7	A-1-b	(0)
ST-74	1.0	-	2.5	109	2.7											
	2.5	-	4.0	110	13.6											
	4.0	-	5.5	111	17.5											
	6.5	-	8.0	112	15.3											
	9.0	-	10.5	113	15.7											
	3.0	-	5.0	Bulk	13.7	33	15	99	99	91	77	65	52	43	A-6	(3)

 Name:
 Lockwood Interchange - Billings
 Project Number:
 STPX 90-8(191)450, UPN 9588000

Doring No.		Depth		Jar ID	МС	LL	PL		G	RAIN SIZ	ZE DISTR	RIBUTIO	N		AASHTO	GI
Boring No.		(feet)		Jar ID	(%)	LL	PL	11/2"	3/4"	No. 4	No. 10	No. 40	No. 100	No. 200	Class	GI
ST-75	1.0	-	2.5	124	1.7											
	2.5	-	4.0	125	19.0											
	4.0	-	5.5	126	14.4											
	6.5	-	8.0	127	14.8											
	9.0	-	10.5	128	14.5											
	3.0	-	4.0	Subbase	6.6	NP	NP	100	95	53	44	39	31	23	A-1-b	(0)
	4.0	-	7.6	Bulk	11.1	33	16	100	100	94	86	77	63	51	A-6	(5)
ST-76	1.0	_	2.5	119	2.1											
0.70	2.5	<u> </u>	4.0	120	11.7											
	4.0	<u> </u>	5.5	121	4.0											
	6.5	-	8.0	122	4.5											
	9.0	-	10.5	123	7.0											
	3.0	-	5.0	Subbase	5.1	21	14	100	93	56	46	40	34	28	A-2-4	(0)
	5.0	-	7.0	Bulk	14.2	34	13	100	100	94	89	83	78	68	A-6	(7)
ST-42 through ST-49	(Composit (Varies)		Base	2.0	NP	NP	99	73	33	26	18	11	7	A-1-a	(0)
ST-55 through ST-62	(Composit (Varies)		Base	2.2	NP	NP	99	70	32	25	17	9	5	A-1-a	(0)
ST-73 through ST-76	(Composit (Varies)		Base	2.6	NP	NP	98	77	41	34	23	14	10	A-1-a	(0)

Project Number: 19-3792S Designation: STPX 90-8(191)450 Length: ~0.8 miles County: Yellowstone County Date: 07/07/20

Boring	Station and Offset	Depth (feet)	Material Type	Soil Class	LL	PI	3"	3/4"	#4	#10	#40	#200	Specific Gravity	Max. Dry Density (pcf)	Natural Moisture Content (%)	Optimum Moisture Content (%)	Depth to Water (feet)	Equivalent "R" Value
		0 - 0.9	PMS															
		0.9 - 1.0	CTS	A-1-a (0)	NP	NP	100	96	63	48	28	7.2			2.4			
ST-42	Not Available	1.0 -5.2	Base	A-1-a						S	See Con	posite l	Base ST-42	through ST	-49			•
		5.2 - 6.0	Subgrade	A-6														
		6.0 - 10.5	Subgrade	A-6													N/E	
		0 - 0.6	PMS															
		0.6 - 0.8	CTS	A-1-a	NP	NP	100	84	52	42	28	11			2.3			
ST-43	Not Available	0.8 - 3.5	Base	A-1-a						S	See Con	posite l	Base ST-42	through ST	7-49			
		3.5 - 7.0	Subgrade	A-6 (5)	28	13	100	100	97	94	91	62	2.72	120.8	15.8	13.3		5
		7.0 - 10.5	Subgrade	A-6													N/E	
		0 - 0.7	PMS															
		0.7 - 3.8	Base	A-1-a			-			5	See Con	posite l	Base ST-42	through ST	-49	•		•
ST-44	Not Available	3.8 - 6.0	Subgrade	A-6 (4)	29	16	100	96	80	75	70	47	2.73	124.6	16.4	11.3		5
		6.0 - 8.5	Subgrade	A-6														
		8.5 - 10.5	Subgrade	A-6													N/E	
		0 - 0.8	PMS															
		0.8 - 1.0	CTS	A-1-a														
ST-45	Not Available	1.0 - 4.1	Base	A-1-a						5	See Con	posite l	Base ST-42	through ST	-49			
31-43	1 (Ot Available	4.1 - 6.0	Subgrade	A-6 (13)	40	24	100	100	97	94	88	64	2.73	114.3	16.9	15.2		5
		6.0 - 8.5	Subgrade	A-6														
		8.5 - 10.5	Subgrade	A-2-4													N/E	

Project Number: 19-3792S Designation: STPX 90-8(191)450 Length: ~0.8 miles County: Yellowstone County Date: 07/07/20

Boring	Station and Offset	Depth (feet)	Material Type	Soil Class	LL	PI	3"	3/4"	#4	#10	#40	#200	Specific Gravity	Max. Dry Density (pcf)	Natural Moisture Content (%)	Optimum Moisture Content (%)	Depth to Water (feet)	Equivalent "R" Value
		0 - 0.8	PMS															
		0.8 - 3.8	Base	A-1-a						5	See Con	nposite l	Base ST-42	through ST	Γ-49			
ST-46	Not Available	3.8 - 6.0	Subgrade	A-6 (9)	35	21	100	100	93	89	84	59	2.70	125.2	21.9	11.1		5
		6.0 - 8.5	Subgrade	A-6														
		8.5 - 10.5	Subgrade	A-2-4													N/E	
		0 - 0.8	PMS															
		0.8 - 0.9	CTS	A-1-a (0)	NP	NP	100	99	67	50	28	8.4			2.2			
ST-47	Not Available	0.9 - 4.5	Base	A-1-a						5	See Con	nposite l	Base ST-42	through ST	Γ-49			
		4.5 - 6.0	Subgrade	A-6 (10)	34	21	100	100	100	98	95	64	2.73	117.9	20.3	13.7		5
		6.0 - 10.5	Subgrade	A-6													N/E	
		0 - 0.7	PMS															
		0.7 - 0.9	CTS	A-1-b (0)	NP	NP	100	100	76	59	32	6.7			3.5			
ST-48	Not Available	0.9 - 4.1	Base	A-1-a						5	See Con	nposite l	Base ST-42	through ST	Γ-49			
51-40	Not Available	4.1 - 6.0	Subgrade	A-7-6 (21)	45	25	100	100	98	97	93	83	2.76	108.0	19.8	18.0		5
		6.0 - 8.5	Subgrade	A-6														
		8.5 - 10.5	Subgrade	A-2-4													N/E	
		0 - 0.7	PMS															
		0.7 - 0.8	CTS	A-1-b														
ST-49	Not Available	0.8 - 4.0	Base	A-1-a						5	See Con	nposite l	Base ST-42	through ST	Γ-49			
		4.0 - 6.0	Subgrade	A-6 (4)	28	14	100	100	95	93	88	54	2.68	116	15.5	13.8		5
		6.0 - 10.5	Subgrade	A-6													N/E	
		0 - 0.9	PMS															
ST-55	Not Available	0.9 - 4.0	Base	A-1-a						5	See Con	posite l	Base ST-55	through ST	Г-62			
		4.0 - 8.0	Subgrade	A-1-b													N/E	

Project Number: 19-3792S Designation: STPX 90-8(191)450 Length: ~0.8 miles County: Yellowstone County Date: 07/07/20

Boring	Station and Offset	Depth (feet)	Material Type	Soil Class	LL	PI	3"	3/4"	#4	#10	#40	#200	Specific Gravity	Max. Dry Density (pcf)	Natural Moisture Content (%)	Optimum Moisture Content (%)	Depth to Water (feet)	Equivalent "R" Value
		0 - 0.7	PMS															
ST-56	Not Available	0.7 - 0.8	CTS	A-1-b														
31-30	Not Available	0.8 - 4.1	Base	A-1-a						5	See Con	nposite I	Base ST-55	through ST	-62			
		4.1 - 10.5	Subgrade	A-6 (2)	26	12	100	100	91	78	75	49	2.75	118.8	17.6	13.4	N/E	5
		0 - 0.7	PMS															
		0.7 - 0.8	CTS	A-1-b														
ST-57	Not Available	0.8 - 4.0	Base	A-1-a		-	-	-	-		See Con	posite I	Base ST-55	through ST	-62			
		4.0 - 8.0	Subgrade	A-6 (8)	34	18	100	100	95	94	91	62	2.70	118.3	18.8	14.6		5
		8.0 - 10.5	Subgrade	A-6													N/E	
		0 - 0.7	PMS															
		0.7 - 0.9	CTS	A-1-a (0)	NP	NP	100	95	61	45	23	5.8			2.1			
ST-58	Not Available	0.9 - 4.2	Base	A-1-a						5	See Con	nposite I	Base ST-55	through ST	-62			
		4.2 - 6.5	Subgrade	A-6 (9)	33	19	100	100	97	94	89	64	2.70	117.8	20.5	14.0		5
		6.5 - 10.5	Subgrade	A-6													N/E	
		0 - 0.7	PMS															
		0.7 - 0.8	CTS	A-1-b (0)	NP	NP	100	93	59	47	31	12			2.9			
ST-59	Not Available	0.8 - 4.5	Base	A-1-a						5	See Con	nposite I	Base ST-55	through ST	-62			
31-37	1100 21 Valiable	4.5 - 6.0	Subgrade	A-6 (0)	30	16	100	100	92	89	86	58	2.75	120.0	17.4	13.0		5
		6.0 - 8.5	Subgrade	A-2-4														
		8.5 - 10.5	Subgrade	A-6													N/E	

Project Number: 19-3792S Designation: STPX 90-8(191)450 Length: ~0.8 miles County: Yellowstone County Date: 07/07/20

Boring	Station and Offset	Depth (feet)	Material Type	Soil Class	LL	PI	3"	3/4"	#4	#10	#40	#200	Specific Gravity	Max. Dry Density (pcf)	Natural Moisture Content (%)	Optimum Moisture Content (%)	Depth to Water (feet)	Equivalent "R" Value
		0 - 0.7	PMS															
		0.7 - 0.8	CTS	A-1-b														
ST-60	Not Available	0.8 - 4.0	Base	A-1-a						5	See Con	posite I	Base ST-55	through ST	Γ-62			
51-00	Not Available	4.0 - 6.0	Subgrade	A-6 (14)	40	24	100	100	93	90	85	67	2.73	114.7	18.9	16.3		5
		6.0 - 7.5	Subgrade	A-6														
		7.5 - 10.5	Subgrade	A-6													N/E	
		0 - 0.8	PMS															
		0.8 - 1.0	CTS	A-1-b (0)	NP	NP	100	99	72	57	35	11			2.9			
ST-61	Not Available	1.0 - 4.3	Base	A-1-a						5	See Con	nposite I	Base ST-55	through ST	Γ-62			
		4.3 - 8.0	Subgrade	A-6 (7)	30	16	100	100	97	94	89	63	2.71	117.8	15.9	13.4		5
		8.0 - 10.5	Subgrade	A-2-4													N/E	
		0 - 0.7	PMS															
		0.7 - 0.8	CTS	A-1-b														
ST-62	Not Available	0.8 - 4.0	Base	A-1-a						5	See Con	nposite I	Base ST-55	through ST	Γ-62			
		4.0 - 6.0	Subgrade	A-6 (12)	34	18	100	100	95	92	87	77	2.75	110.0	20.0	18.5		5
		6.0 - 10.5	Subgrade	A-2-4													N/E	
		0 - 0.2	Topsoil															
		0.2 - 1.0	Subgrade	A-1-b														
ST-67	Not Available	1.0 - 6.0	Subgrade	A-6 (9)	34	19	100	99	96	95	93	64	2.66	113.0	17.6	15.0		5
		6.0 - 9.1	Subgrade	A-2-4														
		9.1 - 10.5	Subgrade	A-6													N/E	

Project Number: 19-3792S Designation: STPX 90-8(191)450 Length: ~0.8 miles County: Yellowstone County Date: 07/07/20

Boring	Station and Offset	Depth (feet)	Material Type	Soil Class	LL	PI	3"	3/4"	#4	#10	#40	#200	Specific Gravity	Max. Dry Density (pcf)	Natural Moisture Content (%)	Optimum Moisture Content (%)	Depth to Water (feet)	Equivalent "R" Value
		0 - 0.3	Topsoil															
		0.3 - 1.8	Subgrade	A-1-b														
ST-68	Not Available	1.8 - 3.5	Subgrade	A-6 (11)	35	19	100	99	98	97	96	70	2.67	113.7	22.4	15.5		5
31-00	Not Available	3.5 - 6.0	Subgrade	A-6														
		6.0 - 8.5	Subgrade	A-6														
		8.5 - 10.5	Subgrade	A-7-6													N/E	
		0 - 0.3	Topsoil															
ST-69	Not Available	0.3 - 4.0	Subgrade	A-2-4														
51 0)	110t / Ivanaoic	4.0 - 6.0	Subgrade	A-6 (11)	37	22	100	96	92	91	88	64	2.66	113.5	16.9	15.5		5
		6.0 - 10.5	Subgrade	A-6													N/E	
		0 - 0.2	Topsoil															
ST-70	Not Available	0.2 - 6.0	Subgrade	A-6 (12)	34	20	100	98	95	94	93	71	2.66	112.5	16.1	15.4		5
		6.0 - 10.5	Subgrade	A-2-4													N/E	
		0 - 0.9	PMS															
		0.9 - 2.5	Base	A-1-b														
ST-71	Not Available	2.5 - 5.0	Subgrade	A-2-4 (0)	23	8	100	94	50	44	37	20	2.72	134.7	5.5	8.0		5.2
		5.0 - 7.5	Subgrade	A-2-4														
		7.5 - 8.5	Subgrade	A-2-4														
		8.5 - 10.5	Subgrade	A-6													N/E	
		0 - 1.0	PMS															
		1.0 - 2.8	Base	A-1-b														
ST-72	Not Available	2.8 - 4.0	Subgrade	A-6 (5)	28	12	100	99	97	94	90	65	2.71	123.5	13.3	12.6		5
		4.0 - 6.0	Subgrade	A-2-4														
		6.0 - 8.5	Subgrade	A-2-4														
		8.5 - 10.5	Subgrade	A-2-4													N/E	

Project Number: 19-3792S Designation: STPX 90-8(191)450 Length: ~0.8 miles County: Yellowstone County Date: 07/07/20

Boring	Station and Offset	Depth (feet)	Material Type	Soil Class	LL	PI	3"	3/4"	#4	#10	#40	#200	Specific Gravity	Max. Dry Density (pcf)	Natural Moisture Content (%)	Optimum Moisture Content (%)	Depth to Water (feet)	Equivalent "R" Value
		0 - 0.8	PCCP															
		0.8 - 1.1	Leveling Course	A-1-a														
ST-73	Not Available	1.1 - 2.0	Base	A-1-a						5	See Con	posite I	Base ST-73	through ST	-76			
51-/5	Not Available	2.0 - 4.0	Subgrade	A-1-b (0)	NP	NP	100	92	52	37	31	7.4	2.71	138.1	7.3	5.5		9.6
		4.0 - 4.5	Subgrade	A-6														
		4.5 - 8.0	Subgrade	A-2-4													N/E	
		0 - 0.6	PMS															
ST-74	Not Available	0.6 - 3.0	Base	A-1-a						5	See Con	posite I	Base ST-73	through ST	-76			
51-/4	Not Available	3.0 - 6.0	Subgrade	A-6 (4)	33	18	100	99	91	77	65	43	2.68	117.0	13.7	14.5		5
		6.0 - 10.5	Subgrade	A-2-4													N/E	
		0 - 0.6	PMS															
		0.6 - 3.0	Base	A-1-a						5	See Con	posite I	Base ST-73	through ST	-76			
ST-75	Not Available	3.0 - 4.0	Subbase	A-1-b (0)	NP	NP	100	95	53	44	39	23			6.6			
		4.0 - 7.5	Subgrade	A-6 (5)	33	17	100	100	94	86	77	51	2.72	118.5	11.1	13.8		5
		7.5 - 10.5	Subgrade	A-2-4													N/E	
		0 - 0.6	PMS															
		0.6 - 2.5	Base	A-1-a		•	•	•		5	See Con	posite I	Base ST-73	through ST	-76			
ST-76	Not Available	2.5 - 5.0	Subbase	A-2-4 (0)	21	7	100	93	56	46	40	28	2.73	135.2	5.1	7.5		12.1
51-/0	Not Available	5.0 - 7.0	Subgrade	A-6 (11)	34	21	100	100	94	89	83	68	2.70	120.7	14.2	12.6		5
		7.0 - 9.0	Subgrade	A-1-b														
		9.0 - 9.9	Subgrade	A-2-4													N/E	

Project Number: 19-3792S Designation: STPX 90-8(191)450 Length: ~0.8 miles County: Yellowstone County Date: 07/07/20

Submitted by: Brandon R. Western, EI Title: Engineering Intern

Boring	Station and Offset	Depth (feet)	Material Type	Soil Class	LL	PI	3"	3/4"	#4	#10	#40	#200	Specific Gravity	Max. Dry Density (pcf)	Natural Moisture Content (%)	Optimum Moisture Content (%)	Depth to Water (feet)	Equivalent "R" Value
ST-42 through ST-50	Not Applicable	Base Course	Composite	A-1-a	NP	NP	100	73	33	26	18	6.8			2.0			
ST-55 through ST-62	Not Applicable	Base Course	Composite	A-1-a	NP	NP	100	70	32	25	17	4.9			2.2			
ST-73 through ST-76	Not Applicable	Base Course	Composite	A-1-a	NP	NP	100	77	41	34	23	9.6			2.6			

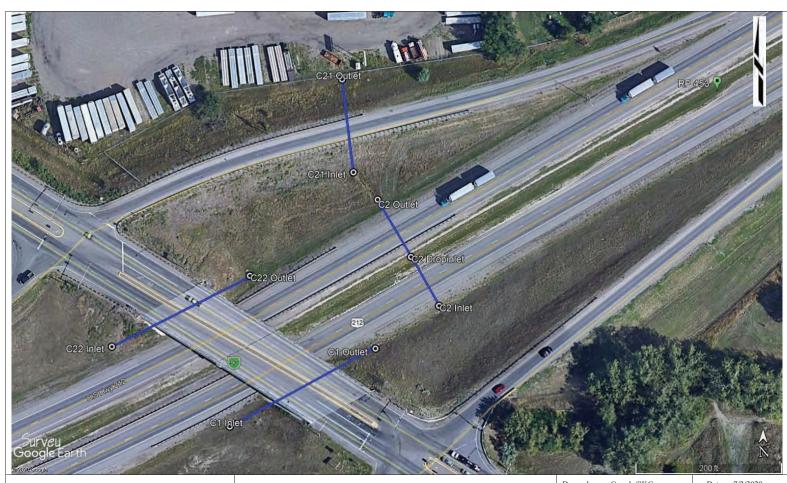
^{*}R-value assumed.

When the group index is shown in parentheses, lab classification tests were performed. When no group index is shown, classification was visual.

Drawn by:	Google/SK	Geo		Date	7/2/2020
Project:	19-3792S				
Scale:	NTS				FIGURE
Sheet	1	of	5		3

Drawn by:	Google/SK	Geo		Date	7.	/2/2020
Project:	19-3792S					
Scale:	NTS					FIGURE
Sheet	2	of	5			4

SKGEOTECHNICAL

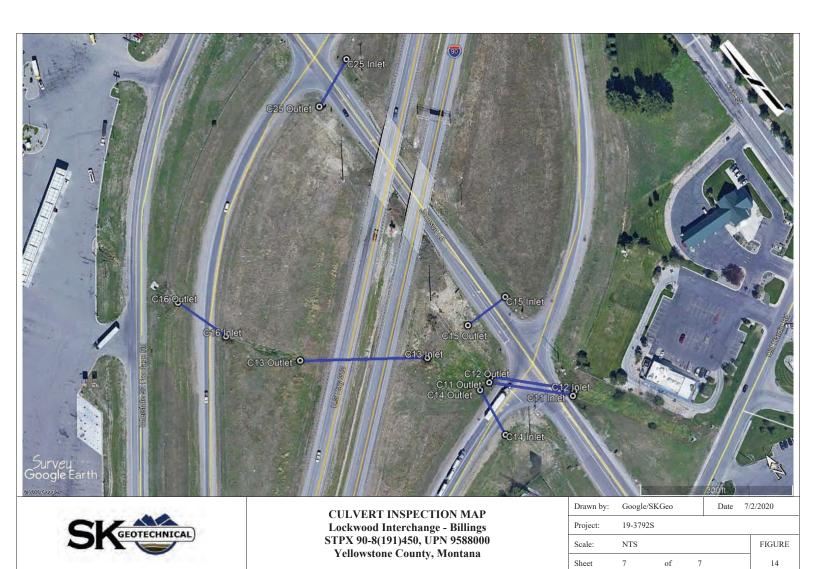

Drawn by:	Google/SK	Geo	Date 7	/2/2020	
Project:	19-3792S				
Scale:	NTS				FIGURE
Sheet	3	of	5		5

Drawn by:	Google/SK	Geo		Date	7	/2/2020
Project:	19-3792S					
Scale:	NTS					FIGURE
Sheet	4	of	5			6

Drawn by:	Google/SK	Geo		Date	7.	/2/2020
Project:	19-3792S					
Scale:	NTS					FIGURE
Sheet	1	of	7			8

Drawn by:	Google/SK	Geo		Date	7	/2/2020
Project:	19-3792S					
Scale:	NTS					FIGURE
Sheet	2	of	7			9

SKGEOTECHNICAL


Drawn by:	Google/SK	Geo		Date	7.	/2/2020
Project:	19-3792S					
Scale:	NTS					FIGURE
Sheet	4	of	7			11

SKGEOTECHNICAL

Drawn by:	Google/SK	.Geo		Date	7/2/2020
Project:	19-3792S				
Scale:	NTS				FIGURE
Sheet	5	of	7		12

Culvert Inspection Report Page 1 of 5

 Project No.
 19-3792S (STPX 90-8(191)450)
 Project Limits: MP 452.65
 to MP 455.31

		Cul	vert Descrip	tion	Gene	ral Con	dition	Sa	mple		
M.P.	Culvert #	Dia.	FETS In/Out	Туре	Good	Fair	Poor	Soil	Water	Photo	Remarks/Comments
M.P. 452.84	C1 Inlet	24"	None	RCP		X				X	Partially blocked with trash, reinforcement steel is exposed. 70% open.
M.P. 452.88	C1 Outlet	24"	None	RCP			X	X		X	Partially blocked with trash and soil, 7-8" open. Some damage to lip of culvert. 30% open.
M.P. 452.91	C2 Inlet	24"	In	RCP		X				X	Minor FETS damage, and some vegetation. 95% open.
M.P. 452.90	C2 Outlet	24"	Out	RCP		X		X		X	Some concrete deterioration. Some FETS damage. 95% open. Dropinlet present in median.
M.P. 453.36	C3 Inlet	24"	In	RCP	X					X	Some vegetation and garbage blocking inlet. 95% open
M.P. 453.36	C3 Outlet	24"	Out	RCP	X			X		X	Some separation between FETS and pipe joint, 95% open.
M.P. 453.53	C4 Inlet	90"	In	CMP	X					X	Minor damage, some vegetation, 100% open.
M.P. 453.54	C4 Outlet	90"	Out	CMP	X			X		X	Minor damage, some vegetation, 100% open.
M.P. 453.55	C5 Inlet	24"	In	RCP	Х			X		X	In center median, metal grate on top of pipe in good condition, some exposed FETS reinforcement. Some blockage. 95% open.
M.P. 453.54	C5 Outlet	24"	Out	RCP	Х					X	Some FETS reinforcement exposed. 100% open.

Culvert Inspection Report Page 2 of 5

 Project No.
 19-3792S (STPX 90-8(191)450)
 Project Limits: MP 452.65
 to MP 455.31

		Cul	vert Descrip	tion	Gene	ral Con	dition	Sa	mple		
M.P.	Culvert #	Dia.	FETS In/Out	Туре	Good	Fair	Poor	Soil	Water	Photo	Remarks/Comments
M.P. 453.55	C6 Inlet	90"	In	CMP	X					X	Minor damage, some vegetation blocking inlet. 95% open.
M.P. 453.54	C6 Outlet	90"	Out	CMP	X			X	X	X	Some standing water in culvert. Minor damage with some vegetation. 95% open.
M.P. 453.77	C7 Inlet	24"	None	RCP	X					X	Two drop inlets, in the westbound ditch and center median. Grates present on both, but some garbage visible at culvert bottom.
M.P. 453.77	C7 Outlet	24"	Out	RCP		X		X		X	Some vegetation present, and minor FETS damage. 75% Open.
M.P. 454.15	C8 Inlet	24"	In	RCP	X					X	FETS in fair condition, some vegetation and soil creating a mound near inlet. 100% open.
M.P. 454.15	C8 Outlet	24"	Out	RCP	X			X		X	Some vegetation and garbage present. Damage to FETS. 95% open.
M.P. 454.75	C9 Inlet	102"	In	CMP	X			X		X	Partially blocked by some vegetation and garbage, minor damage. 90% open.
M.P. 454.74	C9 Outlet	102"	Out	CMP	X					X	Some trash in culvert, minor damage. 100% open.
M.P. 454.75	C10 Inlet	102"	In	CMP	X					X	Minor damage. 100% open.
M.P. 454.74	C10 Outlet	102"	Out	CMP	X			X		X	Some vegetation and garbage present in culvert, minor damage to lip of culvert edge. 90% open.

Culvert Inspection Report Page 3 of 5

 Project No.
 19-3792S (STPX 90-8(191)450)
 Project Limits: MP 452.65
 to MP 455.31

		Cul	vert Descrip	tion	Gene	ral Con	dition	Sa	mple		
M.P.	Culvert #	Dia.	FETS In/Out	Type	Good	Fair	Poor	Soil	Water	Photo	Remarks/Comments
M.P. 455.27	C11 Inlet	72"	In	CMP		X				X	Partially blocked by dense vegetation. Flowing water present. 70% open.
M.P. 455.25	C11 Outlet	72"	Out	CMP		X		X	X	X	Minor damage, some garbage and vegetation. Flowing water present. 60% open.
M.P. 455.27	C12 Inlet	72"	In	CMP	X			X	X	X	Thick vegetation around inlet. Minor damage. 95% open.
M.P. 455.25	C12 Outlet	72"	Out	CMP	X					X	Some vegetation present and flowing water. 75% open.
M.P. 455.26	C13 Inlet	90"	In	CMP	X					X	Existing tree branch covering culvert. 75% open.
M.P. 455.25	C13 Outlet	90"	Out	CMP	X			X	X	X	Minor vegetation growing in culvert. Minor damage. 100% open.
M.P. 455.23	C14 Inlet	24"	In	CMP		X		X	X	X	Minor damage, some vegetation. 90% open.
M.P. 455.24	C14 Outlet	24"	Out	CMP			X			X	Soil and vegetation mound near outlet. 50% open.
M.P. 455.29	C15 Inlet	24"	In	CMP		X		X		X	Moderate damage, some vegetation. 80% open.
M.P. 455.27	C15 Outlet	24"	Out	CMP		X				X	Minor damage, some garbage and vegetation present around the outlet. 90% open.

Culvert Inspection Report Page 4 of 5

 Project No.
 19-3792S (STPX 90-8(191)450)
 Project Limits: MP 452.65
 to MP
 455.31

		Cul	vert Descrip	tion	Gene	ral Con	dition	Sa	mple		
M.P.	Culvert #	Dia.	FETS In/Out	Type	Good	Fair	Poor	Soil	Water	Photo	Remarks/Comments
M.P. 455.25	C16 Inlet	78"	In	CMP	X					X	Scrap concrete creating minor blockage in FETS. Some garbage. 100% open.
M.P. 455.25	C16 Outlet	78"	Out	CMP	X			X	X	X	Minor debris in culvert. 100% open.
M.P. 454.73	C17 Inlet	24"	None	RCP		X				X	Multiple drop inlets, in the westbound ditch and center median. Grates have been damaged allowing some garbage into the pipe.
M.P. 454.73	C17 Outlet	24"	Out	RCP	X			X		X	Some vegetation, garbage, and soil blocking culvert. Minor damage. 70% open.
M.P. 454.29	C18 Inlet									X	Unable to locate inlet in eastbound ditch, possibly buried. drop inlet present in center median.
M.P. 454.29	C18 Outlet	24"	Out	RCP	X			X		X	FETS in fair condition, with some vegetation. 95% open.
M.P. 453.55	C19 Inlet	24"	None	RCP	X					X	Drop inlet in westbound ditch. Minor damage, with some vegetation present.
M.P. 453.55	C19 Outlet	24"	None	RCP			X	X		X	Partially blocked by substantial vegetation and soil. 30% open.
M.P. 453.21	C20 Inlet	24"	Out	RCP	X			X		X	Drop inlet in westbound ditch. Some vegetation overgrowth and garbage. Grate is severely bent.
M.P. 453.21	C20 Outlet	24"	None	RCP	Х					X	Some vegetation overgrowth and garbage. Minor damage. 95% open.

Culvert Inspection Report Page 5 of 5

 Project No.
 19-3792S (STPX 90-8(191)450)
 Project Limits: MP 452.65
 to MP 455.31

		Culvert Description		General Condition		Sample					
M.P.	Culvert#	Dia.	FETS In/Out	Туре	Good	Fair	Poor	Soil	Water	Photo	Remarks/Comments
M.P. 452.92	C21 Inlet	24"	None	RCP		X				X	Inlet partially blocked by vegetation and soil. Minor damage. 60% open.
M.P. 452.91	C21 Outlet	24"	None	RCP		X		X		X	Minor damage, with some vegetation. 95% open.
M.P. 452.83	C22 Inlet	24"	None	RCP		X				X	Some garbage and minor damage. 75% open.
M.P. 452.87	C22 Outlet	24"	None	RCP			X	X		X	Partially blocked by vegetation and garbage. Minor damage. 50% open.
M.P. 454.39	C24 Inlet	24"	None	RCP	X			X		X	Garbage accumulation at mouth of inlet. Inlet along Old Hardin Road. 95% open.
M.P. 454.36	C24 Outlet	24"	None	RCP		X				X	Partially blocked by vegetation and soil. Minor damage. 60% open.
M.P. 455.39	C25 Inlet	24"	In	CMP	X			X		X	Minor cosmetic damage to edge of culvert and vegetation blockage. 95% open.
M.P. 455.34	C25 Outlet	24"	Out	CMP	X					X	Vegetation and garbage present at mought of outlet. 90% open.

^{*}Identification number "C23" skipped due renumbering.

P. O. Box 80190 Billings, Montana 59108-0190 p: 406.652.3930; f: 406.652.3944 www.skgeotechnical.com

Corrosivity of Soil MDT MT 232-16 and MT 532-16

Date: June 30, 2020 Project: 19-3792S Geotechnical Evaluation

I-90 Lockwood Interchange

Billings, Montana

Client: Tim Erickson, PE

HDR, Inc.

Date sampled:12/12/2019Date tested: 12/26/2019Sampled by:Drill CrewTested by: SM/SK

Culvert	Sample Type	Inlet/Outlet	Resistivity (Ω•cm) Calculated	Conductivity (m.mhos/cm) MT 232-16 Probe	pН	Marble pH	Sulfate (wt %) MT 532-16	
C1	Soil	Outlet	1047	0.955	8.01	8.25	0.0035	
C2	Soil	Outlet	4878	0.205	8.30	8.63	0.0020	
C3	Soil	Outlet	4348	0.230	8.30	8.69	0.0027	
C4	Soil	Outlet	4032	0.248	8.02	8.61	0.0026	
C5	Soil	Inlet	2740	0.365	8.59	8.59	0.0028	
C6	Soil	Outlet	4405	0.227	8.29	8.66	0.0076	
C6	Water	Outlet	575	1.740	7.94	8.02	0.0131	
C7	Soil	Outlet	3597	0.278	8.20	8.33	0.0052	
C8	Soil	Outlet	2667	0.375	8.23	8.43	0.0038	
С9	Soil	Inlet	7519	0.133	8.33	8.81	0.0031	
C10	Soil	Outlet	4132	0.242	8.05	8.63	0.0032	
C11	Soil	Outlet	2304	0.434	8.48	8.58	0.0050	
C11	Water	Outlet	1000	1.000	6.55	6.63	0.0012	
C12	Soil	Inlet	1241	0.806	7.94	8.52	0.0585	
C12	Water	Inlet	983	1.017	6.92	7.36	0.0013	
C13	Soil	Outlet	2315	0.432	7.97	8.86	0.0068	
C13	Water	Outlet	578	1.730	7.37	7.45	0.0026	
C14	Soil	Inlet	3356	0.298	7.98	8.85	0.0016	
C14	Water	Inlet	1064	0.940	6.90	6.97	0.0011	
C15	Soil	Inlet	5236	0.191	7.89	8.55	0.0012	
C16	Soil	Outlet	3953	0.253	7.86	8.78	0.0014	
C16	Water	Outlet	592	1.690	6.25	6.41	0.0024	
C17	Soil	Outlet	4695	0.213	8.19	8.56	0.0074	
C18	Soil	Outlet	3704	0.270	8.07	8.42	0.0038	
C19	Soil	Outlet	3086	0.324	8.12	8.26	0.0039	
C20	Soil	Inlet	5319	0.188	8.32	8.42	0.0022	
C21	Soil	Outlet	8264	0.121	8.15	8.65	0.0015	
C22	Soil	Outlet	9009	0.111	8.08	8.70	0.0022	

P. O. Box 80190 Billings, Montana 59108-0190 p: 406.652.3930; f: 406.652.3944

www.skgeotechnical.com

Corrosivity of Soil MDT MT 232-16 and MT 532-16

Date: June 30, 2020 Project: 19-3792S Geotechnical Evaluation

I-90 Lockwood Interchange

Billings, Montana

Client: Tim Erickson, PE

HDR, Inc.

Date sampled:12/12/2019Date tested: 12/26/2019Sampled by:Drill CrewTested by: SM/SK

Culvert	Sample Type	Inlet/Outlet	Resistivity (Ω•cm) Calculated	Conductivity (m.mhos/cm) MT 232-16 Probe	pН	Marble pH	Sulfate (wt %) MT 532-16
C24	Soil	Inlet	14493	0.069	8.24	8.66	0.0019
C25	Soil	Outlet	9901	0.101	8.61	9.00	0.0018

Remarks: Sulfate result is MT 532-16 water soluble method from Energy Labs.

Culvert C1. M.P. 452.84, 24-inch RCP, Inlet

Culvert C2. M.P. 452.91, 24-inch RCP, Inlet

Culvert C2. M.P. 452.90, 24-inch RCP, Outlet

Culvert C3. M.P. 453.36, 24-inch RCP, Outlet

Culvert C4. M.P. 453.53, 90-inch CMP, Inlet

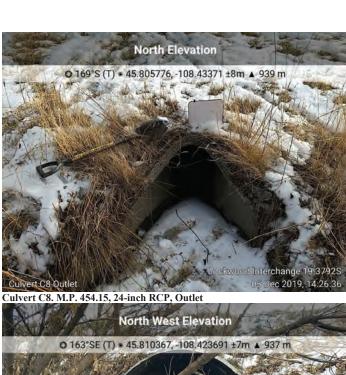
Culvert C5. M.P. 453.54, 24-inch RCP, Outlet

Culvert C6. M.P. 453.55, 90-inch CMP, Inlet

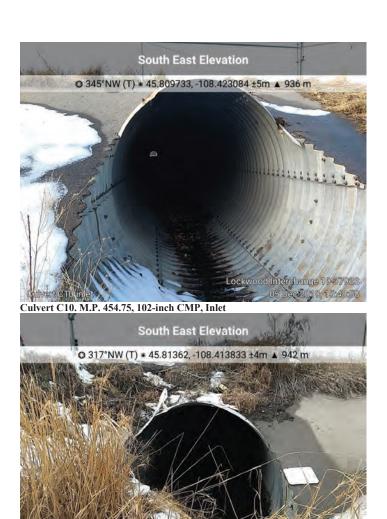
North East Elevation
© 254°SW (1) • 45.803184, -108.440741 ±9m 🛦 943 m

ockwood Interchange 19

Culvert C7. M.P. 453.77, 24-inch RCP, Drop Inlet



Culvert C7. M.P. 453.77, 24-inch RCP, Outlet



Culvert C9. M.P. 454.75, 102-inch CMP, Inlet

Culvert C9. M.P. 454.74, 102-inch CMP, Outlet

Culvert C11. M.P. 455.27, 72-inch CMP, Inlet

Culvert C11. M.P. 455.25, 72-inch CMP, Outlet

Culvert C12. M.P. 455.27, 72-inch CMP, Inlet

Culvert C13. M.P. 455.26, 90-inch CMP, Inlet

West Elevation

○ 109 E (I) • 45.81457, -108.415417 ±6m ▲ 945 m

Calvert C13 to Max.

O5 Date 2019, 1838-18

Culvert C13. M.P. 455.25, 90-inch CMP, Outlet

Culvert C15. M.P. 455.29, 24-inch CMP, Inlet

West Elevation

② 85°E (T) • 45.814253, -108.414166 ±5m ▲ 940 m

3 **At Lockwood-Attentive rige* 19.3 92.5**

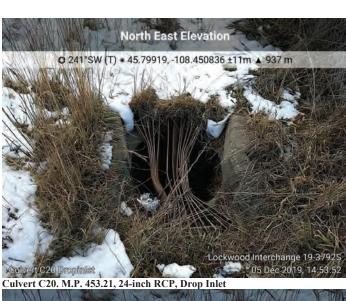
Culvert C15. M.P. 455.27, 24-inch CMP, Outlet

Culvert C17. M.P. 454.73, 24-inch RCP, Drop Inlet

Culvert C18. M.P. 453.29, 24-inch RCP, Outlet

Culvert C18. M.P. 454.29, 24-inch RCP, Drop Inlet

Culvert C19. M.P. 453.55, 24-inch RCP, Drop Inlet


North Elevation

② 170°S (1) = 45.79952, -108.451075 ±6m ▲ 939 m

Lockwood Interchange 19.2792S

05 Dec 2019, 10:38:28

Culvert C20. M.P. 453.21, 24-inch RCP, Outlet

Culvert C21. M.P. 452.92, 24-inch RCP, Inlet

Culvert C22. M.P. 452.87, 24-inch RCP, Outlet

05 Dec 2019, 16 00:00

Culvert C24. M.P. 454.39. 24-inch RCP, Inlet

Culvert C24. M.P. 454.36, 24-inch RCP, Outlet

Culvert C25. M.P. 455.39, 24-inch CMP, Outlet

Culvert C25. M.P. 455.39, 24-inch CMP, Inlet

Montana Department of Transportation Helena, Montana 59620

Memorandum

To:

Mark Studt, P.E.

Consultant Project Engineer

Consultant Design

From:

Becky Duke, Supervisor

Traffic Data Collection & Analysis Section

Date:

February 18, 2020

Subject:

STPX 90-8(191) 450

Lockwood Interchange

UPN: 9588000

Attached is the traffic information requested in a memo dated January 21, 2020. There are no major traffic breaks within the project. Please note that the equivalency factors used to calculate ESAL values are determined using information from our weigh-inmotion sites and reflect a five-year average.

If you have any questions or need further assistance, please contact me at 6122.

CC:

Pavement Analysis and Research - Helena

Project File

Worksheet for Engineering and Planning Purposes

Project Description:

Interstate Flexible

I-90 E of Lockwood Interchange

STPX 90-8(191) 450

Lockwood Interchange

UPN: 9588000

			I-90: E of Lockwood I	ntch		Truck Dist	ribution*
			DATE:	12-Feb-20			
					5	23.5 %	3.9 %
2020	AADT=_	23,240	PRESENT		6	2.5 %	0.4 %
					7	0.6 %	0.1 %
2024	AADT=_	25,260	LETTING YEAR		8	2.1 %	0.3 %
2044	AADT=_	38,270	DESIGN YEAR		9	53.9 %	9.0 %
	DHV=_	4060			10	5.6 %	0.9 %
	D=_				11	0.5 %	0.1 %
	T=_	16.8%			12	1.6 %	0.3 %
	ESAL=_	1305	_		13	9.8 %	1.6 %
	AGR=_	2.1%					
						100.0 %	16.8 %

AADT*=_	22,760	
BUS=_	0.4%	88
COM=	16.8%	3818
AGR=	2.1%	
K Factor=	10.60%	

Distribution: 2019 Continuous Count VC Count (Site ID: W-203)

^{*} AADTs and Growth Rate: Provided by Sanderson Stewart

Worksheet for Engineering and Planning Purposes

-		**	7.00
Pro	ect	Descri	ntion:
1 0	COL		DILLOIL.

Interstate Flexible

I-90 W of Lockwood Interchange

STPX 90-8(191) 450

Lockwood Interchange

UPN: 9588000

			I-90: W of Lockwood	Intch		Truck Distr	ribution*
			DATE:	12-Feb-20			
					5	23.5 %	3.5 %
2020	AADT=	27,720	PRESENT		6	2.5 %	0.4 %
					7	0.6 %	0.1 %
2024	AADT=	30,120	LETTING YEAR		8	2.1 %	0.3 %
2044	AADT=	45,650	DESIGN YEAR		9	53.9 %	8.1 %
	DHV=	4840			10	5.6 %	0.8 %
	D=				11	0.5 %	0.1 %
	T=	15.1%			12	1.6 %	0.2 %
	ESAL=	1409	27		13	9.8 %	1.5 %
	AGR=	2.1%					
						100.0 %	15.1 %

AADT*=_	27,150	
BUS=_	0.5%	127
COM=	15.1%	4099
AGR=	2.1%	
K Factor=	10.60%	

Distribution: 2019 Continuous Count VC Count (Site ID: W-203)

^{*} AADTs and Growth Rate: Provided by Sanderson Stewart

Worksheet for Engineering and Planning Purposes

Project	Description:
---------	--------------

Interstate Flexible

I-90 EB Off Ramp

STPX 90-8(191) 450

Lockwood Interchange

UPN: 9588000

			190EB Off Ramp			Truck Distri	ibution*
			DATE:	14-Feb-20			
					5	18.5 %	1.3 %
2020	AADT=	6,350	PRESENT		6	24.1 %	1.7 %
					7	1.5 %	0.1 %
2024	AADT=_	6,910	LETTING YEAR		8	2.6 %	0.2 %
2044	AADT=_	10,460	DESIGN YEAR		9	28.9 %	2.0 %
	DHV=_	1090			10	17.8 %	1.2 %
	D=_				11	0.7 %	0.1 %
	T=_	7.0%	_		12	1.1 %	0.1 %
	ESAL=	265			13	4.8 %	0.3 %
	AGR=	2.1%					
						100.0 %	7.0 %

AADT*=_	6,220	
BUS=_	0.5%	32
COM=	7.0%	437
AGR=	2.1%	
K Factor=	10.40%	

Distribution: 2019 Miovision Video provided by Sanderson Stewart

^{*} AADTs and Growth Rate: Provided by Sanderson Stewart

Worksheet for Engineering and Planning Purposes

14-Feb-20

Pro	ject	Descri	ption:
1 10	LOCE	DOSCII	MUCIT.

Interstate Flexible

I-90 EB On Ramp

STPX 90-8(191) 450

Lockwood Interchange

UPN: 9588000

190EB On Ramp

Truck Distribution*

				5	18.5 %	1.4 %
2020	AADT=_	3,500	PRESENT	6	24.1 %	1.8 %
				7	1.5 %	0.1 %
2024	AADT=_	3,810	_ LETTING YEAR	8	2.6 %	0.2 %
2044	AADT=_	5,770	DESIGN YEAR	9	28.9 %	2.2 %
	DHV=_	600	_	10	17.8 %	1.4 %
	D=_		_	11	0.7 %	0.1 %
	T=_	7.6%	_	12	1.1 %	0.1 %
	ESAL=_	153		13	4.8 %	0.4 %
	AGR=	2 1%				

DATE:

2019

AADT*=_	3,430	
BUS=_	0.3%	9
COM=	7.6%	261
AGR=	2.1%	
K Factor=	10.40%	

100.0 %

7.6 %

Distribution: 2019 Miovision Video provided by Sanderson Stewart

AADTs and Growth Rate: Provided by Sanderson Stewart

Worksheet for Engineering and Planning Purposes

14-Feb-20

Project	Description:

Interstate Flexible

I-90 WB Off Ramp

STPX 90-8(191) 450

Lockwood Interchange

UPN: 9588000

190WB Off Ramp

Truck Distribution*

				5	18.5 %	1.4 %
2020	AADT=	3,490	PRESENT	6	24.1 %	1.9 %
par. 100	_			7	1.5 %	0.1 %
2024	AADT=_	3,790	LETTING YEAR	8	2.6 %	0.2 %
2044	AADT=	5,750	DESIGN YEAR	9	28.9 %	2.2 %
	DHV=	600		10	17.8 %	1.4 %
	D=			11	0.7 %	0.1 %
	T=_	7.7%	_	12	1.1 %	0.1 %
	ESAL=_	154	_	13	4.8 %	0.4 %
	AGR=_	2.1%	_			
					100.0 %	7.7 %

DATE:

AADT*=_	3,420	
BUS=_	0.2%	7
COM=	7.7%	263
AGR=	2.1%	
K Factor=	10.40%	

Distribution: 2019 Sanderson Stewart Miovision Video

^{*} AADTs and Growth Rate: Provided by Sanderson Stewart

Worksheet for Engineering and Planning Purposes

Project Descr	ption:
---------------	--------

Interstate Flexible

I-90 WB On Ramp

STPX 90-8(191) 450

Lockwood Interchange

UPN: 9588000

190WB On Ramp

Truck Distribution*

DATE:

18-Feb-20

				5	18.5 %	1.4 %
2020	AADT=	5,920	PRESENT	6	24.1 %	1.9 %
				7	1.5 %	0.1 %
2024	AADT=	6,440	LETTING YEAR	8	2.6 %	0.2 %
2044	AADT=	9,750	DESIGN YEAR	9	28.9 %	2.3 %
	DHV=	1010		10	17.8 %	1.4 %
	D=			11	0.7 %	0.1 %
	T≔	7.8%		12	1.1 %	0.1 %
	ESAL=	270		13	4.8 %	0.4 %
	AGR=	2.1%				
					100.0 %	7.8 %

AADT*=_	5,800	
BUS=_	0.4%	26
COM=	7.8%	452
AGR=	2.1%	
K Factor=	10.40%	

Distribution: 2019 Sanderson Stewart Miovision Video

^{*} AADTs and Growth Rate: Provided by Sanderson Stewart

Worksheet for Engineering and Planning Purposes

Project	Description:
---------	--------------

Principal Flexible

Old US 87 E of Frontage STPX 90-8(191) 450

Lockwood Interchange

			UPN: 9588000				
			Old US 87 E of Front	tage Rd		Truck Distr	ibution*
			Date:	14-Feb-20			
					5	46.77 %	2.9 %
2020	AADT=_	21,070	PRESENT		6	12.58 %	0.8 %
					7	2.26 %	0.1 %
2024	AADT=_	22,100	_ LETTING YEAR		8	4.52 %	0.3 %
2044	AADT=_	28,050	_ DESIGN YEAR		9	18.39 %	1.1 %
	DHV=_	2690			10	10.32 %	0.6 %
	D=_				11	0.00 %	0.0 %
	T=_	6.2%			12	0.00 %	0.0 %
	ESAL=	292			13	5.16 %	0.3 %
	AGR=	1.2%	_				
						100.0 %	6.2 %

AADT*=	20,820		
BUS=	0.2%	43	 Distribution: 2019 Video Count (Site ID: 56-4A-011)
COM=_	6.2%	1294	* AADT and Growth Rate: Provided by Sanderson Stewart
AGR=	1.2%		
K Factor=	9.60%		

Worksheet for Engineering and Planning Purposes

Pro	iect	Descri	ption:
110	COL	Descii	DUOIL.

Principal Flexible

Old US 87 W of Frontage STPX 90-8(191) 450

Lockwood Interchange

Old US 87 W of Frontage Rd

UPN: 9588000

			A COLOR OF THE PROPERTY OF THE				
			Date:	14-Feb-20			
					5	46.77 %	2.7 %
2020	AADT=	23,790	PRESENT		6	12.58 %	0.7 %
					7	2.26 %	0.1 %
2024	AADT=	24,750	LETTING YEAR		8	4.52 %	0.3 %
2044	AADT=_	30,200	DESIGN YEAR		9	18.39 %	1.0 %
	DHV=	2900	_		10	10.32 %	0.6 %
	D=_				11	0.00 %	0.0 %
	T=_	5.7%	_		12	0.00 %	0.0 %
	ESAL=	269	_		13	5.16 %	0.3 %
	AGR=	1.0%					

2019

37
1343

Truck Distribution*

100.0 %

5.7 %

Distribution: 2019 Video Count (Site ID: 56-4A-011)

[&]quot; AADT and Growth Rate: Provided by Sanderson Stewart

Worksheet for Engineering and Planning Purposes

Droi	ant	Dogge	ntion:
FIU	GCI	Descri	Duon.

Minor Flexible

Frontage Rd

STPX 90-8(191) 450

Lockwood Interchange

UPN: 9588000

Frontage Rd

Truck Distribution*

Date: 18-Feb-20

				.5	46.8 %	4.7 %
2020	AADT=	6,670	PRESENT	6	12.6 %	1.3 %
				7	2.3 %	0.2 %
2024	AADT=_	6,940	LETTING YEAR	8	4.5 %	0.5 %
2044	AADT=_	8,470	DESIGN YEAR	9	18.4 %	1.8 %
	DHV=	970		10	10.3 %	1.0 %
	D=			11	0.0 %	0.0 %
	T=_	10.0%		12	0.0 %	0.0 %
	ESAL=	219	<u></u>	13	5.2 %	0.5 %
	AGR=_	1.0%				
					100.0 %	10.0 %

AADT*=_	6,610	
BUS=_	0.2%	11
COM=	10.0%	659
AGR=	1.0%	
K Factor=	11.50%	

^{*} Distribution: 2019 Video Count (Site ID: (56-4A-011)

^{*} AADT & Growth Rate: Provided by Sanderson Stewart

Worksheet for Engineering and Planning Purposes

Project Description	
---------------------	--

Principal Flexible

Old US 87 Btwn Ramps

STPX 90-8(191) 450

Lockwood Interchange

UPN: 9588000

Old US 87 Btwn Ramps

Truck Distribution*

Date: 18-Feb-20

	5	5	46.77	%	2.7	%
2020	6	PRESENT 6	12.58	%	0.7	%
	7	7	2.26	%	0.1	%
2024	8	_ LETTING YEAR 8	4.52	%	0.3	%
2044	9	_ DESIGN YEAR 9	18.39	%	1.1	%
	10		10.32	%	0.6	%
	11		0.00	%	0.0	%
	12	12	0.00	%	0.0	%
	13	13	5.16	%	0.3	%
			100.0	%	5.8	%
			100.0		%	% 5.8

2019

* Distrib (Site II
* AADT Sande

Distribution: 2019 Video Count (Site ID: 56-4A-011)

AADT and Growth Rate: Provided by Sanderson Stewart

Worksheet for Engineering and Planning Purposes

100	Contract	- T.	STREET, STREET
Pro	ect	Descri	ption:

Minor Flexible

Old US 87 Btwn I90/Coburn Rd STPX 90-8(191) 450

Lockwood Interchange

UPN: 9588000

			Old US 87 Btwn 190/Co	oburn Rd		Truck Distri	bution*
			Date;	14-Feb-20			
					5	46.8 %	2.0 %
2020	AADT=	10,720	PRESENT		6	12.6 %	0.5 %
					7	2.3 %	0.1 %
2024	AADT=	11,720	LETTING YEAR		8	4.5 %	0.2 %
2044	AADT=	18,290	DESIGN YEAR		9	18.4 %	0.8 %
	DHV=	2210			10	10.3 %	0.4 %
	D=		_		11	0.0 %	0.0 %
	T=	4.3%			12	0.0 %	0.0 %
	ESAL=	182	_		13	5.2 %	0.2 %
	AGR=	2.3%					
			230			100.0 %	4.3 %

2019

AADT*=_	10,490	
BUS=_	0.6%	62
COM=	4.3%	449
AGR=	2.3%	
K Factor=	12.10%	

ID: \$56-4A-011)

Distribution: 2019 Video Count (Site

^{*} AADT & Growth Rate: Provided by Sanderson Stewart

Worksheet for Engineering and Planning Purposes

Project	Description:
---------	--------------

Minor Flexible

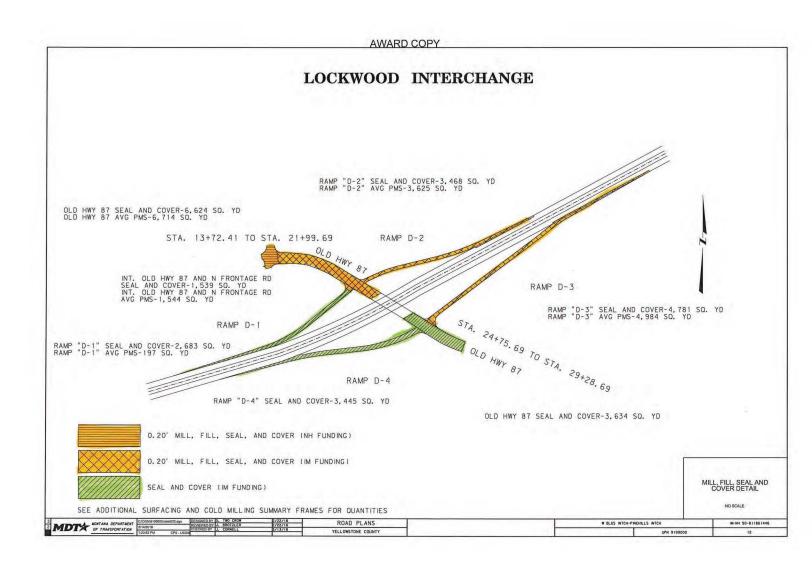
Coburn Rd

STPX 90-8(191) 450

Lockwood Interchange

UPN: 9588000

Coburn Rd S of Old US 87


Truck Distribution*

Date: 18-Feb-20

				5	46.8 %	2.7 %
2020	AADT=	2,440	PRESENT	6	12.6 %	0.7 %
				7	2.3 %	0.1 %
2024	AADT=_	2,590	_ LETTING YEAR	8	4.5 %	0.3 %
2044	AADT=_	3,490	_ DESIGN YEAR	9	18.4 %	1.1 %
	DHV=_	400		10	10.3 %	0.6 %
	D=_		_	11	0.0 %	0.0 %
	T=_	5.7%	_	12	0.0 %	0.0 %
	ESAL=_	52		13	5.2 %	0.3 %
	AGR=_	1.5%				
					100.0 %	5.7 %

AADT*=_	2,410	
BUS=_	0.2%	5
COM=	5.7%	138
AGR=	1.5%	
K Factor=	11.50%	

- * Distribution: 2019 Video Count (Site ID: 156-4A-011)
- * AADT & Growth Rate: Provided by Sanderson Stewart

Montana Department of Transportation - Core Evaluation Form

Project: Lockwood Interchange - Billings Lab#: SK Geotechnical Date: 5/14/2020

Limits: MP 452.65 to MP 455.31 Evaluated By: Cody C. Hopkins, EI

Sample#	Description	Overell	Cumulative Depth (in +/-			/- 1/8")	1/8") Rating						Commonto	
Location	Location	Overall	Chip	Тор	2nd	3rd	4th	5th	Top	2nd	3rd	4th	5th	Comments
ST-42		10.50	0.25	3.25	6.50	10.50			4	3	3			
ST-43	1	7.38	0.38	3.50	7.38				4	2				
ST-44	1	8.50	0.38	3.00	5.50	8.50			4	3	2			
ST-45	I-90 Eastbound Mainline,	10.50	0.25	3.00	5.00	10.25			4	2	1			
ST-46	See Attached Sketch	9.00	0.25	3.25	5.75	9.00			4	3	2			
ST-47	1	10.25	0.25	3.00	5.00	10.25			4	3	1			
ST-48	1	8.50	0.25	2.75	5.25	8.25			4	1	1			
ST-49		8.13	0.25	2.75	4.75	8.13			4	4	3			
ST-55		11.25	0.38	2.88	6.00	11.25			3	3	2			
ST-56	1	8.38	0.25	2.50	4.00	8.38			4	3	2			
ST-57	L OO Weeth ound	8.13	0.25	2.38	4.63	8.13			4	4	2			
ST-58	I-90 Westbound Mainline, See Attached	8.25	0.25	3.00	8.25				3	2				
ST-59	Sketch	8.25	0.25	2.50	4.00	6.25	8.50		4	2	1	1		
ST-60	SKETCH	8.00	0.38	2.75	4.50	6.00	8.00		4	3	2	2		
ST-61		9.75	0.25	3.50	5.50	9.75			4	3	2			
ST-62		8.50	0.25	2.75	5.00	8.50			4	2	1			
ST-71	I-90 Lockwood Ramps,	11.13	0.25	3.25	6.50	8.50	11.13		3	1	1	1		
ST-72	See Attached Sketch	11.00	0.25	3.00	4.38	6.38	8.13	11.00	3	2	2	2	2	
ST-73		9.50												9 1/2 inch PCCP
ST-74	US Highway 87, See	7.50	0.25	2.38	3.25	5.50	7.50		4	2	2	2		
ST-75	Attached Sketch	6.75	0.25	2.00	4.75	6.75			3	2	2			
ST-76		6.75	0.38	2.38	4.63	6.75			4	3	3			
	Minimum	6.75	0.25	2.00	3.25	5.50	7.50	11.00	3.00	1.00	1.00	1.00	2.00	
	Maximum	11.25	0.38	3.50	8.25	11.25	11.13	11.00	4.00	4.00	3.00	2.00	2.00	
	Average	8.90	0.28	2.85	5.26	8.26	8.65	11.00	3.8	2.5	1.8	1.6	2.0	

<u>Core Rating:</u> <u>Description:</u>

1) Severely Stripped:

4) Good: - Face shiny, black all aggregate particles are coated.

3) Moisture Damaged: - Loss of sheen, dull appearance some smaller (-10m) aggregate is uncoated.

2) Stripping: - In addition to moisture damage some large aggregate is not coated.

- Most of the aggregate is so clean the colors of the rock are easily seen.

0) No Core: - Asphalt is mostly gone from all size of aggregate. The core has disintegrated.

Montana Department of Transportation - Core Evaluation Form

Project: Lockwood Interchange - Billings Lab#: SK Geotechnical Date: 5/14/2020

Limits: MP 452.65 to MP 455.31 Evaluated By: Cody C. Hopkins, El

Sample#	Description	Overall	Rating					Break Load	Compressive Tensile Strength	Comments	
	Location	Overall	Тор	2nd	3rd	4th	5th	(lbs)	Strength (psi)	(psi)	Comments
ST-42	I-90 Eastbound Mainline, See Attached Sketch	10.50	4	3	3			3308		300	
ST-43		7.38	4	2				4238		384	
ST-44		8.50	4	3	2			3192		289	
ST-45		10.50	4	2	1			1639		148	
ST-46		9.00	4	3	2			3201		290	
ST-47		10.25	4	3	1			5273		477	
ST-48		8.50	4	1	1			3239		293	
ST-49		8.13	4	4	3			4127		374	
ST-55	I-90 Westbound Mainline, See Attached Sketch	11.25	3	3	2			5714		517	
ST-56		8.38	4	3	2			3239		293	
ST-57		8.13	4	4	2			4127		374	
ST-58		8.25	3	2				3256		295	
ST-59		8.25	4	2	1	1		1552		141	
ST-60		8.00	4	3	2	2		4614		418	
ST-61		9.75	4	3	2			3216		291	
ST-62		8.50	4	2	1			2207		200	
ST-71	I-90 Lockwood Ramps,	11.13	3	1	1	1		1895		172	
ST-72	See Attached Sketch	11.00	3	2	2	2	2	1834		166	
ST-73		9.50						57270	5420		9 1/2 inch PCCP
ST-74	US Highway 87, See	7.50	4	2	2	2		1276		116	
ST-75	Attached Sketch	6.75	3	2	2			2376		215	
ST-76		6.75	4	3	3			3822		346	
	Minimum	4 75	2.00	200 100 100 100 200				A CTNA DV 024			

Minimum 6.75 3.00 1.00 1.00 1.00 Maximum 11.25 4.00 4.00 3.00 2.00 2.00 Average 8.90 3.8 2.5 1.8 1.6

ASTM D6931

Core Rating:

3) Moisture Damaged:

Description:

- 4) Good: Face shiny, black all aggregate particles are coated.
 - Loss of sheen, dull appearance some smaller (-10m) aggregate is uncoated.
- 2) Stripping: In addition to moisture damage some large aggregate is not coated.
- 1) Severely Stripped:

 Most of the aggregate is so clean the colors of the rock are easily seen.
- 0) No Core: Asphalt is mostly gone from all size of aggregate. The core has disintegrated.

Core ST-45

Core ST-49

Core ST-58

Core ST-62

Core ST-75

Core ST-73

I-90 eastbound on ramp, Lockwood exit, looking east.

I-90 eastbound mainline, looking east.

I-90 eastbound on ramp, Lockwood exit, looking west.

I-90 eastbound mainline, looking west.

I-90 eastbound mainline, looking east.

I-90 eastbound mainline, looking east.

I-90 eastbound mainline, looking west.

I-90 eastbound mainline, looking west.

I-90 eastbound mainline, looking east.

I-90 eastbound mainline, looking east.

I-90 eastbound mainline, looking west.

I-90 eastbound mainline, looking west.

I-90 eastbound mainline, looking east.

I-90 westbound mainline, looking east.

I-90 eastbound mainline, looking west.

I-90 westbound mainline, looking west.

I-90 westbound mainline, looking east.

I-90 westbound mainline, looking east.

I-90 westbound mainline, looking west.

I-90 westbound mainline, looking west.

I-90 westbound mainline, looking east.

I-90 westbound mainline, looking east.

I-90 westbound mainline, looking west.

I-90 westbound mainline, looking west.

I-90 westbound mainline, looking east.

I-90 westbound mainline, looking east.

I-90 westbound mainline, looking west.

I-90 westbound mainline, looking west.

I-90 westbound mainline, looking east.

I-90 westbound off ramp, Lockwood exit, looking east.

I-90 westbound mainline, looking west.

I-90 westbound off ramp, Lockwood exit, looking west.

I-90 eastbound and westbound mainline, typical transverse crack.

Highway 87 eastbound, looking east.

I-90 eastbound and westbound mainline, typical longitudinal crack.

Highway 87 eastbound, looking west.

Highway 87 westbound, looking east.


Highway 87 westbound, looking east.

Highway 87 westbound, looking west.

Highway 87 westbound, looking west.

Highway 87 westbound, looking south.

Highway 87 westbound, looking south.

Highway 87 westbound, looking north.

Highway 87 westbound, looking north.

Highway 87 eastbound, looking south.

Highway 87 eastbound, looking east.

Highway 87 eastbound, looking north.

Highway 87 eastbound, looking west.

Highway 87 typical transverse cracks and minor rutting, looking east. Cracks have been sealed.

Coburn Road approach to Highway 87, looking southwest. Alligator and block cracking. Many shoulder failures.

Highway 87 typical transverse cracks and minor rutting, looking northwest. Cracks have been sealed.

Coburn Road approach to Highway 87, looking northeast. Alligator and block cracking. Many shoulder failures.

Highway 87 Lockwood Interchange south bridge end pavement distress, looking west. Rutting, transverse cracks, patches, and block cracking.

Intersection of Highway 87 and North Frontage Road, looking west. Minor patches and reflecting at the joints, but otherwise in good shape.

Highway 87 Lockwood Interchange south bridge end pavement distress, looking west. Pothole in intersection, and transverse crack. Intersection in poor shape beneath surface.

Intersection of Highway 87 and North Frontage Road, looking southwest. Possible drainage problem observed in westbound lane.

Intersection of Highway 87 and North Frontage Road, looking southwest. Closeup of drainage concern in low lying PCCP lane, with asphalt patches.

Highway 87 turn to I-90 westbound on ramp. A recent mill and overlay was performed, and bleeding was observed.

Highway 87 typical PCCP worn surface, and some minor infrequent broken edges.

Highway 87 turn to I-90 westbound on ramp. Joint cracking observed across

	UPN: 9588000			
Route	STPX 90-8(191)450)		
Name	Lockwood Interch	ange - Billings, Yellowsto	one County	
Date of Run	6/2/2020		·	
Typical Section	1	2	3	4
	I-90 Median - CBC Section	I-90 Median - 2.00' Special Borrow Section	I-90 EB 0.25 Mill/Overlay	I-90 WB 0.25 Mill/Overlay
Traffic				
Daily ESAL	1305	1305	1305	1305
Yearly ESAL	476325	476325	476325	476325
20 Year ESAL	9526500	9526500	9526500	9526500
Demand				
Note	Subgrade = CL	Subgrade = 2.0' SB	Subgrade = CL	Subgrade = CL
Note	R=5	R=30	R=5	R=5
Reliability	95	95	95	95
So	0.45	0.45	0.45	0.45
DeltaPSI	1.7	1.7	1.7	1.7
Mr	3250	12000	3250	3250
SNDES	6.73	4.43	6.73	6.73
W18	9526500	9526500	9526500	9526500
Zr	-1.645	-1.645	-1.645	-1.645
ESAL	1305	1305	1305	1305
Life	20.0	20.0	20.0	20.0
Capacity				
a1	0.41	0.41	0.41	0.41
D1 (in)	7.8	7.8	3	3
SN1	3.2	3.2	1.2	1.2
a2	0.14	0.14	0.27	0.27
m2	1	1	1	1
D2 (in)	25.8	9.0	6.3	6.0
SN2	3.6	1.3	1.7	1.6
a3			0.12	0.12
m3	1	1	1	1
D3 (in)			40.8	40.8
SN3	0.0	0.0	4.9	4.9
a4				
m4	0	0	0	0
D4 (in)				
SN4	0.0	0.0	0.0	0.0
Sntot = SN1+SN2+SN3+SN4	6.81	4.46	7.81	7.74
Traffic Chk W18=20 Yr ESAL	OK	OK	OK	OK
SN Check	OK	OK	OK	OK
Design Check	DESIGN OK	DESIGN OK	DESIGN OK	DESIGN OK
1 1 (ft)	0.65	0.65	0.25	0.35
Layer 1 (ft)	0.65	0.65	0.25	0.25
Layer 2 (ft)	2.15	0.75	0.52	0.50
Layer 3 (ft)	0.00	0.00	3.40	3.40
Total	2.80	1.40	4.17	4.15

	UPN: 9588000				
Route	STPX 90-8(191)450				
Name		nge - Billings, Yellowston	e County		
Date of Run	7/1/2020	ige billings, renowscom	c county		
	-, -,				
Typical Section	1	2	3	4	5
	I-90 Lockwood	I-90 Lockwood Ramps	I-90 Lockwood	I-90 Lockwood	I-90 Lockwood
	Ramps A&B - CBC	A&B - 2.00' Special	Ramps A&B - 0.25		Ramps C&D 2.00' -
	Section	Borrow Section	Mill and Fill	Section	Special Borrow
Traffic	Section	Borrow Section	IVIIII allu FIII	Section	Section
Daily ESAL	154	154	154	270	270
Yearly ESAL	56210	56210	56210	98550	98550
20 Year ESAL	1124200	1124200	1124200	1971000	1971000
Demand					
Note	Subgrade = CL	Subgrade = 2.0' SB	Subgrade = CL	Subgrade = CL	Subgrade = 2.0' SB
Note	R=5	R=30	R=5	R=5	R=30
Reliability	95	95	95	95	95
So	0.45	0.45	0.45	0.45	0.45
DeltaPSI	1.7	1.7	1.7	1.7	1.7
Mr	3250	12000	3250	3250	12000
SNDES	5.05	3.15	5.05	5.46	3.45
W18	1124200	1124200	1124200	1971000	1971000
Zr	-1.645	-1.645	-1.645	-1.645	-1.645
ESAL	154	154	154	270	270
Life	20.0	20.0	20.0	20.0	20.0
Capacity					
a1	0.41	0.41	0.41	0.41	0.41
D1 (in)	4.8	4.8	3	4.8	4.8
SN1	2.0	2.0	1.2	2.0	2.0
a2	0.14	0.14	0.27	0.14	0.14
m2	1	1	1	1	1
D2 (in)	22.2	9.0	8.3	25.2	10.8
SN2	3.1	1.3	2.2	3.5	1.5
a3			0.12		
m3	1	1	1	1	1
D3 (in)			20.3		
SN3	0.0	0.0	2.4	0.0	0.0
Sntot = SN1+SN2+SN3+SN4	5.08	3.23	5.89	5.50	3.48
Traffic Chk W18=20 Yr ESAL	OK	OK	OK	OK	OK
SN Check	OK	OK	OK	OK	OK
Design Check	DESIGN OK	DESIGN OK	DESIGN OK	DESIGN OK	DESIGN OK
Layer 1 (ft)	0.40	0.40	0.25	0.40	0.40
Layer 2 (ft)	1.85	0.75	0.69	2.10	0.90
Total	2.25	1.15	2.63	2.50	1.30

	UPN: 9588000		
Route	STPX 90-8(191)450		
	, ,	Dillings Vollowstone	County
Name Date of Run	6/2/2020	e - Billings, Yellowstone	County
Date of Kull	0/2/2020		
Typical Section	1	2	3
Traffic	Old US Hwy 87 - CAC Section	Old US Hwy 87 2.00' Special Borrow Section	Old US Hwy 87 30-Year Bridge Ends
Daily ESAL	292	292	292
Yearly ESAL	106580	106580	106580
20 Year ESAL	2131600	2131600	
30 Year ESAL			3197400
Demand			
Note	Subgrade = CL	Subgrade = 2.0' SB	Subgrade = 2.0' SB
Note	R=5	R=30	R=30
Reliability	90	90	90
So	0.45	0.45	0.45
DeltaPSI	1.7	1.7	1.7
Mr	3250	12000	12000
SNDES	5.24	3.29	3.52
W18	2131600	2131600	3197400
Zr	-1.282	-1.282	-1.282
ESAL	292	292	438
Life	20.0	20.0	20.0
Capacity			
a1	0.41	0.41	0.41
D1 (in)	4.8	4.8	7.2
SN1	2.0	2.0	3.0
a2	0.14	0.14	0.14
m2	1	1	1
D2 (in)	23.4	9.6	7.8
SN2	3.3	1.3	1.1
a3			
m3	1	1	1
D3 (in)			
SN3	0.0	0.0	0.0
Sntot = SN1+SN2+SN3+SN4	5.24	3.31	4.04
Traffic Chk W18=20 Yr ESAL	OK	OK	OK
SN Check	OK	OK	ОК
Design Check	DESIGN OK	DESIGN OK	DESIGN OK
Layer 1 (ft)	0.40	0.40	0.60
Layer 2 (ft)	1.95	0.80	0.65
Total	2.35	1.20	1.25

DARWin(tm) - Pavement Design
A Proprietary AASHTOWARE(tm)
Computer Software Product

Rigid Structural Design Module

SK Geotechnical Corp.

2511 Holman Ave.

Billings, MT 59102

B. Western

Project Description

STPX 90-8(191)450 - Lockwood Interchange, 40 Year Design Rigid Structural Design Module Data

Pavement type: JPCP

18-kip ESALs for initial performance period: 4,263,200

Initial Serviceability: 4.5

Terminal Serviceability: 2.5

28-day mean PCC Modulus of Rupture (psi): 650

28-day mean Elastic Modulus of Slab (psi): 4,000,000

Mean Effective k-value (pci): 150

Reliability Level (%): 90

Overall Standard Deviation: .35

Load Transfer Coefficient: 2.6

Overall Drainage Coefficient: 1

Stage Construction: 1

Calculated Design Thickness (in): 7.77

ACTIVITY 440 Preliminary Geotechnical and Materials Review (03/27/2008)

DEFINITION:

Initial review of Geotech and Materials plan recommendations from consultant designed project.

TASKS:

Preliminary Soil Survey Investigation (450)

	Task Checklist Description	Yes	No	N/A	Initia
1	Log of each test hole.	X			BOH
2	Location of each test hole noted.	X			1
3	Soil Class shown for each sample(AASHTO).	X			
4	Moisture/Density curve for each representative soil sample	X			
5	In place density at each location.		×		
6	Natural moisture shown for each soil sample.	X			
7	R-Value or other acceptable test method for each representative soil sample.	Y			
8	Soil survey adequate for entire project.		×		
9	Chemical and corrosion sample taken at each pipe installation.	×			
10	Report submitted describing in-place pipe condition.	×			1
11	Test holes plotted on plan and profile sheets.	2	x -	UOT AV	ullable
12	Narrative describing unusual conditions or potential problems soils or drainage.	X	3		DPH

Borrow and Surface Pit Investigation (452)

	Task Checklist Description	Yes	No	N/A	Initial
1	Review Form 92 (Prospected Area Report)			×	DOIT
2	Map showing location of pit submitted.			×	
3	Pit sketch submitted showing location of test holes, legal description and quantity of aggregate available.			X	
4	Completed Field Sample Analysis Report submitted.			X	
5	Log of test holes submitted.			×	
6	Is the pit satisfactory for use as bituminized or non- bituminized surfacing?			X	1

Preliminary Surfacing Typical Sections (600)

	Task Checklist Description	Yes	No	N/A	Initial
1	Have 3 alternate typical sections been recommended?	X			B041

Geotechnical and Materials

		YES	NO	N/A	INITEAL
2	Is there an economic analysis for each alternate?	1477	HIE	×	DOM
3	Is the method of design satisfactory?	X		12.0	
4	Are the designs based on subgrade R-Value? Other?	X			
5	Are the design ESAL's current?	X			
6	Are the proposed surfacing layer thicknesses reasonable?	X			
7	Has special borrow or a 2' subgrade cap been considered to reduce surfacing?	X			
8	Is the recommended typical alternate satisfactory?	×			V

Deflection Analysis

	Task Checklist Description	Yes	No	N/A	Initial
1	Are back calculated layer modulus values needed for this project? (If not, skip 2, 3 and 4)		X		OPIA
2	Was an acceptable back-calculation technique utilized?				
3	Are back calculated moduli values available for all in- place layers?		111		
4	Are values representative of the area? (Compare to network data)				

Preliminary Geotechnical Evaluation (460)

	Task Checklist Description	Yes	No	N/A	Initial
1	Has a literature and map review been performed?	X			DONA
2	Has a site visit been completed to look at geology, slopes, roadway, drainage, wetlands and other geotechnical issues?	×			1
3	Have any potential Geotechnical problems been identified?	X			
4	Has a written report been provided?	X			V

START DEPENDENCIES:
Completion of Activity 106.