

Access Control US 93 N\&S Lolo to Missoula

NH 0002(606), CN 4776

Final Access Control Report

Prepared for:

Prepared by:

DAVID EVANS
ANOASSOCIATES

May 25, 2006

TABLE OF CONTENTS

1.0 INTRODUCTION AND PURPOSE 2
1.1 Project Location and Study Limits 2
2.0 TRAFFIC VOLUMES 4
2.1 Existing (2004) Traffic Volumes 4
2.22025 Daily Volume Projections 7
3.0 ACCESS MANAGEMENT CONCEPTS 9
3.1 Access Management Guidelines 9
3.2 Access Management Principles 11
4.0 CORRIDOR ACCESS MANAGEMENT 14
4.1 Lolo Urban Segment 14
4.2 Rural SEGMENT 15
4.3 Mountainous Segment 16
4.4 Missoula Suburban Segment 17

APPENDICES

Appendix A Capacity Analysis Summary and Reports
Appendix B Corridor Access Inventory
INDEX OF TABLES
Table 1. Future (2025) Annual Average Daily Traffic (AADT) Volumes 8
Table 2. US 93 Lolo to Missoula Access Management Guidelines 10
Table 3. Intersection PM Peak Hour Level of Service - Lolo Urban Segment 15
Table 4. Intersection PM Peak Hour Level of Service - Rural Segment 16
Table 5. Intersection PM Peak Hour Level of Service - Mountainous Segment 17
Table 6. Intersection PM Peak Hour Level of Service - Missoula Suburban Segment 18
INDEX OF FIGURES
Figure 1. Project Area and Study Segments 3
Figure 2. Existing Average Daily Traffic. 5
Figure 3. Existing Peak Hour Traffic 6

1．0 Introduction and Purpose

Historically，the Montana Department of Transportation（MDT）has adopted access control plans in conjunction with major highway improvement projects． However，this project is a stand－alone access control project along US Highway 93 （US 93）between Lolo and Missoula［National Highway（N）7］not associated with a design or construction project along the study corridor．The physical modifications recommended by the Access Control Plan may not be implemented until the construction of future highway design projects or as redevelopment occurs，although the techniques recommended in the plan may be implemented at any time．

MDT currently operates this corridor under Limited Access Control．This means that any new access or change in access use may or may not be granted and will be subject to MDT＇s System Impact Action Process．

The Access Classification Memo（August 2，2005）documents the existing accesses along the corridor and identifies the access management guidelines and concepts that are used in this report．This document comprises the Draft Access Control Report，which describes the access management techniques within the Access Control Plan．The purpose of this report is to document the guidelines and traffic analysis utilized for the recommendations shown in the Access Control Plan．

The Access Control Plan defines specific access locations consistent with the guidelines and techniques presented in this report．Access control options were analyzed for existing accesses with opportunities for modification and／or consolidation．Future access locations，configurations，and operational characteristics are identified for undeveloped properties and properties with redevelopment potential，and recommendations are documented in this final Access Control Plan for the US 93 highway segment from US 12 in Lolo to the Bitterroot River Bridge south of Missoula．

1．1 PROJECT LOCATION AND STUDY LIMITS

The project is located on US 93 in Missoula County．The study segment，from RP（MP） 83.26 to RP（MP）90．33，initiates within the town of Lolo and terminates on the southern edge of Missoula．The limits of the study area extend from just south of the intersection of US 93 and US 12 in Lolo to south of the US 93 and Miller Creek Road intersection，on the northern edge of the bridge over the Bitterroot River．

The study corridor was broken into segments based on changes in the character of the roadway，existing adjacent land uses and existing access density．The southern section of the project is urban in nature．The northern section of the highway has a suburban character as the highway approaches Missoula．The middle sections of the corridor currently have a rural character，although that may change in the future with proposed development．Figure 1 illustrates the limits of the project and the study segments of the corridor．

2.0 Traffic Volumes

The existing and future traffic volumes for the project were presented in the Preliminary Traffic Engineering and Geometrics Report, which was submitted to MDT in July, 2005. To maintain consistency with the major planning efforts within the study area, the future traffic volume projections for the US 93 corridor developed for the Miller Creek Road Environmental Impact Statement (EIS) were utilized for this project. Since the submittal of the traffic report, the traffic projections for the Miller Creek Road EIS have been modified to reflect expected growth south of the project in Ravalli County and consider the traffic forecasts presented in the Missoula Long Range Transportation Plan - 2025.
The 2025 traffic volume projections presented in this report supersede the traffic projections shown in the July 2005 Preliminary Traffic Engineering and Geometrics Report. The existing traffic volumes utilized in the traffic analysis, which have not been modified from the traffic engineering report, are also presented for reference.

2.1 EXISTING (2004) TRAFFIC VOLUMES

Traffic volumes along the US 93 corridor were collected for this project over several weekdays in October 2004. These volumes were multiplied by a seasonal factor to calculate the 2004 Average Annual Daily Traffic (AADT) volume at the various locations shown in Figure 2. The highest traffic volumes along US 93 were near the Bitterroot River Bridge with almost 26,000 vehicles per day (vpd). Large commercial vehicles (trucks) comprise approximately 6 percent of the daily traffic volume on US 93. The counts collected for this study are consistent with 2004 ADT volumes along the corridor provided by MDT.

The major roads accessing US 93 within the study area were also counted. These AADT volumes are also shown in Figure 2. AADT volumes on the intersecting roads range from approximately 3,500 vpd along US 12 to less than 100 vpd along Wornath Road west of US 93.
Intersection turning movement counts were collected at the ten major intersections within the study corridor and the Miller Creek Road intersection in October 2004 during the AM and PM peak weekday traffic periods. Morning counts were conducted from 7:00 to 9:00 AM and evening counts were conducted from 4:00 to 6:00 PM. Typically, these are the commuter travel time periods when daily traffic volumes on study area roads reach their highest levels. These intersection turning movement volumes are shown in Figure 3.

Figure 2.
Existing Average Daily Traffic

Figure 3.
Existing Peak Hour Traffic

2.22025 DAILY VOLUME PROJECTIONS

The future traffic volume projections for the US 93 corridor developed for the Miller Creek Road Environmental Impact Statement（EIS）were reviewed for this project．The traffic volumes reviewed for this project were for the No－Action Alternative of the Miller Creek Road EIS，meaning there are no dramatic changes to the existing roadway network．Traffic forecasts initially developed for the Miller Creek Road EIS were based on the Missoula urban area travel demand model utilized by MDT Urban Transportation Planning staff．The travel model was used to conduct the Missoula Long Range Transportation Plan－ 2025 and adjustments to the model for the Miller Creek Road project were coordinated with the Missoula Office of Planning and Grants（OPG）and consultant staff working on the Transportation Plan update．The initial traffic forecasts identified a traffic forecast on US 93 south of Miller Creek Road of 29，300 for the year 2025，which is an increase of approximately 20 percent over existing ADT volumes and would equal an average growth rate of approximately one（1）percent per year．
During the review of future traffic volumes for this Access Control Study，MDT expressed concern over the relatively low growth rate associated with the travel demand model．This concern resulted from the substantially higher growth rates that have been experienced along the corridor in recent years，including 2.9 percent in the last 15 years and 2.2 percent in the last 10 years．Table 1 shows a comparative summary of existing and forecast AADT volumes on major study area roadway segments using the updated traffic forecasts for the US 93 corridor developed for the Miller Creek Road EIS．

Future traffic volumes on the public roads accessing US 93 in the study area were calculated based on historic traffic volumes and potential development trends．Traffic volumes on the roadways that basically serve residential areas， such as Cochise Drive，are expected to experience limited traffic growth．The traffic volumes developed for Bird Lane and Valley Grove Drive considered the daily traffic forecasted from the proposed Liberty Cove Subdivision．Traffic on US 12 west of US 93 is expected to increase by about $2,300 \mathrm{vpd}$ ，which equals an average growth rate of approximately 2.4 percent per year．

A substantial increase in traffic is anticipated along the US 93 study corridor as a result of multiple factors，including：
－Increasing travel demand generated by planned growth in Missoula and Ravalli County southwest of Missoula；
－Current and planned development along US 93 within the study corridor， specifically within the Rural and Missoula Suburban study segments；
－Increasing use of recreational areas served by intersecting roadways within the study corridor．

Table 1. Future (2025) Annual Average Daily Traffic (AADT) Volumes
$\left.\begin{array}{|l|l|c|c|}\hline \text { Roadway } & \text { Location } & \begin{array}{c}\text { Existing ADT } \\ \text { Volume (veh/day) }\end{array} \\ \hline \text { (2) }\end{array} \begin{array}{c}\text { Future AADT } \\ \text { Volume (veh/day) }\end{array}\right]$

Sources: Miller Creek Road EIS Revised Alternatives Traffic Analysis Findings Memorandum (March 16, 2006), DEA, Proposed Development Traffic Study and MDT
${ }^{(1)}$ Future AADT includes daily traffic expected from proposed Liberty Cove Subdivision as shown in the traffic impact study (August 2001)
${ }^{(2)}$ Existing ADT Volume calculated from traffic counts collected for this study in October 2004
The 2025 horizon year is consistent with the future transportation system planning year for the Missoula Transportation Plan update and represents the future design year for the Miller Creek Road EIS as well as this Access Control Study. Comparing existing ADT volumes with forecast 2025 AADT volumes reveals that traffic volumes are expected to increase on all major roadway segments within the study area.

The updated traffic forecasts developed for the Miller Creek Road EIS indicate that traffic volumes on the US 93 corridor will increase substantially south of Blue Mountain Road to approximately 39,050 vehicles per day (vpd). This represents an increase of about 65 percent over existing ADT volumes. This increase in traffic volume is based on the large increase in population and housing development expected in Ravalli County south of Lolo. It is anticipated that this development will result in a large increase in trips to Missoula along the study corridor for employment and services. Planning for this expected population growth is important to provide adequate capacity for the traveling public into the future. If the expected development south of Missoula County does not occur or, for some reason, future traffic volumes do not increase as anticipated, the highway corridor will simply operate at even better levels of service than planned.

3.0 Access Management Concepts

3.1 ACCESS MANAGEMENT GUIDELINES

Access management guidelines were developed for the roadway categories of the corridor and presented in the Access Classification Memo. These guidelines, shown in Table 2, are specific to this study corridor and are consistent with the recommended Montana access guidelines shown in the MDT Access Management Project report (April 1999) and the guidelines used in the US 93 Access Control and Corridor Preservation Project (Evaro to Polson).

The application of the access management guidelines for the US 93 study corridor should be flexible in order to achieve the safety and operational goals of the Access Control Plan. The spacing and design of accesses may differ slightly from the corridor guidelines due to topographic, property ownership and sight distance constraints and other issues. Sight distance is an issue at many locations along the corridor and should be checked at all proposed access locations. If the corridor guidelines are not met, a traffic study should be required to show negligible impacts of a proposed access on corridor and adjacent access operations. The use of existing accesses by a new development should also be examined.

These guidelines were used in the development of the Access Control Plan.

Table 2. US 93 Lolo to Missoula Access Management Guidelines

Access Category ${ }^{(4)}$	Minimum Signal Spacing	Minimum Median Opening Spacing	Unsignalized Access Spacing	Auxiliary Lane Volume Warrants		Denial of Direct Access if Other Access Available?
				Left Turn Decel	Right Turn Decel	
Rural	1.6 km (1 mile)	$\begin{gathered} 0.8 \mathrm{~km}(1 / 2 \text { mile })-\text { Full }^{(1)} \\ 0.4 \mathrm{~km}(1 / 4 \text { mile })-\text { Directional }^{(2)} \end{gathered}$	$400 \mathrm{~m}(1320 \mathrm{ft})$	Required	See Montana Traffic Engineering Manual ${ }^{(3)}$	Yes
Intermediate	0.8 km (1/2 mile)	$\begin{gathered} 0.8 \mathrm{~km}(1 / 2 \text { mile })-\text { Full }^{(1)} \\ 0.4 \mathrm{~km} \text { (1/4 mile) } \text { - Directional }{ }^{(2)} \end{gathered}$	$400 \mathrm{~m}(1320 \mathrm{ft})$	Required	See Montana Traffic Engineering Manual ${ }^{(3)}$	Yes
Developed	0.4 km (1/4 mile)	$\begin{gathered} 0.4 \mathrm{~km}(1 / 4 \text { mile })-\text { Full }^{(1)} \\ 0.2 \mathrm{~km} \text { (1/8 mile) }- \text { Directional }^{(2)} \end{gathered}$	200 m (660 ft)	Required	See Montana Traffic Engineering Manual ${ }^{(3)}$	Yes

Source: David Evans and Associates, Inc.
${ }^{(1)} \mathrm{F}=$ Full Movement
${ }^{(2)} \mathrm{D}=$ Directional Only
${ }^{(3)}$ See criteria in Montana Traffic Engineering Manual, Figure 28.4B
${ }^{(4)}$ Rural - Areas which are and will continue to be primarily undeveloped and which exhibit principally an agricultural or natural character Intermediate - Areas that typically are located on the fringe of a community which represent large parcels and local street systems at less frequent spacing.
Developed - Highly developed areas through communities which have traditionally relied on highway access with small lots and streets at city block spacing.

3.2 ACCESS MANAGEMENT PRINCIPLES

MDT has a specific policy statement regarding access management. As stated in the MDT 1992 Access Management Plan:
"It is the policy of the Montana Department of Transportation to manage access to highway facilities on the state highway system. The purpose of access management is to maintain the flow of traffic and the functional integrity of the highway, enhance public safety, preserve the public's investment in the highway, reduce future maintenance costs, and permit highway expansion on existing locations."

Each access along the US 93 study corridor was classified into one of four basic access types, as described below.

- Field - Access for field or property maintenance or low-volume recreational activities, such as fishing or hunting.
- Residential - Access serving residential property.
- Commercial - Relatively high-volume access with the potential for frequent use by unfamiliar drivers.
- Public - Intersection of a public roadway.

The accesses to the Lolo School were classified as Commercial accesses because, although it is a public school facility, the traffic conditions at the driveways are more similar to a commercial site than a public road intersection.
There are general principles of access management that will be employed during the development of the US 93 Lolo to Missoula Access Control Plan. These guiding principles are summarized below.

New Accesses

- To the extent possible, all new direct access to US 93 should be limited to public roads.
- New direct private access to US 93 generally would not be granted unless no other reasonable alternative access (e.g. rerouting, consolidation with another access, etc.) to the public road system is available.
- If reasonable alternative access is unavailable or if it can be shown to be beneficial to the safe operation of US 93, one direct access per parcel may be allowed. Additional access may be allowed if a traffic engineering study documents significant benefits to the safe operation of US 93.
- Whenever possible, new access should be shared with an adjacent property.
- New accesses may be limited to right-in/right-out movements unless the location meets spacing requirements and magnitude of use warrants a fullmovement access.
- New accesses shall be subject to MDT's System Impact Action Process.

Existing Accesses

- Existing access should be eliminated if reasonable alternative access to the public road system can be provided.
- Whenever reasonable, existing multiple accesses to a single parcel should be combined.
- Adjacent property owners should be encouraged to share accesses.
- Existing non-standard accesses should be brought into compliance with current MDT access approach design standards.
- Existing accesses may be limited to right-in/right-out movements unless the location meets spacing requirements and magnitude of use warrants a fullmovement access.

Land Use Changes

- A change in approach volumes of 20 percent or greater from the original access permit's stated volume or a new generator which produces 150 or more vehicle trips per day would be considered a land use change and will require a new approach permit. The determination of the new approach volume shall be based on the criteria and methodology contained in the current edition of the ITE Trip Generation Manual, or shall be taken from an approved traffic study.
- Any land use changes (i.e., from Residential to Commercial) would require that a new approach permit application be submitted to MDT and that the access be re-evaluated for safety, location and size. Based on this evaluation, mitigation measures may be required by MDT to maintain a safe and efficient highway.
- Re-evaluation may result in relocation or elimination of the approach, if alternate reasonable access is appropriate and available at the time of application.
- Parcels subdivided after the Access Control Plan is completed should not receive any additional direct access to US 93 and such action should require re-evaluation of the access permit.
- Agricultural changes in land use would not qualify as a land use change for the purpose of this discussion.
- Land use changes shall be subject to MDT's System Impact Action Process.

Field Accesses

- New field accesses should be discouraged.
- Every reasonable attempt should be made to eliminate existing field accesses by providing alternative access to the local public road system.
- Only one access should be recommended for each individual parcel/property that has no other access available.
- Consolidation of field accesses should be encouraged among adjoining property owners.
- Field access may be limited to right-in/right-out movements. Special consideration may be given to those farmers or ranchers having access to land on both sides of the highway.

4.0 Corridor Access Management

The following sections describe the access management techniques utilized within each segment. The Access Control Plan recommends the elimination of existing and future direct access to US 93 for many properties with access to other intersecting public roads. At these locations, the traffic accessing the properties will be directed through existing public road intersections.

Operational analyses of the public road intersections were performed to assess the impacts of the additional parcel traffic on intersection performance under existing and forecasted (2025) traffic conditions. The existing and future analyses used the traffic volumes collected and developed for the project as shown in the Traffic Volumes section of this report. Traffic signal timing was optimized in the operational analysis to maximize traffic operations along US 93 without adversely impacting the side roads.
This Access Control Plan documents the access control guidelines for the US 93 study corridor and identifies the major points of access along the highway. However, the traffic control infrastructure required for highway or intersection capacity improvements (i.e., traffic signal, junior interchange, additional through highway lanes) will be determined by a separate corridor study that is currently in the scoping process. Access recommendations are also subject to change depending on the final decision from the Miller Creek Road EIS.
Accesses serving properties across the railroad tracks east of the highway are permitted by the Montana Rail Link (MRL) railroad. MDT may grant access from the highway to the adjacent railroad property, but does not have the authority to grant access across the tracks. Therefore, any access changes across the railroad will need to be coordinated with MRL prior to implementation.

4.1 LOLO URBAN SEGMENT

This highway segment starts at the beginning of the project just south of the US 93 and US 12 intersection in Lolo and continues to north of the Ridgeway Drive/Glacier Drive intersection. The segment has a distinctly urban character with commercial development adjacent to the highway and many direct highway accesses. A curbed median divides the highway between the US 12 and Tyler Way intersections, which restricts many existing accesses to right-in, right-out movements. Median openings are provided for left turn lanes at public road intersections.

This segment is categorized as Developed. Access management guidelines would require a minimum 200 -meter (660 -foot) unsignalized access spacing. Although this spacing seems unattainable given the existing property configurations and number of accesses in the area, access closure and consolidation will remove conflict points along the highway and create a lesscomplex driving environment within Lolo. Access management techniques that are recommended within this study segment include access closure and consolidation and turn restrictions with median modifications.

Several parcels along the east side of the corridor between Lewis and Clark Drive and Tyler Way are currently undeveloped．The existing accesses to most of these properties are recommended for closure with access provided via the intersecting roads．When developed，no direct access to US 93 is recommended for most of these properties．In addition，several closely spaced accesses are recommended for consolidation between adjacent parcels．

Several parcels within the Lolo Urban area have multiple accesses and a few parcels have accesses that are currently unused．These unused and some multiple accesses are recommended for closure．Many of these properties have access to the intersecting public roads．Therefore，closing the direct accesses would add traffic volumes to the intersections of the public roads．The results of the Level of Service（LOS）analysis for the public road intersections with and without the Access Control Plan recommendations are shown in Table 3.

Table 3．Intersection PM Peak Hour Level of Service－Lolo Urban Segment

US 93 Intersection	Control	Without Access Control Plan				With Access Control Plan			
		Existing		Future（2025）		Existing		Future（2025）	
		LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay
US 12 ${ }^{(2)}$	Signal	B	10.8	B	13.3	B	10.8	B	13.3
Lewis and Clark Dr	Stop	F	160.3	F	370.2	F	214.0	F	814.6
Tyler Way	Signal	B	11.0	B	12.3	B	11.2	B	12.4
Ridgeway Dr／Glacier Dr	Signal	B	12.0	B	14.3	B	12.2	B	14.7

Source：Analysis by David Evans and Associates
${ }^{(1)}$ LOS for stop－controlled intersections reported as LOS of the critical movement
${ }^{(2)}$ No additional traffic volume on side road with access control recommendations
As shown，the recommended closures of direct access to US 93 and subsequent volume increases on the public roads will not have a notable detrimental effect on the signalized intersection Levels of Service within Lolo during the afternoon peak hours under existing or future traffic conditions．Increases in the delay experienced at the Lewis and Clark Drive unsignalized intersection may result from access volume being consolidated to the public road intersection．

4．2 RURAL SEGMENT

This segment of US 93 traverses through open farmland with only two public road accesses to residential developments at Valley Grove Drive and Bird Lane． Both intersections are unsignalized．A two－way left turn（TWLT）lane divides the highway for the entire distance of the segment．The Montana Rail Link and Bitterroot River parallel the segment，which limits the potential for development of the open land east of the highway．However，land along the west side of the highway has been identified as available for future development．

This segment is categorized as Intermediate．Although the area currently exhibits rural characteristics with principally agricultural land uses，this section of US 93 is located on the fringe of Lolo and many parcels are anticipated for development．Therefore，it is expected that some parcels may be subdivided and more frequent and／or larger－scale access management strategies（such as
traffic signals, junior interchanges or frontage roads) may be needed in the future to maintain reasonable property access.

The access management techniques recommended for this area include access closure, access consolidation and service roads. A service road would be parallel to the highway in order to provide local circulation with minimal highway access. The specific location and design of the recommended service road is subject to future development plans and final design constraints.

The access to homes and fields on the east side of US 93 near Valley Grove Drive is recommended for closure/relocation across from the public road intersection to eliminate the overlap of left turns. The atypical configuration of the Bird Lane intersection approaches should be modified to enhance the safety and operation of vehicles turning into and out of the roadway.

The future operational analysis for the Bird Lane and Valley Grove intersections include traffic expected from the proposed Liberty Cove Subdivision as shown in the traffic impact study dated August 2001. The results of the Level of Service (LOS) analysis for the public road intersections with and without the access control plan recommendations are shown in Table 4.

Table 4. Intersection PM Peak Hour Level of Service - Rural Segment

US 93 Intersection	Control	Without Access Control Plan				With Access Control Plan			
		Existing		Future (2025)		Existing		Future (2025)	
		LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay
Valley Grove Drive	Stop	F	151.6	F	1682.0	F	275.0	F	3144.0
Bird Lane	Stop	F	96.7	F	2345.0	F	96.7	F	2345.0

Source: Analysis by David Evans and Associates
${ }^{(1)}$ LOS for stop-controlled intersections reported as LOS of the critical movement
The unsignalized intersections at Bird Lane and Valley Grove Drive currently operate at LOS F during the afternoon peak hours and will continue to operate with high levels of delay in the future if they remain unsignalized. Although these intersections have relatively low volumes turning from the minor roads, the high volumes on the highway virtually prevent outbound left turns onto northbound US 93 during peak hours. No negative impacts will result from the access volume being consolidated at Bird Lane. Increases in the delay experienced at the Valley Grove Drive intersection may result from the residential access being relocated across from the public road intersection. If the driveway was not relocated, these delays would be experienced at the location of the driveway access with additional safety hazards caused by the overlap of left turns.

4.3 MOUNTAINOUS SEGMENT

This segment of US 93 is curvilinear as the highway passes through a relatively mountainous area with steep cuts in the terrain on the west side of the roadway. This terrain and the location of the Montana Rail Link and Bitterroot River on the east side of the roadway limit the amount of development within this segment, which is categorized as Rural.

A concrete barrier divides the highway with a narrow inside shoulder adjacent to the barrier. There is an opening in the barrier at Cochise Drive, which is the only major access to residential development along this segment. Guardrail is predominant in this segment with steep cuts in the terrain on the west side and downhill slopes on the east side of the highway.
Closure of the one direct residential access within the segment, located north of Bird Lane along a dangerous high-speed curve, will require new access for the two parcels via Bird Lane. Access closure is also recommended at the abandoned weigh station on the east side of the highway. One access south of the weigh station is recommended to remain open to provide recreational and maintenance access to the river.

No additional property traffic will access US 93 via Cochise Drive with the access control plan recommendations. Therefore, no negative impacts will result from access volume being consolidated to the intersection. As shown in Table 5, the intersection operates at LOS F during the afternoon peak hours and will continue to operate poorly in the future. However, closing two accesses at the old weigh station may improve the safety at the Cochise Drive intersection by reducing the number of conflict points at the barrier opening.

Table 5. Intersection PM Peak Hour Level of Service - Mountainous Segment

US 93 Intersection	Control	Without Access Control Plan				With Access Control Plan			
		Existing		Future (2025)		Existing		Future (2025)	
		LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay
Cochise Drive ${ }^{(2)}$	Stop	F	70.2	F	280.7	F	70.2	F	280.7

Source: Analysis by David Evans and Associates
${ }^{(1)}$ LOS for stop-controlled intersections reported as LOS of the critical movement
${ }^{(2)}$ No additional traffic volume on side road with access control recommendations

4.4 MISSOULA SUBURBAN SEGMENT

This highway segment begins south of Hayes Creek Road and extends to the end of the project south of the Miller Creek Road intersection. This segment is suburban in nature with residential and commercial development and many direct highway accesses. A two-way left turn (TWLT) lane divides the highway for the entire distance of the segment. This segment is categorized as Intermediate.

This segment contains three public road accesses at Hayes Creek Road, Wornath Road and Blue Mountain Road. The Hayes Creek Road residential development relies on an unsignalized intersection as the sole access. The residential development accessed via Wornath Road is connected by a local roadway to Blue Mountain Road, which has a traffic signal on US 93. The traffic signal was installed at Blue Mountain Road in July 1999. The development along Blue Mountain Road adjacent to the US 93 intersection is mainly commercial.
The Missoula Suburban study segment has several areas of limited sight distance, a relatively high number of closely spaced accesses and the potential for higher-density development. This segment will require the application of access management techniques ranging from access closure and consolidation
to grade-separated interchanges. Due to the potential for higher-density development and the lack of existing accesses within the area, the access control along this segment of the corridor will be more restrictive for future accesses with longer access spacing requirements and the consideration of large-scale measures, such as traffic signals and grade-separation techniques.

This study segment has an area of limited sight distance immediately north of the concrete median barrier. Access consolidation with a service road is recommended for several residential properties on the west side of the highway to limit the locations of vehicles turning with limited sight distance. For the same reason, two of the three accesses to the Blue Mountain Trailer Park on the east side of the highway are recommended for closure.
Several small parcels on the east side of the highway at Blue Mountain Road are currently served with a service road accessed north and south of the Blue Mountain Road traffic signal. The south access to this service road should be limited to right-in, right-out movements to eliminate conflicts with the northbound US 93 left turn lane at the traffic signal.

Most accesses to the properties along US 93 north of Blue Mountain Road should be limited to right-in, right-out movements to maintain the capacity of the highway corridor. However, following the distances developed in the Access Control Guidelines, a major full-movement access may be located approximately halfway between the existing traffic signals at Blue Mountain Road and Miller Creek Road. Given that impacts are mitigated through the System Impact Process, this would allow the development of a roadway system for site access on the west side of the highway. This access should be encouraged to connect to the existing road leading to Blue Mountain Road from the veterinary clinic.

The results of the Level of Service (LOS) analysis for the public road intersections with and without the access control plan recommendations are shown in Table 6. The unsignalized intersections at Hayes Creek Road and Wornath Road currently operate at LOS F during the afternoon peak hours and will continue to operate with high levels of delay in the future due to the significant volumes on the highway. No additional property traffic will access US 93 via the public roads with the access control plan recommendations within this segment of the highway. Therefore, no negative impacts will result from access volume being consolidated to the public roads.

Table 6. Intersection PM Peak Hour Level of Service - Missoula Suburban Segment

US 93 Intersection	Control	Without Access Control Plan				With Access Control Plan			
		Existing		Future (2025)		Existing		Future (2025)	
		LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay
Hayes Creek Road ${ }^{(2)}$	Stop	F	341.1	F	2886.0	F	341.1	F	2886.0
Wornath Road ${ }^{(2)}$	Stop	F	119.7	F	678.3	F	119.7	F	678.3
Blue Mountain Road ${ }^{(2)}$	Signal	A	9.8	B	19.6	A	9.8	B	19.6

Source: Analysis by David Evans and Associates
${ }^{(1)}$ LOS for stop-controlled intersections reported as LOS of the critical movement
${ }^{(2)}$ No additional traffic volume on side road with access control recommendations

US 93 Study Corridor Intersection PM Peak Hour Level of Service

US 93 Intersection	Control	Without Access Control Plan				With Access Control Plan			
		Existing		Future (2025)		Existing		Future (2025)	
		LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay
US $12{ }^{(2)}$	Signal	B	10.8	B	13.3	B	10.8	B	13.3
Lewis and Clark Dr	Stop	F	160.3	F	370.2	F	214.0	F	814.6
Tyler Way	Signal	B	11.0	B	12.3	B	11.2	B	12.4
Ridgeway Dr/Glacier Dr	Signal	B	12.0	B	14.3	B	12.2	B	14.7
Valley Grove Drive	Stop	F	151.6	F	1682.0	F	275.0	F	3144.0
Bird Lane	Stop	F	96.7	F	2345.0	F	96.7	F	2345.0
Cochise Drive ${ }^{(2)}$	Stop	F	70.2	F	280.7	F	70.2	F	280.7
Hayes Creek Road ${ }^{(2)}$	Stop	F	341.1	F	2886.0	F	341.1	F	2886.0
Wornath Road ${ }^{(2)}$	Stop	F	119.7	F	678.3	F	119.7	F	678.3
Blue Mountain Road ${ }^{(2)}$	Signal	A	9.8	B	19.6	A	9.8	B	19.6

[^0]
SHORT REPORT

General Information
Analyst
Agency or Co. Jate Performed「ime Period

DEA-SST MDT
11/20/2004
PM Peak Hour

Site Information

Intersection	US 93 \& US 12
Area Type	All other areas
Jurisdiction	Existing - 2004
Analysis Year	

Intersection
Area Type
Analysis Year
US 93 \& US 12

Existing-2004
Volume and Timing Input

			EB			WB			NB			SB		
			LT	TH	RT									
Vum. of Lanes			0	1	1	0	1	0	1	2	0	1	2	0
,ane group				LT	R		LTR		L	TR		L	TR	
volume (vph)			85	5	25	35	20	4	20	515	14	1	1290	140
\% Heavy veh			0	0	0	0	0	0	0	0	0	0	0	0
HFF			0.87	0.87	0.87	0.82	0.82	0.82	0.91	0.91	0.91	0.93	0.93	0.93
Actuated (P/A)			A	A	A	A	A	A	P	P	P	P	P	P
Startup lost time				2.0	2.0		2.0		2.0	2.0		2.0	2.0	
Ext. eff. green				2.0	2.0		2.0		2.0	2.0		2.0	2.0	
Arrival type				3	3		3		3	3		3	3	
Jnit Extension				3.0	3.0		3.0		3.0	3.0		3.0	3.0	
${ }^{3} \mathrm{ed/Bike/RTOR} \mathrm{Volume}$			0		0	0		0	0		$\overline{0}$	0		0
-ane Width				12.0	12.0		12.0		12.0	12.0		12.0	12.0	
ªrking/Grade/Parking			N	0	N	N	0	N	N	0	N	N	0	N
Jarking/hr														
Sus stops/hr				0	0		0		0	0		0	0	
J Jit Extension				3.0	3.0		3.0		3.0	3.0		3.0	3.0	
Thasing	EW Perm	02		03		04		NS Perm	06		07		08	
「iming	$G=20.0$	$\mathrm{G}=$		$\mathrm{G}=$		=		60.0	G		G =		G =	
	$Y=5$	Y =		$Y=$		=		5	\bar{Y}		$Y=$		$Y=$	

Juration of Analysis (hrs) $=0.25$
Cycle Length $\mathrm{C}=90.0$
Lane Group Capacity, Control Delay, and LOS Determination

	EB		WB	NB		SB		
4dj. flow rate	104	29	72	22	581	1	1538	
.ane group cap.	296	359	332	143	2403	539	2376	
le ratio	0.35	0.08	0.22	0.15	0.24	0.00	0.65	
Sreen ratio	0.22	0.22	0.22	0.67	0.67	0.67	0.67	
Jnif. delay d1	29.5	27.7	28.6	5.6	6.0	5.0	8.8	
Jelay factor k	0.11	0.11	0.11	0.50	0.50	0.50	0.50	
ncrem. delay d2	0.7	0.1	0.3	2.3	0.2	0.0	1.4	
${ }^{2} \mathrm{~F}$ factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Sontrol delay	30.3	27.8	28.9	7.8	6.2	5.0	10.2	
-ane group LOS	C	C	C	A	A	A	B	
\pprch. delay	29.7		28.9	6.3		10.2		
Approach LOS	C		C	A		B		
ntersec. delay	10.8		Intersection LOS			B		

SHORT REPORT

General Information	
Anallyst	DEA-SST
Agency or Co.	MDT
Jate Performed	M27106
Fime Period	PM Peak Hour

Site Information

Intersection	US $93 \&$ US 12
Area Type	All other areas
Jurisdiction	
Analysis Year	2025

Volume and Timing Input

			EB			WB			NB			SB		
			LT	TH	RT									
Vum. of Lanes			0	1	1	0	1	0	1	2	0	1	,	
-ane group				LT	R		LTR		L	TR			TR	0
volume (vph)			140	8	40	35	$\frac{12}{20}$	4	30	625		L	TR	
\% Heavy veh			0	0	0	0	0	0	0	$\frac{620}{0}$	14	1	1715	230
3 HF			0.87	0.87	0.87	0.82	0.82	0.82	0.91	0.91	0	0	0	0
Actuated (P/A)			A	A	A	A	A	A	$\stackrel{9}{P}$	$\frac{0.91}{P}$	0.91	0.93	0.93	0.93
Startup lost time				2.0	2.0		2.0		20	P	P	P	P	P
Ext. eff. green				2.0	2.0		2.0		$\frac{1.0}{20}$	2.0		2.0	2.0	
Arrival type				3	3		2.		$\frac{1}{3}$	2.0		2.0	2.0	
Jnit Extension				3.0	3.0		3.0		3.0	30		3	3	
${ }^{\text {edibike/RTOR Volume }}$			0		0	0		0	0	3.0	0	3.0	3.0	
ane Width				12.0	12.0		12.0		12.0	120		0		0
Jarking/Grade/Parking			N	0	N	N	0	N	N	0		N	12.0	
Jarking/hr									N	0	N	N	0	N
3us stops/hr				0	0		0		0	0		0	0	
Jnit Extension				3.0	3.0		3.0		3.0	3.0		3.0	3.0	
Jhasing	EW Perm			03		04		Perm		06				
Fiming	$\underline{G}=16.0$	G $=$		G =				64.0	G		G =		G =	
	$Y=5$	$Y=$		$Y=$				5	Y		$Y=$		$Y=$	

Juration of Analysis (hrs) $=0.25$
Cycle Length $\mathrm{C}=90.0$
Lane Group Capacity, Control Delay, and LOS Determination

Adj. flow rate	EB		WB		NB		SB	
	170	46	72	33	702	1	2091	
-ane group cap.	240	287	162	85	2564	507	2527	
//c ralio	0.71	0.16	0.44	0.39	0.27	0.00	0.83	
Sreen ratio	0.18	0.18	0.18	0.71	0.71	0.71	0.71	
Jnif. delay d1	34.8	31.3	33.0	5.2	4.7	3.8	9.1	
Jelay factor k	0.27	0.11	0.11	0.50	0.50	0.50	0.50	
ncrem. delay d2	9.3	0.3	1.9	12.8	0.3	0.0	3.3	
${ }^{2} \mathrm{~F}$ factor	1.000	1.000	1.000	7.000	1.000	1.000	1.000	
Control delay	44.1	31.6	35.0	18.0	4.9	3.8	12.4	
-ane group LOS	D	C	c	B	A	A	B	
7pprch. delay	41.4		35.0	5.5		12.4		
7pproach LOS	D		c	A		B		
ntersec. delay	13.3		Intersection LOS			B		

TWO-WAY STOP CONTROL SUMMARY

General information

Analyst
Agenc:y/Co.
Date Performed
Analysis Time Period
Project Description
East(West Street: Lewis and Clark Drive

Site Information
Intersection
US 93 \& Lewis \& Clark Drive
Jurisdiction
Analysis Year Existing - 2004

Vehicle Volumes and Adjustments

Yajor Street	Northbound			Southbound		
Movement	$\mathbf{1}$	2	3	4	5	6
	L	T	R	L	T	T
Jolume	30	655	45	120	1525	2
Jeak-Hour Factor, PHF	0.93	0.93	0.93	0.96	0.96	0.96
Tourly Flow Rate, HFR	32	704	48	125	1588	2
Jercent Heavy Vehicles	0	-	-	0	-	-

Median Type	Raised curb					
VT Channelized			0			0
-anes	1	2	0	1	2	0
Sonfiguration	L	T	TR	L	T	TR
Jpstream Signal		0			0	

Minor Straet	Westbound			Eastbound		
Movernent	7	8	9	10	11	12
	L	T	R	L	T	R
Volume	14	0	40	4	0	4
Peak-Hour Factor, PHF	0.85	0.85	0.85	0.66	0.66	0.66
Hourly Flow Rate, HFR	16	0	47	6	0	6
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		LTR			LTR	

Delay, Quoue Length, and Level of Service

Approach	NB	SB	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	L		LTR			LTR	
v (vphi)	32	125		63			12	
$\mathrm{C}(\mathrm{m})(\mathrm{vph})$	418	867		133			34	
v/c	0.08	0.14		0.47			0.35	
95\% queue length	0.25	0.50		2.16			1.15	
Control Delay	14.3	9.9		54.3			160.3	
-OS	B	A		F			F	
Approach Delay	\cdots	-	54.3			160.3		
Approach LOS	--	--	F			F		

<ights Reserved

TWO-WAY STOP CONTROL SUMMARY

General Information			Site Information			
Analyst			Intersection		US 93 \& Lewis \& Clark Drive	
Agency/Co.	MDT		Jurisdiction			
Date Performed	$8 / 25 / 05$				Existing - 2004 with Site	
Analysis Time Period	PM Peak Hour		Analysis			
Project Description						
EastWest Street: Lewis and Clark Drive			North/South Street: US 93			
Intersection Orientation; North-South			Study Period (hrs): 0.25			
Vehicle Volumes and Adjustments						
Major Street	Northbound			Southbound		
पुovement	t	2	3	4	5	6
	L	T	R	L	T	R
volume	30	655	55	145	1525	3
${ }^{5}$ eak-Hour Factor, PHF	0.93	0.93	0.93	0.96	0.96	0.96
Tourly Flow Rate, HFR	32	704	59	151	1588	3
${ }^{\text {sercent Heavy Vehicles }}$	0	-	--	0	-	-
Median Type	Raised curb					
शT Channelized			0			0
-anes	1	2	0	1	2	0
Sonfiguration	L	T	TR	L	7	$T R$
Jpstream Signal		0			0	
Movement	Westbound			Eastbound		
	7	8	9	10	11	12
	L	T	R	L	T	R
Volume	23	0	69	5.	0	5
Peak-Hour Factor, PHF	0.85	0.85	0.85	0.66	0.66	0.66
Hourly Flow Rate, HFR	27	0	81	7	0	7
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (\%)		0			0	
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		LTR			LTR	

Approach	NB	SB		estboun			astbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	L		LTR			LTR	
v (vph)	32	151		108			14	
C (m) (vph)	418	859		120			29	
v/c	0.08	0.18		0.90			0.48	
95\% queue length	0.25	0.64		5.66			1.54	
Control Delay	14.3	10.1		125.0			214.0	
LOS	B	B		F			F	
Approach Delay	--	-	125.0			214.0		
Approach LOS	--	-	F			F		

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst
Agency/Co.
Date Performed
Analysis Time Period
Project Description
EastiWest Street: Lewis and Clark Drive Intersection Orientation: North-South

DEA-SST
MDT
3/27/06
PM Peak Hour

Site Information

Intersection Jurisdiction Analysis Year	US 93 \& Lewis \& Clark Drive
	2025

US 93 \& Lewis \& Clark Drive

2025

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Vovement	1	2	3	4	5	6
	L	T	R	L	T	R
volume	35	790	55	145	2030	2
Seak-Hour Factor, PHF	0.93	0.93	0.93	0.96	0.96	0.96
Jourly Flow Rate, HFR	37	849	59	151	2114	2
Sercent Heavy Vehicles	0	-	-	0	--	-
Vedian Type	Raised curb					
FT Channelized			0			0
-anes	1	2	0	1	2	0
Sonfiguration	L	T	TR	L	T	TR
Jpstream Signal		0			0	
Minor Street	Westbound			Eastbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
volume	17	0	50	5	0	5
Peak-Hour Factor, PHF	0.85	0.85	0.85	0.66	0.66	0.66
Hourly Flow Rate, HFR	19	0	58	7	0	7
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		LTR			LTR	

Delay, Queue Length, and Level of Service

Approach	NB	SB	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	L		LTR			LTR	
v (vph)	37	151		77			14	
$3(\mathrm{~m})(\mathrm{vph})$	262	758		56				
vic	0.14	0.20		1.38				
35\% queue length	0.48	0.74		6.84				
Control Delay	21.0	10.9		370.2				
LOS	C	B		F				
Approach Delay	-	--		370.2				
Approach LOS	\cdots	--		F				

<ights Reserved
${ }^{5} \mathrm{C} 2000^{\mathrm{M}}$

TWO-WAY STOP CONTROL SUMMARY

Analyst
DEA-SST
Agency/Co.
Date Performed
Analysis Time Period
Project Description
East/West Street: Lewis and Clark Drive
Intersection Orientatlon: North-South

Site Information

Fintersection	
Jurisdiction Analysis Year	US 93 \& Lewis \& Clark Drive
	2025 with Site

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Yovement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume	35	790	65	175	2030	3
Jeak-Hour Factor, PHF	0.93	0.93	0.93	0.96	0.96	0.96
Fourly Flow Rate, HFR	37	849	69	182	2114	3
Jercent Heavy Vehicles	0	-	-	0	-	-

Median Type	Raised curb					
2T Channelized			0			0
-anes	1	2	0	1	2	0
Oonfiguration	L	T	TR	L	T	TR
Jpstream Signal		0			0	
Minor Street	Westbound			Eastbound		
Movernent	7	8	9	10	11	12
	L	T	R	L	T	R
Volume	25	0	80	6	0	6
Peak-Hour Factor, PHF	0.85	0.85	0.85	0.66	0.66	0.66
Hourly Flow Rate, HFR	29	0	94	9	0	9
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		LTR			LTR	

Delay, Queue Length, and Level of Service

Approach	NB	SB	Westbound			Eastbound		
Movernent	1	4	7	8	9	10	11	12
Lane Configuration	L	L		LTR			LTR	
v (vph)	37	182		123			18	
$\mathrm{C}(\mathrm{m})(\mathrm{vph})$	262	752		51				
v/c	0.14	0.24		2.41				
95\% queue length	0.48	0.95		12.65				
Control Delay	21.0	11.3		814.6				
I.OS	C	B		F				
Approach Delay	--	--		814.6				
Approach LoS	--	-		F				

<ights Reserved
${ }^{n} \mathrm{cssen} 0^{\top} \mathrm{M}$
Copyright © 2003 University of Forida, All Rights Reserved
Version 4.14

SHORT REPORT

3eneral Information Site information

Analyst
Zgency or Co. Jate Performed
Time Period

DEA-SST
MDT
11/2012004
PM Peak Hour

Intersection Area Type Jurisdiction Analysis Year

US 93 \& Tyler Way
All other areas
Exisfing-2004

Volume and Timing Input

			EB			WB			NB			SB		
			LT	TH	RT	LT	TH'	RT	LT	TH	RT	LT	TH	RT
Vum. of Lanes			0	0	0	1	1	0	1	2	0	1	2	0
_ane group						L	TR		L	TR		L	TR	
Jolume (vph)						110	5	18	6	570	25	60	1535	4
\% Heavy veh						0	0	0	0	0	0	0	0	0
3 HF						0.73	0.73	0.73	0.89	0.89	0.89	0.92	0.92	0.92
Actuated (P/A)						A	A	A	P	P	P	P	P	P
Startup						2.0	2.0		2.0	2.0		2.0	2.0	
三xt. eff. green						2.0	2.0		2.0	2.0		2.0	2.0	
Arrival ty						3	3		3	3		3	3	
Jnit Extension						3.0	3.0		3.0	3.0		3.0	3.0	
ed/Bike/RTOR Volume			0			0		0	0		0	0		0
-ane Wid						12.0	12.0		12.0	12.0		12.0	12.0	
Jarking/Grade/Parking			N		N	N	0	N	N	0	N	N	0	N
Jarking/hr														
3us stops/hr						0	0		0	0		0	0	
Jnit Extension						3.0	3.0		3.0	3.0		3.0	3.0	
Jhasing	WB Only	02		03		04	NS Perm		06		07		08	
riming	$G=20.0$	G =		G =		$\mathrm{G}=$		± 60.0	$\mathrm{G}=$		$\mathrm{G}=$		$\mathrm{G}=$	
	$Y=5$	$Y=$		$Y=$		$Y=$		- 5			$Y=$		$Y=$	
Juration of Analysis (hrs) $=0.25$										Leng	C =	30.0		

Lane Group Capacity, Control Delay, and LOS Determination

	EB	WB		NB		SB		
Adj. flow rate		151	32	7	668	65	1672	
-ane group cap.		401	373	112	2397	485	2411	
/c ratio		0.38	0.09	0.06	0.28	0.13	0.69	
Эreen ratio		0.22	0.22	0.67	0.67	0.67	0.67	
Jnif. delay d1		29.7	27.8	5.2	6.1	5.5	9.3	
Jelay factor k		0.11	0.11	0.50	0.50	0.50	0.50	
ncrem. delay d2		0.6	0.1	1.1	0.3	0.6	1.7	
of factor		1.000	1.000	1.000	1.000	1.000	1.000	
Sontrol delay		30.3	27.9	6.3	6.4	6.1	11.0	
-ane group LOS		C	C	A	A	A	B	
Apprch. delay		29.9		6.4		10.8		
Approach LOS		C		A		B		
ntersec. delay	11.0	Intersection LOS				B		

SHORT REPORT

Seneral Information			
inalyst	SEA-SST Information		
tgency or Co.	MDT	Intersection	US 93 \& Tyler Way
Jate Performed	$8 / 25 / 05$	Area Type	All other areas
Time Period	PM Peak Hour	Jurisdiction	

Volume and Timing Input

			EB			WB			NB			SB		
			LT	TH	RT									
Vurn. of Lanes			0	0	0	1	1	0	1	2	0	1	2	0
-ane group						L	TR		L	TR		L	TR	
Jolume (vph)						120	6	25	6	570	30	70	1535	4
\% Heavy veh						0	0	0	0	0	0	0	0	0
3 HF						0.73	0.73	0.73	0.89	0.89	0.89	0.92	0.92	0.92
Actuated (P/A)						A	A	A	P	P	P	P	P	P
Startup lost time						2.0	2.0		2.0	2.0		2.0	2.0	
jxt. effi.green						2.0	2.0		2.0	2.0		2.0	2.0	
trival type						3	3		3	3		3	3	
Jnit Extension						3.0	3.0		3.0	3.0		3.0	3.0	
${ }^{\text {ed/Bike/RTOR Volume }}$			0			0		0	0		0	0		0
ane Width						12.0	12.0		12.0	12.0		12.0	12.0	
Jarkirig/Grade/Parking			N		N	N	0	N	N	0	N	N	0	N
3arking/hr														
3us stops/hr						0	0		0	0		0	0	
Jnit Extension						3.0	3.0		3.0	3.0		3.0	3.0	
Thasing	WB Only	02		03		04	NSPPerm		06		07		08	
Timing	$\mathrm{G}=20.0$	G =		G =		G =		$=60.0$			G		G $=$	
	$Y=5$	$Y=$		$Y=$		$\mathrm{Y}=$		$=5$	Y		$\mathrm{Y}=$		$Y=$	

Juration of Analysls (hrs) $=0.25$
Cycle Length $\mathrm{C}=90.0$
Lane Group Capacity, Control Delay, and LOS Determination

SHORT REPORT

Seneral Information	
Analyst	DEA-SST
Agency or Co.	MDT
Jate Performed	$3 / 27 / 06$
Fime Period	PM Peak Hour

Site Information

Intersection	US $93 \&$ Tyler Way
Area Type	All other areas
Jurisdiction	2025
Analysis Year	

US 93 \& Tyler Way

2025

Volume and Timing Input

			EB			WB			NB			SB		
			LT	TH	RT									
Vum. of			0	0	0	1	1	0	1	2	0	1	2	0
-ane gro						L	TR		L	TR		L	TR	
volume						140	5	20	6	690	30	75	2040	4
\% Heav						0	0	0	0	0	0	0	0	0
${ }^{\text {JHF }}$						0.73	0.73	0.73	0.89	0.89	0.89	0.92	0.92	0.92
Actuated						A	A	A	P	P	P	P	P	P
Startup						2.0	2.0		2.0	2.0		2.0	2.0	
Ext. eff.						2.0	2.0		2.0	2.0		2.0	2.0	
Arrival ty						3	3		3	3		3	3	
Jnit Exte						3.0	3.0		3.0	3.0		3.0	3.0	
$3 \mathrm{ed} / \mathrm{Bike}$	R Volume		0			0		0	0		0	0		0
-ane Wid						12.0	12.0		12.0	12.0		12.0	12.0	
Jarking/	/Parking		N		N	N	0	N	N	0	N	N	0	N
Jarking/h														
3 us stop						0	0		0	0		0	0	
Jnit Exte						3.0	3.0		3.0	3.0		3.0	3.0	
Thasing	WB Only	02		03		04		NS Perm	06		07		08	
Fiming	$\mathrm{G}=15.0$	$\mathrm{G}=$		$\mathrm{G}=$		G =		$G=65.0$	$\underline{G}=$		$\mathrm{G}=$		$\mathrm{G}=$	
	$Y=5$	$Y=$		$Y=$		$Y=$		$Y=5$	$Y=$		$Y=$		$\bar{Y}=$	
Juration of Analysis (hrs) $=0.25$									Cycle Length $\mathrm{C}=90.0$					

Lane Group Capacity, Control Dolay, and LOS Determination

SHORT REPORT

Seneral Information		Site Information	
Analyst	DEA-SST	Intersection	US 93 \& Tyler Way
Agency or Co.	MDT	Area Type	All other areas
Jate Performed	3/27/06	Jurisdiction	
Fime Period	PM Peak Hour	Analysis Year	2025 with Site Traffic

Volume and Timing Input

			EB			WB			NB			SB		
			LT	TH	RT									
Vum. of Lanes			0	0	0	1	1	0	1	2	0	1	2	0
_ane group						L	TR		L	TR		L	TR	
volume (vph)						140	6	25	6	690	35	80	2040	4
\% Heavy veh						0	0	0	0	0	0	0	0	0
3 HF						0.73	0.73	0.73	0.89	0.89	0.89	0.92	0.92	0.92
4ctuated (P/A)						A	A	A	ρ	P	P	$\stackrel{\rightharpoonup}{P}$	P	P
Startup lost time						2.0	2.0		2.0	2.0		2.0	2.0	
Ext. eff. green						2.0	2.0		2.0	2.0		2.0	2.0	
Arrival type						3	3		3	3		3	3	
Jnit Extension						3.0	3.0		3.0	3.0		3.0	3.0	
Sed/Bike/RTOR Volume			0			0		0	0		0	0		0
-ane Width						12.0	12.0		12.0	12.0		12.0	12.0	
Jarking/Grade/Parking			N		N	N	0	N	N	0	N	N	0	N
Jarking/hr														
$3 \mathrm{us} \mathrm{stops/hr}$						0	0		0	0		0	0	
Jnit Extension						3.0	3.0		3.0	3.0		3.0	3.0	
Thasing	WB Only	02		03		$\mathrm{G}=04$	NS Perm		06		07		08	
riming	$\mathrm{G}=15.0$	G =		$\mathrm{G}=$			$\mathrm{G}=65.0$		$\mathrm{G}=$		G $=$		G =	
	$Y=5$	$Y=$		$Y=$		$Y=$	$\mathrm{Y}=5$		Y $\mathrm{Y}=$		$\mathrm{Y}=$$\mathrm{C}=90.0$		$Y=$	
Juration of Analysis (hrs) $=0.25$														

Juration of Analysis (hrs) $=0.25$
Lane Group Capacity, Control Delay, and LOS Determination

	EB		WB			NB			SB		
Adj. flow rate			192	42		7	814		87	2221	
-ane group cap.			301	278		84	2594		454	2612	
/1c ratio			0.64	0.15		0.08	0.31		0.19	0.85	
3reen ratio			0.17	0.17		0.72	0.72		0.72	0.72	
Jnif. delay d1			35.0	32.1		3.7	4.5		4.0	9.0	
Jelay factor k			0.22	0.11		0.50	0.50		0.50	0.50	
ncrem. delay d2			4.5	0.3		1.9	0.3		0.9	3.7	
JF factor			1.000	1.000		1.000	1.000		1.000	1.000	
Sontrol delay			39.4	32.3		5.6	4.8		5.0	12.7	
-ane group LOS			D	\bar{C}		A	A		A	B	
Apprch. delay			38.2			4.8			12.4		
Approach LOS			D			A			B		
ntersec. delay	12.4		Intersection LOS						B		

SHORT REPORT

General Information

Site Information

analyst	DEA-SST	Intersection	US 93 \& Glacier/Ridgeway
Agency or Co.	MDT	All other areas	
Jate Ferformed	$11 / 2012004$	Area Type	Alisdiction
Time Feriod	PM Peak Hour	Analysis Year	Existing - 2004

Volume and Timing Input

			EB			WB			NB			SB		
			LT	TH	RT									
Vum. of			1	1	0	1	1	0	1	2	0	1	2	0
-ane gro			L	TR										
Volume			40	25	85	35	30	55	30	615	25	115	1370	105
\% Heav			0	0	0	0	0	0	0	0	0	0	0	0
3 HF			0.93	0.93	0.93	0.82	0.82	0.82	0.87	0.87	0.87	0.86	0.86	0.86
Actuated			A	A	A	A	A	A	P	P	P	P	P	P
Startup			2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Ext. eff.			2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Arrival ty			3	3		3	3		3	3		3	3	
Jnit Exten			3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Sed/Bike	R Volume		0		0	0		0	0		0	0		0
, ane Wi			12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	
zarking/	Parking		N	0	N									
3arking/h														
3us stop			0	0		0	0		0	0		0	0	
Jnil Exte			3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Thasing	EW Perm	02		03		04	NS Perm		06		07		08	
rimeng	$\mathrm{G}=20.0$	$\mathrm{G}=$		G =		G =	$\mathbf{G}=60.0$		$\mathrm{G}=$		$\mathrm{G}=$		$\mathrm{G}=$	
	$Y=5$	$Y=$		$Y=$		$Y=$	- $Y=5$		$Y=$		$Y=$		$Y=$	
Juration of Analysis (hrs) $=0.25$				Cycle Length $\mathrm{C}=90.0$										

Lane Group Capacity, Control Delay, and LOS Determination

	EB		WB		NB		SB		
Adj. flow rate	43	118	43	104	34	736	134	1715	
-ane group cap.	291	373	288	381	103	2397	447	2386	
//c ratio	0.15	0.32	0.15	0.27	0.33	0.31	0.30	0.72	
Green ratio	0.22	0.22	0.22	0.22	0.67	0.67	0.67	0.67	
Jnif. delay d1	28.1	29.3	28.2	29.0	6.4	6.3	6.2	9.6	
Jelay factor k	0.11	0.11	0.11	0.11	0.50	0.50	0.50	0.50	
nofem. delay d2	0.2	0.5	0.2	0.4	8.4	0.3	1.7	1.9	
3F factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Jontrol delay	28.4	29.8	28.4	29.4	14.8	6.6	8.0	11.5	
-ane group LOS	C	C	C	C	B	A	A	B	
tpprch. delay	29.4		29.1		7.0		11.2		
Approach LOS	C		C		A		B		
ntersec. delay	12.0		Intersection LOS				B		

SHORT REPORT

Seneral Information	
Analyst	DEA-SST
Agency or Co.	MDT
Jate F'erformed	$8 / 25 / 05$
Time Feriod	PM Peak Hour

Site Information

$\begin{array}{|cc|}\text { Intersection } & \text { US } 93 \& \text { Glacier Ridgeway } \\ \text { Area Type } & \text { All other areas }\end{array}$
Jurisdiction
Analysis Year

Existing - 2004 with Site

Volume and Timing Input

	EB			WB			NB			SB		
	LT	TH	RT									
Vum. of Lanes	1	1	0	1	1	0	1	2	0	1	2	0
-ane group	L	TR										
volume (vph)	45	30	90	35	30	55	35	615	25	115	1370	115
\% Heavy veh	0	0	0	0	0	0	0	0	0	0	0	0
3 HF	0.93	0.93	0.93	0.82	0.82	0.82	0.87	0.87	0.87	0.86	0.86	0.86
Actuated (P/A)	A	A	A	A	A	A	P	P	P	P	$\stackrel{P}{ }$	P
Startup lost time	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Ext. eff. green	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Arrival type	3	3		3	3		3	3		3	3	
Jnit Extension	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Sed/Bike/RTOR Volume	0		0	0		0	0		0	0		0
-ane Width	12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	
Sarking/Grade/Parking	N	0	N	N	0	N	N	0	N	N	0	N
$3 \mathrm{arking} / \mathrm{hr}$												
3us stops/hr	0	0		0	0		0	0		0	0	
Jnit Extension	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	

Jhasing	EW Perm	02	03	04	NS Perm	06	07	08
Timing	$\mathrm{G}=20.0$	$\mathrm{G}=$	G =	G =	$\mathrm{G}=60.0$	G $=$	G =	G $=$
	$Y=5$	$Y=$	$Y=$	$Y=$	$\mathrm{Y}=5$	$Y=$	$Y=$	$Y=$

Juration of Analysis (hrs) $=0.25$
Cycle Length $\mathrm{C}=90.0$

	EB		WB		NB		SB		
Adj. flow rate	48	129	43	104	40	736	134	1727	
-ane group cap.	291	375	279	381	101	2397	447	2383	
/c ratio	0.16	0.34	0.15	0.27	0.40	0.31	0.30	0.72	
3reen ratio	0.22	0.22	0.22	0.22	0.67	0.67	0.67	0.67	
Jnif. delay d1	28.3	29.5	28.2	29.0	6.8	6.3	6.2	9.7	
Jelay factor k	0.11	0.11	0.11	0.11	0.50	0.50	0.50	0.50	
ncrem. delay d2	0.3	0.6	0.3	0.4	11.2	0.3	1.7	2.0	
${ }^{2} \mathrm{~F}$ factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Sontrol delay	28.5	30.0	28.4	29.4	18.0	6.6	8.0	11.6	
-ane group LOS	C	C	c	C	B	A	A	B	
Apprch. delay	29.6		29.1		7.2		11.4		
Approach LOS	C		C		A		B		
ntersec. delay	12.2		Intersection LOS				B		

Juration of Analysis (hrs) $=0.25$
Cycle Length $\mathrm{C}=90.0$

Lane Group Capacity, Control Delay, and LOS Determination

SHORT REPORT

SHORT REPORT			
Seneral Information		Site Information	
Analyst	DEA-SST	Intersection	US 93 \& Glacier/Ridgeway
Agency or Co.	MDT	Area Type	All other areas
Sate Ferformed	3/27106	Jurisdiction	
fime F'eriod	PM Peak Hour	Analysis Year	2025 with Site

Volume and Timing Input

Lane Group Capacity, Control Delay, and LOS Determination

	EB		WB		NB		SB		
4dj. flow rate	65	167	55	134	52	885	163	2290	
_ane group cap.	198	280	170	287	84	2598	417	2583	
//c ratio	0.33	0.60	0.32	0.47	0.62	0.34	0.39	0.89	
Sreen ratio	0.17	0.17	0.17	0.17	0.72	0.72	0.72	0.72	
Jnif. delay d1	33.1	34.7	33.0	33.9	6.3	4.6	4.8	9.7	
Jelay factor k	0.11	0.19	0.11	0.11	0.50	0.50	0.50	0.50	
ncrem. delay d2	1.0	3.5	1.1	1.2	29.7	0.4	2.7	5.0	
${ }^{\text {PF f factor }}$	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Control delay	34.0	38.2	34.1	35.1	36.0	5.0	7.6	14.6	
-ane group LOS	C	D	C	D	D	A	A	B	
Apprch. delay	37.0		34.8		6.7		14.1		
Approach LOS	D		C		A		B		
ntersec. delay	14.7		Intersection LOS				B		

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst
Agency/Co.
Date Ferformed
Analysis Time Period
Proiect Description

Project Description
EastWest Street: Valley Grove Drive Intersection Orientation: North-South

DEA-SST
MDT
11/2012004
PM Peak Hour

Site Information

Intersection	US 93 \& Valley Grove Drive
Jurisdiction	Existing - 2004
Analysis Year	

North/South Street: US 93
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Vovement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume	0	695	0	0	1765	3
'eak-Hour Factor, PHF	0.94	0.94	1.00	1.00	0.90	0.90
Tourly Flow Rate, HFR	0	739	0	0	1961	3
${ }^{\text {sercent Heavy Vehicles }}$	0	-	-	0	-	-
Median Type	Two Way Left Turn Lane					
2T Channelized			0			0
anes	1	2	0	0	2	0
Sonfiguration	L	T			T	TR
Jpstream Signal		0			0	
Minor Street	Westbound			Eastbound		
Movernent	7	8	9	10	11	12
	L	T	R	L	T	R
Volume	0	0	0	3	0	0
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.37	1.00	0.37
Hourly ' Flow Rate, HFR	0	0	0	8	0	0
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay, Queue Length, and Level of Service

Approach	NB	SB	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	1						LR	
\checkmark (vph)	0						8	
$\overline{\mathrm{C}} \mathrm{m}$) (vph)	300						32	
/c	0.00						0.25	
35\% queue length	0.00						0.78	
Control Delay	17.0						151.6	
-OS	C						F	
Approach Delay	-	--					151.6	
Appreach LOS	--	--					F	

<ights Reserved

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	DEA-SST
Agency/Co.	MDT
Pate Performed	$3 / 27 / 06$
Analysis Time Period	PM Peak Hour
Project Description	
EasVWest Street: Valley Grove Drive	
intersection Orientation:	North-South

Site Information
Intersection US 93 \& Valley Grove Drive
Jurisdiction
Analysis Year Existing - 2004 with Site

Vehicle Volumes and Adjustments

Maior Street	Northbound			Southbound		
Wovement	1	2	3	4	5	6
	L	T	R	L	T	R
Jolume	0	695	2	1	1765	3
3eak-Hour Factor, PHF	0.94	0.94	1.00	1.00	0.90	0.90
Jourly Flow Rate, HFR	0	739	2		1961	3
Jercent Heavy Vehicles	0	--	-	0	-	--
Median Type	Two Way Left Tum Lane					
२T Channelized			0			0
anes	1	2	0	1	2	0
Sonfiguration	1	T	TR	L	T	TR
Jpstream Signal		0			0	
Minor Street	Westbound			Eastbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume	0	0	1	3	0	0
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.37	1.00	0.37
Hourly Flow Rate, HFR	0	0	1	8	0	0
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration		LR			LR	

Delay, Queus Length, and Level of Service								
Approach	NB	SB	Westbound			Eastbound		
Movernent	1	4	7	8	9	10	11	12
Lane Configuration	1.	1		LR			LR	
\checkmark (vph)	0	1		1			8	
C (m) (vph)	300	875		633			20	
\%	0.00	0.00		0.00			0.40	
95\% queue length	0.00	0.00		0.00			1.14	
Control Delay	17.0	9.1		10.7			275.0	
LOS	c	A		B			F	
Approach Delay	-	--		10.7			275.0	
Approach LOS	--	--		B			F	

TWO-WAY STOP CONTROL SUMMARY

General Information
Analyst
Agency/Co.
Date Performed
Analysis Time Period
Project Description
EastWest Street: Valley Grove Drive \quad North/South Street:" US 93

Intersection Orientation: North-South
Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
volume	9	840	0	0	2375	16
دeak-Hour Factor, PHF	0.94	0.94	1.00	1.00	0.90	0.90
Founty Flow Rate, HFR	9	893	0	0	2638	17
Jercent Heavy Vehicles	0	--	--	0	-	--
Median Type	Two Way Left Turn Lane					
₹T Channelized			0			0
-anes	1	2	0	0	2	0
Oonflguration	L	T			T	TR
Jpstream Signal		0			0	
Minor Street	Westbound			Eastbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume	0	0	0	10	0	5
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.37	1.00	0.37
Hourly Flow Rate, HFR	0	0	0	27	0	13
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					$L R$	

Delay, Quaue Length, and Level of Service

Approach	NB	SB	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L						LR	
v (vph)	9						40	
C (m) (vph)	161						12	
v/c	0.06						3.33	
95\% queue length	0.18						6.00	
Control Delay	28.7						1682	
LOS	D						F	
Approach Delay	--	--					1682	
Approach LOS	-	--						

CS32006 ${ }^{7 \mathrm{M}}$
Copyrigh \$2003 University of Florida, All Rights Reserved
Version 4.1.

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	DEA-SST
Agency/Co.	MDT
Date Performed	$3 / 27 / 106$
Analysis Time Period	PM Peak Hour

Site Information

Intersection	US 93 \& Valley Grove Drive
Jurisdiction	
Analysis Year	2025 with Site

North/South Street: US 93
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
volume	9	840	2	1	2375	16
${ }^{3}$ eak-Hour Factor, PHF	0.94	0.94	1.00	1.00	0.90	0.90
fourly Flow Rate, HFR	9	893	2	1	2638	17
sercent Heavy Vehicles	0	-	-	0	-	-
Median Type	Two Way Left Turn Lane					
2T Channelized			0			0
-anes	1	2	0	1	2	0
Sonfiguration	L	T	IR	L	T	TR
Jpstream Signal		0			0	
Minor Streat	Westbound			Eastbound		
Movernent	7	8	9	10	11	12
	L	T	R	L	T	R
Volume	0	0	1	10	0	5
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.37	1.00	0.37
Hounly Flow Rate, HFR	0	0	1	27	0	13
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channellzed			0			0
Lanes	0	0	0	0	0	0
Configuration		LR			$L R$	

Delay, Queue Length, and Level of Service

Approach	NB	SB	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	L		LR			LR	
$v(\mathrm{vph})$	9	1		1			40	
C (m) (vph)	161	767		564			7	
v/c	0.06	0.00		0.00			5.71	
95\% queue length	0.18	0.00		0.01			6.45	
Control Delay	28.7	9.7		11.4			3144	
LOS	D	A		B			F	
Approach Delay	-	--	11.4			3144		
Approach LOS	--	--	B			F		

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	DEA-SST
Agenciy/Co.	MDT
Date Performed	$11 / 2012004$
Analysis Time Period	PM Peak Hour
Project Description	
EastWest Street: Bird Lane	
Intersection Orientation: North-South	

Site Information

Intersection	US 93 \& Bird Lane
Jurisdiction	
Analysis Year	Existing - 2004

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Uoverment	1	2	3	4	5	6
	L	T	R	L	T	R
volume	1	710	0	0	1855	6
${ }^{\text {Seak-Hour Factor, PHF }}$	0.92	0.92	1.00	1.00	0.90	0.90
fourly Flow Rate, HFR	1	771	0	0	2061	6
Sercent Heavy Vehicles	0	--	-	0	-	-
Median Type	Two Way Left Tum Lane					
2T Channelized			0			0
-anes	1	2	0	0	2	0
Oonfiguration	L	T			\bar{T}	TR
Jpstream Signal		0			0	
Minor Street	Westbound			Eastbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume	0	0	0	1	0	7
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.25	1.00	0.25
Hourly Flow Rate, HFR	0	0	0	4	0	4
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Confliguration					LR	

Delay, Queue Length, and Level of Service.

Approach	NB	SB	Westbound			Eastbound		
Movernent	1	4	7	8	9	10	11	12
Lane Configuration	L						LR	
\checkmark (vph)	1						8	
$\sigma(\mathrm{m})(\mathrm{vph})$	274						47	
v / c	0.00						0.17	
95\% queue length	0.01						0.55	
Control Delay	18.2						96.7	
-OS	c						F	
Approach Delay	--	-					96.7	
Approach LOS	-	-					F	

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst
Agency/Co.
Oate Performed
Analysis Time Period
Project Description

Site Information
intersection
US 93 \& Bird Lane
Jurisdiction
Analysis Year Existing - 2004 with Site

East/West Street: Bird Lane	North/South Street: US 93
Intersection Orientation: North-South	Study Period (hrs): 0.25

Vehicie Volumes and Adjustments

Malor Street	Northbound			Southbound		
पovement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume	1	710	0	0	1855	8
${ }^{2}$ eak-Hour Factor, PHF	0.92	0.92	1.00	1.00	0.90	0.90
Fourly Flow Rate, HFR	1	771	0	0	2061	8
${ }^{2}$ ercent Heavy Vehicles	0	--	--	0	--	-
Median Type	Two Way Left Turn Lane					
२T Channellzed			0			0
anes	1	2	0	0	2	0
Oonfiguration	L	I			T	TR
Jpstream Signal		0			0	
Minor Street	Westbound			Eastbound		
Movernent	7	8	9	10	11	12
	L	T	R	L	T	R
Votume	0	0	0	1	0	1
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.25	1.00	0.25
Hourly Flow Rate, HFR	0	0	0	4	0	4
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					$L R$	

Delay, Queue Length, and Level of Service

Approach	NB	SB	Westbound			Eastbound		
Movernent	1	4	7	8	9	10	11	12
Lane Configuration	L						LR	
(vph)	1						8	
\bigcirc (m) (vph)	273						47	
\checkmark / c	0.00						0.17	
95\% queue length	0.01						0.55	
Control Delay	18.2						96.7	
LOS	C						F	
Approach Delay	--	--					96.7	
Approach LOS	-	--					F	

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	
Agency/Co.	$D E A-S S T$
Date Performed	$M D T$
Analysis Time Period	$3 / 27106$
Prow	PM Peak Hour

Project Description EastWest Street: Bird Lane
Intersection Orientation: North-South

SIte Information
Intersection US 93 \& Bird Lane Jurisdiction Analysis Year 2025

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
volume	12	785	0	0	2345	19
2eak-Hour Factor, PHF	0.92	0.92	1.00	1.00	0.90	0.90
Fourly Flow Rate, HFR	13	853	0	0	2605	21
${ }^{\text {sercent }}$ Heavy Vehicles	0	--	--	0	--	-
Median Type	Two Way Left Tum Lane					
ZT Channelized			0			0
-anes	1	2	0	0	2	0
Oonfiguration	L	T			I	TR
Jpstream Signal		0			0	
Minor Street	Westbound			Eastbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume	0	0	0	11	0	5
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.25	1.00	0.25
Hourly Flow Rate, HFR	0	0	0	44	0	20
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					$L R$	

Delay, Queue Length, and Level of Service

Approach	NB	SB	Westbound			Eastbound		
Moverient	1	4	7	8	9	10	11	12
Lane Configuration	L						$L R$	
\checkmark (vph)	13						64	
C (m) (vph)	165						13	
v/c	0.08						4.92	
95\% queue length	0.25						9.03	
Control Delay	28.7						2345	
LOS	D						F	
Approach Delay	--	--					2345	
Approach LOS	--	--						

<ights Reserved tcs? $900^{1 \mathrm{M}}$

TWO-WAY STOP CONTROL SUMMARY

General Information			Site Information			
Analyst	$D E A-S S T$		Intersection		US 93 \& Bird Lane	
Agency/Co.	$\begin{aligned} & M D T \\ & 3 / 27 / 06 \end{aligned}$		Jurisdiction		2025 with Site	
Date F'erformed			Analysis Year			
Analysis Time Period	PM Peak Hour					
Project Description						
EastWest Street: Bird Lane			North/South Street: US 93			
Intersection Orientation: North-South			Study Period (hrs): 0.25			
Vehicle Volumes and Adjustments						
Major Street	Northbound			Southbound		
पovement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume	12	785	0	0	2345	21
Seak-Hour Factor, PHF	0.92	0.92	1.00	1.00	0.90	0.90
Tounly Flow Rate, HFR	13	853	0	0	2605	23
Jercerit Heavy Vehicles	0	-	-	0	-	-
Median Type	Two Way Left Tum Lane					
२T Channelized			0			0
-anes	1	2	0	0	2	0
Sonfiguration	L	T			T	TR
Jpstream Signal		0			0	
Minor Streat	Westbound			Eastbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume	0	0	0	11	0	5
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.25	1.00	0.25
Hourly Flow Rate, HFR	0	0	0	44	0	20
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (\%)	0			0		
Fiared Approach	N				N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay Quaue Length, and Leval of Service

Approach	NB	SB	Westbound			Eastbound		
Movernent	1	4	7	8	9	10	11	12
Lane Configuration	L						$L R$	
\checkmark (vph)	13						64	
$\mathrm{C}(\mathrm{m})$ (vph)	165						13	
v / c	0.08						4.92	
95% queue length	0.25						9.03	
Control Delay	28.7						2345	
LOS	D						F	
Approach Delay	--	-					2345	
Approach LOS	--	-					F	

General Information			Site Information			
Analyst	DEA-SST		Intersection		US 93 \& Cochise Drive	
Agency/Co.	$\begin{aligned} & \text { MDT } \\ & 11 / 2012004 \end{aligned}$		Jurisdiction		$\text { Existing - } 2004$	
Date Performed			Analysis Year			
Analysis Time Period	PM Peak Hour				$\text { Existing - } 2004$	
Project Description						
Eastwest Street: Cochise Drive			North/South Street: US 93			
Intersection Orientation: North-South			Study Period (hrs): 0.25			
Vehicle Volumes and Adjustments						
Valor Street	- Northbound			Southbound		
Movernent	1	2	3	4	5	6
	L	T	R	L	T	R
Volume	3	650	0	0	1765	10
${ }^{\text {Joak-Hour Factor, PHIF }}$	0.88	0.88	1.00	1.00	0.93	0.93
†ourly Flow Rate, HFR	3	738	0	0	1897	10
${ }^{\text {Percent Heavy Vehicles }}$	0	-	\cdots	0	-	-
Median Type	Raised curb					
2T Channelized			0			0
-anes	1	2	0	0	2	1
Sonfiguration	L	T			r	R
Jpstream Signal		0			0	
Minor Streat	Westbound			Eastbound		
	7	8	9	10	11	12
	L	T	R	L	T	R
Volume	0	0	0	3	$\overline{0}$	4
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.58	1.00	0.58
Hourly Flow Rate, HFR	0	0	0	5	0	6
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					$L R$	

Delay, Queue Length, and Level of Service

Approach	NB	SB	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L						$L R$	
\checkmark (vph)	3						11	
C (m) (vph)	316						66	
v/c	0.01						0.17	
95\% queue length	0.03						0.56	
Control Delay	16.5						70.2	
OS	C						F	
Approach Delay	--	--					70.2	
4 Aproach LOS	--	\cdots					F	

rights Reserved

TWO-WAY STOP CONTROL SUMMARY

Delay, Queue Length, and Level of Service

Approach	NB	SB	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L						LR	
v (vph)	4						14	
$\mathrm{O}(\mathrm{m})(\mathrm{vph})$	180						24	
v / c	0.02						0.58	
95\% queue length	0.07						1.75	
Control Delay	25.5						280.7	
LOS	D						F	
Approach Delay	--	--					280.7	
Approach LOS	--	-					F	

<ights Reserved

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst
Agency/Co.
Date Performed
Analysis Time Period
Project Description

Project Description
East/West Street: Wornath Road
Intersection Orientation: North-South

Site Information
Intersection US 93 \& Womath Road
Jurisdiction
Analysis Year Existing - 2004

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Yovernent	1	2	3	4	5	6
	L	T	R	L	T	R
volume	4	790	0	0	1855	1
${ }^{3}$ eak-Hour Factor, PHF	0.92	0.92	1.00	1.00	0.96	0.96
Tourly Flow Rate, HFR	4	858	0	0	1932	1
${ }^{\text {sercent }}$ Heavy Vehicles	0	-	--	0	-	-
Median Type	Two Way Left Turn Lane					
₹T Channelized			0			0
-anes	1	2	0	0	2	0
Sonfiguration	L	T			T	TR
Jpstream Signal		0			0	
Minor Street	Westbound			Eastbound		
Movernent	7	8	9	10	11	12
	L.	T	R	L	T	R
Volume	0	0	0	3	0	1
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.50	1.00	0.50
Hourly Flow Rate, HFR	0	0	0	6	0	2
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					$L R$	

Approach	NB	SB	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
-ane Configuration	L						$L R$	
v (vph)	4						8	
$2(\mathrm{~m})(\mathrm{vph})$	309						39	
/c	0.01						0.21	
95\% queue length	0.04						0.66	
Sontrol Delay	16.8						119.7	
OS	C						F	
Approach Delay	-	-					119.7	
tpproach LOS	-	-					F	

TWO-WAY STOP CONTROL SUMMARY

General Information		Site Information		
Analyst	DEA-SST	Intersection	US 93 \& Womath Road	
Agency/Co.	Jurisdiction			
Date Performed	MDT	Analysis Year	2025	
Analysis Time Period	PM Peak Hour			
Project Description				
EastWest Street: Wornath Road	North/South Street: US 93			
Intersection Orientation: North-South	Study Period (hrs): 0.25			

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
hovement	1	2	3	4	5	6
	L	T	R	L	1	R
volume	5	955	0	0	2465	1
${ }^{3}$ eak-Hour Factor, ${ }^{\text {PHF }}$	0.92	0.92	1.00	1.00	0.96	0.96
Fourly Flow Rate, HFR	5	1038	0	0	2567	1
Sercent Heavy Vehicles	0	--	-	0	--	--
Mediari Type	Two Way Left Tum Lane					
VT Channelized			0			0
-anes	1	2	0	0	2	0
Sonfiguration	L	T			T	TR
Jpstream Signal		0			0	
Minor Street	Westbound			Eastbound		
Movement	7	8.	9	10	11	12
	L	T	R	L	T	R
Volume	0	0	0	4	0	1
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.50	1.00	0.50
Hourly Flow Rate, HFR	0	0	0	8	0	2
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay, Queue Len Approach	vel of	SB	Westbound			Eastbound		
Movernent	1	4	7	8	9	10	11	12
Lane Configuration	L						LR	
v (vph)	5						10	
$\underline{C(m)}$ (vph)	174						11	
v/c	0.03						0.91	
95\% queue length	0.09						1.88	
Control Delay	26.3						678,3	
LOS	D						F	
Approach Delay	--	-					678.3	
Approach LOS	-	-					F	

TWO-WAY STOP CONTROL SUMMARY

General Information	Site Information
Analyst DEA-SST	intersection US 93 \& Hayes Creek Road
Agency/Co. MDT	Jurisdiction
Date F'erformed 11/2012004	Analysis Year Existing - 2004
Analysis Time Period PM Peak Hour	
Project Description	
East/West Street: Hayes Craek Road	North/South Street: US 93
Intersection Orientation: North-South	Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
volume	1	655	1	4	1755	30
${ }^{\text {S eak-Hour Factor, PHF }}$	0.91	0.91	0.91	0.96	0.96	0.96
fourly Flow Rate, HFR	1	719	1	4	1828	31
Sercerit Heavy Vehicles	0	--	-	0	--	--
Median Type	Two Way Left Tum Lane					
2T Channelized			0			0
-anes	1	2	0	1	2	0
Sonfiguration	L	r	TR	L	T	TR
jpstream Signal		0			0	
Minor Street	Westbound			Eastbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Votume	1	0	3	15	0	1
P.eak-Hour Factor, PHF	0.50	0.50	0.50	0.70	0.70	0.70
Hourly Flow Rate, HFR	2	0	6	21	0	1
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		LTR			LTR	

Approach	NB	SB	Westbound			Eastbound		
Moverrent	1	4	7	8	9	10	11	12
Lane Configuration	L	L		LTR			LTR	
v (vph)	1	4		8			22	
$\mathrm{C}(\mathrm{m})$ (vph)	330	891		202			26	
v/c	0.00	0.00		0.04			0.85	
95\% queue length	0.01	0.01		0.12			2.63	
Oontrol Delay	15.9	9.1		23.6			341.1	
-0S	C	A		C			F	
Approach Delay	-	-	23.6			341.1		
tpproach LOS	--	\cdots	C			F		

[^1]
TWO-WAY STOP CONTROL SUMMARY

General Information

| Analyst | DEA-SST | In |
| :--- | :--- | :--- | :--- |
| Agency/Co. | MOT | |
| Date Performed | $3 / 27106$ | An |
| Analysis Time Period | PM Peak Hour | |
| Project Description | | No |
| East/West Street: Hayes Creak Road | St | |
| Intersection Orientation: North-South | | | Slte Information Intersection US93\& Hayes Creak Road Jurisdiction Analysis Year 2025 North/South Street: US 93 Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
volume	1	790	1	6	2335	45
${ }^{3}$ eak-Hour Factor, PHF	0.91	0.91	0.91	0.96	0.96	0.96
tourly Flow Rate, HFR	1	868	1	6	2432	46
Jercent Heavy Vehicles	0	-	-	0	--	--
Median Type	Two Way Lefi Turn Lane					
2T Channelized			0			0
-anes	1	2	0	1	2	0
Sonfiguration	1	T	TR	L	T	TR
Jpstream Signal		0			0	
Minor Street	Westbound			Eastbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume	1	0	5	25	0	1
Peak-Hour Factor, PHF	0.50	0.50	0.50	0.70	0.70	0.70
Hourly Flow Rate, HFR	2	0	10	35	0	1
Percent Heavy Vehicles	0	0	0	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		LTR			LTR	

Delay, Queue Length, and Level of Service

Approach	NB	SB	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	L		LTR			LTR	
v v vph$)$	1	6		12			36	
$\mathrm{C}(\mathrm{m})$ (vph)	189	784		143			7	
v / c	0.01	0.01		0.08			5.14	
95\% queue length	0.02	0.02		0.27			5.91	
Control Delay	24.1	9.6		32.5			2886	
LOS	C	A		D			F	
Approach Delay	--	--	32.5			2886		
Approach LOS	-	--	D			F		

<ights Reserved
rcseom ${ }^{\top} \mathrm{M}$
Version 4.11

SHORT REPORT

Senaral Information		Sit
Analyst	DEA-SST	Int
Agency or Co.	MDT	
Jate Performed	$11 / 20 / 2004$	Are
Fime Period	PM Peak Hour	Juin

Site Information
Intersection
Area Type
Jurisdiction
Analysis Year

US 93 \& Blue Mountain
Road
All other areas
Existing - 2004

Volume and Timing Input						WB								
			EB						NB			SB		
			LT	TH	RT									
Vum. of Lanes			1	0	1	0	0	0	1	2	0	0	2	1
-ane group			L		R				L	T			T	R
volume (vph)			80		90				30	715			1755	85
\% Heary veh			0		0				0	0			0	0
गHF			0.82		0.82				0.96	0.96			0.92	0.92
Actuated (P/A)			A		A				P	P			\bar{P}	P
Startup lost time			2.0		2.0				2.0	2.0			2.0	2.0
Ext. eff.green			3.0		3.0				3.0	3.0			3.0	3.0
Arrival type			3		3				3	3			3	3
Jnit Extension			2.0		2.0				2.0	2.0			2.0	2.0
Sed/Bike/RTOR Volume			0		0	0						0		0
-ane Width			12.0		12.0				12.0	12.0			12.0	12.0
Sarking/Grade/Parking			N	0	N	N		N	N	0	N	N	0	N
Sarking/hr														
3us stops/hr			0		0				0	0			0	0
Jnit Extension			2.0		2.0				2.0	2.0			2.0	2.0
Whasing	EB Only	02		03		04	NS Perm		06		07		08	
Timing	$\mathrm{G}=12.0$	G =$\mathrm{Y}=$		$\mathrm{G}=$		$\mathrm{G}=$	$\mathrm{G}=55.0$		G $=$		G $=$		G =	
	$\bar{Y}=5$					$Y=$	$\mathrm{Y}=8$		$Y=$		$Y=$		$Y=$	
Juration of Analysis (hrs) $=0.25$									Cycle Length $\mathrm{C}=80.0$					

Juration of Analysis (hrs) $=0.25$

Lane Group Capacity, Control Delay, and LOS Determination

SHORT REPORT

Seneral Information			
Analyst	DEA-SST	Site Information	
Agency or Co.	MDT	Intersection	US $93 \&$ Blue Mountain
Jate Ferformed	$6 / 27 / 06$	Road	
rime Feriod	$P M$ Peak Hour	Area Type	All other areas

Volume and Timing Input

Juration of Analysis (hrs) $=0.25$
Lane Group Capacity, Control Delay, and LOS Determination

和

Fer
吴

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{} \& \multirow[b]{3}{*}{$\substack{888 \\ \text { ar } \\ \text { ar } \\ \text { and } \\ \text { and } \\ 888}$
888} \& \multirow[b]{3}{*}{4
$\stackrel{4}{u}$
u
u} \& \multirow[b]{3}{*}{} \& \& \multirow[b]{3}{*}{} \& \multirow[t]{2}{*}{} \& \& \& \& JAMES R SCHLEHUBER
DAVID K \& DIANA LEE CLARK
ELOISE A SHAFFNER \& $$
\begin{aligned}
& 840 \text { 17TH ST, APT. } 312 \\
& 5655 \text { US HIGHWAY } 93 \text { S } \\
& 5605 \text { US HIGHWAY } 93 \text { S }
\end{aligned}
$$ \& \& cit \&

\hline \& \& \& \& comen \& \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{$$
\substack{\text { geticn} \\ \text { and } \\ 2055}
$$} \& \& \& Mal \& mssoon \& \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{cisemem}

\hline \& \& \& \& \& \& \multirow[b]{3}{*}{} \& \& \& \multirow[t]{2}{*}{$\begin{array}{ccc}5185 \text { US HIGHWAY } 93 & 59804 \\ \text { US HIGHWAY } 93 & 59804 \\ \text { US HIGHWAY } 93 & 59804\end{array}$} \& MICHIGAN MOBILE HOME PARKS LLC \& cisme \& comel \& \&

\hline \& \& \& \& \& \multirow[t]{5}{*}{Commeatal

Comeal
commeal} \& \& \& \multirow[t]{2}{*}{} \& \& \multirow[t]{2}{*}{} \& \& \& \&

\hline em \& ${ }_{88} 8$ \& ${ }_{\text {pt }}$ \& \& \& \& \& \& \& \& \& \& \& ¢ \&

\hline \multirow{4}{*}{${ }^{2023539 m}$} \& \multirow{4}{*}{890} \& \multicolumn{2}{|l|}{\multirow{4}{*}{}} \& \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { cir } \\
& \text { ar } \\
& \text { un }
\end{aligned}
$$} \& \multirow[t]{3}{*}{}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \multirow[t]{2}{*}{$\underset{\substack{[1.11) \\(1.10)}}{\substack{10 \\ \hline}}$} \& \multirow[t]{2}{*}{} \& \& \& RITA L MEDLINGER TRUSTEE
MICHAEL \& SANDRA ZARBOLIAS \& \multirow[t]{2}{*}{} \& Mssoma \& \multirow[t]{2}{*}{} \&

\hline \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{${ }_{89}^{891}$} \& \multirow[t]{2}{*}{u
u} \& \multirow[t]{2}{*}{$1-122,1-123$

$126,1-127,1-128,1-129$} \& \& \multirow[t]{3}{*}{Commercial} \& \& \& \& \multirow[t]{2}{*}{$$

$$} \& \multirow[t]{2}{*}{NEIL R \& VIRGINIA MILLER

PB \& J INVESTMENT LLC - WES \& CATHY JO FINCH
BOYD \& CAROL SODERMAN} \& \& \multirow[t]{2}{*}{} \& \&

\hline \& \& \& \& \& \& \multirow[t]{2}{*}{} \& \& \& \& \& \& \& \& Steme

\hline ${ }^{2020535 m m}$ \& 892 \& Rt \& ${ }^{1.124 .1255}$ \& \& \& \& \multirow[t]{2}{*}{} \& \& \& \& coicle \& , missout \& \multirow[t]{2}{*}{} \& Stion

\hline \& \& ${ }^{\text {u }}$ \& \& \& Commecial \& \multirow[t]{2}{*}{} \& \& $\underbrace{1020}_{\substack{1956 \\ 1020}}$ \& saiolichuras \& \& cin \& \& \& \multirow[t]{2}{*}{}

\hline cose \& \& $\stackrel{\text { Rab }}{4}$ \& ${ }_{\substack{\text { a }}}^{\substack{1.1200}}$ \& \& \& \& \multirow[b]{2}{*}{} \& \multirow[b]{2}{*}{} \& \& \& croushtowar \& cmsoma \& \&

\hline ${ }^{2021230 m}$ \& ${ }^{898}$ \& ${ }_{\text {Rt }}$ \& ${ }^{1155.1236}$ \& \& \multirow[t]{2}{*}{Residential
Public Road
Field Access} \& \multirow[t]{2}{*}{${ }_{(0,1.159}^{(1.150}$} \& \& \& \& \multirow[t]{2}{*}{O'DEANE JR \& EVELYN J MUIR STERLING PROPERTIES LLC
MCCUE MANAGEMENT LLP} \& \& mssoula \& MT \&

\hline \& (en \& $\stackrel{\text { u }}{\substack{4 \\ u}}$ \& \& \& \& \& $\substack { \text { 2ness } \\ \begin{subarray}{c}{27350 \\ 23,5020{ \text { 2ness } \\ \begin{subarray} { c } { 2 7 3 5 0 \\ 2 3 , 5 0 2 0 } } \end{subarray}$ \& $\underset{\substack{680 \\ \text { and } \\ 2080}}{\substack{080}}$ \& NONE
HIGHWAY 9359804 \& \& 1729 ELDON LN \#1 \& MISSOULA
MISSOULA \& ${ }_{\text {wT }}^{\text {wT }}$ \&

\hline
\end{tabular}

ACCESS CONTROL PLANNH 0002(606), CN 4776 US 93 N\&S LOLO TO MISSOULA\qquad											Access locations are subject to engineering feasibility review and design Comments		
$\begin{aligned} & \text { * From the Instit } \\ & \text { ** Assumed lega } \\ & \hline \text { Parcel ID } \end{aligned}$	RP (mp)	sude	${ }^{\text {Access }}$ Tjpe	"E Land Use codes*	Quantiy	unit.		Parcel Address	Access Classfifation	Recommendation			
			Residential		20	ou					Comments Access to residence		
${ }^{1.43}$	88.80	u.	Commerial	-	-	-	\cdots	10225 S HHGFWWY 93 S987	mememediae	No Dired Aceess	Acess in valey Giove oive		
NA	8490	4	Public	-	-	-	-	valee Give or	memeesalae	open	Paved appoase wiuts sop sign		
1.45	88.93	u	Commercial	-	-	-	-	ushlicwar 93 S9at	mememeate	No Direat Aceess			
${ }^{1.46}$	8497	4	Commerial	-	-	-	-		memeedale	No Dined Aceess			
${ }^{1.47}$	${ }^{8502}$	4	Fied	-	-	-	-	Nove	mememedial	No Dited Aceess			
1.48	${ }^{8507}$	4	Field	--	-	-	-	Nove	mememedial	No Died Aceess			
1.49			Residenial		10	ou	10	Nove	Inememeata	${ }_{\text {open }}$			
${ }^{1.491 .50}$	${ }_{8528}$		Resisentiad		1.0	ou	10			open			
1.51	${ }^{8529}$	${ }^{\text {Rt }}$	Fied	--	-	\cdots		NoNe	mememeate	Close	mutipe aceses of feid		
1.51	8545	-	Fread	-	-	-	<10	NONE	miemeediale	open	Acesss f feded		
1.52	${ }^{8548}$	-	Field	-	-	\cdots	\cdots		Imememeate	No Dited Aceass			
NA	8550	u	Puble	-	-	-	-	Birclane	mememedale	Close	Oupreat inesesesios apposach		
NA	85.62	u	Public	-	-	-	-	Birctane	mememedial	Open			
1.53	${ }^{5563}$	u.	Resisenial	-	-	-	-	${ }^{23588 \mathrm{BrOLN}} 5 \mathbf{5 9 8 7}$	mememefile	No Dited Access			
1.54	85.50	u	Resisential	-	-	-	-	H1008RRLN 5987	memeedale	No Dieded Aceess	Access via irid Lane		
1.55	85.9		Resisenial	-	-	-	-		mememediale	No Diteat Aceess	Access via iriclane		
1.56	${ }^{85} 73$		Residential	-	-	-	-	${ }^{\text {sooobrroLN } 5987}$	Inemeedale	No Diteat Aceess	Access via irit Lane		
1.57	85.79	u	Resisiential	-	\cdots	\cdots	-	Esforroln sear	mememediae	No Dined Aceess	Acess via irictane		
${ }^{1.58}$	${ }^{8583}$	u	Resisential	-	\cdots	-	-		Imemediale	No Dited Aceass	Aceses vibiriclane		
1.59	85.96	u	Residential	-	-	-	-	${ }^{80008 B r o L ~} 58987$	mememedial	Nobreathacess			
${ }_{1}^{1.60,1.609}$	8609	ut	Residential	-	-	-	-		Rual				
			Resisemial	-	-	-	-	Birterooor foi sear			New acesss vairid lane		
${ }_{\text {1.62, } 163}$	8825		Feld	-	-	-	-	NONE	Ruwal	Noobieataceass	Ohereste ot tritoad		
			Fied	\cdots	-	\cdots	<10	NONE			Aceass coconemation aea		
			Field	\cdots	\cdots	\cdots	<10	NoNe			Access 10 consenation area		
${ }^{1.164}$	${ }^{8653}$		${ }_{\substack{\text { field } \\ \text { Feid }}}$	\cdots			\cdots	None	${ }_{\text {Rual }}^{\text {Rual }}$	No Dieen Acaess	Acess coocsesemion atea		
$\begin{array}{\|l\|} \hline 1.65 \\ \hline 1.66 \end{array}$	$\begin{array}{\|l\|} \hline 8703 \\ \hline 8702 \\ \hline 8 \end{array}$	${ }_{\text {u }}^{\text {u }}$	$\begin{gathered} \hline \text { Field } \\ \hline \text { Field } \end{gathered}$	\cdots	\cdots	\because	\cdots		$\begin{aligned} & \hline \text { Rural } \\ & \hline \text { Rural } \end{aligned}$	No Direct Acces			
1.67	${ }^{87710}$	Rt	Fied	-	-	-	<10	NoNE	Ruad	open			
NA	87.13	Rt:	Fied	-	-	-	\cdots	NoNE	Ruad	ciose			
NA	87.19	4	Public	-	-	-	-	Coonse ome	Rual	Open			
NA	8722	-	Fied	-	-	-	-	NoNE	Rual	Ciose			
NA	87.55	Rt	Fied	-	-	-	-	NONE	Rual	Close	Imomapulut		
1.68	87.13		Residemial	-	-	-	-	7125 Sthlicwner 335	Rual	No Dited Aceess	Access sa coonise olive		
1.69	8723		Resisenial	-	-	-	-		Rual	No Dited Aceess	Access viacocorise Dive		
1.70	8729	,	Resisenial	\cdots	-	-	-		Rual	No Dined Aceess	Aceess vicacochise oive		
${ }^{1.71}$	8736	4	Residenial	\cdots	-	-	-		Rual	No Dined Acoess	Aceas via cootise oive		
1.72	${ }^{8746}$	${ }^{\text {Rt }}$	Field	-	-	-	-	None	Ruad	No Dieded Aceass	Oners side of taiload		
${ }^{1.73}$	87.51	${ }^{4}$	Residenitial	-	-	\cdots	-	Cochlis P R Soea	Rual	No Dined Aceess	Access vicacoisis oive		
${ }_{1}^{1.74}$	87.61	u	Residential	-	\cdots	\cdots	-	NoNe	Rual	No Dited Aceess	Access va coonise ofive		
${ }^{1.75}$	${ }^{8770}$	$\stackrel{4}{4}$	Residenial	-	-	-		8iterroor ro sseat	meemeaiale	${ }_{\text {cose }}$	Aceass vinenew senver oratit Propenery 1 -78		
1.76	87.71	R:	Feed	-	-	-	< 10		mememedia	open	Acesss. feid		
${ }_{1.78}$	${ }_{8777}$	4	Commerial		0.5		${ }_{1}$	\%osimitreootro ssan	Imemeadiale	Open	Actess		
1.79	${ }^{8778}$	Rt	Commecial		${ }_{2}{ }^{4}$	KSF	${ }^{22}$	Gisousthictur 935 seas	Imemeedala	open	Accesss obusiness center		
1.90	8779	4	Resisenial	--	-	\cdots	-	Cos5 irtreroot ro sear	Imemedatae	Close			
NA	8784	4	Public	-	-	\cdots	-	Hapes creek Ras	mememedial	open	Paved appooar with sop sign		
1.82	87.55	Rt	Residential	\cdots	\cdots	-	-	6mous hlicmar 935 Sepa	meremedial	Cise	Multipe ecesess wit poor sibltisiance		
$\frac{1.82}{1.82}$	$\begin{array}{\|l} 87.87 \\ 88790 \end{array}$	${ }_{\text {RL: }}^{\text {R. }}$	${ }_{\text {Residerial }}$	${ }_{20}$	$\frac{-}{150}$	$\frac{-}{\text { ou }}$	75			$\begin{aligned} & \hline \text { Close } \\ & \hline \text { Open } \end{aligned}$	Mutive ecesss with oors sidud disance		
${ }_{1.83}$	${ }_{8789}$	${ }^{4}$	Residential	,	5	\cdots	-	Cooo Alves reeke ro ssou	Imememedale	Cose	Access a antaeses reeer R oad		
1.84	${ }^{8792}$	Rt:	Commercial	151. Mrivarenowse	5.0	ksF	${ }^{13}$		meemediale	open	Access stosorae tealily		
1.85	8785	u	Residential	-	-	\cdots	-	600 AAVESCREEER RO 59804	mememeate	Noobied Aceess	Access va Hayes creer Road		
			Fied	- - -	-	\cdots	<10	NoNE			Access		
${ }^{1.86,187}$	${ }^{8798}$	u	Resicential		1.0	ou	10			New	Access ioresisience		
1.87	87.9	u	Resisenial	--			--	5975 Us WWY 935 speat	memeetiale	close			
$\underbrace{\substack{\text { a }}}_{\substack{1.881 .890 \\ 1.00,193}}$	${ }_{87} 8$	R2	Commercial	110 Seneal ligtu tudstral	2.	KSF		5787 HW 9385 5904	mememade	open	Access obusiness		
			Commerial	710 Seneata fifce euiling	2.0	ksF	22	5780 HW 9385 59094			Aceest obsiness semer		
			${ }_{\text {Commerial }}$	${ }^{630}$ cinic	2.0	${ }^{\text {ksF }}$	${ }^{63}$				Acesestover tinice		
${ }_{1.911 .192}$					¢		${ }^{48}$		mememediat	open	Acess of it thep		
	${ }^{8803}$				${ }_{1}^{1.0}$	${ }_{\text {ou }}$	10	G7198ाTERROOT Re 590a					
${ }^{1.193}$	8805	Rt	Commerial					S500 Us Hur 93 590e3	Inememediae	${ }^{\text {cowe }}$			
		Rt	Commeral	943 Aumomolie Parss Sesice	3.0	kSF	${ }_{48}$	5500 SHur 93 59903					
1.94	8806880788.		Commeicial	830 furivive Soioe	5.0	ksF	${ }^{25}$						
1.95					Commerial	591 Lodseferiemal OTganazation	250.0	Nembess	${ }_{73}$		memeameaie	Open	Accesss in new sharea aceess wint Popeory 1.93
1.95	88.12 4 8.08 R2:		Commerial		-	--	--	5995 SHIGHWMA 93 5904	memeediale	close	mutipe ecaess		
1.94, .966			Commecial	890 Funiures Store	5.0	KsF	25		memeediae		Acasest obsinsess		
			Resiemenial		1.0	${ }^{\text {ou }}$	10	5 590us twr 93 ssan					
1.97	${ }^{88.13}$	R.	Residential		1.0	ou	10		mememedial	open	Access tosesiderene		

ACCESS CONTROL PLAN NH 0002(606), CN 4776 US 93 N\&S LOLO TO MISSOULA											อ\%	
											Comments	
Pacell 10	RP (MP)	side	Access Tppe	TEE Land Use code ${ }^{\text {* }}$	Quantiy	Unit.		Parcel Adidess	Access Classfitation	Recommenataion		
	${ }^{8816}$	4.	Resisential		1.0	ou	10		mememedae	open		
			Resisential		1.0	ou	10				Access to residence **	
			Resisiential		1.0	du	10				Access to residence **	
			Resisential		1.0	ou	10				Access to residence **	
	8823	4	Resisential		1.0	ou	10		mememedae	open		
			Resisential		1.0	ou	10	505 S SHICHWQ 935 Separ			Acesstiostestere"*	
			Residential		1.0	ou	10					
			Residenial		1.0	ou	10				Acesss oresisience**	
NA	${ }^{89} 56$	u	Public	--	-	-	-	Womant Read	memediale	open	Paeva appoash witssop sign	
1.102	${ }^{8835}$	Rt	Feid	-	\cdots	-	-	NoNE	memedae	No Diveed Aceass		
1.103	88.38	4	Feid	\cdots	-	-	-	Nove	miemediale	No Dieataceess		
${ }^{1.104}$	88.56		Field					NoNE	mememeiale	No Dited Access	Acter	
${ }^{1.105}$	88.55	L.	Residental	-	\cdots	\cdots	-	NONE	mememedae	No Dieatataess	Access vav womat Road	
${ }^{1.106}$	88.58		Residential	--	-	-	-	5300 worvartro speat	mememata	No Dieted Aceass	Access vavomat Road	
${ }^{1.107}$	88.64		Commecial	${ }^{\text {843 a ulumolie }}$ Pats Sales	1.0	KsF	62		mememedie	open	Actesstobusisess	
${ }^{1.108}$	88.8	u.	Commercial	${ }^{\text {814 Specaly }}$ Reailicener	1.0	ksF	${ }_{4}$	5175 Us HIGHMar 93 Sepa	memeedare	open		
${ }^{1.109}$	88.69	u.	Commerial	110 Seneal Light houststal	20	ksF	${ }^{14}$		memematae	open	Acaess bobsiness	
${ }^{1.110}$	88.75		Commecial	151 MiNiWareouse	5.0	KsF	${ }^{13}$		memeedale	open	Nees shaed a ceess with Property 1.111	
${ }^{1.111}$	88.77	4.	Commecial					Us Hichwar 3^{5909}	mememeate	close	Access vi nees shaese accessswith R.opery 1.110	
	${ }^{8.82}$	u	Commerial	710 Seneara ofice Euluing	2.0	KsF	22	Us Hichwar 9 Ssead	nemeedae	open	Actassiobsuness	
			Commerial		20	${ }_{\substack{\text { KsF } \\ \text { KsF }}}$	14					
			Commerial	110 cenera Light hudustral	2.0	KsF	$\stackrel{14}{14}$		Inemediale	open		
$\left\lvert\, \begin{gathered}1-112,1-113 \\ 1-114,1-117 \\ 1-118,1-119\end{gathered}\right.$	${ }^{8876}$	Rt	${ }_{\text {Resemd }}^{\text {Residenial }}$		1.0	${ }^{\text {du }}$	$\stackrel{10}{10}$					
			Residemala		1.0	ou					Recommended right-in, right-out access Recommended right-in, right-out access	
			Commerial	${ }^{30}$ F funiure Stioe	8.0	ksF	4					
			Commecial				<10				Recommened tightr, rightout aceess	
			Commerial	938 Sulumolie Parss Sesenie	3.0	ksF	-					
NA	${ }_{88} 88$	4	Puble	--	-	\cdots	-	Bue womania foad	medatas	open		
	8902	R.	Fied		-			NoNE	mememata	open	Acesss fifld	
			Residenial		1.0	ou	10					
			Resisemial		${ }_{8}^{10}$	${ }_{\text {KSE }}^{\text {ou }}$	10				Access to residence	
			Commerial	830 Fumiure Store	$\stackrel{8}{8 .}$	${ }_{\text {KsF }}$	$\stackrel{40}{ }$					
			Commeral	${ }^{933}$ Autumobil Pars S Sesice	3.0	ksF	${ }^{48}$					
${ }^{1.120}$	88.93	u.	Commecial	-	-	-	-	5008 UUE MTTNOO 5989	memeediae	Nootreat Acesess	Acasess business	
${ }^{1.121}$	8904		Commerial	-	-	-	-	NONE	mememear	Noo ireat Aceess	Acesss vi Bue Mememan R Road	
${ }^{1.122}$	8910	u	Fied	--	-	\cdots	<10	UsHHCHWar 93 5909	memediale	open	Access tor cictr minienance	
${ }^{1.124,1-125}$	89.7	Rt			${ }_{10}^{10}$	$\underset{\text { KSF }}{\text { KSF }}$	16		mediale	open	Acaessto business	
	89.19	4	Commeral	Saza Alumoile caie Cener		KSF	$\begin{array}{r}16 \\ \stackrel{10}{10} \\ \hline 1\end{array}$		mememedae	New	Recommended ightim, inghout shaed aceass	
			Commerial	---	-	-	<10				Recoumeneded ingtin. inghtou shaed aceass	
			Resisemial		1.0	${ }_{\text {ou }}^{\text {ous }}$	10				Recoommened inghti. .ightout hateed aceess	
			${ }_{\text {comeral }}^{\text {Comal }}$		${ }_{10}^{10}$	¢ ${ }_{\text {KSF }}^{\text {Du }}$	10					
	${ }^{8923}$	4 ${ }^{\text {c }}$	Commerial		10	\checkmark	10		memeedae	close		
			Residemial	-	-	\cdots	-					
			Commerial	-	-	\cdots	-				Access via new access Access via new access	
			${ }^{\text {R }}$		-	-	-	4295 Bitreroot ro sean				
${ }^{1.130}$	${ }_{8927}^{8926}$				1.0	ou	10		memematae	open		
${ }^{1.131}$		L.	$\underset{\text { comereal }}{\substack{\text { coid }}}$	--	\cdots	\cdots	<10	Ushichwar 93 ssead	mememadae	open		
${ }^{1.133}$	89.6	R.		-	-	\cdots			mememedial	No Dieataceess		
${ }^{1.1 .32 .1 .134}$	8979		Field	-	-	\cdots	-	UsHHCHWar 93 spea	mememeate	New		
${ }^{1.134}$	$\underbrace{\text { 8988 }}_{\text {89,93 }}$	L	Commeical	-	-	-	-		mememata	close		
${ }^{1.134}$		u.	Fied	-	-	-	-	NoNe	mememata	close		
${ }^{1.135,1.136}$	8981			-- -	\cdots	-	<10		memediale	${ }^{\text {open }}$		
					1.0	ou	10	ushlichwar 93 s spea				
${ }^{1.1 .37}$	${ }_{\substack{9021}}^{9036}$	t. Comnereal L. Commerial 		1551 Mniwarenouse	10.0	ksF	${ }^{25}$	USHISHWM Y93 59094	mememalae	open	Acaesis sosoaje fealiy	
${ }_{\text {1.1.38 }}^{1.129}$					\cdots	\cdots	19		Inemediale	Noo ireet Access		
${ }^{1.139}$	${ }^{8326}$	Rt	$\xrightarrow{\text { Resisentala }}$ Residenid		20.0	${ }^{\text {ou }}$	${ }^{191}$	US Huthwaves soar	miemeedaie	open	Aceasssua ousisidenenes	
${ }_{1}^{1.139}$	${ }_{8330}^{8330}$		$\begin{array}{\|c\|c} \hline & \text { Commercial } \\ \hline & \text { Residential } \\ \hline \end{array}$		20.0	${ }_{\text {ous }}$	${ }^{191}$	ushictuwar 9 sear	Inememeiale	open		
1.140 1.141 i_{1}				2.0	$\begin{aligned} & \text { KsF } \\ & \hline \text { Du } \\ & \hline \end{aligned}$	${ }_{4}^{8}$		Inemediae	${ }_{\text {Open }}^{\text {Open }}$	Acasess Lususines		
${ }_{1.142}$					${ }_{120}$	Positios	1834	ushligwar 93 sear	meemedaie	open	Accesss ogass sation	
(1.42		足		Commercial	--	\cdots	\cdots	\cdots		mememedale	close	mutipe ecaesses wint aceess va US 12
							${ }^{10}$	USHHGWWar 93 S997	nemedalae	open	cess toture MoT weigh staio	

[^0]: Source: Analysis by David Evans and Associates
 ${ }^{(1)}$ LOS for stop-controlled intersections reported as LOS of the critical movement
 ${ }^{(2)}$ No additional traffic volume on side road with access control recommendations

[^1]: rssongrm
 Copyright 2003 University of Flotida, All Rights Reserved
 Version 4.1

