US 93 North Post-Construction Wildlife-Vehicle Collisions and Wildlife Crossing Monitoring and Research on the Flathead Indian Reservation between Evaro and Polson, Montana Quarterly Report 2011-3

by

Marcel P. Huijser, PhD, Research Ecologist
Western Transportation Institute
College of Engineering
Montana State University

Whisper Camel, MSc, Associate Wildlife Biologist Confederated Salish and Kootenai Tribes

And
Jeremiah Purdum
Western Transportation Institute
College of Engineering
Montana State University

A report prepared for the

Montana Department of Transportation

2701 Prospect Drive,

Helena, Montana

November 2011

ACKNOWLEDGEMENTS

The authors of this report would like to thank the Montana Department of Transportation (MDT) for funding this research and the Confederated Salish and Kootenai Tribes (CSKT) for granting access to the reservation for this research. Additional support was provided by the U.S. Department of Transportation through the Research & Innovative Technology Administration. The authors would also like to thank Kris Christensen (MDT Research Section (project manager)) and the other members of the technical panel: Pat Basting (MDT Environmental Bureau), Dale Becker (CSKT), Kevin Christensen (MDT Construction Engineer), Vickie Edwards (Montana Fish, Wildlife & Parks (MTFWP), Jonathan Floyd (MDT Traffic Safety Bureau), Bonnie Gundrum, (MDT Environmental Bureau), Doug Moeller (MDT Missoula District Administrator), Sue Sillick (MDT Research Section), and Mark Zitzka (Federal Highway Administration (FHWA)). Finally, the authors would like to thank Dale Becker (CSKT), Amanda Hardy (Colorado State University), Kari Enes, AJ Bigby, Virginia "Tiny" Williams, Bruce Maestas, and Stephanie Gillen (all CSKT), and Steve Albert, Tiffany Allen, Rob Ament, Jeralyn Brodowy, Ben Dorsey, Jerry Stephens (all Western Transportation Institute – Montana State University (WTI-MSU)) for their help.

TABLE OF CONTENTS

Introdu	ction	1
1.1.	Background	1
1.2.	Objectives	2
1.3.	Milestones	2
1.4.	Related Activities	2
Mitigat	ion Measures and Human Safety	4
Mitigat	ion Measures and Habitat Connectivity for Wildlife	5
1.5.	Road Sections with Continuous Fencing and Crossing Structures	5
1.6.	Road Sections with Isolated Underpasses	9
1.7.	Anticipated Activities 4 th Quarter 2011	10
Cost-Be	enefit analysis	11
Other F	Findings	12
Schedu	le and Budget	13
Referer	nces	15
Append	lix A	16

LIST OF TABLES

Table 1: Overview of Milestones	2
Table 2: Activities Road Sections with Continuous Fencing and Crossing Structures	7
Table 3: Isolated Structures Monitored	. 10
Table 4: Planned Schedule through 2011.	. 13
Table 5: Percentage Complete.	. 14

LIST OF FIGURES

EXECUTIVE SUMMARY

This report contains a brief description of the progress on the tasks for the US 93 North wildlife mitigation evaluation project on the Flathead Indian Reservation between Evaro and Polson, Montana. The mitigation measures consist of wildlife fencing combined with wildlife underpasses and overpasses, jump-outs, and wildlife guards at access roads. The research objectives relate to investigating the effect of the mitigation measures on human safety (an expected reduction in wildlife-vehicle collisions), habitat connectivity for wildlife (wildlife use of the crossing structures), and a cost-benefit analysis for the mitigation measures. This report documents the work conducted between 1 July 2011 and 30 September 2011.

In this quarter, the researchers submitted the annual report with data from 2010. The research team continued data entry from cameras, monitoring of the crossing structures in Evaro, Ravalli Curves, and Ravalli Hill, and monitoring of the wildlife guards. Tracking beds were restored with additional sand where needed. Pellet group counts were conducted in the Evaro, Ravalli Curves and Ravalli Hill section in late August and early September 2011. Finally, the research team continued organizing the cost information regarding the mitigation measures.

INTRODUCTION

1.1. Background

The US Highway 93 North (US 93 N) reconstruction project on the Flathead Indian Reservation in northwest Montana represents one of the most extensive wildlife-sensitive highway design efforts in North America. The reconstruction of the 56 mile (90 km) long road section includes the installation of 41 fish and wildlife crossing structures, 2 underpasses for live-stock, 1 bicycle/pedestrian underpass, and approximately 8.3 miles (13.4 km) of road with wildlife exclusion fencing on both sides (excluding future mitigation measures in the Ninepipes wetland area). The mitigation measures are aimed at improving safety for the traveling public through reducing wildlife-vehicle collisions and allowing wildlife to continue to move across the landscape and the road. Other examples of relatively long road sections in North America with a high concentration of wildlife crossing structures and wildlife fencing are I-75 (alligator alley) in south Florida (24 crossing structures over 40 mi; Foster & Humphrey 1995), the Trans-Canada Highway in Banff National Park in Alberta, Canada (24 crossing structures over 28 mi (phase 1, 2 and 3A); Clevenger et al. 2002), State Route 260 in Arizona (17 crossing structures over 19 mi; Dodd et al. (2006)), and I-90 at Snoqualmie Pass East in Washington State (about 30 crossing structures planned over 15 mi; WSDOT 2007). Both the road length and number of wildlife crossing structures of US 93 N on the Flathead Indian Reservation makes it the most extensive mitigation project of its kind in North America to date. If the section of US 93 South (S) (south of Missoula, Bitterroot valley) is included, the mitigation measures along US 93 are even more substantial.

The magnitude of the US 93 N reconstruction project and associated mitigation measures provide an unprecedented opportunity to evaluate to what extent these mitigation measures help improve safety through a reduction in wildlife-vehicle collisions, maintain habitat connectivity for wildlife (especially deer (*Odocoileus* spp.) and black bear (*Ursus americanus*)), and what the monetary costs and benefits are for the mitigation measures. In addition, the landscape along US 93 N is heavily influenced by human use. This is in contrast to the more natural vegetation along most of the other road sections that have large scale wildlife mitigation in North America. As the roads with most wildlife-vehicle collisions are in rural areas, the results from the US 93 N project are expected to be of great interest to agencies throughout North America (Huijser *et al.* 2008).

In 2002, prior to US 93 N's reconstruction, the Western Transportation Institute at Montana State University-Bozeman (WTI-MSU) was funded by the Federal Highway Administration (FHWA) and the Montana Department of Transportation (MDT) to initiate a before-after field study to assess the effectiveness of the wildlife mitigation measures and to document events and decisions that shaped the process of planning and designing the mitigation measures. Preconstruction field data collection efforts were completed in the fall of 2005 and a final report on the preconstruction monitoring findings was published in January 2007 (Hardy *et al.* 2007).

In 2010 MDT contracted with WTI-MSU to conduct the post-construction research with regard to the effectiveness of the mitigation measures. For this project, the Confederated Salish and Kootenai Tribes (CSKT) act as a subcontractor to WTI-MSU.

1.2. Objectives

Consistent with the direction provided by MDT, the project has the following objectives:

- Investigate the effect of the mitigation measures on human safety through an anticipated reduction in wildlife-vehicle collisions;
- Investigate the effect of the mitigation measures on the ability to maintaining habitat connectivity for wildlife (especially for deer (white-tailed deer [Odocoileus virginianus] and mule deer [Odocoileus hemionus] combined) and black bear (Ursus americanus) through the use of the wildlife crossing structures; and
- Conduct a cost-benefit analyses for the mitigation measures.

This document is part of a series of quarterly reports detailing the progress on these tasks.

1.3. Milestones

This project covers a period of 5.5 years (15 January 2010 - 30 June 2015). The table below provides an overview of the most important milestones.

Table 1: Overview of Milestones.

Description Milestones	Date accomplished
Contract signed between MDT and WTI-MSU and in effect	15 January 2010
Kick-off and 1 st technical panel meeting	2 February 2010
Subcontract signed between WTI-MSU and CSKT	13 May 2010
Subcontract in effect between WTI-MSU and CSKT	15 April 2010
Field visit and presentation preliminary data 2008-2010 for technical panel	24 June 2010

1.4. Related Activities

Student projects:

- "The effectiveness of wildlife guards and the use of wildlife crossing structures by deer and black bear" (Tiffany Allen, MSc. candidate at Department of Ecology, Montana State University, Bozeman, main advisor Dr. Scott Creel, 2008 2011). Tiffany's research focuses on the mitigation measures in Ravalli Curves and Ravalli Hill. Tiffany successfully defended her thesis on 8 April 2011. A manuscript on the barrier effect of wildlife guards on deer and black bear was submitted to a scientific journal.
- "Appropriate type and dimensions of wildlife crossing structures for various wildlife species, specifically deer and black bear" (Jeremiah Purdum, MSc. candidate at the Environmental Studies Program at University of Montana, Missoula, main advisor Dr. Len Broberg, 2010-2012). The emphasis of Jeremiah's project is on investigating the

- appropriate type and dimension of crossing structures for selected species taking their presence and abundance in the surrounding landscape into consideration, as well as their behavior when approaching the crossing structures.
- "The effect of cover in and at crossing structures on the use by amphibians and small mammals" (Hayley Conolley-Newman, MSc. candidate at the Environmental Studies Program at University of Montana, Missoula, main advisor Dr. Len Broberg, 2011-2013). Selected crossing structures will be provided with cover. These structures will be monitored for the presence of amphibians and small mammals before and after cover has been provided. The "before measurement took place in the fall of 2011. The expectation is that the presence of cover will not only benefit amphibians and small mammals but also invertebrates and reptiles.
- In August 2011, through outreach funding (see below), a poster was printed highlighting wildlife using wildlife crossing structures along US 93 N (Appendix A).
- On a continuous basis excursions to the mitigation measures along US 93 N are provided and presentations to schools in the area are given through outreach funding (see below).

Additional funding sources:

- WTI-MSU was awarded a \$3,000 grant by Y2Y for education and outreach activities related to the US 93 N project. Kylie Paul is coordinating these activities through Defenders of Wildlife and has provided draft brochure for review by MDT on 23 September 2010. Comments from MDT on the draft brochure were received on 30 September 2010. The brochures were printed in November 2010 (Quarterly report 2010-4).
- CSKT received a Tribal Wildlife Grant (TWG) from the US Fish and Wildlife Service. About \$40k of this grant will be dedicated to activities and materials related to the investigation of the effectiveness of the mitigation measures along US 93 N (personal communication Dale Becker, CSKT).

Additional funding sources for outreach received:

•	Dennis and Phyllis Washington Foundation	\$10,000	April 2011
•	Y2Y Mini-grant	\$2,500	April 2011
•	Mountaineers Foundation	\$4,000	June 2011
•	Transwild	\$2,500	August 2011

MITIGATION MEASURES AND HUMAN SAFETY

Activities this quarter:

WTI conduct safety data analyses for annual report through 2011.

Anticipated activities next quarter:

None. New data (through 2011) will be requested from MDT early March 2011.

MITIGATION MEASURES AND HABITAT CONNECTIVITY FOR WILDLIFE

1.5. Road Sections with Continuous Fencing and Crossing Structures

The preconstruction research measured the number of animals, especially deer and black bear, that crossed the road before the road was widened and before the mitigation measures were put in place. For this purpose dozens of tracking beds (100 m long, 2 m wide) were installed along the road, covering about 30% of the road sections that would later be fenced. Now that the road has been widened and the fences and crossing structures are in place, the animals can only cross the road by using the crossing structures (although some animals may cross wildlife guards or climb fences). The wildlife use of the crossing structures are measured through camera traps. A camera trap consists of an automated camera that detects and then photographs wildlife. Because cameras may have a different detection probability for wildlife than sand tracking beds, a relationship between crossings measured through camera images and crossings measured through tracking beds must be established. Therefore four crossing structures have a tracking bed placed inside and outside the structures. The outside tracking beds are exposed to the elements, similar to pre-construction methods. The selected four crossing structures have a relatively high use by deer and black bear, which should result in a high enough sample size to establish this relationship.

There are several wildlife guards (similar to cattle guards) to discourage ungulates from entering the fenced road corridor at access roads. Wildlife guards that receive relatively little use by humans are monitored to measure how much of a barrier they really are to different wildlife species. Two structures were monitored starting in 2008. Additional structures for monitoring were selected in summer 2010.

Animals that do end up in the fenced road corridor may escape by using one of the jump-outs. These jump-outs allow animals to walk up to the height of the fence and then jump down to safety. Ideally, the jump-outs should be low enough so that animals readily jump down to safety but high enough to discourage them from jumping into the fenced road corridor. To investigate appropriate jump-out height, jump-outs in the Ravalli Curves (RC) and Hills (RH) sections have already been monitored through tracking beds since 2008 (summer only). Fortunately relatively few animals end up in the fenced road corridor, but this also means it takes time to collect a high enough sample size. In summer 2010 the jump-outs in the Evaro section (EV) were included in further monitoring. One of the jump-outs also has a camera trap installed. Note that many of the names for the structures consist of a two letter code (based on the area) followed by a number (based on the numbering of the 100 m road segments). Other structure names are based on the location, and then written in full, or on their specific purpose.

Activities this quarter:

- Continued data entry from cameras.
- Continued monitoring of the crossing structures in Evaro, Ravalli Curves, and Ravalli Hill.

- Continued monitoring of the wildlife guards.
- Where needed, tracking beds on top and bottom of jump-outs and the tracking beds outside the 4 "selected" structures (RC 396, RC 427, RC 432, RH 459) received additional sand in July 2011.
- Pellet group counts were conducted in the Evaro, Ravalli Curves and Ravalli Hill section between 24 August 2011 and 8 September 2011.

The status of the field work and the dates or periods that data were collected are summarized in Table 2.

Table 2: Activities Road Sections with Continuous Fencing and Crossing Structures.

Description Activities	Date or period monitored
Crossing Structures Ravalli Curves and Ravalli Hill	
Tracking on tracking beds in the wildlife crossing structures in	
Ravalli Curves (9 wildlife crossing structures) and Ravalli Hill (2	
wildlife crossing structures) took place from May 2008 until 26	
February 2010. These data were supplemented by images from a	23 May 2008 – 26
limited number of cameras.	February 2010
Camera traps were installed at all remaining crossing structures in	
Ravalli Curves and Ravalli Hill. The cameras, battery status and	
memory card status were checked once a month from 26 February	
2010 onwards. Tracking in the structures coincides with the camera	
checks, and is supplemental to the images from the cameras from this	
date onwards. Note: most of the cameras were positioned outside the	
structure to be able to collect data on animal behavior as they	26 February 2010 -
approach the crossing structures.	present
The structures RC 396, RC 427, RC 432, and RH 459 had a tracking	
bed installed outside the structures. Tracking, twice a week, on the	9 August 2010 - 2
beds outside as well as inside the structures took place between 9	November 2010, and
August 2010 and 2 November 2010, and between 27 May 2011 and	27 May 2011 – end
will continue until end October 2011.	October 2011.
Crossing Structures Evaro	
Partial coverage wildlife overpass (partial coverage with 4 cameras;	
6-29 July) (full coverage 1 approach with 7 cameras; 29 July- 18	
August, full coverage both approaches 8 August-present).	6 July 2010 – present
Montana Rail Link underpass (partial coverage with 2 cameras 8	18 September 2010 -
September 2010) full coverage from 18 September 2010 onwards.	present
The other structures in the road section with continuous fencing in	1
Evaro had cameras installed 3 September 2010 with full coverage	8 September 2010 -
from 8 September 2010 onwards	present
Livestock underpasses	
One camera was installed at livestock underpass near McClure Rd on	
24 June 2011. The cameras, battery status and memory card status	24 June 2011 -
were checked once a month from 24 June 2011 onwards.	present
Wildlife guards	
Maintenance of the two camera traps at two wildlife guards in Ravalli	
Curves section took place on a biweekly basis from July 2008 until	July 2008 – 26
26 February 2010.	February 2010

Continued - Table 2: Activities Road Sections with Continuous Fencing and Crossing Structures.

Maintenance of the two camera traps at two wildlife guards in Ravalli Curves section continued on a monthly basis from 26 February 2010	26 February 2010 -
onwards.	present
Camera traps at two additional wildlife guards were installed on 20	
October 2010 (guard just north of RC 396) and 31 October 2010	
(guard north of RC 381 on east side). One camera has a technical	
problem (removed 1 May 2011). The repaired camera was used at	20 October 2010- 1
another location that had higher priority. The other camera was	May 2011 / 21
removed 21 October 2011 to a location with a higher priority.	October 2011
Jump-outs	
Tracking beds in Ravalli Curves and Ravalli Hill were monitored	July 2008 –
from May 2008 until September 2009 (summer only).	September 2009
Tracking beds were restored (removal weeds, fluffing sand on	
tracking bed) in Ravalli Curves and Ravalli Hill (29 jump-outs in	
total) on 13 June 2010. Monitoring continued on a weekly basis until	13 June 2010 – 2
2 November 2010. Further monitoring to start in May 2011.	November 2010
Tracking beds were restored (removal weeds, fluffing sand on	
tracking bed) in Ravalli Curves and Ravalli Hill (29 jump-outs in	
total) on 2 May 2011. Monitoring will continue on a weekly basis	27 May 2011 – end
until end October 2011.	October 2011
Tracking beds were installed in the Evaro section on 20 July 2010.	
Monitoring took place on a weekly basis between 4 August 2010 and	4 August 2010 - 2
2 November 2010. Further monitoring to start in May 2011.	November 2010.
Tracking beds were restored (removal weeds, fluffing sand on	
tracking bed) in Evaro (23 jump-outs in total) on 27 May 2011.	27 May 2011 – 25
Monitoring continue on a weekly basis through 25 October 2011.	October 2011
Maintenance of the one camera trap at one jump-out (Ravalli Hill,	July 2008 – 26
east side road) continued on a biweekly basis until 26 February 2010.	February 2010
Maintenance of the one camera trap at one jump-out (Ravalli Hill,	
east side road) continued on a monthly basis from 26 February 2010	26 February 2010 -
onwards.	present
Human access point Ravalli Curves	
Camera trap at the human access point was installed on 5 March 2011	5 March 2011 -
(south end, west side of road)	present
Fence ends (north end Evaro fencing)	
Two camera traps were installed at two fence ends of the Evaro	4 April 2011 -
fencing on 4 April 2011 (north end, east and west side of road)	present
Pellet group counts	

Pellet group counts were conducted in the Ravalli Curves and Ravalli	23 August 2010 - 15
Hill section between 23 August and 15 September 2010	September 2010
Pellet group counts were conducted in the Ravalli Curves and Ravalli	24 August 2011 - 8
Hill section between 24 August 2011 and 8 September 2011.	September 2011

1.6. Road Sections with Isolated Underpasses

A large part of North America consists of landscapes heavily altered and used by humans. Such areas can nonetheless be important for nature conservation and large wild ungulates such as deer may even be abundant. Wildlife-vehicle collisions may also occur in such landscapes, but because of the human use and presence certain types of mitigation measures such as long sections of wildlife fencing are not always possible or appropriate. While crossing structures may still allow for safe crossings by wildlife, there may only be limited fencing, or sometimes no fencing, associated with such structures. Ten of such "isolated" structures are monitored for this project to evaluate their effectiveness. The structures and periods they were monitored are listed in Table 3.

Activities this quarter:

• Continued monitoring of the isolated structures.

Table 3: Isolated Structures Monitored.

Structure name	ture name Date or period monitored through December 2009	
North Evaro	None	6 July 2010 – present
Schley creek	None	29 June 2010 – present
East Fork Finley creek	None	4 October 2010 - present
Pistol creek 1 (station 498+55.7)	November 2007-1 January 2008 27 August 2009- 31 December 2009	1 January 2010 – present
Pistol creek 2 (station 501+63)	August 2009- 31 December 2009	1 January 2010 – present
	September 2009 – 31 December 2009	1 January 2010 – present (south bank)
Mission creek (station 528+90)		13 October 2010 – present (north bank)
Post creek 1 (station 550+56.6)	November 2007 - May 2009	29 June 2010 – present
Post creek 2 (station 555+06)	November 2007 – October 2008 January 2009 – May 2009 August 2009 – 31 December 2009	1 January 2010 – present
Post creek 3 (559+98.4)	November 2007 – 31 December 2009	1 January 2010 – present
Spring creek 1 (774+00)	May 2009 - December 2009	1 January 2010 – present
Spring creek 2	None	11 March 2010 – present
Mud creek	23 June 2009 – 23 July 2009	None
Polson Hill	None	11 October 2010 - present

1.7. Anticipated Activities 4th Quarter 2011

- 1. Reinstall cameras at the 2 "new" wildlife guard locations
- 2. Install camera traps at two livestock underpasses, soil conditions permitting.
- 3. Update the protocol for releasing images.
- 4. Catching up with data interpretation and entry from cameras

COST-BENEFIT ANALYSIS

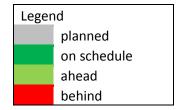
Activities this quarter:

• The research team continued organizing the cost information regarding the mitigation measures.

Anticipated activities next quarter:

• Measure the exact length and configuration of some of the mitigation measures as it influenced the estimated costs.

OTHER FINDINGS


No specific other findings to report.

SCHEDULE AND BUDGET

The planned and the actual schedule through 2011 are shown in Table 4. The percentage completion for each task is shown in Table 5.

Table 4: Planned Schedule through 2011.

	2010		2011					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1. Deer and black bear vehicle collisions								
Summary crash and carcass data								
2. Wildlife use of underpasses								
Cameras operational structures RC and RH								
Cameras operational structures EV								
Cameras operational isolated structures								
Tracking beds operational outside 4 structures								
Cameras operational fence ends								
Cameras operational 2 guards RC								
Cameras operational additional guards								
Camera operational at people access point RC								
Camera operational 1 jump-out								
Tracking beds operational jump-outs RC and RH								
Tracking beds operational jump-outs EV								
Deer pellet group counts								
3. Cost-benefit analyses								
Obtain cost data from MDT								

Table 5: Percentage Complete.

Task	Planned Percentage complete	Actual Percentage complete
1. Deer and black bear vehicle collisions	35%	35%
2. Wildlife use of underpasses	35%	35%
3. Cost-benefit analyses	35%	35%

Through 30 September 2011 the total amount spent (15 January 2010 - 30 September 2011) on the MDT account for the project was \$69,966 (Figure 1). This was less than budgeted. The difference is mostly explained by bills that have not been received yet (e.g. from CSKT) and student involvement.

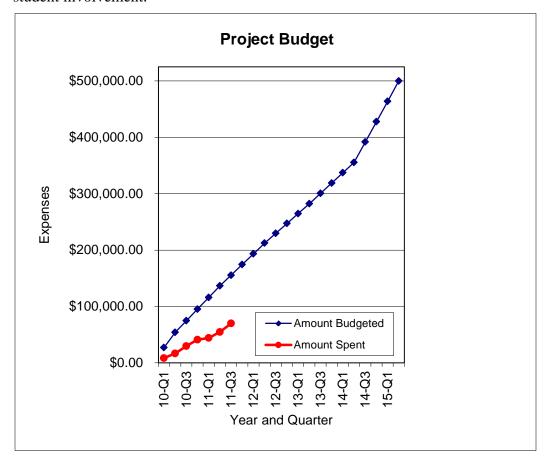


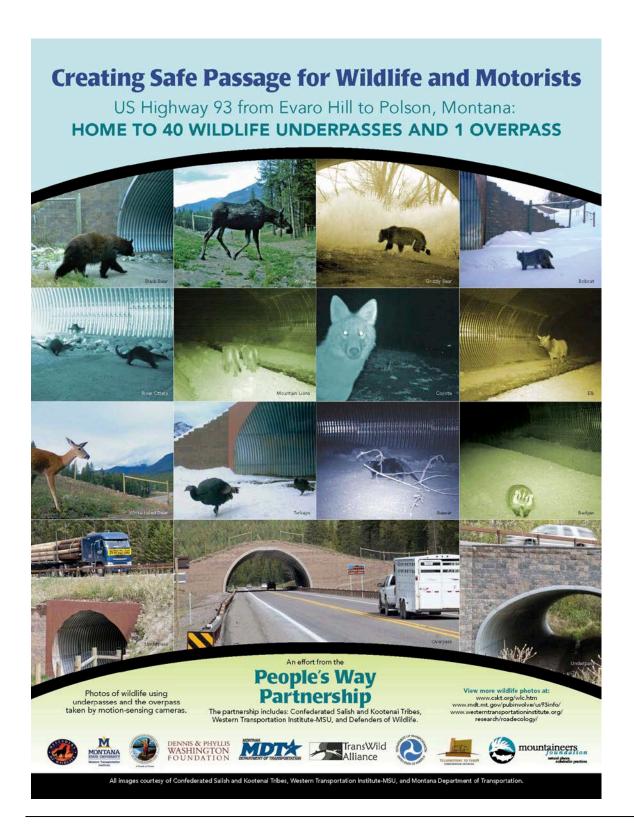
Figure 1: Project budget MDT account; cumulative expenses, with a distinction between the amount that was budgeted (blue line) and the amount that was actually spent (red line) through 30 June 2015. Note that the budgeted amount and the actual amount spent are cumulative. For example, the expenses for the quarter that this report relates to have been added to the total expenses incurred through the previous quarter (red line).

REFERENCES

Clevenger, A. P., Chruszcz, B., Gunson, K. and Wierzchowski, J., "Roads and wildlife in the Canadian Rocky Mountain Parks: movements, mortality and mitigation. Final report to Parks Canada." Banff, Alberta, Canada (2002).

Dodd, N. L., Gagnon, J.W., Boe, S., and Schweinsburg, R.E., "Characteristics of elk-vehicle collisions and comparison to GPS-determined highway crossing patterns." In: Irwin, C. L., Garrett, P., and McDermott K. P. (eds.), Proceedings of the 2005 international conference on wildlife ecology and transportation. Center for Transportation and the Environment, North Carolina State University, Raleigh, North Carolina, USA (2006) pp. 461-477.

Foster, M. L. and Humphrey, S. R., "Use of highway underpasses by Florida panthers and other wildlife." *Wildlife Society Bulletin*, Vol. 23 No. 1 (1995) pp. 95-100.


Hardy, A. R., Fuller, J., Huijser, M. P., Kociolek, A., and Evans, M., "Evaluation of Wildlife Crossing Structures and Fencing on US Highway 93 Evaro to Polson -- Phase I: Preconstruction Data Collection and Finalization of Evaluation Plan Final Report." *FHWA/MT-06-008/1744-2*, Montana Department of Transportation, Helena, Montana, USA (2007) 210 pp. Available from the internet URL: http://www.mdt.mt.gov/research/projects/env/wildlife_crossing.shtml

Huijser, M. P., McGowen, P., Fuller, J., Hardy, A., Kociolek, A., Clevenger, A. P., Smith, D., and Ament, R., "Wildlife-vehicle collision reduction study. Report to Congress." U.S. Department of Transportation, Federal Highway Administration, Washington D.C., USA (2008) 232 pp. Available from the internet: http://www.tfhrc.gov/safety/pubs/08034/index.htm

Huijser, M. P., Allen, T. D. H., Camel, W., "US 93 Post-Construction Wildlife-Vehicle Collision and Wildlife Crossing Monitoring and Research on the Flathead Indian Reservation between Evaro and Polson, Montana. Annual Report 2010." Western Transportation Institute (WTI-MSU), Montana State University, Bozeman, MT, USA (2010) 34 pp. Available from the internet: http://www.mdt.mt.gov/research/projects/env/wildlife_crossing.shtml

WSDOT, "Snoqualmie Pass East Folio." Washington Department of Transportation, Olympia, Washington State, USA (2007) 2 pp. Available from the internet: URL: http://www.wsdot.wa.gov/NR/rdonlyres/F8067230-75B1-4CB6-907D-0299F4E17F97/0/I90SnoqPassEastFolio 03_2007.pdf

APPENDIX A

