Helena to Great Falls Bicycle/Pedestrian Path Feasibility Study

Workshop July 9, 2008

Workshop Goals

- Share information
- Gather input
- Discuss next steps

Corridor identification

Route segmentation

Implementation Strategies

Conclusions

Next Steps

- Study requested by Senate Highways and Transportation Committee
- Feasibility only----no funding commitments
- MDT will report to Committee prior to 2009 session.
- Project assisted by a Technical Advisory Group (TAG)

Study Goal

Study the feasibility of a bicycle and pedestrian path between Helena and Great Falls within public road right-ofways.

Study Timeline

Helena to Great Falls Bicycle/Pedestrian Path Feasibility Study Timeline																														
												I	Nor	nth	1															—
Task		Dec/Jan			Feb			Mar			Apr				May				June			July			Aug					
	Week	1 2	3 4	l 1	2	3 4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1. Physical Conditions																														
2. Operational Conditions																														
3. Public Lands																														
4. Develop Proposed Pathway Configuration Parame	eters																													
5. Technical Advisory Group Scoping Meeting																														
6. Safety Conditions																														
7. Bicycle and Pedestrian Facilities																														
8. Utilities Research																														
9. Environmental Scan																														
10. Establish Screening Criteria																														
11. Identify Feasible Routes																														
12. Technical Advisory Group and Agency Input																														
13. Public Scoping Meeting																														
14. Develop Preliminary Draft Study Report																														
15. Obtain Public Input																														
16. Develop Final Report																														
17. Study Completion																														

Data-Driven Analysis

- Spatial data
 - -Roadway
 - -Bridge
 - -Other spatial layers
- Environmental information
- Utility information
- Right-of-way (from construction plans)
- Hydrology
- Fish, Wildlife, and Parks fishing access sites & toilet facilities
- Aerial imagery
- Windshield surveys conducted to identify topographic constraints*

*Note: Not an engineering survey

Termini:

Corridor/Route Selection Criteria

Gore Hill and Lincoln Road

Boundary: 20 miles on either side of I-15

Route: Public paved route

Right-of-way: Public right of way along state and county roads

Safety:

Minimize crossovers

Identified Routes

3rd Iteration

Recreation Road

- I-15 (three miles between exits 216 and 219)-this segment is a chokepoint that has safety implications and is included in this study only to preserve corridor continuity
- Chevallier Drive from Lincoln Rd. to Sieben (gravel road, low AADT of 40)
- Note: For purposes of this study, I-15 from Lincoln Road to Sieben is not being considered due to high AADT and high speeds

Recreation Road

- 63.6 mile route along the Little Prickly Pear Creek and Missouri River between Spring Creek Interchange (exit 219) and Gore Hill in Great Falls
- The entire route is paved and existing shoulders are generally under 1 foot the entire length
- Right-of-way (generally 30-60 feet each direction from centerline) varies along the route and owned by the State
- Rural speeds from 55-70 mph and annual average daily traffic is 320-750

Recreation Road

I-15 (3 miles: exit 216 - exit 219)

Example of Chokepoint Not feasible due to safety

- 3 mile route connecting exit 216 (Sieben and Chevallier Drive) to exit 219 (Recreation Road)
- Paved route with an 8-10 foot shoulder except for a 526 foot bridge segment chokepoint with a 2 foot wide shoulder
- Right-of-way is state owned
- Annual average daily traffic is 4,190

Chevallier Drive

- 12.9 mile route along Little Prickly Pear Creek connecting I-15 with Secondary 279 (Lincoln Rd)
- The first 2 miles on north end by Sieben Interchange are paved. The remaining 10.9 miles are gravel
- Right-of-way (generally 20-25 feet each direction from centerline) is owned by Lewis and Clark County
- Annual average daily traffic is 40

Route Segmentation

Route Segmentation

- <u>Segment:</u> A continuous section of road with similar properties (i.e. shoulder widths, rightof-way, topography).
- Segment Types:
 - -Separated path (A)
 - -Widened shoulders (both directions) (B)
 - -Less viable separated path (C1)
 - -Less viable widened shoulders (C2)
 - -Chokepoints: bridges, cliffs, guardrails (D)

Note: Smoothing has been used to determine segment lengths

Route Segmentation

Route Segmentation Type D <u>D - Chokepoints: Bridges, Cliffs, Guardrails</u>

Areas where physical barriers prevent at least three feet of paved shoulder on both sides or any addition of shoulder width or a separated path. Sufficient right-ofway may or may not exist.

Recreation Road

Separated path

Less Viable separated path

Widened shoulders

Less Viable widened shoulders

Chokepoint

NOTE: Entire route shown on posters

Feasibility study only – detailed engineering study required

Route Segmentation

Route Segmentation Type <u>Chevallier Drive</u>

Separated Path

Less viable widened shoulders

Not viable for either path or shoulders

Route Segmentation

Segment & Path Continuity

- A separated path the entire length is not possible due to chokepoints*
- Continuity can be maintained with a mix of segment types (separated paths and widened shoulders) but will require multiple roadway crossings

* The analysis did not include the cost or viability of removing chokepoints

Recreation Road Safety Issues

Number of Roadway Crossings & Segment Lengths

All Possible Separated paths

53 Segments52 Roadway crossings35.6 miles - separated27 miles - 3 feet

Separated paths > 0.5 mile

35 Segments34 Roadway crossings33.5 miles - separated29.1 miles - 3 feet

Separated paths > 1 mile

12 Segments11 Roadway crossings26.5 miles - separated36.1 miles - 3 feet

Widened shoulders entire length

Not possible due to chokepoints

1 Segment 0 Roadway crossings 62.6 miles - 3 feet

Additional Conflict Points

Chokepoints (cliff, wetland, guardrail, bridge)

22 locations 2.8 miles

Independent Utility

Independent utility: A segment of the corridor where a separated path (or widened shoulders) can be developed as a stand-alone amenity with areas that allow for vehicle parking.

- This strategy supports:
 - a phased implementation of path segments within the corridor by "picking low-hanging fruit first"
 - a recreational travel focus

Segment Criteria & Identification

Criteria

- Segments have vehicle parking areas on either end
- Segment lengths are greater than 1 mile

The process of identifying independent utility segments uses two segment types A and B (previously identified) against independent utility criteria

Scenario A1 - Path

Staging/parking areas exist

A1 Path Locations

Scenario A2 – Path

Staging/parking area needed

A2 Path Locations

Scenario B1 - Shoulders

Staging/parking areas exist

B1 Shoulder Locations

Local Access Interchange (1.2 miles)

I-15 underpass

Table Rock fishing access site

Lichen Creek fishing access site (2 miles)

Feasibility study only – detailed engineering study required

Scenario B2 - Shoulders

Staging/parking area needed. (Segment may contain short & narrow bridges)

B2 Shoulder Locations

Wolf Creek Bridge to Table Rock fishing access site (7.1 miles) North and south of Craig Bridge (2.8 miles)

> North of Wolf Creek Bridge (2.5 miles)

> > 32

Feasibility study only - detailed engineering study required

Scenarios & Locations for Chevallier Dr.

Potential separated path: southern 4.4 miles (scenario A2)

Conclusions

•25 miles of additional separated path can be built with a minimal amount of complex engineering solutions

 15 miles of widened shoulders along the existing roadway can be built with a minimal amount of complex engineering solutions

• There are multiple locations where chokepoints and obstacles exist that would limit a contiguous separated path

 A phased implementation of path segments as stand-alone amenities can be accomplished

Note: These assessments would need to be supported by additional engineering analysis

Next Steps

Incorporate Public Comments

Prepare Draft Report

Make Draft Report Available

Incorporate Additional Comments

Finalize and Publish Report

Questions & Comments

Comments may be submitted in writing at the meeting, or by mail to Zia Kazimi, Rail, Transit and Planning Division at PO Box 201001, Helena, MT 59629-1001, or online at <u>www.mdt.mt.gov/mdt/comment_form.shtml</u> by August 11, 2008

