In 2008, with an alcohol-impaired fatality rate of 0.84 per 100 million vehicle miles traveled, Montana had the highest alcohol-impaired fatality rate in the nation. This is more than double the national rate of 0.40. Preliminary 2009 results show that the alcohol-related fatality rate is 0.94 per 100 million vehicle miles traveled, compared to 0.96 in 2008.

It is important to note the difference between the terms alcohol-impaired and alcohol-related. Alcohol-impaired crashes or fatalities are defined as crashes or fatalities that involve at least one driver or motorcycle operator with a blood alcohol content (BAC) of 0.08 grams per deciliter (g/dL) or higher. A crash, fatality or injury is alcohol-related if at least one driver or non-occupant (such as a pedestrian or pedalcyclist) involved in the crash is determined to have a BAC of 0.01 g/dL or higher OR if police indicate on the accident report that there is evidence of alcohol present. This does not necessarily mean that a driver or non-occupant was tested for alcohol, nor does it indicate that a crash, fatality or injury was caused by the presence of alcohol.

The Montana Supreme Court provided the following misdemeanor case filing data for 2009:

<table>
<thead>
<tr>
<th>Statute</th>
<th>Description</th>
<th>2009 Charges Filed</th>
</tr>
</thead>
<tbody>
<tr>
<td>45-5-624(2)(a)(i)</td>
<td>Possessing Intoxicating Substances While Under The Age Of 21 (Under Age 18) - 1st Offense</td>
<td>2582</td>
</tr>
<tr>
<td>45-5-624(2)(a)(ii)</td>
<td>Possessing Intoxicating Substances While Under The Age Of 21 (Under Age 18) - 2nd Offense</td>
<td>287</td>
</tr>
<tr>
<td>45-5-624(2)(iii)</td>
<td>Possessing Intoxicating Substances While Under The Age Of 21 (Under Age 18) - 3rd Offense</td>
<td>155</td>
</tr>
<tr>
<td>45-5-624(3)(a)</td>
<td>Possessing Intoxicating Substances While Under The Age Of 21 (Over Age 18) - 1st Offense</td>
<td>2873</td>
</tr>
<tr>
<td>45-5-624(3)(b)</td>
<td>Possessing Intoxicating Substances While Under The Age Of 21 (Over Age 18) - 2nd Offense</td>
<td>444</td>
</tr>
<tr>
<td>45-5-624(3)(c)</td>
<td>Possessing Intoxicating Substances While Under The Age Of 21 (Over Age 18) - 3rd Offense</td>
<td>398</td>
</tr>
<tr>
<td>45-5-624(4)</td>
<td>Attempting To Purchase An Intoxicating Substance Under The Age Of 21</td>
<td>9</td>
</tr>
<tr>
<td>61-8-401(1)(a) [1st]</td>
<td>Driving Under The Influence Of Alcohol - First Offense</td>
<td>5984</td>
</tr>
<tr>
<td>61-8-401(1)(a) [2nd]</td>
<td>Driving Under The Influence Of Alcohol - Second Offense</td>
<td>1300</td>
</tr>
<tr>
<td>61-8-401(1)(a) [3rd]</td>
<td>Driving Under The Influence Of Alcohol - Third Offense</td>
<td>335</td>
</tr>
<tr>
<td>61-8-401(1)(a) [4th+]</td>
<td>Driving Under The Influence Of Alcohol - Fourth Or Subsequent Offense - Felony</td>
<td>535</td>
</tr>
<tr>
<td>61-8-401(1)(b) [1st]</td>
<td>Driving Under The Influence Of Any Drug (Narcotic, Etc.) - First Offense</td>
<td>82</td>
</tr>
<tr>
<td>61-8-401(1)(b) [2nd]</td>
<td>Driving Under The Influence Of Any Drug (Narcotic, Etc.) - Second Offense</td>
<td>8</td>
</tr>
<tr>
<td>61-8-401(1)(b) [3rd]</td>
<td>Driving Under The Influence Of Any Drug (Narcotic, Etc.) - Third Offense</td>
<td>3</td>
</tr>
<tr>
<td>61-8-401(1)(b) [4th+]</td>
<td>Driving Under The Influence Of Any Drug (Narcotic, Etc.) - Fourth or Subsequent Offense - Felony</td>
<td>3</td>
</tr>
<tr>
<td>61-8-401(1)(c) [1st]</td>
<td>Driving Under The Influence Of Non-Narcotic Drugs - First Offense</td>
<td>19</td>
</tr>
<tr>
<td>61-8-401(1)(c) [2nd]</td>
<td>Driving Under The Influence Of Non-Narcotic Drugs - Second Offense</td>
<td>1</td>
</tr>
<tr>
<td>61-8-401(1)(d) [1st]</td>
<td>Driving Under The Influence Of Alcohol And Drugs - First Offense</td>
<td>32</td>
</tr>
<tr>
<td>61-8-401(1)(d) [2nd]</td>
<td>Driving Under The Influence Of Alcohol And Drugs - Second Offense</td>
<td>12</td>
</tr>
<tr>
<td>61-8-401(1)(d) [3rd]</td>
<td>Driving Under The Influence Of Alcohol And Drugs - Third Offense</td>
<td>3</td>
</tr>
<tr>
<td>61-8-401(1)(d) [4th+]</td>
<td>Driving Under The Influence Of Alcohol And Drugs - Fourth Or Subsequent Offense - Felony</td>
<td>5</td>
</tr>
<tr>
<td>61-8-406(1)(a) [1st]</td>
<td>Operating With Alcohol Concentration Of 0.08% BAC Or Greater - First Offense</td>
<td>1203</td>
</tr>
<tr>
<td>61-8-406(1)(a) [2nd]</td>
<td>Operating With Alcohol Concentration Of 0.08% BAC Or Greater - Second Offense</td>
<td>126</td>
</tr>
<tr>
<td>61-8-406(1)(a) [3rd]</td>
<td>Operating With Alcohol Concentration Of 0.08% BAC Or Greater - Third Offense</td>
<td>31</td>
</tr>
</tbody>
</table>

1 *Fatalities and Fatality Rates in Alcohol-Impaired Driving Crashes by State, 2007-2008.* NHTSA’s National Center for Statistics and Analysis, December 2009

The total number of impaired driving charges, including those given to drivers under age 21 and commercial drivers, totals 9,987. There were 6,739 MIP charges reported. The Office of Court Administrator notes that Minor in possession (MIP) counts may be underreported in the table above because Youth Court has concurrent jurisdiction with the Courts of Limited Jurisdiction on MIPS where the defendant is less than 18.

According to the Department of Corrections, driving under the influence (DUI) is also one of the top ten felony conviction offenses in Montana, as evidenced by the table below.

Note: This is a biennial report, consequently no update is available this year.

Impaired driving prevention goals

The Montana Department of Transportation (MDT) State Highway Traffic Safety Office (SHTSO) has taken a proactive approach to reducing the incidence of impaired driving in an effort to reduce the alcohol-related fatality rate. MDT has established four goals addressing alcohol that it aims to meet by 2013:

Goal: Reduce Alcohol-Impaired Fatalities
Reduce the three-year average number of fatalities in crashes involving an alcohol-impaired driver or motorcycle operator (BAC 0.08+) from 105 in 2007 to 99 by 2013.

Progress: The 2008 three-year average number was 100. The early estimated 2009 number is 94 (number can’t be confirmed until alcohol-impaired numbers are published by NHTSA later in the year).

Goal: Reduce the Alcohol-Impaired Fatality Rate
Reduce the three-year average alcohol-impaired (driver of motorcycle operator with BAC 0.08+) fatality rate per 100 million vehicle miles traveled from 0.93 in 2007 to 0.88 by 2013.

Progress: The 2008 rate was 0.84. The early estimated 2009 number is 0.77 (number can’t be confirmed until alcohol-impaired rate is published by NHTSA later in the year).

Goal: Reduce Alcohol-Related Fatalities, Total
Reduce the three-year average number of fatalities in crashes involving a driver or motorcycle operator with BAC 0.01+ from 125 in 2007 to 110 by 2013.

Progress: The 2008 number was 118. The early estimated 2009 number is 111.

Goal: Reduce Alcohol-Related Fatalities, Percent
Reduce the three-year average number of fatalities in crashes involving a driver or motorcycle operator with BAC 0.01+ as a percent of all fatalities from 47.4% in 2007 to 42% by 2013.

Progress: The 2008 percent was 45.9. The early estimated 2009 percent is 45.6.

Montana appreciates the vital resources provided by Section 410 grant funds to help meet these impaired driving related goals.

General traffic safety data
In 2009, there were over 11 billion vehicle miles traveled (VMT) in Montana. VMT is the estimated number of total miles driven by all vehicles on Montana public roads. During the year, 221 fatalities occurred on public roads.

Due to the size and population density of Montana, very few of Montana’s vehicle miles traveled occur in an urban environment. A large percentage of traffic is at high speeds and trips tend to involve more time spent on mostly rural roads. Compared to more urban states, a high percentage of miles traveled in Montana are at rural speeds, thus increasing the likelihood of fatal crashes. In 2007 (the most current NHSTSA data available), the national urban fatality rate was less than half of the rural fatality rate (0.88 compared to 2.21, respectively). Since Montana has the highest percentage of rural vehicle miles traveled in the nation, it should be no surprise that Montana has the highest fatality rate in the nation.

The Insurance Institute for Highway Safety (IIHS) released a study during March 2006 in which they normalized various factors including rural versus urban fatality rates. They found that Montana moved from #50 to #27 in fatality rate when normalized on urban vs. rural. So even though NHTSA considered Montana the worst state in 2007 due to our fatality rate, the states are not playing on a level playing field. The IIHS paper notes, “For example, 100 million vehicle miles traveled in the U.S. state of New Jersey, which is relatively urban, do not indicate the same exposure to risk of crash deaths as the same number of miles traveled in Montana, a very rural state.”
According to the IIHS, fatality rates are also affected by demographics such as median incomes, school spending per pupil and percentage of population with college degrees. Because median incomes are low and school spending is low, fatality rates would be higher than average in Montana. Seventy percent of the variability in state fatality rates results from rural versus urban and other demographic factors.

EXPOSURE STATISTICS

There are several exposure statistics in the area of traffic safety. These include number and type of vehicles, number of licensed drivers by age and gender, physical road miles, population, and the number of vehicle miles driven. Table 1 displays Vehicle Miles Traveled (VMT), which is the estimated number of total miles driven by all vehicles on Montana public roads. This table also includes licensed drivers and registered motor vehicles.

Table 1

<table>
<thead>
<tr>
<th>Year</th>
<th>VMT (100 Million Miles)</th>
<th>Licensed Drivers State Fiscal Year</th>
<th>Registered Motor Vehicles (plus trailers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>98.55</td>
<td>678,899</td>
<td>1,009,930</td>
</tr>
<tr>
<td>2001</td>
<td>100.11</td>
<td>683,351</td>
<td>1,135,491</td>
</tr>
<tr>
<td>2002</td>
<td>104.86</td>
<td>694,743</td>
<td>1,165,808</td>
</tr>
<tr>
<td>2003</td>
<td>108.97</td>
<td>704,509</td>
<td>1,207,314</td>
</tr>
<tr>
<td>2004</td>
<td>111.77</td>
<td>712,880</td>
<td>1,248,215</td>
</tr>
<tr>
<td>2005</td>
<td>111.27</td>
<td>715,512</td>
<td>1,356,165</td>
</tr>
<tr>
<td>2006</td>
<td>112.65</td>
<td>723,976</td>
<td>1,434,433</td>
</tr>
<tr>
<td>2007</td>
<td>113.06</td>
<td>735,753</td>
<td>1,516,060</td>
</tr>
<tr>
<td>2008</td>
<td>107.82</td>
<td>738,982</td>
<td>1,612,328</td>
</tr>
<tr>
<td>2009</td>
<td>110.10</td>
<td>737,964</td>
<td>1,571,730 *</td>
</tr>
</tbody>
</table>

| Chg 1 Yr | +2.1% | -0.1% | -2.5% |
| Chg 5 Yr | -1.1% | +1.7% | +9.6% |

Source: VMT - Montana Department of Transportation - Traffic Data Collection; Licensed Drivers & Registered Motor Vehicles - Montana Department of Justice - Motor Vehicle Division

* The 2009 number of registered motor vehicles is from a report run in April 2009. More current statistics are not available.

Registration numbers are no longer particularly valid, since there are several vehicle types that require only a one time registration. Subsequently, vehicles that are no longer used could appear in the counts.

VMT is the exposure number that appears to have the greatest influence on the amount of traffic crashes that occur in Montana. The annual vehicle miles traveled are shown in Figure 1. These numbers increase almost every year, though there was a decline in 2008. During 1972, the VMT for Montana was 5.4 billion and 395 fatalities occurred. Now in 2009, the VMT has more than doubled to...
11.0 billion miles traveled while fatalities have decreased to 221. Even when crash numbers, injuries and fatalities are held stable, gains in rates are made because of increases in exposure.

Figure 1

Vehicle Miles Travelled

In order to envision the challenges before Montana’s citizens in the traffic safety area, the population by age estimate for 2008 is presented on the following page. During 2008, the baby boom population in Montana spans the ages of 43-61. There is a second boom in Montana from age 14-28. The variation in population for some ages is quite significant. It interesting to note that there are more than 14,000 Montana citizens for each of the ages seventeen, twenty-two, twenty-three, twenty-four, twenty-six and forty-five to fifty-six; but there are barely 10,000 thirty-three year olds.

What does this mean to traffic safety? Currently, and over the next few years, Montana will have an above average number of teen and young adult drivers. This is the highest risk group in traffic safety. Also, the number of elderly drivers and the number of drivers under 30 is increasing while the group of drivers between 30 and 55 will be decreasing.

Some of the gains made in Traffic Safety during the 1980s were related to demographics rather than actual gains. They were achieved in part because the drivers most likely to be in fatal crashes are between fifteen and thirty-five. There were a smaller number of these drivers during that decade. For the opposite reason, there have been minimal gains over the last ten years because of a high number of teen and young adult drivers. Five to ten years from now, Montana may realize greater improvement as this age group begins moving into their thirties.
These population figures are being noted because of the special challenges that they present to traffic safety. It will be doubly difficult in the near future to show improvement in traffic safety while the number of drivers in the high-risk age groups increases. Some rate improvements may be realized in traffic safety, but it will be much more difficult to decrease the number of incidents relating to these age groups. Population by age, using 2008 estimates, is shown in Figure 2.

Figure 2

Montana Population by Age (2008 Estimates)

Source: U.S. Census Bureau – Population Division, Released May 1, 2009
FATALITIES

A Montana history of fatality numbers on public roads is presented in Figure 3, as well as some of the historical milestones that have impacted the numbers. Fatalities reached an all time high of 395 during 1972. The lowest number of fatalities since 1950 was 181, which occurred during 1989, the second year of Montana’s seat belt law. Once again 2009 saw a decrease in the number of fatalities from previous years with 221 fatalities being one of the lowest number of fatalities since the national speed limit was lifted in 1996.

During the period from 1982 to 1995, Montana averaged 218 fatalities. From 1996 to 2009, this average has jumped to 242. So, although there has been a two-year decrease in the number of fatalities from previous years, there is still a clear increase during the last fourteen years when compared to the years prior to that. On a more positive note, the number of fatalities during the first six months of 2010 is comparable to the number of fatalities at this same time last year.

Figure 3

Montana Traffic Fatalities

Source: Fatality Analysis Reporting System
CRASHES & INJURIES

The number of injuries in Montana crashes continues to decline and is lower than any time during the last fifteen years. Ten years of reportable crash and injury data appear in Table 2. Injury crashes, and especially severe injury crash counts, tend to be more accurate indicators of safety trends in Montana than do crashes and fatalities. Severe injury crashes are defined as those crashes involving a fatality or an incapacitating injury. These injury crashes can represent change without as much of the variation caused by the small number associated with fatalities. Total crashes tend to have variation that is strongly associated with the amount of icy roads.

Table 2
Crashes by Severity

<table>
<thead>
<tr>
<th>Year</th>
<th>All Crashes</th>
<th>Fatal Crashes</th>
<th>Injury Crashes</th>
<th>Property Damage Crashes</th>
<th>Fatalities</th>
<th>Injuries</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>22,254</td>
<td>203</td>
<td>7,053</td>
<td>15,000</td>
<td>237</td>
<td>10,798</td>
</tr>
<tr>
<td>2001</td>
<td>21,846</td>
<td>201</td>
<td>6,220</td>
<td>15,420</td>
<td>230</td>
<td>8,982</td>
</tr>
<tr>
<td>2002</td>
<td>23,527</td>
<td>232</td>
<td>6,479</td>
<td>16,816</td>
<td>269</td>
<td>10,086</td>
</tr>
<tr>
<td>2003</td>
<td>23,160</td>
<td>239</td>
<td>6,229</td>
<td>16,681</td>
<td>262</td>
<td>9,632</td>
</tr>
<tr>
<td>2004</td>
<td>21,783</td>
<td>209</td>
<td>6,000</td>
<td>15,570</td>
<td>229</td>
<td>9,263</td>
</tr>
<tr>
<td>2005</td>
<td>22,376</td>
<td>224</td>
<td>6,066</td>
<td>16,086</td>
<td>251</td>
<td>9,211</td>
</tr>
<tr>
<td>2006</td>
<td>22,186</td>
<td>226</td>
<td>6,245</td>
<td>15,712</td>
<td>263</td>
<td>9,470</td>
</tr>
<tr>
<td>2007</td>
<td>21,829</td>
<td>249</td>
<td>5,990</td>
<td>15,582</td>
<td>277</td>
<td>9,067</td>
</tr>
<tr>
<td>2008</td>
<td>21,971</td>
<td>208</td>
<td>5,793</td>
<td>15,926</td>
<td>229</td>
<td>8,465</td>
</tr>
<tr>
<td>2009</td>
<td>20,967</td>
<td>198</td>
<td>5,227</td>
<td>15,538</td>
<td>221</td>
<td>7,351</td>
</tr>
<tr>
<td>Chg 1 Yr</td>
<td>-4.6%</td>
<td>-4.8%</td>
<td>-9.8%</td>
<td>-2.4%</td>
<td>-3.5%</td>
<td>-13.2%</td>
</tr>
<tr>
<td>Chg 5 Yr</td>
<td>-4.8%</td>
<td>-11.3%</td>
<td>-13.2%</td>
<td>-1.5%</td>
<td>-11.5%</td>
<td>-19.2%</td>
</tr>
</tbody>
</table>

Source: Montana Department of Transportation - Safety Management System
INJURY SEVERITY

Table 3 displays the distribution of injury severity to persons involved in motor vehicle crashes for the last ten years. Analyzing injury severity may aid in determining whether advances in traffic safety are saving lives and reducing the level of injury severity. Traffic safety is influenced by many factors including increased restraint use, better road engineering and safer vehicles.

Also displayed are severe injuries (fatalities plus incapacitating injuries), which may be the best true overall indicator for traffic crash trends in Montana.

Table 3

<table>
<thead>
<tr>
<th>Year</th>
<th>Fatalities</th>
<th>Incapacitating Injury</th>
<th>Non Incapacitating Injury</th>
<th>Possible & Other Injury</th>
<th>Severe Injuries (Fatalities plus Incapacitating Injuries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>237</td>
<td>1,790</td>
<td>3,325</td>
<td>5,683</td>
<td>2,027</td>
</tr>
<tr>
<td>2001</td>
<td>230</td>
<td>1,433</td>
<td>2,645</td>
<td>4,904</td>
<td>1,663</td>
</tr>
<tr>
<td>2002</td>
<td>269</td>
<td>1,738</td>
<td>2,876</td>
<td>5,472</td>
<td>2,007</td>
</tr>
<tr>
<td>2003</td>
<td>262</td>
<td>1,634</td>
<td>2,812</td>
<td>5,186</td>
<td>1,896</td>
</tr>
<tr>
<td>2004</td>
<td>229</td>
<td>1,557</td>
<td>2,692</td>
<td>5,013</td>
<td>1,786</td>
</tr>
<tr>
<td>2005</td>
<td>251</td>
<td>1,541</td>
<td>2,509</td>
<td>5,161</td>
<td>1,792</td>
</tr>
<tr>
<td>2006</td>
<td>263</td>
<td>1,607</td>
<td>2,859</td>
<td>5,004</td>
<td>1,870</td>
</tr>
<tr>
<td>2007</td>
<td>277</td>
<td>1,427</td>
<td>2,593</td>
<td>5,047</td>
<td>1,704</td>
</tr>
<tr>
<td>2008</td>
<td>229</td>
<td>1,336</td>
<td>2,414</td>
<td>4,715</td>
<td>1,565</td>
</tr>
<tr>
<td>2009</td>
<td>221</td>
<td>1,110</td>
<td>2,714</td>
<td>3,527</td>
<td>1,331</td>
</tr>
</tbody>
</table>

Chg 1 Yr: -3.5% -16.9% +12.4% -25.2% -15.0%
Chg 5 Yr: -11.5% -25.7% +3.8% -29.3% -23.7%

Source: Montana Department of Transportation - Safety Management System

Severe injuries have decreased over fifty percent since 1994, which was the high point in recent years. The downward change in the number of severe injuries would appear to be the most significant change in crash data within Montana during the last few years. Incapacitating injuries were lower during 2009 than in any year since 1960. It would seem that occupant restraints, airbags and child restraints have accounted for at least part of this decrease, as well as other improvements in vehicle safety. The change in severity is also the result of more forgiving roadways with engineering improvements and quicker emergency medical service response times due to cell phones. Figure 4 clearly shows this history of injuries over time with severe injuries trending downward.
CRASH RATES

The fatality rate for Montana was 7.64 fatalities per hundred million miles traveled during 1969. This rate has been generally decreasing since then. It had decreased to 4.92 by 1980. After three years of increases, there appears to be a second year of decreases with initial estimates for 2009 showing a fatality rate of 2.01. This is the lowest recorded fatality rate in Montana history and is down from a ten year high of 2.57 in 2002.

Early estimates show the crash and injury rates decreased in 2009 to 1.90 and 0.67 per one million miles traveled, respectively. These are the lowest recorded crash and injury rates in Montana.

The rates per vehicle miles traveled for 2009, listed in Table 4, have not been officially released by NHTSA, therefore these numbers are still preliminary.
Table 4
Statewide Crash Rates

<table>
<thead>
<tr>
<th>Year</th>
<th>Fatality Rate (per 100 Million VMT)</th>
<th>Injury Rate (per 1 Million VMT)</th>
<th>Crash Rate (per 1 Million VMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>2.40</td>
<td>1.10</td>
<td>2.26</td>
</tr>
<tr>
<td>2001</td>
<td>2.30</td>
<td>0.90</td>
<td>2.18</td>
</tr>
<tr>
<td>2002</td>
<td>2.57</td>
<td>0.96</td>
<td>2.24</td>
</tr>
<tr>
<td>2003</td>
<td>2.40</td>
<td>0.88</td>
<td>2.13</td>
</tr>
<tr>
<td>2004</td>
<td>2.05</td>
<td>0.83</td>
<td>1.95</td>
</tr>
<tr>
<td>2005</td>
<td>2.26</td>
<td>0.83</td>
<td>2.01</td>
</tr>
<tr>
<td>2006</td>
<td>2.33</td>
<td>0.84</td>
<td>1.97</td>
</tr>
<tr>
<td>2007</td>
<td>2.45</td>
<td>0.80</td>
<td>1.93</td>
</tr>
<tr>
<td>2008</td>
<td>2.12</td>
<td>0.79</td>
<td>2.04</td>
</tr>
<tr>
<td>2009*</td>
<td>2.01</td>
<td>0.67</td>
<td>1.90</td>
</tr>
</tbody>
</table>

| Chg 1 Yr | -5.5% | -15.0% | -6.5% |
| Chg 5 Yr | -10.5% | -18.3% | -3.8% |

Source: Montana Department of Transportation - Safety Management System & Traffic Data Collection

* The 2009 rates have not been officially released by NHTSA, therefore these numbers are still preliminary.

Historically, western rural states have tended to have rates above the national average. One of the reasons is the greater percentage of rural miles traveled which translates to higher average speeds. During 2007 (the most current data published by NHTSA), the United States rural fatality rate was 2.21 while the urban fatality rate was 0.88. For the nation, rural fatalities accounted for 56% of the traffic fatalities, while in Montana, 95% of the fatalities in 2007 occurred in rural settings. From this information, it stands to reason that the expected Montana rate would be much closer to 2.21 than the national rate of 1.36. Figure 5 compares the national fatality rate to the Montana rate.

Note that official 2009 values are not available yet, thus are omitted.
MONTANA-SPECIFIC AREAS OF INTEREST

Native American fatalities as a percentage of all fatalities tend to be high for the Rocky Mountain States. While Native Americans account for just over 6% of the Montana population, in the last fifteen years, 13 to 20 percent of traffic deaths are from the state’s Native American population. During 2009, with 34 Native American fatalities, this percentage is 15.4%. These fatalities also tend to have higher rates of alcohol involvement. Over 21% of the 2009 alcohol-related fatalities in Montana were Native American.

In Montana, over 69% of all fatal crashes are single vehicle crashes (2009 data). Montana has a higher rate than the national rate, where, in 2008, single vehicle fatal crashes account for 60% of all fatal crashes (most recent data available).

Table 5 examines fatal crashes in rural Montana. Fatal crashes occur mostly on rural roads within the state where there are higher speeds than in urban crashes. During 2009, 190 fatalities occurred on rural roads from 180 different crashes. The other 31 fatalities occurred on urban roads from 18 crashes. Similarly, there were 784 incapacitating injuries on rural roads and only 326 in an urban setting.
Table 5
Rural Fatal Crashes

<table>
<thead>
<tr>
<th>Year</th>
<th>Fatal Crashes</th>
<th>Rural Fatal Crashes</th>
<th>Percent Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>203</td>
<td>185</td>
<td>91.1%</td>
</tr>
<tr>
<td>2001</td>
<td>201</td>
<td>187</td>
<td>93.0%</td>
</tr>
<tr>
<td>2002</td>
<td>232</td>
<td>209</td>
<td>90.1%</td>
</tr>
<tr>
<td>2003</td>
<td>239</td>
<td>214</td>
<td>89.5%</td>
</tr>
<tr>
<td>2004</td>
<td>209</td>
<td>184</td>
<td>88.0%</td>
</tr>
<tr>
<td>2005</td>
<td>224</td>
<td>194</td>
<td>86.6%</td>
</tr>
<tr>
<td>2006</td>
<td>226</td>
<td>209</td>
<td>92.5%</td>
</tr>
<tr>
<td>2007</td>
<td>249</td>
<td>230</td>
<td>92.4%</td>
</tr>
<tr>
<td>2008</td>
<td>208</td>
<td>175</td>
<td>84.1%</td>
</tr>
<tr>
<td>2009</td>
<td>198</td>
<td>180</td>
<td>90.9%</td>
</tr>
<tr>
<td>Chg 1 Yr</td>
<td>-4.8%</td>
<td>+2.9%</td>
<td>+8.1%</td>
</tr>
<tr>
<td>Chg 5 Yr</td>
<td>-11.3%</td>
<td>-9.3%</td>
<td>+2.5%</td>
</tr>
</tbody>
</table>

Source: Montana Department of Transportation - Safety Management System

Alcohol-related data

Alcohol/drug related crashes accounted for 10.2% of all reported traffic crashes during 2009. This is a slight decrease from the year before, but is still among the highest percentage for all years since 1996. Although this is higher than the beginning of the decade, it is still far below the 22.3% of alcohol related crashes reported during 1983.

Alcohol/drug related crashes tend to result in more severe injuries than do crashes with no impairment. During the early 1980s, injuries related to alcohol accounted for as much as 36% of the total. Last year, alcohol/drug related injuries were at 17.9% of all injuries, making the percentage more in line with the percentages seen at earlier this decade. Table 20 presents the impaired crash counts.
Table 20
Alcohol/Drug Related Crashes & Injuries

<table>
<thead>
<tr>
<th>Year</th>
<th>Crashes</th>
<th></th>
<th>Injuries</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alcohol Related</td>
<td>All</td>
<td>Percent of All</td>
<td>Alcohol Related</td>
</tr>
<tr>
<td>2000</td>
<td>2,211</td>
<td>22,254</td>
<td>9.9%</td>
<td>1,824</td>
</tr>
<tr>
<td>2001</td>
<td>2,035</td>
<td>21,846</td>
<td>9.3%</td>
<td>1,652</td>
</tr>
<tr>
<td>2002</td>
<td>2,288</td>
<td>23,527</td>
<td>9.7%</td>
<td>1,745</td>
</tr>
<tr>
<td>2003</td>
<td>2,173</td>
<td>23,160</td>
<td>9.4%</td>
<td>1,638</td>
</tr>
<tr>
<td>2004</td>
<td>2,113</td>
<td>21,783</td>
<td>9.7%</td>
<td>1,767</td>
</tr>
<tr>
<td>2005</td>
<td>2,182</td>
<td>22,373</td>
<td>9.8%</td>
<td>1,623</td>
</tr>
<tr>
<td>2006</td>
<td>2,243</td>
<td>22,186</td>
<td>10.1%</td>
<td>1,816</td>
</tr>
<tr>
<td>2007</td>
<td>2,273</td>
<td>21,829</td>
<td>10.4%</td>
<td>1,771</td>
</tr>
<tr>
<td>2008</td>
<td>2,313</td>
<td>21,971</td>
<td>10.5%</td>
<td>1,645</td>
</tr>
<tr>
<td>2009</td>
<td>2,138</td>
<td>20,967</td>
<td>10.2%</td>
<td>1,319</td>
</tr>
<tr>
<td>Chg 1 Yr</td>
<td>-7.6%</td>
<td>-4.6%</td>
<td>-3.1%</td>
<td>-19.8%</td>
</tr>
<tr>
<td>Chg 5 Yr</td>
<td>-3.9%</td>
<td>-4.8%</td>
<td>+1.0%</td>
<td>-23.5%</td>
</tr>
</tbody>
</table>

Source: Montana Department of Transportation - Safety Management System
The data in Table 21 is based upon FARS data, while most of the other data related to alcohol in this section is derived from the MHP crash records database. The MHP data is based upon evidence and perceptions at the scene along with on scene testing, if done.

Table 21

Alcohol Fatalities & Fatality Rates

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Fatalities</th>
<th>Alcohol Related Fatalities</th>
<th>Alcohol Related Percent</th>
<th>Total Fatality Rate</th>
<th>Alcohol Related Fatality Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>220</td>
<td>109</td>
<td>49.5%</td>
<td>2.25</td>
<td>1.11</td>
</tr>
<tr>
<td>2000</td>
<td>237</td>
<td>117</td>
<td>49.4%</td>
<td>2.40</td>
<td>1.19</td>
</tr>
<tr>
<td>2001</td>
<td>230</td>
<td>104</td>
<td>45.2%</td>
<td>2.30</td>
<td>1.04</td>
</tr>
<tr>
<td>2002</td>
<td>269</td>
<td>126</td>
<td>46.8%</td>
<td>2.57</td>
<td>1.20</td>
</tr>
<tr>
<td>2003</td>
<td>262</td>
<td>128</td>
<td>48.9%</td>
<td>2.40</td>
<td>1.17</td>
</tr>
<tr>
<td>2004</td>
<td>229</td>
<td>106</td>
<td>46.3%</td>
<td>2.05</td>
<td>0.95</td>
</tr>
<tr>
<td>2005</td>
<td>251</td>
<td>124</td>
<td>49.4%</td>
<td>2.26</td>
<td>1.11</td>
</tr>
<tr>
<td>2006</td>
<td>263</td>
<td>126</td>
<td>47.9%</td>
<td>2.33</td>
<td>1.12</td>
</tr>
<tr>
<td>2007</td>
<td>277</td>
<td>124</td>
<td>44.8%</td>
<td>2.45</td>
<td>1.10</td>
</tr>
<tr>
<td>2008</td>
<td>229</td>
<td>103</td>
<td>45.0%</td>
<td>2.12</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Chg 1 Yr
-17.3% -16.9% +0.5% -13.3% -12.9%

Chg 5 Yr
-10.7% -15.3% -5.2% -7.6% -12.4%

Source: Fatality Analysis Reporting System
Figure 13 compares the Montana percentage of alcohol related crashes with the national percentage.

Figure 13#

Alcohol-Related Fatalities

Source: Fatality Analysis Reporting System
The graph in Figure 14 displays alcohol and non-alcohol fatality rates in Montana since 1982. The alcohol fatality rate during 2004 was the lowest since 1996, and 2008 was a close second. The final rate during 2008 was 0.96, while the rate in 2004 was 0.95.

Figure 14

Alcohol vs. No Alcohol Fatality Rate

The Montana fatality rate during 1983 was 3.98 and the alcohol-related fatality rate that year was 2.56. During the past twenty-two years, the alcohol rate has decreased more than 62%. The lowest rate was reached in 1996 and during the last ten years the rate has been nearly level. The current alcohol related fatality rate for the nation is 0.56 and for Montana the rate is 1.12.
Next, we examine alcohol related crashes by county. The final column of Table 22 displays the percentage of crashes with alcohol/drug involvement in the county. There is a tendency for the larger urban counties to have a lower percentage of alcohol involvement in crashes. It is not known whether this implies counties with higher populations truly have less alcohol involvement because of alcohol education and related activities, or whether the large number of fender benders at intersections makes the percentage of alcohol involvement lower. We believe that these lower percentages result from a combination of these and possibly other factors. In addition, there are some enforcement agencies which are not as precise in determining alcohol-related involvement, which may cause some counties to show low percentages.

Table 22
Alcohol/Drug-Related Crash Information by County
(2009 Data)

<table>
<thead>
<tr>
<th>County</th>
<th>Total Crashes</th>
<th>Fatal Crashes</th>
<th>Fatalities</th>
<th>Injuries</th>
<th>Percent Alcohol/Drug Crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaverhead</td>
<td>20</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>10.9%</td>
</tr>
<tr>
<td>Big Horn</td>
<td>23</td>
<td>7</td>
<td>8</td>
<td>18</td>
<td>14.5%</td>
</tr>
<tr>
<td>Blaine</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>18</td>
<td>24.5%</td>
</tr>
<tr>
<td>Broadwater</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>7.3%</td>
</tr>
<tr>
<td>Carbon</td>
<td>28</td>
<td>1</td>
<td>1</td>
<td>18</td>
<td>14.1%</td>
</tr>
<tr>
<td>Carter</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.6%</td>
</tr>
<tr>
<td>Cascade</td>
<td>192</td>
<td>3</td>
<td>3</td>
<td>120</td>
<td>8.4%</td>
</tr>
<tr>
<td>Chouteau</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>14</td>
<td>12.3%</td>
</tr>
<tr>
<td>Custer</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4.2%</td>
</tr>
<tr>
<td>Daniels</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4.2%</td>
</tr>
<tr>
<td>Dawson</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>5.6%</td>
</tr>
<tr>
<td>Deer Lodge</td>
<td>19</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>19.0%</td>
</tr>
<tr>
<td>Fallon</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>23.8%</td>
</tr>
<tr>
<td>Fergus</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10.4%</td>
</tr>
<tr>
<td>Flathead</td>
<td>188</td>
<td>6</td>
<td>8</td>
<td>120</td>
<td>9.6%</td>
</tr>
<tr>
<td>Gallatin</td>
<td>178</td>
<td>2</td>
<td>2</td>
<td>71</td>
<td>9.8%</td>
</tr>
<tr>
<td>Garfield</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7.1%</td>
</tr>
<tr>
<td>Glacier</td>
<td>29</td>
<td>2</td>
<td>2</td>
<td>36</td>
<td>18.7%</td>
</tr>
<tr>
<td>Golden Valley</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>31.6%</td>
</tr>
<tr>
<td>Granite</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4.1%</td>
</tr>
<tr>
<td>Hill</td>
<td>54</td>
<td>1</td>
<td>1</td>
<td>45</td>
<td>15.8%</td>
</tr>
<tr>
<td>Jefferson</td>
<td>28</td>
<td>3</td>
<td>4</td>
<td>15</td>
<td>7.8%</td>
</tr>
<tr>
<td>Judith Basin</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>10.0%</td>
</tr>
<tr>
<td>Lake</td>
<td>79</td>
<td>6</td>
<td>6</td>
<td>61</td>
<td>16.3%</td>
</tr>
<tr>
<td>Lewis & Clark</td>
<td>129</td>
<td>7</td>
<td>7</td>
<td>62</td>
<td>7.2%</td>
</tr>
<tr>
<td>Liberty</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7.1%</td>
</tr>
<tr>
<td>Lincoln</td>
<td>46</td>
<td>3</td>
<td>3</td>
<td>30</td>
<td>14.7%</td>
</tr>
</tbody>
</table>
Table 22
Alcohol/Drug-Related Crash Information by County
(2009 Data)

<table>
<thead>
<tr>
<th>County</th>
<th>Total Crashes</th>
<th>Fatal Crashes</th>
<th>Fatalities</th>
<th>Injuries</th>
<th>Percent Alcohol/Drug Crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madison</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>10.6%</td>
</tr>
<tr>
<td>McCone</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>11.8%</td>
</tr>
<tr>
<td>Meagher</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5.7%</td>
</tr>
<tr>
<td>Mineral</td>
<td>17</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5.1%</td>
</tr>
<tr>
<td>Missoula</td>
<td>282</td>
<td>7</td>
<td>8</td>
<td>147</td>
<td>10.9%</td>
</tr>
<tr>
<td>Musselshell</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>17.1%</td>
</tr>
<tr>
<td>Park</td>
<td>35</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>8.3%</td>
</tr>
<tr>
<td>Petroleum</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>18.2%</td>
</tr>
<tr>
<td>Phillips</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>16.7%</td>
</tr>
<tr>
<td>Pondera</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>6.7%</td>
</tr>
<tr>
<td>Powder River</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6.1%</td>
</tr>
<tr>
<td>Powell</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>5.3%</td>
</tr>
<tr>
<td>Prairie</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7.3%</td>
</tr>
<tr>
<td>Ravalli</td>
<td>47</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>6.8%</td>
</tr>
<tr>
<td>Richland</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>6.6%</td>
</tr>
<tr>
<td>Roosevelt</td>
<td>29</td>
<td>3</td>
<td>3</td>
<td>48</td>
<td>27.4%</td>
</tr>
<tr>
<td>Rosebud</td>
<td>16</td>
<td>3</td>
<td>4</td>
<td>16</td>
<td>9.7%</td>
</tr>
<tr>
<td>Sanders</td>
<td>28</td>
<td>3</td>
<td>3</td>
<td>19</td>
<td>14.9%</td>
</tr>
<tr>
<td>Sheridan</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>8.6%</td>
</tr>
<tr>
<td>Silver Bow</td>
<td>41</td>
<td>2</td>
<td>4</td>
<td>22</td>
<td>5.9%</td>
</tr>
<tr>
<td>Stillwater</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8.5%</td>
</tr>
<tr>
<td>Sweet Grass</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>9.4%</td>
</tr>
<tr>
<td>Teton</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5.5%</td>
</tr>
<tr>
<td>Toole</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>17.1%</td>
</tr>
<tr>
<td>Treasure</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.7%</td>
</tr>
<tr>
<td>Valley</td>
<td>12</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td>9.8%</td>
</tr>
<tr>
<td>Wheatland</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5.4%</td>
</tr>
<tr>
<td>Wibaux</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2.6%</td>
</tr>
<tr>
<td>Yellowstone</td>
<td>365</td>
<td>13</td>
<td>13</td>
<td>211</td>
<td>10.4%</td>
</tr>
<tr>
<td>Total</td>
<td>2,138</td>
<td>95</td>
<td>106</td>
<td>1,319</td>
<td>9.7%</td>
</tr>
</tbody>
</table>

Source: Montana Department of Transportation - Safety Management System; Fatality Analysis Reporting System
Average Blood Alcohol Concentration information by county

Over an 18-month time period from October 2007 – March 2009, the average BAC of those arrested for DUI in Montana was 0.154. This average is based on BAC information recorded on the 100+ Intoxilyzer 8000 units located around the state. This average is lower than in years past, when the average BAC hovered around 0.18, however it is still twice the legal limit. Please note: this information is the most recent data available; the Montana Crime Lab is no longer collecting this data because of legal technicalities.

Counties with average BACs over 0.2 are Powder River, Richland, Granite, and Teton. These are counties with small populations so the numbers could be higher simply because of fewer samples included in the BAC average.

<table>
<thead>
<tr>
<th>County</th>
<th>Average BAC</th>
<th>County</th>
<th>Average BAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaverhead County</td>
<td>0.125</td>
<td>Madison County</td>
<td>0.127</td>
</tr>
<tr>
<td>Big Horn County</td>
<td>0.144</td>
<td>Meagher County</td>
<td>0.000</td>
</tr>
<tr>
<td>Blaine County</td>
<td>0.170</td>
<td>Mineral County</td>
<td>0.078</td>
</tr>
<tr>
<td>Broadwater County</td>
<td>0.140</td>
<td>Missoula County</td>
<td>0.166</td>
</tr>
<tr>
<td>Carbon County</td>
<td>0.136</td>
<td>Musselshell County</td>
<td>0.069</td>
</tr>
<tr>
<td>Carter County</td>
<td>0.000</td>
<td>Park County</td>
<td>0.123</td>
</tr>
<tr>
<td>Cascade County</td>
<td>0.173</td>
<td>Petroleum County</td>
<td>0.000</td>
</tr>
<tr>
<td>Chouteau County</td>
<td>0.029</td>
<td>Phillips County</td>
<td>0.000</td>
</tr>
<tr>
<td>Custer County</td>
<td>0.131</td>
<td>Pondera County</td>
<td>0.000</td>
</tr>
<tr>
<td>Daniels County</td>
<td>0.165</td>
<td>Powder River County</td>
<td>0.216</td>
</tr>
<tr>
<td>Dawson County</td>
<td>0.160</td>
<td>Powell County</td>
<td>0.143</td>
</tr>
<tr>
<td>Deer Lodge County</td>
<td>0.178</td>
<td>Prairie County</td>
<td>0.000</td>
</tr>
<tr>
<td>Fallon County</td>
<td>0.099</td>
<td>Ravalli County</td>
<td>0.150</td>
</tr>
<tr>
<td>Fergus County</td>
<td>0.169</td>
<td>Richland County</td>
<td>0.274</td>
</tr>
<tr>
<td>Flathead County</td>
<td>0.128</td>
<td>Roosevelt County</td>
<td>0.178</td>
</tr>
<tr>
<td>Gallatin County</td>
<td>0.173</td>
<td>Rosebud County</td>
<td>0.110</td>
</tr>
<tr>
<td>Garfield County</td>
<td>0.000</td>
<td>Sanders County</td>
<td>0.079</td>
</tr>
<tr>
<td>Glacier County</td>
<td>0.159</td>
<td>Sheridan County</td>
<td>0.065</td>
</tr>
<tr>
<td>Golden Valley County</td>
<td>0.127</td>
<td>Silver Bow County</td>
<td>0.170</td>
</tr>
<tr>
<td>Granite County</td>
<td>0.204</td>
<td>Stillwater County</td>
<td>0.088</td>
</tr>
<tr>
<td>Hill County</td>
<td>0.142</td>
<td>Sweet Grass County</td>
<td>0.000</td>
</tr>
<tr>
<td>Jefferson County</td>
<td>0.088</td>
<td>Teton County</td>
<td>0.220</td>
</tr>
<tr>
<td>Judith Basin County</td>
<td>0.000</td>
<td>Toole County</td>
<td>0.137</td>
</tr>
<tr>
<td>Lake County</td>
<td>0.183</td>
<td>Treasure County</td>
<td>0.110</td>
</tr>
<tr>
<td>Lewis and Clark County</td>
<td>0.142</td>
<td>Valley County</td>
<td>0.165</td>
</tr>
<tr>
<td>Liberty County</td>
<td>0.000</td>
<td>Wheatland County</td>
<td>0.000</td>
</tr>
<tr>
<td>Lincoln County</td>
<td>0.164</td>
<td>Wibaux County</td>
<td>0.160</td>
</tr>
<tr>
<td>McCona County</td>
<td>0.161</td>
<td>Yellowstone County</td>
<td>0.144</td>
</tr>
</tbody>
</table>

Average BAC for Montana 0.154
DUI convictions
Complete DUI arrest data is not summarized by any agency in Montana. Not all arrests result in a conviction for DUI, since some are dismissed or not prosecuted and others are found not guilty. In lieu of arrest data for Montana, we now present conviction data, which is gathered by the Department of Justice and placed upon driver’s records. This data includes out-of-state convictions for Montana licensed drivers.

Table 1
DUI Convictions and Rates
(Reported to the Records & Driver Control Bureau)

<table>
<thead>
<tr>
<th>Year</th>
<th>DUI Convictions</th>
<th>Convictions Per 1,000 Population</th>
<th>Convictions Per 1 Million VMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>5,787</td>
<td>6.41</td>
<td>0.59</td>
</tr>
<tr>
<td>2001</td>
<td>5,972</td>
<td>6.61</td>
<td>0.60</td>
</tr>
<tr>
<td>2002</td>
<td>5,432</td>
<td>5.99</td>
<td>0.52</td>
</tr>
<tr>
<td>2003</td>
<td>5,462</td>
<td>6.00</td>
<td>0.50</td>
</tr>
<tr>
<td>2004</td>
<td>5,745</td>
<td>6.26</td>
<td>0.51</td>
</tr>
<tr>
<td>2005</td>
<td>5,962</td>
<td>6.43</td>
<td>0.54</td>
</tr>
<tr>
<td>2006</td>
<td>6,491</td>
<td>6.94</td>
<td>0.58</td>
</tr>
<tr>
<td>2007</td>
<td>6,703</td>
<td>7.08</td>
<td>0.59</td>
</tr>
<tr>
<td>2008</td>
<td>6,809</td>
<td>7.11</td>
<td>0.63</td>
</tr>
<tr>
<td>2009</td>
<td>6,698</td>
<td>6.92</td>
<td>0.61</td>
</tr>
<tr>
<td>Chg 1 Yr</td>
<td></td>
<td>-1.6%</td>
<td>-2.6%</td>
</tr>
<tr>
<td>Chg 5 Yr</td>
<td></td>
<td>+5.6%</td>
<td>+2.4%</td>
</tr>
</tbody>
</table>

Source: Convictions – Montana Department of Justice - Motor Vehicle Division; Population - U.S. Census Bureau – Population Division, Released May 1, 2009; VMT - Montana Department of Transportation - Traffic Data Collection

Note: The table above does not include conviction data for DUIs for drivers under 21 that are convicted of driving with a BAC over .02. The table below shows that 1st offense underage DUI convictions have generally decreased over the past seven years. The numbers of second offenses are too small to draw any specific conclusions.
Table 23
Impaired Driving Convictions
(Reported to the Records & Driver Control Bureau)

<table>
<thead>
<tr>
<th>Conviction</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUI 1st Offense</td>
<td>2,832</td>
<td>3,250</td>
<td>3,051</td>
<td>3,043</td>
<td>2,891</td>
</tr>
<tr>
<td>DUI 2nd or Subsequent Offense</td>
<td>967</td>
<td>1,055</td>
<td>1,129</td>
<td>1,135</td>
<td>1,161</td>
</tr>
<tr>
<td>BAC 1st Offense</td>
<td>1,698</td>
<td>1,722</td>
<td>2,066</td>
<td>2,202</td>
<td>2,165</td>
</tr>
<tr>
<td>BAC 2nd or Subsequent Offense</td>
<td>179</td>
<td>247</td>
<td>244</td>
<td>235</td>
<td>264</td>
</tr>
<tr>
<td>0.02% BAC (Under 21) 1st Offense</td>
<td>361</td>
<td>415</td>
<td>302</td>
<td>343</td>
<td>246</td>
</tr>
<tr>
<td>0.02% BAC (Under 21) 2nd or Subsequent Offense</td>
<td>33</td>
<td>25</td>
<td>22</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Felony DUI</td>
<td>286</td>
<td>217</td>
<td>213</td>
<td>194</td>
<td>217</td>
</tr>
<tr>
<td>Total</td>
<td>6,356</td>
<td>6,931</td>
<td>7,027</td>
<td>7,165</td>
<td>6,954</td>
</tr>
</tbody>
</table>

Refusals to provide blood/breath evidence of impairment*

<table>
<thead>
<tr>
<th>Refusal</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implied Consent</td>
<td>1,171</td>
<td>1,083</td>
<td>1,236</td>
<td>1,382</td>
<td>1,379</td>
</tr>
<tr>
<td>P.A.S.T. (Preliminary Alcohol Screening Test)</td>
<td>1,243</td>
<td>1,330</td>
<td>1,533</td>
<td>1,445</td>
<td>1,519</td>
</tr>
</tbody>
</table>

*Source: Montana Department of Justice - Motor Vehicle Division
*A driver suspected of DUI may have more than one opportunity to provide or refuse to provide evidence of impairment. The P.A.S.T. is provided at the location of the initial stop. The implied consent test may be breath or blood and is done at a fixed base location by law enforcement (breath test) or medical personnel (blood draw).
Alcohol-related crashes by age of driver

Table 24 examines the age of the drivers that are involved in alcohol related traffic crashes. Crash rates per licensed driver are calculated. This information can help those in the traffic safety community make decisions on targeting specific age groups concerning the drinking and driving problem. It should be noted that not all drivers involved in these alcohol crashes were drinking. While most alcohol crashes are single car crashes, when there are multiple vehicles involved, some of the drivers may not have been drinking.

Table 24
Alcohol-Related Crashes by Age of Driver
(2009 Crash Data)

<table>
<thead>
<tr>
<th>Age</th>
<th>Licensed Drivers (State Fiscal Year 2008)</th>
<th>Drivers in Alcohol Crashes</th>
<th>Alcohol Crashes (per 10,000 Licenses)</th>
<th>Drivers in Fatal Alcohol Crashes</th>
<th>Fatal Alcohol Crashes (per 10,000 Licenses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 18</td>
<td>17,497</td>
<td>104</td>
<td>59</td>
<td>4</td>
<td>2.3</td>
</tr>
<tr>
<td>18-20</td>
<td>34,163</td>
<td>283</td>
<td>83</td>
<td>12</td>
<td>3.5</td>
</tr>
<tr>
<td>Under 21</td>
<td>51,660</td>
<td>387</td>
<td>75</td>
<td>16</td>
<td>3.1</td>
</tr>
<tr>
<td>21-24</td>
<td>47,641</td>
<td>492</td>
<td>103</td>
<td>14</td>
<td>2.9</td>
</tr>
<tr>
<td>25-34</td>
<td>123,314</td>
<td>637</td>
<td>52</td>
<td>21</td>
<td>1.7</td>
</tr>
<tr>
<td>35-44</td>
<td>110,650</td>
<td>444</td>
<td>40</td>
<td>24</td>
<td>2.2</td>
</tr>
<tr>
<td>45-54</td>
<td>145,675</td>
<td>397</td>
<td>27</td>
<td>15</td>
<td>1.0</td>
</tr>
<tr>
<td>55-64</td>
<td>133,647</td>
<td>178</td>
<td>13</td>
<td>6</td>
<td>0.4</td>
</tr>
<tr>
<td>65-74</td>
<td>77,672</td>
<td>78</td>
<td>10</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>75 +</td>
<td>47,705</td>
<td>15</td>
<td>3</td>
<td>3</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Source: Licensed Drivers - Montana Department of Justice - Motor Vehicle Division; Drivers in Crashes - Montana Department of Transportation - Safety Management System
Figure 15 shows the alcohol-related crash rates by age.

Figure 15

Alcohol/Drug-Related Crashes by Age of Driver

(2008 Data)

Source: Montana Department of Transportation – Safety Management System; Montana Department of Justice – Motor Vehicle Division
Table 25 examines drivers under age 21 involved in crashes. Those drivers involved in all crashes and in alcohol/drug related crashes are compared. It should be emphasized that the counts are for drivers of age 20 and under (not crashes). Although most alcohol/drug-related crashes involve only one vehicle, there could be a few instances where the young driver had not been drinking, while another older driver involved in the crash had been drinking.

Underage drivers have a lower use of involvement in alcohol/drug related crashes than the entire population of drivers. When young drivers are involved in crashes, 6.8% of those crashes involve alcohol and/or drugs, while the rate is 10.2% for all drivers regardless of age.

Table 25
Alcohol/Drug Related Crashes
Drivers Under 21

<table>
<thead>
<tr>
<th>Year</th>
<th>Young Drivers in All Crashes</th>
<th></th>
<th>Young Drivers in Fatal Crashes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alcohol Related</td>
<td>All</td>
<td>Percent of All</td>
<td>Alcohol Related</td>
</tr>
<tr>
<td>2000</td>
<td>497</td>
<td>7,969</td>
<td>6.2%</td>
<td>13</td>
</tr>
<tr>
<td>2001</td>
<td>531</td>
<td>7,781</td>
<td>6.8%</td>
<td>13</td>
</tr>
<tr>
<td>2002</td>
<td>558</td>
<td>8,224</td>
<td>6.8%</td>
<td>16</td>
</tr>
<tr>
<td>2003</td>
<td>473</td>
<td>7,551</td>
<td>6.3%</td>
<td>18</td>
</tr>
<tr>
<td>2004</td>
<td>499</td>
<td>7,090</td>
<td>7.0%</td>
<td>17</td>
</tr>
<tr>
<td>2005</td>
<td>468</td>
<td>7,096</td>
<td>6.6%</td>
<td>11</td>
</tr>
<tr>
<td>2006</td>
<td>491</td>
<td>7,080</td>
<td>6.9%</td>
<td>19</td>
</tr>
<tr>
<td>2007</td>
<td>431</td>
<td>6,534</td>
<td>6.6%</td>
<td>14</td>
</tr>
<tr>
<td>2008</td>
<td>412</td>
<td>6,120</td>
<td>6.7%</td>
<td>14</td>
</tr>
<tr>
<td>2009</td>
<td>387</td>
<td>5,721</td>
<td>6.8%</td>
<td>16</td>
</tr>
</tbody>
</table>

| Chg 1 Yr | -6.1% | -6.5% | +0.5% | +14.3% | +21.2% | -5.7% |
| Chg 5 Yr | -15.9% | -15.7% | -0.2% | +6.7% | +12.4% | -5.1% |

Source: Montana Department of Transportation - Safety Management System
Figure 16 examines alcohol/drug-related crashes by driver age trends over time.

Source: Montana Department of Transportation – Safety Management System
Drugs involved in DUI

The Montana Forensic Science Division compared the classifications of drugs found in the blood of drivers apprehended for driving under the influence (DUI) from 2007 to 2009. As shown in the following graph, there was an increase in drug-impaired driving from 2007 to 2009, especially in the number of cases involving central nervous system (CNS) depressants (other than alcohol), cannabis and narcotic analgesics. Types of drugs found in whole blood samples include tranquilizers, sleeping pills, muscle relaxants, inhalants, cough medicine, antidepressants, antihistamines, and numerous others.

![Seven Categories of Drugs in DUI Cases](chart)
The next graph shows the amount of CNS Depressants other than alcohol being found in whole blood samples. This shows that prescription drug use and abuse is becoming more common in DUI cases.

The data clearly shows that Montana has a substantial and costly problem in the area of impaired driving.