
R E S E A R C H P R O G R A M S

INDUSTRY BEST PRACTICES FOR THE
SOFTWARE DEVELOPMENT LIFE CYCLE

Final Report
prepared for
THE STATE OF MONTANA
DEPARTMENT OF TRANSPORTATION

in cooperation with
THE U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL HIGHWAY ADMINISTRATION

November 2007
prepared by
Ray Babcock
Gary Harkin
Hunter Lloyd

Montana State University - Bozeman

FHWA/MT-07-006/8117-25

ake

or
this

 fair

You are free to copy, distribute, display, and perform the work; make derivative works; m
commercial use of the work under the condition that you give the original author and spons
credit. For any reuse or distribution, you must make clear to others the license terms of

work. Any of these conditions can be waived if you get permission from the sponsor. Your
use and other rights are in no way affected by the above.

 i

Industry Best Practices for the
Software Development Life Cycle

Final Report

for the

Montana Department of Transportation

By

Ray Babcock
Gary Harkin
Hunter Lloyd

Computer Science Department
Montana State University

November, 2007

 ii

Technical Report Documentation Page

1. Report No. FHWA/MT-07-006/8117-25

2. Government Accession No.

3. Recipient's Catalog No.

5. Report Date November 2007

4. Title and Subtitle
Industry Best Practices for the
Software Development Life Cycle

6. Performing Organization Code

7. Author(s)
Ray Babcock, Gary Harkin, Hunter Lloyd

8. Performing Organization Report No.

10. Work Unit No.

9. Performing Organization Name and Address
Computer Science Department
Montana State University
Bozeman, MT 59717

11. Contract or Grant No. 8117-25

13. Type of Report and Period Covered
Final, 5/2005-11/2006

12. Sponsoring Agency Name and Address
Research Programs
Montana Department of Transportation
2701 Prospect Avenue
PO Box 201001
Helena MT 59620-1001

14. Sponsoring Agency Code 5401

15. Supplementary Notes Research performed in cooperation with the Montana Department of Transportation and the US
Department of Transportation, Federal Highway Administration. This report can be found at
http://www.mdt.mt.gov/research/docs/research_proj/app_dev/ibp.shtml.

16. Abstract

In the area of software development, there are many different views of what constitutes a best
practice. The goal of this project was to identify a set of industry best practice techniques that fit the
needs of MDT, and provide a consistent and robust process for software development.

The researchers believe that the Unified Software Development Process represents the closest
methodology to an industry standard for software development. The Project Management
Professional certification of the Project Management Institute represents best practice in project
management. The researchers have suggested the Unified Modeling Language as a
representational method for developing software designs. Practical suggestions for the elicitation of
software requirements are provided. The complete set of MDT forms was converted to an XML utility
system to allow for easy changes and configurations.

17. Key Words
Industry Best Practice, Unified Modeling Language,
Software Requirements, Software Design, and
Software Development

18. Distribution Statement
Unrestricted. This document is available through
the National Technical Information Service,
Springfield, VA 21161.

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
159

22. Price

 iii

http://www.mdt.mt.gov/research/docs/research_proj/app_dev/ibp.shtml

 iv

Disclaimer Statement

This document is disseminated under the sponsorship of the Montana Department of
Transportation and the United States Department of Transportation in the interest of information
exchange. The State of Montana and the United States Government assume no liability for its
contents or use thereof.

The contents of this report reflect the views of the authors, who are responsible for the facts and
accuracy of the data presented herein. The contents do not necessarily reflect the official policies
of the Montana Department of Transportation or the United States Department of Transportation.

The State of Montana and the United States Government do not endorse products or
manufacturers. Trademarks or manufacturers' names appear herein only because they are
considered essential to the object of this document.

This report does not constitute a standard, specification, or regulation.

Alternative Format Statement

MDT attempts to provide accommodations for any known disability that may interfere with a
person participating in any service, program, or activity of the Department. Alternative
accessible formats of this information will be provided upon request. For further information,
call (406) 444-7693, TTY (800) 335-7592, or Montana Relay at 711.

Contents
1 INTRODUCTION ..1

1.1 REPORT ORGANIZATION ..3
2 THE SOFTWARE DEVELOPMENT LIFE CYCLE...4

2.1 PLANNING..4
2.2 SYSTEM ANALYSIS ..5
2.3 SYSTEM DESIGN...5
2.4 TECHNICAL DESIGN ...6
2.5 DEVELOPMENT ..6
2.6 IMPLEMENTATION..6
2.7 CONCLUSION..7

3 REQUIREMENTS DEVELOPMENT ...8
3.1 INTRODUCTION ..8
3.2 REQUIREMENTS ELICITATION ..9
3.3 USING FEATURES ...9
3.4 INTERVIEWING ...10
3.5 CONTEXT FREE QUESTIONS ...10
3.6 REQUIREMENTS WORKSHOP ..11
3.7 BRAINSTORMING AND IDEA REDIRECTION...13
3.8 STORYBOARDING...14
3.9 STAKEHOLDERS ...15
3.10 USE CASES...16
3.11 “MARY HAD A LITTLE LAMB” HEURISTIC ..16

4 PROJECT MANAGEMENT...18
4.1 SCOPE MANAGEMENT..18
4.2 TIME MANAGEMENT..19
4.3 COST MANAGEMENT ...19
4.4 QUALITY MANAGEMENT ...20
4.5 RISK MANAGEMENT ..20

5 PROCESS MEASUREMENT...22
5.1 OBJECTIVES ...23
5.2 METRICS ..23
5.3 COLLECTION AND PRESENTATION..26
5.4 PRIVACY ..26
5.5 POSSIBLE METRICS ..27

6 SOFTWARE DESIGN ...29
6.1 PLANNING PHASE...29
6.2 SYSTEM ANALYSIS PHASE ...30
6.3 SYSTEM DESIGN PHASE ...30
6.4 TECHNICAL DESIGN PHASE..32
6.5 DEVELOPMENT PHASE ...37
6.6 IMPLEMENTATION PHASE...39
6.7 CONCLUSION PHASE ..40
6.8 RISK AND AGILE DEVELOPMENT ...40

7 USER INTERFACE DEVELOPMENT ...41
8 SOFTWARE DEVELOPMENT ...42

8.1 CODE WALKTHROUGHS ...42
8.2 PROGRAMMING PAIRS..42

 v

9 DOCUMENTATION ...43
10 TRAINING PLAN AND TRAINING..44
11 REFERENCES..45
APPENDIX A - UML EXAMPLE ...47
APPENDIX B – SDLC ROLES..74
APPENDIX C – THE SDLC OUTLINE ...76
APPENDIX D – SDLC FORM LIST...93
APPENDIX E – SDLC FORMS...94

 vi

 vii

List of Tables

TABLE 1.0 – EXAMPLES OF APPROPRIATE METRICS FOR TARGET GROUPS24
TABLE 2.0 – EXAMPLES OF METRICS TYPES FOR INDICATOR CATEGORIES.....................25
TABLE 3.0 – UNIFIED SOFTWARE DEVELOPMENT PROCESS MODELS29

1 Introduction
The Montana Department of Transportation (MDT) requested industry best practices
methods and tools for their Software Development Life Cycle (SDLC). The current
methodology was studied and compared to industry practices. This report and associated
documents are the result.

An industry best practice is a technique or methodology that, through experience and
research, has proven to reliably lead to a desired result. In the area of software
development, there are many different views of what constitutes a best practice. As
pointed out in the call for proposals by MDT, there are a number of organizations that
offer industry best practice methodologies and they are not always compatible nor do
they have a common perspective on the goals of a software development effort. The goal
of this project was to identify a set of industry best practice techniques that fit the needs
of MDT, and provide a consistent and robust process for software development.

A wide variety of current industry methodologies were identified; the research focused on
those methodologies that are both tried-and-true and widely accepted. It is the opinion of
the researchers that the Unified Software Development Process (UML) [Jac1999]
represents the closest methodology to an industry standard for software development and
the researchers have borrowed heavily from those methods. Also, the researchers believe
there is much to be learned from the Agile development methods and have referred to
those liberally [McC1996]. The Project Management Professional (PMP) certification of
the Project Management Institute (PMI) represents best practices in project management
[Hel2004] and that information is used extensively in developing strategies for
conducting a software project. The Capability Maturity Model Integration (CMMI) for
Software is widely used worldwide for process improvement and reengineering, and
those methods are used where appropriate [Ahe2004]. For a complete analysis of
software engineering, Software Engineering [Pre2001] was used as a guide, but the entire
area of software engineering is well developed and virtually any book will do. The
Unified Modeling Language is suggested as a representational method for developing
software designs, UML Distilled [Fow2004] and UML for Mere Mortals [Mak2005] are
recommended as good user references; The Unified Modeling Language Reference
Manual [Rum2005] is recommended for a complete analysis. In the tried-and-true
category, this document incorporates information from Joel on Software [Spo2004],
Facts and Fallacies of Software Engineering [Gla2003], The Software Development Edge
[Mar2005], and Peopleware [DeM1999]. For user interface design, Don’t Make Me
Think [Kru2000] and User Interface Design for Programmers [Spo2001] are
recommended.

One issue that is important to discuss is how to deal with multiple viewpoints of industry
best practices. The researchers believe that consistency and robustness are more
important to the success than having every bell-and-whistle; therefore, only a few
methodologies are used and combined in a manner that provides those benefits. As
mentioned previously, the Unified Software Development Process (USDP) [Jac1999] is
the industry standard analog to the Rational Unified Process from Rational Systems and
is widely used for software development in industry. USDP is a relatively complex

 1

process that focuses on the software development process from inception through release.
While it is strong in software development, it is weak in the area of project management.
The Process Management Professional [Hel2004] strategies have excellent
recommendations for project methodologies, but do not consider software development
explicitly.

The Capability Maturity Model Integration [Ahe2004] is primarily about process
reengineering, which can be a part of every software development project, and provides
excellent practices for software project management, but the scope is too narrow to be the
only source. Software CMM is the staged model from CMMI that is pertinent to
software development; it has five levels with a set of key process areas dictated for each
level:

1. Initial, focus is competent people;
2. Repeatable, focus is basic project management;
3. Defined, focus is process standardization;
4. Managed, focus is quantitative management; and
5. Optimizing, focus is continuous process improvement.

While not specifically stated, Level 3 could be identified as the appropriate focus for this
project as MDT attempts to standardize its software development process in accordance
with industry practices. That level will be the primary focus of this work, along with
some process areas from Levels 2 and 4. The key process areas are:

• Statistical Process Management (L4)*,
• Peer Reviews (L3)*,
• Project Interface Coordination (L3),
• Software Product Engineering (L3)*,
• Integrated Software Management (L3)*,
• Organization Training Program (L3)*,
• Organization Process Definition (L3)*,
• Organization Process Focus (L3),
• Software Configuration Management (L2)*,
• Software Quality Assurance (L2)*,
• Software Acquisition Management (L2), and
• Software Project Control (L2)*.

Those marked with an asterisk are impacted by this work. Due to the limitations on the
scope of this project, none of these will be completely satisfied, but all will be improved.

Other industry best practices methodologies provide similar methods and characteristics.
This report provides a compilation, which is at the cutting-edge technologically, but also
verifiably practical and robust. Existing MDT documents and templates were used as
much as possible and have changes to be made indicated where appropriate.

 2

1.1 Report Organization

This report is not a single document, but a series of documents and a web site that
provide a strategy for implementing an industry best practices software development
methodology, including templates, forms and software recommendations. The report
consists of five parts:

• Recommendations and discussions of each part of the project as contained in this
particular document;

• A web site that details:
o A series of processes outlining a series of steps to be followed during

various phases of the project,
o Documents to be used in the various phases of the project cross-referenced

in the process outlines,
o Templates and methods to be used in software used to support a project,

and
o Where appropriate, web pages that would be used to support a project.

The division of information follows that there is the SDLC process and several sub-
processes that represent the fundamental nature of software development:

• The SDLC,
• Requirements development and management,
• Project management,
• Software design,
• Software development, and
• Project implementation.

There is overlap between these processes in some areas, but this breakdown provides
reasonably concise bodies of material with common methods that integrate into the
SDLC.

 3

http://www.mdt.mt.gov/research/docs/research_proj/app_dev/ibp.shtml
http://www.mdt.mt.gov/research/docs/research_proj/app_dev/ibp.shtml

2 The Software Development Life Cycle
The SDLC is the set of phases that a project must complete. The proposed phases for the
MDT are Planning, System Analysis, System Design, Technical Design, Development,
Implementation, and Conclusion. In various references, there are different breakdowns
of the SDLC, but they contain effectively the same steps. Some are software-oriented
and have no planning step, many do not differentiate between the System and Technical
Design phases, and there are slight differences in the order of the steps or their content.
The number of phases in the organization of the tasks is largely irrelevant within the
range of those strategies that are proven to work. The researchers believe that MDT
proposed phases are workable and meet the needs of MDT. The use of both System and
Technical Design phases is advantageous because it breaks a relatively complex phase
into two parts, which can be managed more effectively.

The justification for these choices can be found in [Jac1999] which describes the USDP
life cycle. It has 5 phases: Requirements, Analysis, Design, Implementation, and Test.
MDT adds a planning process, which is necessary in a business context, combines
Requirements and Analysis in one phase and breaks the Design phase into two phases.
That seems to be a large change, but it actually provides an identical result, pushing part
of the Analysis phase into System Design and leaving the System Analysis phase as
essentially the same as the USDP Requirements phase. MDT could, theoretically, add a
Requirements phase, but there seems to be no good reason for doing so. The MDT
process includes Test in Development and Implementation, but that is not a significant
difference. The Software CMM requirement for Organization Process Definition at
Level 3 [Ahe2004] is met by this process.

Each phase of the SDLC is discussed below in terms of the justification for the tasks in
the phase. There is one part of this process that is universal, and that is the Project
Planning Process, which is a subsystem that impacts each phase. The Project Planning
Process schedules and assigns resources to tasks and details the collection of data to be
used in evaluating performance and improving estimates. It will be covered
independently in some detail.

The SDLC process is detailed in the project web site.

2.1 Planning
The planning phase is dictated by the MDT IT Planning Process document, which
requires the preparation of an IT Project Nomination to be submitted for approval. The
proposed Planning Phase process is designed to provide the information for the
Nomination and to establish a foundation for continuance of the project. The tasks
proposed are shown on the web site and will not be repeated here.

The tasks are based on information in [Ahe2004] and [Hel2004]. The CMMI specifies in
Generic Process (GP) 2.2, the need to establish and maintain a plan for performing the
process. The PMP mandates that project initiation and planning perform:

 4

http://www.mdt.mt.gov/research/docs/research_proj/app_dev/ibp.shtml
http://www.mdt.mt.gov/research/docs/research_proj/app_dev/ibp.shtml

• An analysis of need,
• The development of project goals,
• The collection of project requirements,
• A list of project deliverables,
• The identification of project constraints,
• The development of a project schedule, and
• An estimate of projected resource needs and budget.

The proposed list of tasks meets these requirements and honors the specifications of the
MDT process. The Use Case Business Model is derived from the USDP and represents
the researchers’ belief that UML is the best overall design methodology for consistency
throughout the life cycle.

2.2 System Analysis
This phase takes the preliminary plan and transforms it into a detailed project plan that
can be used to control and monitor the project. The proposed tasks are a combination of
suggestions from the USDP and the PMP. The key deliverables from this phase are the
requirements that drive the software development and the detailed project plan that drives
the lifecycle. Each of these is a dynamic document that is subject to change in
succeeding phases, but those changes are an important metric to be collected and used in
improving the SDLC process.

The Requirements Document and Project Plan are so important that they are treated
separately in this document.

The justification for the task list can be found in the USDP [Jac1999] and in the PMP
[Hel2004]. The USDP produces a Requirements Document; the PMP suggests that the
phase should produce a Workscope and Baseline Project Plan. Updates for the benefit-
cost analysis to provide a check on the initial estimates, team selection, and planning for
the next phase have been added.

A risk management plan is mandated by both the USDP and the PMP to insure that
potential problems are identified and handled at each stage.

2.3 System Design
This phase converts the requirements and data dictionary into a software architecture,
implementation strategy, and produces an updated project plan. The proposed tasks are
derived from the USDP [Jac1999] and for the project planning portion, from the PMP.
The USDP Analysis phase produces an Analysis Model, which includes a data dictionary
that might be separate in a non-object-oriented programming environment. In the USDP,
user interface design is in the Design phase, but the researchers believe that best practices
would break this into two parts to avoid costly mistakes. This is discussed in more detail
later. The need to design Acceptance and System Tests early is addressed here. The
project planning portion follows the requirements of the PMP [Hel2004] with regard to
continuous updating of the plan. Meeting the CMMI [Ahe2004] requirements for

 5

improved quality processes adds a number of components, including a training plan, test
plans, user support plans, and documentation plans.

2.4 Technical Design
This phase converts the system design into a technical design that is more attuned to
implementation in a programming language and produces mockups of the user interface
design. The proposed tasks are derived from the USDP [Jac1999] and for the project
planning portion, from the PMP. The USDP Design phase produces a Design Model,
which includes a system design, subsystem designs, interface specifications, and class
architectures. A System Specification, which is a more formalized presentation of the
Requirements Document, was added to this list. Having such a document reduces the
likelihood of potential design errors. Unit tests are designed here, although the USDP
suggests that this happen in the Implementation phase. The researchers feel that
performing the design here will speed implementation by not having the programming
team spending its time on this activity, or possibly ignoring it. The USDP addresses the
user interface design issue here as well.

The project planning portion follows the requirements of the PMP [Hel2004] with regard
to continuous updating of the plan. Meeting the CMMI [Ahe2004] requirements for
improved quality processes adds a defect tracking system to insure that design and
implementation errors are identified, their resolution verified, and the whole process
measured.

2.5 Development
This implements the system design to produce running software and documentation.
This is the Implementation phase in the USDP and fits the task list here, although it is
obviously a complex activity. The PMP and CMMI best practices mandate a number of
tasks based on preliminary work in earlier phases, but it also creates a configuration plan
and management system as mandated by the Software CMM.

2.6 Implementation
This phase performs the installation and acceptance testing of the software and training
for users. This phase includes most of the Test phase of the USDP, but it includes
significant tasks that attempt to achieve the process quality goals of the CMM software,
including the user support plan, training, and execution of a user survey. While the
project is nearly complete, it is important to perform final updates on the specification
and requirements documents, and the project plan to insure that any changes discovered
in testing are properly accommodated and project performance is adequately monitored.

 6

2.7 Conclusion
This phase moves the software into the maintenance cycle, reviews the results of the
implementation and the conduct of the project, and makes recommendations for the
future. The USDP does not have this phase, but the PMP requires that a project have a
closeout stage to provide feedback for further projects. Also, the CMMI model of
continuous process improvement mandates that this phase continues indefinitely. It
might be worthwhile to change the name of this phase to Maintenance if MDT deems it
appropriate. From a project point of view, defect tracking is an important metric to feed
back into the system for purposes of better estimating project requirements, and
identifying design and development issues that require attention.

 7

3 Requirements Development
The requirements are the driving mechanism for a software development project and one
of the most common areas mentioned in project failures. Without well-researched and
written requirements, it is impossible to meet the expectations of the users; poor
requirements leave a software project with little direction and no criteria for controlling
the development process. Unfortunately, good requirements are elusive because they are
typically based on non-specific descriptions of needs that are voiced by people who don’t
understand software, and requirements creep during a project can lead to extended
development time and project failure.

This is a problem of requirements development and project management. Here both are
discussed, but the focus is on the methods needed to develop good requirements
documentation.

3.1 Introduction
Even the smallest software development project benefits from clear requirements.
Building a house or other engineering project without plans is inconceivable. However,
many development projects begin with a brief interview and go straight to coding. The
most fundamental need according to industry best practices for successful software
development is to begin with a good set of requirements.

Requirements communicate “what” is to be built. They describe in detail the proposed
inputs provided by the users and the proposed outputs generated by the software.
Graphical user interfaces are designed based on initial figures from the requirements
document.

Most people agree that the problem with developing good requirements is a problem of
communication between a developer and a user. Often they don’t speak the same
language. Failures in communication often show up in software that is difficult if not
impossible to use.

Many books have been written and many procedures for developing requirements have
been tried by industry. These range from highly structured packages that cost many
thousands of dollars down to newer ad hoc loosely structured systems, such as extreme
programming. The cheapest and most effective method that works for the largest variety
of projects is to simply use English. Unambiguous English to be sure, but just plain
pictures and plain English carefully written provide requirements that can be read and
understood by both developers and users alike. They provide a written record of what the
proposed software development is to create and, when carefully done, provide an
unambiguous presentation. More detailed “developer oriented” software specifications
can be developed using the software requirements document as a safe and secure starting
point.

A good software requirements document is a dynamic, constantly changing, record of
what is desired for the software to accomplish. As prototypes are shown to the users and

 8

more people read the requirements, changes can be handled by simply changing the
requirements document. At some point the requirements need to be “frozen” where
additional changes are held until the next version. However, error corrections and
functional modifications discovered as the software development proceeds can and
should still be reflected in the current requirements document. Even as the system is put
into operation, the requirements document should reflect the current system. If this is
done, the requirements document becomes a useful document throughout the entire life
cycle of the developed software.

3.2 Requirements Elicitation
Here is where a development team shines. Elicitation of a good set of requirements is
fundamental to the success of a software development project. Leffiingwell and Widrig
[Lef2003] in Managing Software Requirements give a good list of elicitation methods.

These are:

• Using Features,
• Interviewing,
• Requirements Workshops, and
• Brainstorming and Idea Redirection Storyboarding.

However, any sequence of activities that clearly define a set of requirements is
considered useful.

3.3 Using Features
System features are high-level expressions of desired system behavior.

In all the elicitation methods described, something should be written down. It does no
good to the development team if one user has a clear idea of what should be done, but
nothing is written down to substantiate this user’s vision.

High-level expressions are usually not well defined, but they can lead a development
team to eliciting more specific requirements. They are often related to the user’s view of
system behavior. However, the development team should not leave these at a high level.
They should search for the need underlying the feature described. Features and
requirements, for that matter, must address real needs, not just pie-in-the-sky wishes.
Another definition of features proposed by [Lef2003] is “a service the system provides to
fulfill one or more stakeholder needs”.

Some example features are listed below:

• Manual control of doors during fire emergency,
• Provide up-to-date status of all inventoried items,
• Provide trend data to assess product quality,
• Report deductions-to-date by category,
• Vacation settings for extended away periods,

 9

• Minimum of two independent confirmations of attack authorization required, and
• Windows XP compatibility.

3.4 Interviewing
Probably the most useful and most common technique to elicit requirements is the
interview. Just sitting around and talking does not work. A more structured approach is
required to produce good results.

Choosing the right people to interview is important. Try to have at least one
representative from each stakeholder group. These can be done at different times, but
everyone needs to be included.

A good technique to use when doing an interview is the recording of a restatement of the
comment provided by a stakeholder. This gives the stakeholder the ability to hear what
they said repeated and correct any misconceptions on the spot. An example follows:

Developer: “How many different invoices are used in a typical month?”
User Sue: “Fred, how many would you say?”
User Fred: “Oh, I’d say probably 120.”
User Sam: “Oh, that’s not right, we often do over 200!”
User Sue: “How about we say 250 to be safe?”
User Fred: “Well he didn’t ask for a safe number, he asked for a typical number. I’d say
175.”
User Sue: “O.K. anyone have a problem with 175?”
Other Users: “No.”
User Sue: “We typically use about 175 invoices each month.”
Developer turns on his recorder and records “The company uses 175 invoices in a typical
month”.

This simple technique can provide a record of what is discussed without irrelevant
material being recorded. It also can catch a misunderstanding if it occurs. For example,
suppose the following is the developer’s recorded statement after the above comments:

Developer turns on his recorder and records “The company uses a maximum of 175
invoices in a typical month”.
User Sue: “Wait a minute! We said that was typical not maximum.”
Developer turns on his recorder and records “Correction the company uses an average of
175 different invoices in a typical month.”

After the developers return to their location, the recorded sessions are played for the
entire development group and a set of requirement statements are generated.

3.5 Context Free Questions
Another good technique to enhance the success of interviewing in gathering requirements
is the use of “context free questions”. These are questions that can be asked without
regard to the context being discussed. They could be asked about ANY software

 10

development project. Using them often elicits extremely useful information to enhance
the quality of the requirements gathered.

Example Context Free Questions follow: (The project name is assumed to be
MDTProject1)

• Who is the client for MDTProject1?
• What is a highly successful solution really worth to this client?
• Should we use a single design team or more than one?
• How much time do we have for this project? What is the trade-off between time

and value?
• Where else can the solution to this design problem be obtained? Can we copy

something that already exists?
• What problems does this system solve?
• What problems could this system create?
• What environment is this system likely to encounter?
• What kind of precision is required or desired in the product?
• Am I asking you too many questions?
• Do my questions seem relevant?
• Are you the right person to answer these questions?
• In order to be sure that we understand each other, I’ve found that it helps to have

things in writing so I can study them at leisure. May I write down your answers
and give you a written copy to study and approve?

• Is there anyone else who can give me useful answers?
• Is there some place I can go to see the environment in which this product will be

used?
• Is there anything else I should be asking you?
• Is there anything else you want to ask me?

Of course, some of these may not be appropriate for a particular project. It will help
if the entire list is scanned for each interview to be sure to include appropriate ones.

(From Exploring Requirements: Quality Before Design by Gause & Weinberg
[Gau1989].)

3.6 Requirements Workshop
A well run and productive requirements workshop has the potential to be the most
important requirements elicitation method.

The first step in a successful workshop is gathering the right people. All stakeholders in
the project should be represented. The requirements workshop assists in building an
effective team, committed to one common purpose: the success of the project.
The workshop provides a unique opportunity for stakeholders from various parts of the
organization to work together toward the common goal of project success.

 11

To prepare for a workshop it is important to sell the concept inside the organization. This
can be done by communicating the benefits of the workshop to members of the team.
Preparation also consists of ensuring the right people attend and attending to the logistics
(structure of invitation, travel arrangements, meeting room selection) with a high degree
of professionalism. Lastly, preparation consists of providing good “warm-up” materials.
These should be sent out in advance and consist of project-specific information and some
“out-of-the-box” thinking preparation. Forget all the preconceived notions of what can’t
be done and open the door to any possibility.

Another important consideration for the workshop is picking the facilitator. This person
will run the workshop and should be someone outside the organization with no stake in
the project. It is good to have someone with experience in the problem domain. If,
however, you can’t find such a person, a team member may substitute if they will agree
to the following:

• The facilitator will receive some training in the workshop process.
• The facilitator has demonstrated solid team-building skills.
• The facilitator is personable and well respected by both internal and external

team members.
• The facilitator is strong enough to chair what could be a challenging meeting.

If the workshop is to be facilitated by a team member, that team member must not
contribute to the ideas and issues at the meeting. It is important to maintain objectivity so
as to get at the real facts.

Leffingwell and Widrig [Lef2003] list the following responsibilities of the facilitator:

• Establish a professional and objective tone for the meeting.
• Start and stop the meeting on time.
• Establish and enforce the “rules” for the meeting.
• Introduce the goals and agenda for the meeting.
• Manage the meeting and keep the team “on track”.
• Facilitate a process of decision and consensus making, but avoid participating in

the content.
• Manage any facilities and logistics issues to ensure that the focus remains on the

agenda.
• Make certain that all stakeholders participate and have their input heard.
• Control disruptive or unproductive behavior.

It is suggested that the agenda follow the following rough outline:

• 30 minutes: Introduction (Review agenda, facilities, and rules);
• 90 minutes: Context (Present project status, market needs, results of user

interviews, etc.);
• 2 hours: Brainstorming (Brainstorm features of the application);

 12

• 1 hour: Lunch (Work through lunch to maintain momentum);
• 1 hour: Brainstorming (Continue to brainstorm features);
• 1 hour: Feature definition (Write two- or three-sentence definitions for features);
• 1 hour: Idea reduction and prioritization. (Prioritize features); and
• 1 hour: Wrap-up (Summarize and assign action items).

As with any human endeavor, problems may arise. Below are some suggestions for
handling some common ones.

Problem Solution

Time management Facilitator keeps a kitchen timer to time the meeting and all

breaks.

Grandstanding,
Domineering positions Facilitator enforces a “5 minute position statement” rule.

Also, create a “parking lot” list for later discussion of ideas
that deserve discussion but aren’t relevant to the agenda
item.

Lack of input Facilitator makes it clear that no one should leave the

workshop without having provided an idea or supported the
idea of another.

Negative comments Facilitator should limit these kinds of comments to one per

person without penalty. After that a penalty is assessed for
each one.

Flagging energy after lunch Serve a light lunch & provide a mid-afternoon snack break.

Move furniture, change lighting and temperature. Do what
is possible to keep the participants awake.

3.7 Brainstorming and Idea Redirection
Brainstorming involves both idea generation and idea reduction. The significant
stakeholders gather together in one room and supplies are distributed. These can be as
simple as a stack of large sticky notes and a thick black marker for writing on the notes.

The facilitator gives the rules:

• Do not allow criticism or debate.
• Let your imagination soar.
• Generate as many ideas as possible.
• Mutate and combine ideas.

The facilitator may start things off by asking questions similar to the following:

 13

• What features would you like to see in the product?
• What services should the product provide?
• What opportunities are we missing in the product or the market?

The facilitator then asks the participants to share their ideas aloud and to write them
down, one per sheet. Speaking aloud can generate a cascade effect of ideas among other
participants. No criticism or debate is allowed at this point. As ideas are generated, the
facilitator collects them and posts them on a wall in the meeting room. If possible, the
facilitator may organize them into common themes, but the first priority is to get them up
and visible to all.

Ignore lulls in the production of ideas. Often a space in activity is when everyone is
thinking hard and, if given a bit of time, may lead to the best suggestions yet. In our fast
paced life, it is often uncomfortable to have quiet reign. But, give it time and the process
will begin again in earnest.

After the main initial process, a prioritizing phase takes place. Some kind of voting
process should be established to rank the ideas in order of importance. An organization
of all ideas into the categories “critical”,” important”, or “useful” may help. Critical
means indispensable. Important means there could be a significant loss of customer
utility. Useful means nice to have.

The lists are gathered, written down on paper, and given to the design team for review.
Sometimes it may help to have another brainstorming session at a later date, but, the
purpose it to elicit as many good requirements as possible in the shortest possible time.
The design team can do the detailed feasibility review of the proposed feature.

3.8 Storyboarding
It is said that a picture is worth a thousand words. In gathering requirements, it is often
more efficient for two people to discuss a problem looking at a screenshot instead of just
staring at each other.

Storyboarding has long been used in the film industry to plan the sequence of events in a
movie. A complex software package is at least as complicated as a movie with the added
non-linearity of menu selections, active buttons, and hyperlinks.

The purpose of storyboarding is to gain an early reaction from the potential users of a
software package. They are easy to construct and give a user a representative view to
criticize.

Storyboarding is inexpensive, user friendly, informal, interactive. Users can see for
themselves if a proposed interface will do the job from their perspective. If a correction
is suggested, this can be done on the storyboard very cheaply and proceed on to the next
change with a minimum of delay. If a user is having a problem of “where to begin” in
describing what they want, a quick sketch of a user interface can get them off square one.

 14

Today, storyboards can be constructed as passive, active, or interactive. Passive
storyboards, similar to the film industry, consist of sketches, pictures, and screen shots.
The analyst walks the user through the proposed software by guiding them through the
respective storyboards and gauging their responses. Active storyboards are animated or
automated. They automatically produce a sequence of images for the user, often with a
pre-recorded audio narration. Interactive storyboards allow the user to “play” with a
simulated interface. Often constructed as rapid prototypes of the proposed software
package, an interactive storyboard gives the user the actual look and feel of the proposed
interface.

The detail level and type of storyboard will depend on the clarity that exists for the
project. A rather small project, similar to a previous package, and clearly understood will
need few, if any, storyboards. A rather large project, breaking new ground, and with
many ideas floating around in a fuzzy fog will require many and more detailed
storyboards.

Storyboards work through the human-computer interface. This HCI is often the
troublesome portion of a new software development. A nice feature of the storyboarding
method is the physical record produced by the storyboards themselves. They provide a
ready reference for the design team as they begin the conversion of the “what” into the
“how”.

Some tips for storyboarding:

• Don’t invest too much in a storyboard. The users need to be encouraged to make
changes, and if the boards look too perfect, they will hesitate to suggest anything
new.

• Make the storyboards easy to change.
• Don’t make the storyboards too functional. A famous local professor tells the

story of creating a “prototype” of a proposed software system. The customer was
invited in to view this prototype and suggest changes. When the customer saw
the prototype, he said, “That’s fine, I’ll take it home as it is”. He didn’t realize
that there was no functionality behind the pretty screen displays.

• Whenever possible, make the storyboard interactive. Playing with an actual
mouse, keyboard, and display will generate more feedback and elicit more new
requirements.

In summary, the suggestion is to storyboard early, storyboard often, and storyboard on
every project that has innovative content.

3.9 Stakeholders
Elicitation of a good set of requirements requires knowing all those who are involved
with the project. These stakeholders can consist of state officials, any members of the
development team assigned to the project, management, clerks, or any person who will
use this system to do productive work.

 15

A representative of all these groups should be included in the requirements gathering
process. Leaving just one important stakeholder out of the discussion can cause a failure
of the system late in the development cycle when it costs a lot to fix.

3.10 Use Cases
Often the hardest part in beginning to develop a set of software requirements is simply
getting started. No other way is known than to simply take the first step. A technique
that is used with UML is called Use Cases. These often get the user and developer off
square one and into the writing process.

A Use Case is a very simple concept. It takes an actor playing a particular role and
determines “what happens” when this actor performs some activity to be controlled by
the developing software system. It could be as simple as a new user “logging on” to the
system or a receivables clerk handling “back orders”. In any case, the focus is very
narrow and only the activities needed to do this particular Use Case are listed.

UML provides a diagramming technique to support Use Cases, but simple unambiguous
or structured English on a yellow pad would suffice. A number of examples are provided
at the end of this section.

To define a Use Case, do the following:

• Pick an actor from among the users (system manager, payables clerk,
administrator, field technician, etc.).

• Pick a roll that this actor will be performing with the software system (logging on,
entering a new vendor, accessing a payable account, adjusting an employees’ pay
rate, etc.).

• Then, thinking about that actor performing that role, what should happen?

3.11 “Mary Had A Little Lamb” Heuristic
Gause & Weinberg [Gau1989] propose a simple technique to elicit all the possibilities
from a requirements statement. It is called the Mary Had A Little Lamb heuristic and is
quite simple to operate. You just repeat the sentence you are analyzing putting emphasis
on each work in sequence. Then you think about the other information that might be
revealed by this emphasis.

• MARY had a little lamb.
• Mary HAD a little lamb.
• Mary had A little lamb.
• Mary had a LITTLE lamb.
• Mary had a little LAMB.

Then you continue with combinations until you have the entire sentence covered. Many
of these words will add little or nothing to the understanding of the requirement. But, any
insight gained is worth the small effort involved.

 16

• MARY HAD a little lamb.
• Mary HAD A little lamb.
• Mary had A LITTLE lamb.
• …
• MARY HAD A LITTLE LAMB.

Try this on the requirements you are creating and watch what additional information is
extracted.

 17

4 Project Management
All software development life cycle methodologies suggest that there be some sort of
plan for the project, but most leave the details to the interested reader. We have
integrated the suggestions of the PMP [Hel2004] and other authors to make the
requirements for the project plan more explicit.

A project plan has nine knowledge areas [Hel2004]:

• Integration Management,
• Scope Management,
• Time Management,
• Cost Management,
• Quality Management,
• Human Resource Management,
• Communications Management,
• Risk Management, and
• Procurement Management.

Most of these are obvious, but Project Integration Management can be best defined as a
dynamic process that coordinates all of the other parts of the plan to insure consistency.
We will not discuss this process explicitly, but it will be present in the ensuing
discussions.

This report will not deal with Human Resources Management, Communications, or
Project Procurement Management as they are out-of-scope.

This component is needed to meet the Software CMM requirement for Software Project
Control at Level 2 and Integrated Software Management at Level 3 [Ahe2004].

4.1 Scope Management
Scope Management is concerned with defining and controlling the work of the project, so
it incorporates product scope and project scope. There are five processes in this activity:
Initiation, Scope Planning, Scope Definition, Scope Verification, and Scope Change
Control.

For a software project, this reduces to translating the Requirements Document into a
work plan and managing any ensuing changes. It begins in the planning phase with the
development of a preliminary plan that assumes a project scope as detailed in a scope
statement. The scope statement provides: a project justification, a product description,
project deliverables, project objectives, and informal project requirements. The scope
statement is refined in the System Analysis phase and is used to create the Work
Breakdown Structure (WBS) which maps out the project deliverables and reduces each to
a set of identifiable tasks.

 18

The Requirements Document is superseded by the System Specification which may result
in some updates to the WBS, and these changes will continue into the maintenance cycle.
The Requirements Document, System Specification and WBS are living documents that
will change continuously during the project and must at all times reflect the current
understanding of the project team regarding product requirements and task assignments.

4.2 Time Management
Time Management has five processes: Activity Definition, Activity Sequencing, Activity
Duration Estimation, Schedule Development, and Schedule Control. The Activity
Definition begins with the WBS and Scope statement. In conjunction with historical data,
constraints and assumptions about the project are used to reduce the WBS to a Task List
of activities that are identifiable and assignable. There are no specific criteria for
defining a task, but it should be small enough that the time estimate is accurate to within
some acceptable margin of error. Early in the process, it might be reasonable to estimate
development time as 3 months, assuming a possible error of 1 month, while later
individual development tasks might be required to be estimated within 1 day. The Task
List will be under constant change as the design and development continue. The Task
List should contain fields for the following:

• The task identifier;
• The task description;
• The estimated duration: minimum, expected and maximum;
• Resources required;
• Estimated resource cost;
• Estimated total cost;
• Actual time required;
• Actual cost; and
• Notes from the project manager.

The second time management structure is the Precedence Diagram which shows the
dependency relationship between the tasks. This document can show the project manager
the appropriate assignments to make to avoid bottlenecks and stoppages. It is based on
the time estimates in the task list and generates a set of paths through the project to
completion. It is also common to perform a Critical Path analysis of the precedence
diagram to determine which activities constitute the longest path through the task list,
which is called the critical path.

As with the scope, the time management tools are dynamic and must be updated
continuously to reflect new information and to collect data.

4.3 Cost Management
Cost Management has four processes: Resource Planning, Cost Estimating, Cost
Budgeting, and Cost Control. Cost estimating produces data into the Task List and
Precedence Diagram so there are no new documents, but successful project management
depends on the collection and use of data for future estimates. Cost estimates are needed
for the Benefit/Cost Analysis and for improving project cost estimates.

 19

4.4 Quality Management
Quality Management has three processes: Quality Planning, Quality Assurance, and
Quality Control. Quality in software can be objective or subjective. Objective measures
are surveys of user satisfaction, lower operating costs, higher productivity, and lower
defect and rework rates. It is important to collect as much information as possible, but
the reality is that information outside of the development group is expensive to collect
and is typically not done.

Most of these issues are outside of the scope of this document, but a defect tracking
system is part of the process, as is user feedback on software, training, and
documentation.

4.5 Risk Management
Risk Management has six processes: Risk Management Planning, Qualitative Risk
Analysis, Quantitative Risk Analysis, Risk Response Planning, and Risk Monitoring and
Control. Risk can be defined as potential costs in time or other resources that could be
incurred. This can impact the SDLC in two ways: there could be risk associated with
estimates of time or resources in the development process and there could be risks
associated with factors outside of the SDLC, such as changing needs. External risks
could be due to:

• Budgetary changes,
• Political issues,
• Legal issues, and
• Environmental issues.

The risks in the SDLC could be due to:

• Schedule slip,
• Scope slip,
• Technical issues, and
• Personnel issues.

Each of these presents some danger that the project will fail or will incur more costs than
expected, possibly more than is tolerable. While these risks can only be partially
controlled, they can be planned for. During the planning stage, a Risk Assessment will
identify potential risks to the project, evaluate their potential impact and determine under
what conditions a project might be halted or reviewed. At this stage, it might be
necessary to halt a project if the risks are substantial.

During the System Analysis phase, a Risk Management Plan for the SDLC will be
developed which will detail what risks are to be considered and how their impact should
be evaluated with regard to the project. A Risk Assessment document prepared at each
stage is used to evaluate the risk under the Risk Management Plan.

 20

For example, during the System Design phase, the project team might determine that a
particular task involves technology for which they lack experience. This is a higher than
normal risk because the development time estimates, and possibly even the feasibility of
the project, are in question. The team and project manager should evaluate this potential
risk in determining how to proceed. One possible risk reduction strategy borrowed from
Agile development is to have part of the team pursue this development until they are
certain of the time and cost estimates and then use the new data.

The project management process is detailed on the web site.

 21

http://www.mdt.mt.gov/research/docs/research_proj/app_dev/ibp.shtml

5 Process Measurement
There are three reasons to use process measurement in a software project:

• To monitor project performance for management purposes,
• To collect data for performing estimates, and
• To identify and correct errors in estimating projects.

The subject of project estimation is not the subject of this analysis, but the collection of
data for the three activities is similar and is a required part of the SDLC. An excellent
reference for software measurement is found in [Mun2003].

The management of any process requires that the state of the process be measured and
compared to some standard. Typically, this would be the collection of data that indicates
progress towards goals which can be compared to plans. In order to have an accurate
plan (or estimate), you need data. The chicken-or-egg analogy is easy to make, so you
have to start with the best possible estimates and move towards ever-better data
collection and estimates in an iterative manner.

The most important condition for success is the creation of a measurement culture that
holds the collection of high quality and the proper use of it in high regard. This is a
significant management problem that won't be addressed here other than to suggest that
every part of an organization should be encouraged to view quantitative measurement as
or performance as required. Often the best suggestions for measurement data come from
those being measured. Every useful measurement that can be made without constraining
productivity should be made and attention should be made to finding methods of
collecting data that are neither intrusive nor draconian. Software development is a people
process and people provide better data when they feel it is necessary and as simple as
possible.

A metric consists of a measurement and a scale. There are three types of measurements:

• Direct, such as the number of lines of code;
• Indirect, such as the defect density, which is the number of defects divided by the

code size; and
• Predictive, such as the expected time to completion based on the number of

functions to be implemented.

And there are five types of scales:

• Nominal, which is simply a set of categories and has no measurement value. For
example, Bob, Jane and Pat.

• Ordinal, a simple relativistic scheme. For example, high, medium and low.
• Interval, comparative by the size of the intervals. For example, three days longer.
• Ratio, a direct comparison, such as 2.5 times longer.
• Absolute, an exact measurement, such as 1000 lines of code or 50 defects.

 22

For the most part, it isn't necessary to invest a lot of effort in these matters, but it is
obvious that certain scales are more effective then others. An absolute scale
measurement is better if you can get it, but if not, a ratio scale is better than an ordinal
scale. Likewise, a direct metric is better than a predictive metric, if you can find one that
will provide the necessary information. Nominal and ordinal scales are of less use
because they do not yield numeric information that can easily be used for estimates.

5.1 Objectives
Before a Measurement Plan can be created for a project, the objectives of measurement
must be determined. These are typically related to improving estimation, reducing
project cost, and improving project management. For example:

• Reduce the cost of maintenance by 50%.
• Improve the timeline estimate by 20%.
• Reduce developer turnover by 25%.
• Reduce testing time by three weeks.
• Achieve a defect density of less than 0.5%.

A complete list of objectives should be prepared and then pruned to a reasonable set
before attempting to create a Measurement Plan for a project. Trying to achieve too
much can be frustrating for all concerned; also try to avoid conflicting objectives. For
example, it would be difficult to attempt to reduce defects significantly while also
reducing the time to release, although done incrementally, both may be achievable.

Once the objectives are determined, write 3-to-5 questions that you could ask to
determine if you are reaching your goal. For example, if the objective is to reduce the
length of the SDLC by 20%, you might ask:

• What percentage of time is spent in each phase of the SDLC?
• What percentage of the time is consumed by major categories of activities, such

as design meetings, unit testing and so on?
• What is the rate of occurrence of development bottlenecks that reduce progress?
• How much time is spent in rework of code?

Now you know what you have to measure.

5.2 Metrics
From the above analysis, you can determine a set of metrics to be used to answer the
questions and strive to reach the objectives. Of course, you can measure everything, but
it is wise to be cautious. Analyzing data and putting it to work is time-consuming and too
much data can be so noisy that you can't determine any meaning. You want to collect the
minimal amount of data that tells you what you need to know because that minimizes the
time spent providing and analyzing the data. So you want to choose the best metrics in
the sense that they provide a good balance of the highest quality information and the
easiest collection and analysis.

 23

The metrics for software projects can be divided into two broad categories: by target
group and by indicator. Target group can be identified as an individual team member, a
team, or the development organization. Indicators are the part of the SDLC process being
measured and might include progress, effort, cost, review results, trouble reports,
requirements stability, size stability, resource utilization, and training. These can be
varied depending on the organization and the project, but together they can form a matrix
that makes it easy to insure the measurement objectives are being met.

When beginning to analyze data needs, keep in mind what you are trying to determine.
Some examples of appropriate metrics for different types of target groups are shown in
Table 1.0.

Table 1.0 – Examples of Appropriate Metrics for Target Groups

Target Group Appropriate Metrics

Individual
Developers

• Work effort distribution.
• Estimated vs. actual task duration and

effort.
• Code covered by unit testing.
• Number of defects found by unit testing.
• Code and design complexity.

Project Teams • Product size.
• Work effort distribution.
• Requirements status (number approved,

implemented, and verified).
• Percentage of test cases passed.
• Estimated vs., actual duration between

major milestones.
• Estimated vs. actual staffing levels.
• Number of defects found by integration and

system testing.
• Number of defects found by inspections.
• Defect status.
• Requirements stability.
• Number of tasks planned and completed.

Development
Organization

• Released defect levels.
• Product development cycle time.
• Schedule and effort estimating accuracy.
• Reuse effectiveness.
• Planned and actual cost.

 24

Some examples of metrics types for different types of indicator categories are shown in
Table 2.0.

Table 2.0 – Examples of Metrics Types for Indicator Categories.

Indicator
Category

Objective Metrics Types

Progress
Provides information on how well
the project is performing with
respect to its schedule.

Actual vs. planned task
completions.

Actual vs. planned durations.

Effort

Provides visibility into the
contributions of staffing on project
costs, schedule adherence, and
product quality.

Actual vs. planned staffing
profiles.

Cost
Provides tracking of actual costs
against estimated costs and predicts
future costs.

Actual vs. planned costs.

Cost and schedule variances.

Review
Results

Provides status of action items from
life-cycle review. Status of action item.

Trouble
Reports

Provides insight into product and
process quality and the effectiveness
of the testing.

Status of trouble reports.

Number of trouble reports
opened, closed, etc. during
reporting period.

Requirements
Stability

Provides visibility into the
magnitude and impact of
requirements changes or feature
creep.

Number of requirements
changes/clarifications.

Distribution of requirements over
releases.

Size Stability

Provides insight into the
completeness and stability of the
requirements and into the ability of
the staff to complete the project
within the current budget and
schedule.

Size growth.

Distribution of size over releases.

 25

 26

Computer
Resource
Utilization

Provides information on how well
the project is meeting its computer
resource utilization
goals/requirements.

Actual vs. planned profiles of
computer resource utilization.

Training Provides information on the training
program and staff skills.

Actual vs. planned number of
personnel attending classes.

Software Measures the quality and reliability
of the software product.

Code size.

Code complexity.

5.3 Collection and Presentation
The collection of measurements must be carefully planned to be successful. The method
of collection must be determined, and the procedures for collecting and storing the data
must be defined and communicated to the appropriate personnel. For each metric, the
following information should be determined:

• The exact data to be collected. For example, the hours spent working on the
removal of defects reported by the defect management system.

• The schedule for collecting the data: daily, weekly, on demand, etc.
• The method to be used for collecting the data: paper form, email, web site form,

and/or interview. Insure that the methods are operational and that procedures for
handling the communication are in place.

• The person or persons responsible for collecting the data.
• How and where the data is to be stored pending analysis and in what format.
• What analysis is to be performed on the data? For example, the metric may be the

result of averaging a data set and dividing by another collected data item, or a
regression analysis may be used.

• Describe the presentation method. For example, a graph, table, written analysis or
some combination. Be precise as to the exact content of the reporting schema and
what comparisons are to be made between metrics.

• Describe the reporting method. How often reports are to be produced, who is
responsible for reporting the data and who is to receive the reports.

5.4 Privacy
It is vital that privacy of data be properly observed. Individual data should not be
viewable by other individuals, and team data, to as great an extent as possible, should not
be shared globally. This is not to say that the data can’t be used as an incentive, but
handling data properly is a significant management problem. Remember that to get good
data, people have to feel that it will be properly used.

5.5 Possible Metrics
There are innumerable metrics that could be used, but the following are examples of
suggested data points that are generally considered valuable. The list is organized by
metric type.

1. Software size
a. Source lines of code
b. Code coverage
c. Rate of source code change (code churn)
d. Rate of growth of source code
e. Function points
f. Bang (see DeMarco [Dem1999])

2. Software complexity
a. Cyclomatic complexity
b. Number of classes and interfaces
c. Knots
d. Information flow
e. Halstead’s Program Vocabulary
f. Halstead’s Program Length
g. Halstead’s Program Volume
h. Cohesion
i. Coupling

3. Software quality
a. Defect rate (defects/lines of code)
b. Defect classification distribution
c. Pass/fail rates for integration
d. Failure modes in acceptance testing
e. Number or rate of design changes
f. Defect rates by stage
g. Cost of defect remediation
h. Defect rate during maintenance
i. Complexity measures
j. Module size
k. Robert Cecil Martin’s metrics

4. Design metrics
a. Number of requirement change orders
b. Number of interface definition change orders
c. Inputs per Use Case

5. Process cost
a. Per phase cost
b. Staffing per phase
c. Computer resources utilized
d. Space resources utilized
e. Amount of rework required
f. Staff function distribution

 27

g. Staff rate of growth
h. Cost of quality assurance

6. Other
a. Page of documentation

 28

6 Software Design
This component of the project comes exclusively from the USDP and is concerned with
developing an Architectural Model and Design Model based primarily on the
Requirements Document. The researchers propose using UML for these processes as is
used in the USDP and documented in [Fow2004], [Mak2005], and [Rum2005]. The
methods described here meet the Software CMM requirements for Software Product
Engineering at Level 3.

The Unified Software Development Process [Jac1999] describes the process as the
development of a series of models. The process models of interest to this study and their
relationship to the USDP and MDT Phases are shown in Table 3.0.

Table 3.0 – Unified Software Development Process Models

USDP Phase Model MDT Phase
Business Planning Phase Business Use Case Model Planning Phase
Requirements Phase Requirements Use Case Model System Analysis Phase
Analysis Phase Analysis Model System Design Phase
Design Phase Design Model and Deployment

Model
Technical Design
Phase

Implementation Phase Implementation Model Development Phase
Test Phase Test Model Implementation Phase

While the MDT SDLC varies slightly in terminology and organization, the models are
exactly what the MDT requires. The properties of the models are:

• A Use Case Model is a representation of system requirements as Use Cases and

Actors.
• An Actor is an entity that participates in the system under consideration. An

Actor could be a user or controller of the system, another software system or a
device. Anything external to the system that plays a role in interacting with the
system.

• A Use Case is a method for capturing the functional requirements of the system
by specifying the typical interactions between the Actors and the system.

Appendix A contains a full example of a Use Case Model.

6.1 Planning Phase
A Business Use Case model (see Table 3.0) identifies the context in which the software
system operates in the business environment. It depicts what is outside of the business
system, what is inside of the business system, and how they are related. In this sense, the
Business Use Case is different than a Requirements Use Case which attempts to depict
how the software interacts with the outside world. The Business Use Case Model is a set
of all known Business Use Cases for the system and it represents a very high-level

 29

rendition of the system requirements. The requirements development process is covered
in detail in Section 3.

6.2 System Analysis Phase
The Requirements Document (see Table 3.0) developed in this phase is used to initiate
the system analysis and provides the basis for the Analysis Model. The requirements
provide all the information necessary to design the system (assuming they have been
done correctly and don’t change), but they must be written in the language of the
customer and that is not particularly useful for developing software. In the System
Design phase, the Requirements Document is converted into a System Specification and
then into an Analysis Model.

The primary tool for describing requirements in the USDP is the Use Case, but we also
propose the use of textual requirements that can be easily understood by all people
involved in creating the Requirements Document and to insure that the diagrams are
consistent and complete. It is easy to miss something or to assume that a diagram is
describing something that isn’t. This is extra work, but will avoid problems later on in
the process.

The development of requirements is covered in detail in the Requirements Development
section of this document.

6.3 System Design Phase
This is a design phase in the MDT SDLC (see Table 3.0) but it corresponds to the System
Analysis phase of the USDP, so the terminology can be confusing. This is high-level
design and so falls into the category of analysis and not software design. The Analysis
Model is to the Use-Case Model what the System Specification is to the Requirements
Document; a more software-developer oriented version of the system. The USDP
considers the Analysis Model to be sufficient, but experience indicates a System
Specification that details the required behavior in some English form is a valuable check
on the UML description of the system and requires the designers to match the
requirements twice. While this does require an investment of time, mistakes at this stage
can be extremely costly later in the process. In general, the System Specification should
contain exactly what the Requirements Document contains, and if it doesn’t, the
Requirements Change process should be used to make necessary changes. The difference
is that the specifications are written in the language of the software programmer and are
much more precise.

The Analysis Model seeks to avoid doing any design and to focus on restructuring the
Use Case requirements so that they are representative of the software development
concerns of the team. Use Cases are expanded into Use Case realizations that expand the
requirements by:

• Focusing on functional requirements and responsibilities,
• Ignoring user interfaces,
• Avoiding any discussion of implementation specifics,

 30

• Concerning itself with conceptual relationships, and
• Dealing only with a limited set of interactions between system components.

Another way to view the Analysis Model is that it could never be used to directly write
software and if it could be, it has too much detail. The primary activity in System Design
is converting Requirements Use Cases into Use Case Analysis Realizations. This is
accomplished by using a combination of the following constructs:

• Analysis Class Diagram,
• Class Diagram,
• Communication Diagram,
• Flow of Events,
• Special Requirements,
• Analysis Package,
• Service Package, and
• Architecture Description.

Analysis Class Diagram
Class diagrams are used throughout the analysis and design phases, but at this
point, they are focused on the high-level functionality. There are three types of
classes that can be found in the Analysis Model: boundary classes, entity classes
and control classes. Boundary classes are used to model the interaction between a
system and its actors.

Entity classes are used to model information that is long-lived and possibly
persistent.

Control classes represent coordination, sequencing, transactions and control of
other objects and typically represent the control mechanisms of an individual Use
Case.

Communication Diagram
As discussed earlier, these diagrams show the communication links between
objects in the design. They are important here in understanding the data that
passes between the classes and other design components. Communication
diagrams provide detail concerning the exchange of information (at a very high
level) between the components of a system and the system and actors.
Communication Diagrams used to be called Collaboration Diagrams in UML 1.x.

Flow of Events
These are textual representations of the Communication Diagrams or other forms
of Interaction Diagrams, which are often difficult to understand completely
because they provide no temporal information.

 31

Special Requirements
These are textual descriptions of any non-functional requirements in the Use Case
description of the system or any requirements discovered during the analysis.

Analysis Package
These are subsets of the Analysis Model that group parts of the system based on
common functionality; they help organize a large model into manageable pieces.
Different Analysis Packages should not be based on any solution domain or on
non-functional criteria.

Service Package
A Service is a collection of functionally related actions that are employed in more
than one Use Case. In other words, it is a unit of functionality that is reusable.
This is obviously important in obtaining the benefits of reusability in your
software design.

Architecture Description
An Architecture Description is a combination of diagrams and textual information
that provides a high-level view of the Analysis Model, consisting primarily of
Analysis Packages and their dependencies, key classes and critical Use Cases.

In addition to the USDP, we add the need to develop user interface storyboards that
provide a high-level description of the components of the interface users will see and the
sequence of operations users will expect to see. These develop naturally from the Use
Cases and identifying the characteristics of the interface early can provide an opportunity
to get feedback from users before doing significant design work. An example of a
storyboard is provided in the Requirements Section.

We also add the plan for acceptance testing in this phase, which requires the development
of a Test Model, composed of multiple instances of Test Cases, Test Components, and
Test Procedures. A Test Case specifies how a Use Case is to be tested. This is typically
done in some textual form and provides the data inputs and the expected results that are
to be tested, as well as the conditions on the test.

A Test Procedure specifies how to perform one or more Test Cases. Note, the Test Case
specifies what is to be tested and the Test Procedure specifies how the test is to be
conducted.

A Test Component is a structure that automates one or more Test Procedures, typically
by scripting or with an automated testing tool.

6.4 Technical Design Phase
This phase elaborates the Analysis Model (see Table 3.0) and engages in a series of
construction iterations that result in a Design Model, which is a stable architecture and
blueprint for development. The Design Model is much closer to the physical
manifestation of the software and has to be more specific and formal than the Analysis

 32

Model. Once created, it has to be maintained throughout the development cycle to insure
the software continues to represent the underlying design and the design itself is
consistent with good software standards.

In the USDP, the purpose of this phase is to:

• Decompose the Analysis Model into manageable pieces that can be assigned to
the development team (possibly concurrently) while insuring that the
requirements are met.

• Capture major interfaces between subsystems.
• Identify issues regarding non-functional requirements and constraints.
• Create a point of departure for implementation.

The UML constructs used in the Design Model are:

• Design Class,
• Use Case Realization-Design,
• Class Diagram,
• Sequence Diagram,
• Flow of Events,
• Implementation Requirements,
• Design Subsystem,
• Service Subsystem,
• Interface,
• Architecture Description, and
• Deployment Model.

Design Class
A Design Class differs from an Analysis Class in that the description language is
similar to that of the programming language to be used. It need not be
syntactically correct, but it should be a near representation of major syntactical
constructs such as function calls, parameters, operations, and data types. It does
not, however, deal with implementation issues such as specific coding methods or
graphical user interface components.

Use Case Realization-Design
This is similar to an Analysis Use Case Realization in that it provides a path
between the original Use Case and its requirements and the Design Model.

Class Diagram
This construction shows the high-level relationship between a Use Case and the
derived Design Classes. This is important in insuring system requirements are
being met and to avoid confusion over the handling of requirements.

 33

Interface
An Interface is a representation of the operations provided by the associated
Design Class or subsystem. They are a way to separate the internal workings of a
Class from the external view of what functions the Class offers to other Classes or
Subsystems. They might be viewed as a description of Application Program
Interface.

Sequence Diagrams
These constructs show how the flow of data and locus of control changes as a Use
Case is performed. These are the counterparts of the Collaboration Diagrams
used in the System Design phase.

Flow of Events
These are textual representations of the Sequence Diagrams, which do not provide
information about the interaction between Sequence Diagrams representing
different Use Cases.

Implementation Requirements
These are textual representations of implementation requirements that cannot
otherwise be represented. They may flow down from other phases or they may
evolve in the Technical Design phase.

Design Subsystem
These are artifacts of decisions about managing the design or subsequent phases.
Design Classes, Use Case Realizations, Interfaces, and other Subsystems can be
grouped due to similarity in function, development team assignments or any other
criteria that makes sense. A subsystem should be cohesive and different
subsystems should be coupled only loosely.

Service Subsystem
As in the Analysis Model, a Service is a collection of functionality that has
common usage in more than one location in the Design Model.

Architecture Description
This is a high-level description of the Design Model showing the decomposition
into Subsystems, Classes, Interfaces and Use Case Realizations.

Deployment Model
This model describes the physical distribution of the system across computational
resources.

Unit Test Plan
In this phase, we suggest the development of the Unit Test Plan, which specifies the tests
that each unit of the software has to meet. These could be tests on individual methods or
classes, or on conglomerates that provide some function. During the design phase, as
each class or subsystem is created, its functionality should be carefully spelled out, based

 34

on the System Specification, and tests should be written that when successfully
completed, will verify that the software works as it should. There are two types of tests:

• Black-box tests where the unit’s observable external behavior is validated.
• White-box tests which validate the unit’s internal implementation.

The former are usually done by writing a program that exercises the unit and tests that all
the methods or functions work as they should. The latter are usually done via code
walkthroughs and/or outputting intermediate results when the unit runs.

Defect Tracking System
It is absolutely essential that a software project have a defect tracking system to insure
defects are tracked and fixed and historical data on defects is accessible. The tracking
system could be as simple as a bulletin board where defects are posted and progress
tracked, but the need for historical data indicates that an electronic form is preferable.
There are a number of commercial or open source products for defect tracking, but an
electronic bulletin board or web site, or even a commonly accessible spreadsheet can be
used. The system should keep the following data:

• A defect identifier,
• The date submitted and the date of all state changes,
• The defect description,
• Who submitted the defect,
• Who has been assigned the defect,
• Supporting documentation for the defect,
• The location of the defect in the code when possible,
• The expected result of fixing the defect,
• What has been done to fix the defect (workarounds, updates, etc.), and
• The current state of the defect (open, fixed-not-verified, closed).

The supporting documentation could include attachments including screen shots, core
dumps or other evidence.

As the defects are fixed, the type and number of defects can be understood, helping to
improve the development process, and the defect list can help in understanding the
current capabilities of the software.

A defect tracking system is more complex than a simple form so it is discussed in a
separate section.

Deployment Management Plan
During this phase the development team must determine how the completed software will
be deployed and managed by the hosting team (internal or external). Some of the
decisions have already been made. The Deployment Plan dictates if the software runs as
a stand-alone application, web application, or in some other manner. CM plans are not

 35

included in USDP or in the Software CMM, but they are part of the IEEE 828-1990,
NASA-Sfw-DID-04 and DoD-STD-2167A [SEI2004].

Configuration Management Plan
A Configuration Management Plan (CMP) provides a basis for identifying changing
software versions. A CMP should include:

• An identification scheme for versions,
• Methods for tracking, auditing and controlling changes,
• An organization for storing software,
• A methodology for testing software, and
• A methodology for maintaining stable releases and baselining at milestones.

This plan helps control the software development process and the following maintenance
process. Without an adequate CMP, it is nearly impossible to manage a constantly
changing software cycle.

The identification scheme should represent a reasonable representation of the type and
frequency of updates that are expected, but even in the development phase, versioning
should be used. Some examples are the simple version.release form (5.1), while software
that is subject to more frequent updates might need version.subversion.release (5.1.4).
Some organizations prefer to use letters (5.A.d) or even names (WOMBAT.4), but the
important issue is whether it has sufficient resolution to meet the needs for clearly
defining software changes internally.

The storage and control of the software under development and during maintenance
should be done by a version control system of some kind. This is a decision that is very
much a matter of institutional choice, but it should provide the following:

• Sufficient file space for the project and frequent backups to another media,
• The ability to set milestone versions and check them out at any point in time,
• The ability to rollback in the case of a significant problem, and
• Versioning that can match the versioning system chosen for the software.

The remaining need is for a testing methodology. The Acceptance Test Plan, System
Test Plan, and Unit Test Plans are concerned with the types of tests to be run and the
desired result, but the CM plan needs to specify the exact methodology that is to be used
for testing. The possibilities are endless, but are typically one of these types:

• Continuous testing,
• Testing only when the software reaches a particular milestone,
• Testing only when the software has reached the final state and includes all

functionality, or
• Some combination of these, such as continuous unit testing, system tests are all

milestones, and acceptance testing at the end.

 36

The nature of unit testing is that it should take place within the development cycle and
should be done at short intervals, possibly by the programmers themselves. Acceptance
tests are typically done only at the end by the customers, although dry runs are often
concocted to insure compliance. System tests can occur at any time, but it is generally
agreed the more frequent they are the better.

Quality Assurance
One issue that is difficult to settle in some organizations is if testing and quality
assurance should be done by the developers or by a group of people not directly in
development. It is our opinion and the opinion of most in industry ([Spo2001],
[McC1993], and [McC1996]), that a separate quality assurance or testing group is both
cost-effective and more effective in the quality sense.

The next question is how quality assurance (QA) should be integrated into the SDLC. It
is generally viewed as a process that begins when development ends, but that is not
particularly effective and should be avoided. Doing continuous QA while development
continues identifies problems before they become highly dependent parts of the code, it
allows better interaction with clients if requirements change and it tests the entire system,
including configuration and implementation well before the client sees it.

6.5 Development Phase
In this phase (see Table 3.0), the Design Model is converted into running and tested
software. The USDP suggests that the following functions be incorporated:

• Plan the system integration process, which is a series of iterations of development.
The software can be developed top-down, bottom-up or by stove-piping as in
Agile development methods.

• Implement the classes, subsystems and interfaces from the Design Model.
• Unit test the components.

The UML constructs used in this phase are:

• Component,
• Interfaces,
• Architectural Description, and
• Integration Build Plan.

Component
This structure is a physical packaging of design classes, interfaces, and
subsystems representing the manifestation of the design phase. A Component
could be an executable program, a file containing data or code, a library, a
database table, or a document, as well as anything else that is needed to
implement the design.

Interfaces
In this phase, an Interface is virtually the same as it is in the Analysis Phase.

 37

Implementation Subsystem
This is a collection of implementation artifacts used for organizational
convenience. An Implementation Subsystem should have a physical,
programming language manifestation, such as a Java package, Visual Basic
project, or Component View Package in Rational Rose.

Architectural Description
This is a high-level view of the Implementation Model showing the significant
artifacts, including Components, Implementation Subsystems, Interfaces, and
dependencies.

Integration Build Plan
While this is planning, it is an integral part of the development cycle and is
necessary to insure that appropriate methods are used in development. An IBP
decomposes the development cycle into a series of milestones or builds which are
executable versions of the system or some part of the system. Each build should
be testable and there should be a test plan for each. This idea is that incremental
implementation is easier to manage and test.

The Integration Build Plan describes the functionality to be included in each
build, which components of the implementation are affected and the test plan.
This is closely related to the entire project planning process but rightly belongs
here.

How you proceed from the Design phase to the Development phase is dependent on a
number of factors but it reduces to the following issues:

• Where do you start?
• How do you proceed?
• When do you stop?

Starting may happen before the end of the design phases, primarily based on the issue of
risk. If a particular design component appears to be risky in the sense that it involves
unknown technology or there is some doubt about how the implementation might affect
the design, it should be started and pushed to a point where the risk is either mitigated or
the project is reviewed for feasibility. Whenever it occurs, it is best to remove any
questions about the development and implementation as soon as possible.

If there are no such issues, the design should be organized around code reusability; parts
of the design that are identified as reusable should be coded first so that the remaining
code can be built on these functions. Beyond that, the code can be developed layer-by-
layer, or by stove-piping. In layer-by-layer design, the code is developed from lower
layers to higher layers so that testing can be done as the project progresses. In some
cases, it might be easier to “drill down” through the code, completing entire portions of
the project from the highest to the lowest layers of functionality so that those portions can

 38

be thoroughly tested and possibly even released for use. In general, there are not industry
standards that dictate the “best practices” and these decisions need to be made by the
project team given the environment and structure of the design. However, these
decisions must be made and not allowed to happen at the whim of the developers
themselves.

Stopping seems obvious, but projects of any size tend to continue ad infinitum unless the
deadline is reached. One of the advantages of continuous or frequent testing is that as the
functionality nears what was promised, it becomes apparent the project should either
diminish in intensity or new functionality should be added. Most projects move into the
maintenance phase at this point, so development doesn’t stop, but it moves into fixing
bugs and adding functionality, usually at a different pace. The project manager should
evaluate the project at every test point and determine when the project has reached
fruition.

6.6 Implementation Phase
This phase (see Table 3.0) makes the software available, possibly in stages such as beta,
early release, and final and performs the acceptance test. In the USDP, this phase is
called Test and focuses only on the testing. For the MDT, this phase focuses on training
and acceptance testing and the deliverables are:

• Training surveys,
• User response surveys,
• Completed acceptance test,
• Updated and tested software, and
• Updated user support plan.

This component is not specified by any standard process, but represents a collection of
activities that are vital to long-term success and quality control. The Software CMM
specifies requirements for an Organization Training Program at Level 3 and a Software
Configuration Management at Level 2.

After the software is installed and tested to insure that it is operational, although not
necessarily defect-free, the training can take place and the user surveys can be collected.
The development team may or may not be involved in training, but this is typically a
busy time for developers as they endure one more round of intense defect handling. The
Acceptance Test may reveal problems that need to be resolved and this phase may extend
over several months, depending on the complexity of the testing and the quality of the
software. At some point, the software is accepted and it moves into the next phase.

When working with users during training and during the testing, there are always issues
that arise concerning problems that are not critical to passing the test, but are significant
for usability and user satisfaction. These should be reported through the defect tracking
system to insure that they are recorded and considered for future changes.

 39

A plan for supporting users can be developed which details how users with questions or
problems should be handled. Defects go into the defect tracking system, but they need an
avenue for submitting them, either through a web site, email, or telephone call. This
needs to be spelled out. If they have questions, you may have a support team that needs
to be trained on the product. Or you might assign a member of the development or
maintenance teams to handle questions. You might also restrict access to a single user so
that all questions have to be vetted by the user’s organization to reduce support traffic.
This is all dependent on organizational structures and resources, but it is very important
that every question or defect be tracked and the resources used to resolve it measured. As
discussed in the Project Planning section, the User Support Plan should include internal
accounting of the cost.

6.7 Conclusion Phase
For MDT, this phase is about reaching the state where the development effort is over and
ready to move into the maintenance phase, and the project is ready for review. This
phase doesn’t end until the software is no longer being updated or used. The deliverables
are:

• Customer approval,
• Software in maintenance cycle, and
• Analysis of project performance.

This phase should not be reached until the Acceptance Test is complete and the training
has been finished, so the first item should be completed. The software moving into the
maintenance cycle means that a team of support personnel will take over the day-to-day
care of the product and the defect tracking system. The analysis of the project should be
primarily a report from the project manager indicating how well the team did according
to its own estimates and any standards of performance used, and what procedural changes
should be made to the SDLC in the future. This is discussed in more detail in the Project
Management section.

6.8 Risk and Agile Development
The USDP encompasses a wide range of methodologies based on the concept of iterative
and incremental development. The approach to be used depends on the organizational
preference, the type of project being considered (rework, a large new development, a
small project, etc.), and the decisions of the development team. Another set of
methodologies are the Agile Development or Rapid Deployment methods, which take a
different approach. It is the researchers’ opinion that these methods do not currently
represent industry best practices, and while they have shown promise, there have also
been some failures and should be used with caution.

What the Agile methods provide are techniques that address development in situations
where time is of the essence, but they require the order of development to be based on the
evaluation of priorities and risk, and that can be valuable in any project.

 40

7 User Interface Development
Although a part of software development, user interfaces (UI) are designed and
implemented in a manner which is unique. As the part of the software that users see, the
user interface conveys the solution to the Requirements document and is largely
responsible for the perceived usability. User interfaces can be text-based, graphical, web-
based, or possibly non-existent, but they must be considered carefully because they can
become a significant part of the development and maintenance cost. They must also be
carefully vetted by the users during the design and development process because there is
so much subjectivity in the simple question, “Do you like this interface?”

The steps in developing the UI’s for a system are:

1) Use Case Model,
2) User interface storyboards,
3) User interface mock-ups, and
4) Implemented user interfaces.

The UI development process starts during the System Analysis phase in the Use Case
Model. Each Use Case represents the relationship between Actors and parts of the
system. If the Actor is a person, you have a UI; if it is another system, you have an API
or protocol. If it is a UI, it should be specifically determined what type of UI is desired:
text, graphical, or anything else that is possible.

During the process of testing the analysis with the client, each potential UI should be
discussed and there must be an agreement on the requirements for the UI’s. For example,
should they have menus, do they have a UI model in mind, should they have keyboard-
only input to speed typing and so on. Of course, much of this discussion should happen
during the Planning phase since the type of user interface impacts cost.

A user interface storyboard is a device for describing the interaction between the system
and the user and it typically derives from Interaction and Collaboration Diagrams
developed during System Analysis, as well as from the Use Cases.

During the Technical Design phase, the storyboard is converted into a user interface
mock-up, which is an implementation of the UI in a form that is similar (possibly
identical) to the final implementation. The purpose is to demonstrate the functionality
and aesthetic value of the UI for customer approval prior to moving to final development.
Agile development methods would build the actual interfaces with minimal backing
capability, but this can be accomplished by using a rapid prototype development system,
such as Visual Basic.

The mock-ups should be approved by the customer before proceeding. The storyboards
show the messages and the sequence of collaboration, but they do not provide the users
with a sense of how the interface “looks”, but the mock-ups do, so the client has now
approved all parts of the UI. Proceed with implementation of the UI.

 41

8 Software Development
This component of the project is described in broad terms by the USDP and is concerned
with converting the Design Architecture into running software. This phase is difficult to
describe in detail because it depends significantly on the languages used, the target
software, and hardware platforms and the underlying goals, but there are standard
methods for managing this process that can be proposed. The methods described here
meet the Software CMM requirements for Peer Reviews at Level 3 and Software Quality
Assurance at Level 2.

The material here represents a set of methods considered to be industry best practices, but
the use of them cannot be scheduled or determined precisely except by the development
team as part of the planning and development process. They are provided here as
methods to be considered in making choices about how the development process is to
proceed.

8.1 Code Walkthroughs
A method for improving code quality is to use walkthroughs, where one or more
programmers look at the code of another programmer, looking for violations of coding
standards and problems in the logic. It requires the programmer to explain the code on a
line-by-line basis and provides more eyes to look for potential problems. Often, the
biggest improvement is in the overall improvement in coding style and design when
programmers share ideas.

8.2 Programming Pairs
Another type of programming uses two programmers working together on a single task.
They design together, split the coding and then test each other’s work, including
walkthroughs. There are potential personnel conflict problems with this method, but
when it works, it has very good results.

 42

9 Documentation
During this phase the development team develops the product and user documentation
according to the specifications established earlier in the project process. The
documentation process starts in the System Design phase with a Documentation Plan
which describes the things which are to be done with regard to documentation:

• A list of deliverables;
• An identification scheme for the deliverables;
• Procedures for verifying the contents, publishing and transferring of each

deliverable;
• For each document, a table of contents; and
• A schedule of milestones for the deliverables and work assignments.

 43

10 Training Plan and Training
A training plan provides a framework for training users and support personnel in the
operation and support for the product as specified in Software CMI GP 2.5 [Ahe2004]. A
training plan for users should include the objectives, strategy, and curriculum to be used
when training or developing training materials. It should also cover a variety of mundane
details such as scheduling, reserving resources, publishing of training materials, and
anything else necessary. Since training involves customer staff, coordination is important
and they must approve of the plan.

A training plan is naturally the result of the skills of the users and the complexity (and
quality) of the software. The plan should address:

• The objectives of the training,
• The approach to be used to develop the curriculum,
• A needs and skills analysis of the users,
• The training methodology,
• The training database,
• Methods for testing training effectiveness during development,
• Course resources (administration, space, equipment, materials),
• Training schedules, and
• Continuing training.

 44

11 References

[Ahe2004] Ahern, D., et al, CMMI Distilled, Addison-Wesley, 2004.

[DeM1999] DeMarco, T., Lister, T., Peopleware, Dorsett House Publishing, 1999.

[Fow2004] Fowler, M., UML Distilled, Third Edition, Addison-Wesley Pearson, 2004.

[Gau1989] Gause, D., Weinberg, M., Exploring Requirements: Quality Before Design,

Dorsett House Publishing, 1989.

[Gla2003] Glass, R., Facts and Fallacies of Software Engineering, Addison-Wesley

Pearson, 2003.

[Hel2004] Heldman, Project Management Professional Study Guide, 2nd Edition,

Sybex, 2004.

[Jac1999] Jacobsen, I., et al, The Unified Software Development Process, Addison-

Wesley, 1999.

[Lef2003] Leffingwell, D, Widrig, D., Managing Software Requirements: A Use Case

Approach, Second Edition, Addison-Wesley, 2003.

[Kru2000] Krug, S., Don’t Make Me Think, New Riders Press, 2000.

[Mak2005] Maksimchuk, R., Naiburg, E., UML for Mere Mortals, Addison-Wesley

Pearson, 2005.

[Mar2005] Marasco, J., The Software Development Edge, Addison-Wesley Pearson,

2005.

[McC1996] McConnell, S., Rapid Development, Microsoft Press, 1996.

[McC1993] McConnell, S., Code Complete, Microsoft Press, 1996.

[Mun2003] Munson, J., Software Engineering Measurement, Auerbach Press, 2003.

[Pre2001] Pressman, R., Software Engineering, McGraw, 2001.

[Rum2005] Rumbaugh, J., et al, The Unified Modeling Language Reference Manual,

Addison-Wesley, 2005.

[SEI2004] Software Engineering Institute, CM Plans: The Beginning of Your CM

Solution, http://www.sei.cmu.edu/legacy/scm/abstracts/abscm_plans.html.

 45

http://www.sei.cmu.edu/legacy/scm/abstracts/abscm_plans.html

[Spo2001] Spolsky, J., User Interface Design for Programmers, Apress, 2001.

[Spo2004] Spolsky, J., Joel on Software, Apress, 2004.

 46

Appendix A - UML Example

This is an example of a UML development process for a bookstore. It is neither too
simple nor too complex and illustrates the modeling approach quite well. The UML
Model report is included here. Also the “UML Model.doc” and four diagrams are
included as .pdf files in the Reports directory of the supplemental software. For more
details about this case study, see [Ros1999] and [Ros2001].

UML Model Report

UML Model

 47

Use Case MODEL Report
Use Case Model

Package Documentation: NONE

Use Case Diagram - Main

Shipping Clerk

Shipper

Shipping Station

Ship Order

Receiving Clerk Inventory Clerk

Receiving Station

Process Received Shipment

Log In

Edit Contents of Shopping Cart

Search by Author

Track Recent Orders

Open Account
Check Out

Cancel Order

CustomerBrowse List of Books

Actor - Customer

Documentation: NONE

Actor - Shipping Clerk

Documentation: NONE

Actor - Shipper

Documentation: NONE

 48

Actor - Receiving Clerk
Documentation: NONE

Actor - Inventory Clerk

Documentation: NONE

Actor - Shipping Station

Documentation: NONE

Actor - Receiving Station

Documentation: NONE

Use Case - Add Item to Shopping Cart

Documentation: NONE

List of Associations
Search Results Page Communicates with Add Item to Shopping Cart.

Use Case - Browse List of Books

Documentation:
Basic Course

The Customer clicks on a Category on the Browse Books Page. The
system displays the subcategories within that Category. This process
continues until there are no more subcategories, at which point the system
displays the Books in the lowest subcategory. The Customer clicks on the
thumbnail for a Book. The system invokes the Display Book Details use
case.

Alternate Course

If the system does not find any Books contained within a given Category,
it displays a message to that effect and prompts the Customer to select a
different Category.

List of Associations

Customer Communicates with Browse List of Books.

Use Case - Cancel Order

Documentation:
Basic Course

The system ensures that the Order is cancellable (in other words, that its
status isn't "shipping" or "shipped"). Then the system displays the
relevant information for the Order on the Cancel Order Page, including its
contents and the shipping address. The Customer presses the Confirm

 49

Cancel button. The system marks the Order status as "deleted" and then
invokes the Return Items to Inventory use case.

Alternate Course

If the status of the Order is "shipping" or "shipped," the system displays a
message indicating that it's too late for the Customer to cancel the order.

List of Associations

Customer Communicates with Cancel Order.

Use Case - Check Out
Documentation:

Basic Course

The system creates a Candidate Order object that contains the contents of
the Customer's Shopping Cart. Then the system retrieves the Shipping
Addresses associated with the Customer's Account, and displays these
addresses on the Shipping Address Page. The Customer selects an
address, and then presses the Use This Address button. The system
associates the given Shipping Address with the Candidate Order. Then the
system displays the available Shipping Methods on the Shipping Method
Page.

The Customer selects a shipping method, and then presses the Use This
Shipping Method button. The system associates the given Shipping
Method with the Candidate Order. Then the system displays the contents
of the Billing Info objects associated with the Customer's Account, on the
Billing Information Page. The Customer selects a billing method and
presses the Use This Billing Information button. The system associates
the given Billing Info object with the Candidate Order. Then the system
displays the Confirm Order Page.

The Customer presses the Confirm Order button. The system converts the
Candidate Order to an Order and destroys the Shopping Cart. Then the
system returns control to the use case from which this use case received
control.

Alternate Courses

If the Customer has not already logged in, the system invokes the Log In
use case.

If the system does not find any Shipping Addresses, it invokes the Create
Shipping Address use case.

 50

If the system does not find any Billing Info objects, it invokes the Define
Billing Information use case.

If the Customer presses the Cancel Order button at any time, the system
destroys the Candidate Order and returns control to the use case from
which this use case received control.

List of Associations

Customer Communicates with Check Out.
Shopping Cart Page Communicates with Check Out.

Use Case - Edit Contents of Shopping Cart

Documentation:
Basic Course

On the Shopping Cart Page, the Customer modifies the quantity of an Item
in the Shopping Cart and then presses the Update button. The system
stores the new quantity and then computes and displays the new cost for
that Item. The Customer presses the Continue Shopping button. The
system returns control to the use case from which it received control.

Alternate Courses

If the Customer changes the quantity of the Item to 0, the system deletes
that Item from the Shopping Cart.

If the Customer presses the Delete button instead of the Update button, the
system deletes that Item from the Shopping Cart.

If the Customer presses the Check Out button instead of the Continue
Shopping button, the system passes control to the Check Out use case.

List of Associations

Customer Communicates with Edit Contents of Shopping Cart.

 51

Class Diagram - Edit Contents of Shopping Cart Robustness

Shopping Cart

(from Domain with Attributes)

Customer

Check Out

Item

(from Domain with Attributes)

Delete Item
Shopping Cart Page

modify quantity;
press Update

Display

Update Quantity and
Cost

 52

Interaction Diagram - Edit Contents of Shopping Cart Sequence

1 : Customer
2 :

Shoppin...
3 : Item 4 :

Sho...Basic Course

On the Shopping Cart Page,
the Customer modifies the
quantity of an Item in the
Shopping Cart, and then
presses the Update button.

The system stores the new
quantity, and then computes
and displays the new cost for
that Item.

The Customer presses the
Continue Shopping button.
The system returns control to
the use case from which it
received control.

Alternate Courses

If the Customer changes the
quantity of the Item to 0, the
system deletes that Item from
the Shopping Cart.

If the Customer presses the
Delete button instead of the
Update button, the system
deletes that Item from the
Shopping Cart.

If the Customer presses the
Check Out button instead of the
Continue Shopping button, the
system passes control to the
Check Out use case.

onUpdate()

updateQuantityAndCost()

displayCost()

onContinueShopping()

onDelete()

deleteItem()

onCheckOut() Pass control
to Check Out
use case

destroy()

destroy()

deleteItem()

deleteItem()

getItem()

 53

Use Case - Log In
Documentation:

Basic Course

The Customer clicks the Log In button on the Home Page. The system
displays the Login Page. The Customer enters his or her user ID and
password and then clicks the Log In button. The system validates the
login information against the persistent Account data and then returns the
Customer to the Home Page.

Alternate Courses

If the Customer clicks the New Account button on the Login Page, the
system invokes the Open Account use case.

If the Customer clicks the Reminder Word button on the Login Page, the
system displays the reminder word stored for that Customer, in a separate
dialog box. When the Customer clicks the OK button, the system returns
the Customer to the Login Page.

If the Customer enters a user ID that the system does not recognize, the
system displays a message to that effect and prompts the Customer to
either enter a different ID or click the New Account button.

If the Customer enters an incorrect password, the system displays a
message to that effect and prompts the Customer to reenter his or her
password.

If the Customer enters an incorrect password three times, the system
displays a page telling the Customer that he or she should contact
customer service, and also freezes the Login Page.

List of Associations

Customer Communicates with Log In.

 54

Class Diagram - Log In Robustness

Account

(from Domain wi th Attributes)

Open Account

Validate

Home Page

Login Page

Customer

click Log In

enter data and click Login

Display

Reminder Word Dialog Box

click OK

 55

Interaction Diagram - Log In Sequence

1 : Customer
2 : Home Page 3 : Login Page 4 : Reminder

Word Dialo...
5 :

Acc...
Basic Course

The Customer clicks the Log In button
on the Home Page.

The system displays the Login Page.

The Customer enters his or her user ID
and password, and then clicks
the Log In button.

The system validates the login
information against the persistent
Account data, and then returns
the Customer to the Home Page.

Alternate Courses

If the Customer clicks the New Account
button on the Login Page, the system
invokes the Open Account use case.

If the Customer clicks the Reminder
Word button on the Login Page, the
system displays the reminder word
stored for that Customer, in a separate
dialog box. When the Customer clicks
the OK button, the system returns the
Customer to the Login Page.

If the Customer enters a user ID that the
system does not recognize, the system
displays a message to that effect and
prompts the Customer to either enter a
different ID or click the New Account
button.

If the Customer enters an incorrect
password, the system displays a
message to that effect and
prompts the Customer to
reenter his or her password.

If the Customer enters an incorrect
password three times, the system
displays a message telling the
Customer that he or she should
contact Customer Service, and also
freezes the Login Page.

onLogin()

display()

onLogin()

validateLoginInfo()

display()

Invoke Open
Account use
case

display()

onOK()

display()

displayErrorAndPrompt()

freeze()

onNewAccount()

onReminderWord()

displayErrorAndPrompt()

 56

Use Case - Open Account
Documentation:

Basic Course

The system displays the New Account Page. The Customer types his or
her name, an e-mail address, and a password (twice), and then presses the
Create Account button. The system ensures that the Customer has
provided valid data and then adds an Account to the Master Account Table
using that data. Then the system returns the Customer to the Home Page.

Alternate Courses

If the Customer did not provide a name, the system displays an error
message to that effect and prompts the Customer to type a name.

If the Customer provided an email address that's not in the correct form,
the system displays an error message to that effect and prompts the
Customer to type a different address.

If the Customer provided a password that is too short, the system displays
an error message to that effect and prompts the Customer to type a longer
password.

If the Customer did not type the same password twice, the system displays
an error message to that effect and prompts the Customer to type the
password correctly the second time.

If the account is already in the master account table, notify the user.

List of Associations

Customer Communicates with Open Account.
Login Page Communicates with Open Account.
Open Account Communicates with Login Page.

 57

Interaction Diagram - Open Account Sequence Diagram

1 : Customer 2 : New
Account Page

3 : Error Page 4 :
Acc...

5 :
Mast...

6 : Home Page : Get
Acc...

Basic Course

The system displays the New
Account Page. The Customer
types his or her name, an email
address, and a password
(twice), and then presses the
Create Account button.

The system ensures that the
Customer has provided valid
data, and then adds an Account
to the Master Account Table
using that data. Then the
system returns the Customer to
the Home Page.

Alternate Courses

If the Customer did not provide a
name, the system displays an
error message to that effect and
prompts the Customer to type a
name.

If the Customer provided an
email address that's not in the
correct form, the system
displays an error message to
that effect and prompts the
Customer to type a different
address.

If the Customer provided a
password that is too short, the
system displays an error
message to that effect and
prompts the Customer to type a
longer password.

If the Customer did not type the
same password twice, the
system displays an error
message to that effect and
prompts the Customer to type
the password correctly the sec...

displayPage()

enterText()

onClickCreate()

setName()

setEmail()

setPassword()

validateAccount()

addAccount()
display()

displayNameMissing()

displayBadEmailAddress()

displayBadPassword()

 58

Use Case - Process Received Shipment
Documentation:

Basic Course

The Receiving Clerk ensures that the Line Items listed on the Purchase
Order match the physical items. The Clerk waves the bar code on the
packing slip under the sensor at the receiving station. The system changes
the status of the Purchase Order to "fulfilled" and updates the quantity on
hand values for the various Books. The Clerk hands the Books off to the
Inventory Clerk.

Alternate Course

If the Receiving Clerk finds a mismatch between the Purchase Order and
the physical items, the Clerk stops processing of the shipment until he or
she is able to make a match.

List of Associations

Receiving Clerk Communicates with Process Received Shipment.
Process Received Shipment Communicates with Inventory Clerk.
Process Received Shipment Communicates with Receiving Station.

Use Case - Search by Author

Documentation:
Basic Course

The Customer types the name of an Author on the Search Page and then
presses the Search button. The system ensures that the Customer typed a
valid search phrase, and then searches the Catalog and retrieves all of the
Books with which that Author is associated. The system retrieves the
important details about each Book, and creates a Search Results object
with that information.

Then the system displays the list of Books on the Search Results Page,
with the Books listed in reverse chronological order by publication date.
Each entry has a thumbnail of the Book's cover, the Book's title and
authors, the average Rating, and an Add to Shopping Cart button. The
Customer presses the Add to Shopping Cart button for a particular Book.
The system passes control to the Add Item to Shopping Cart use case.

Alternate Courses

If the Customer did not type a search phrase before pressing the Search
button, the system displays an error message to that effect and prompts the
Customer to type a search phrase.

 59

If the system was unable to find any Books associated with the Author that
the Customer specified, the system displays a message to that effect and
prompts the Customer to perform a different search.

If the Customer leaves the page in a way other than by pressing an Add to
Shopping Cart button, the system returns control to the use case from
which this use case received control.

List of Associations

Customer Communicates with Search by Author.

 60

Class Diagram - Search by Author Robustness

Catalog

(from Domain wi th Attributes)

Add Item to Shopping Cart

Customer

Book

(from Domain with Attributes)

Retrieve Details

Verify Search Phrase

Search Page

type author name;
press Search

Search on Author
Search Results Page

select book

Create

Display

no phrase

no books

Search Results

(from Domain with Attributes)

 61

Interaction Diagram - Search by Author Sequence

1 : Customer
2 : Search

Page
3 : Search
Results...

4 :
Catalog

5 :
Book

6 :
Sear...Basic Course

The Customer types the
name of an Author on the
Search Page, and then
presses the Search button.

The system ensures that
the Customer typed a search
phrase, and then searches
the Catalog and retrieves all of
the Books with which that
Author is associated.

The system retrieves the
important details about
each Book, and creates a
Search Results object with
that information.

Then the system displays the
list of Books on the Search
Results Page, with
the Books listed in reverse
chronological order by
publication date. Each
entry has a thumbnail of
the Book's cover, the
Book's title and authors,
the average Rating, and an
Add to Shopping Cart button.

The Customer presses the
Add to Shopping Cart button
for a particular Book. The
system passes control to
the Add Item to Shopping Cart
use case.

Alternate Courses

If the Customer did not type a
search phrase before pressing
the Search button, the system
displays an error message to
that effect and prompts the
Customer to type a search
phrase.

If the system was unable to find
any Books associated with the
Author that the Customer
specified, the system displays
a message to that effect and
prompts the Customer to
perform a different search.

If the Customer leaves the page
in a way other than by pressing
an Add to Shopping Cart
button, the system returns
control to the use case from
which this use case received
control.

onSearch()

verifySearchPhrase()

searchOnAuthor()

display()

onAddToShoppingCart()

Pass control to
Add to Shopping
Cart use case

displayErrorAndPrompt()

displayErrorAndPrompt()

retrieveDetails()

create()

 62

Use Case - Ship Order

Documentation:
Basic Course

The Shipping Clerk ensures that the Items listed on the packing slip for the
Order match the physical items. The Clerk waves the bar code on the
packing slip under the sensor at the shipping station. The system changes
the status of the Order to "shipping". Then the system retrieves the
Shipping Method that the Customer specified for this Order and displays it
on the Shipping Station Console. The Clerk weighs the set of physical
items. The Clerk packages the Items. The Clerk attaches a manifest
appropriate for the given shipping method. The Clerk waves the bar code
on the manifest under the sensor. The Clerk sends the package out via the
associated Shipper.

Alternate Course

If the Shipping Clerk finds a mismatch between the Order and the physical
items, the Clerk stops processing of the Order until he or she is able to
make a match.

List of Associations

Shipping Clerk Communicates with Ship Order.
Ship Order Communicates with Shipper.
Ship Order Communicates with Shipping Station.

 63

Class Diagram - Ship Order Robustness

Order

(from Domain wi th Attributes)

Retrieve Shipping
Method

Change Status

Display Shipping
Method

Shipping Station Sensor

Shipping Station Console

Shipping Clerk

wave bar code

ShipperShipper Interface

 64

Interaction Diagram - Ship Order Sequence

1 : Shipping Clerk 2 : Shipper
3 : Shipping

Station Sensor
4 : Shipping
Station Con...

5 : Shipper
Interface

6 :
Order

readBarCode()

changeStatus()

receivePackage()

Basic Course

The Shipping Clerk ensures
that the Items listed on the
packing slip for the Order
match the physical items.

The Clerk waves the bar code
on the packing slip under the
sensor at the shipping station.

The system changes the
status of the Order to "shipping."

Then the system retrieves the
Shipping Method that the
Customer specified for this Order,
and displays it on the Shipping
Station Console.

The Clerk weighs the set of
physical items. The Clerk
packages the Items. The
Clerk attaches a manifest
appropriate for the given shipping
method.

The Clerk sends the package out
via the associated Shipper.

Alternate Course

If the Shipping Clerk finds a
mismatch between the Order and
the physical items, the Clerk
stops processing of the Order
until he or she is able to make a
match.

retrieveShippingMethod()

displayShippingMethod()

 65

Use Case - Track Recent Orders

Documentation:
Basic Course

The system retrieves the Orders that the Customer has placed within the
last 30 days and displays these Orders on the Order Tracking Page. Each
entry has the Order ID (in the form of a link), the Order date, the Order
status, the Order recipient, and the Shipping Method by which the Order
was shipped.

The Customer clicks on a link. The system retrieves the relevant contents
of the Order, and then displays this information, in view-only mode, on
the Order Details Page. The Customer presses OK to return to the Order
Tracking Page.

Once the Customer has finished viewing Orders, he or she clicks the
Account Maintenance link on the Order Tracking Page. The system
returns control to the invoking use case.

Alternate Course

If the Customer has not placed any Orders within the last 30 days, the
system displays a message to that effect on the Order Tracking Page.

List of Associations

Customer Communicates with Track Recent Orders.

 66

Class Diagram - Track Recent Orders Robustness

Order

(from Domain with Attributes)
Customer

Retrieve Order Details

Order Details Page

Order Tracking Page

Order Table

(from Domain with Attributes)

Display Retrieve Recent Orders

 67

Interaction Diagram - Track Recent Orders Sequence

1 : Customer
2 : Order
Trackin...

3 : Order Details
Page

4 :
Orde...

5 :
Order

6 :
Ord...

Basic Course

The system retrieves the Orders
that the Customer has placed
within the last 30 days, and
displays these Orders on the
Order Tracking Page. Each entry
has the Order ID (in the form of a link),
the Order date, the Order status, the
Order recipient, and
the Shipping Method by which the
Order was shipped.

The Customer clicks on a link. The
system retrieves the relevant contents
of the Order, and then creates an
Order Details object. The system
displays the contents of this object,
in view-only mode, on the Order
Details Page.

The Customer presses OK to
return to the Order Tracking Page.

Once the Customer has finished
viewing Orders, he or she clicks
the Account Maintenance link.
The system returns control to
the invoking use case.

Alternate Course

If the Customer has not placed any
Orders within the last 30 days, the
system displays a message to that
effect on the Order Tracking Page.

displayRecentOrders()

onLinkClick()

onAccountMaintenance()

display()

onOK()

display()

retrieveRecentOrders()

displayNoOrderMessage()

create()

retrieveDetails()

getDetails()

 68

Domain Model

Customer ReviewEditorial Review

User Preferences

Login Manager

Billing Info

User
Master Account Table

CatalogSearch Results

Review
Publisher Stock

PriceSchedule

Account

1..3

1

Order Table

Order Details
Status

Shipping Method

Candidate Order

Shopping Cart

Book

Order

Item

Purchase Order

Line Item

 69

 70

User Preferences

Login Manage r

Bil l ing Info
creditCardType
creditCardNumber

User

Catalog

searchOnAuthor()

Publisher
name
publicationDate

Stock
replenishThreshold
quantityOnHand

PriceSchedule
price
discountPct

Review
rating

write()

Search Results

create()

Account
userID
password
reminderWord
emailAddress

countBadPasswords()
setName()
setEmail()
setPassword()
validateAccount()

1..3

1

Order Table

retrieveRecentOrders()

Status

Sh ippi ng Metho d

Order Details

create()
getDetails()

Book
title
price
publishedDate
thumbnail
quantityOnHand
replenishThreshold
discountPct
publisher

retrieveDetails()

Pu rchase Orde r
datePlaced
status
items : Vector

Shopping Cart

deleteItem()
getItem()

Order
ID
datePlaced
dateShipped
recipient
trackingNumber
status
shippingMethod
foreignInventoryDBKey

changeStatus()
retrieveShippingMethod()
retrieveDetails()

Item
quantity
cost

updateQuantityAndCost()
destroy()
getItem()

Static Object Model

Catalog

searchOnAuthor()

Publisher
name
publi cationD ate

Stock
replenishThreshold
quantityOnHand

PriceSchedule
price
discountPct

Review
rating

write()

Book
title
price
publishedDate
thumbnail
quantityOnHand
replenishThreshold
discountPct
publisher

retrieveDetails()

Purchase Order
datePlaced
status
items : Vector

I tem
quantity
cost

updateQuantityAndCost()
destroy()
getItem()

Search Results

create()

Order Details Page

display()
onOK()

Shopping Cart

deleteItem()
getItem()

Reminder Word Dialog Box

display()
onOK()

Search Pag e

onSearch()
verifySearchPhrase()
displayErrorAndPrompt()

Search Results Page

display()
onAddToShoppingCart()

Order Tracking Page

displayRecentOrders()
onLinkClick()
display()
onAccountMaintenance()
displayNoOrderMessage()

Error Page

displayNameMissing()
displayBadEmailAddress()
displayBadPassword()

Shopping Cart Page

onUpdate()
displayCost()
onContinueShopping()
onDelete()
onCheckOut()
deleteItem()

New Account Page

displayPage()
enterText()
onClickCreate()

Customer
(from Use Case View)

cli ck OK

type author name;

selec t book

modify quantity;

Home Page

onLogin()
display()
opname()

click Log In

Login Page

display()
onLogin()
displayErrorAndPrompt()
freeze()
onNewAccount()
onReminderWord()

enter data and click Login

 71

Shipping Station
(from Use Case View)

Purchase Order
datePlaced
status
items : Vector

Order Details Page

display()
onOK()

Item
quantity
cos t

updateQuanti tyAndCost()
des tr oy()
getI tem() Shipping Method

Order Details

create()
getDetails()

Shopping Cart

deleteItem()
getItem()

Order Tracking Page

displayRecentOrders()
onLinkClick()
display()
onAccountMaintenance()
displayNoOrderMessage()Shopping Cart Page

onUpdate()
displayCost()
onContinueShopping()
onDelete()
onCheckOut()
deleteItem()

Order
ID
datePlaced
dateShipped
recipient
trackingNumber
status
shippingMethod
foreignInventoryDBKey

changeStatus()
retrieveShippingMethod()
retrieveDetails()

Customer
(from Use Case View)

modify quantity ;

Order Table

retrieveRecentOrders()

Home Page

onLogin()
display()
opname()

clic k Log In

New Account Page

displayPage()
enterText()
onClickCreate()

User

Login Page

display()
onLogin()
displayErr orAndPrompt()
freeze()
onNewAccount()
onReminderWor d()

enter data and click Login

Account
userID
password
reminderWord
emailAddress

countBadPasswords()
setName()
setEmail()
setPassword()
validateAccount()

Log in Manager

 72

Shipper Interface

receivePackage()

Shipping Stat ion Console

displayShippingMethod()

Shipping Clerk
(from Us e Case View)

Shipping Station
(from Use Case View)

Status

Shi ppi ng Station Sensor

readBarCode()

wave bar code

Order
ID
datePlaced
dateShipped
recipient
trackingNumber
status
shippingMethod
foreignInventoryDBKey

changeStatus()
retrieveShippingMethod()
retrieveDetails()

User Preferences

User

Order Table

retrieveRecentOrders()

Billing Info
creditCardType
creditCardNumber

Account
userID
password
reminderWord
emailAddress

countBadPasswords()
setName()
setEmail()
setPassword()
validateAccount()

 73

Appendix B – SDLC Roles

The following roles describe the personnel that are assumed to exist in Appendix C, The
SDLC Outline. These roles are not necessarily assigned to a single person – one person
may perform multiple roles, or a role may be split across multiple people where
appropriate. The descriptions are informal because in any organization and even in
different projects, there are different requirements and influences that dictate the actual
role content and the precise job description. Prior to beginning a project, the roles must
be defined precisely enough to prevent overlap or an incomplete work scope, with
adjustments as necessary during a project.

Roles

• The Project Sponsor could be roughly described as the project champion.
Generally someone either inside or outside of the organization who can acquire
resources and support for the project and who also bears ultimate responsibility
for its success or failure.

• The Chief Information Officer is responsible for the overall control of the data

processing enterprise and while generally not directly involved in a project, has
control of many of the resources needed and may have technical review of all
projects and resource allocations.

• The Client is the person, group or organization that will be the primary user of the

software product. The Users role is part of the Client role.

• The Client Liaison is the person responsible for interfacing with the client for the
software. This is an important task because project success is often dependent
more on the client’s view of the product than the technical results. This person is
responsible for much of the requirements development of the project, ongoing
demonstrations of the product, and change orders in both directions and
scheduling.

• The Configuration Lead is responsible for maintaining the repository for all

materials associated with the project. While this is primarily a matter of
maintaining a version control system for development and QA, it vital that all
materials be available to all members of the team as needed. The ideal solution is
a web site for the information, but it should be protected from outside viewing.
Some parts of the project may need to have limited access, such as the project
planning and reports, and a variety of data formats may be needed.

• The Documentation Lead is responsible for leading the technical writers in

developing the documentation for the product and the users, and possibly for
portions of the training.

 74

• The Maintenance Team is responsible for maintaining the product after
implementation. They are not a major part of the SDLC but do need to be
recognized. Often, these people are part of the Project Team.

• The Procurement Officer is responsible for obtaining resources for the project

and supports the Project Manager in handling resource allocation.

• The Project Team is everyone in the project that doesn't have a particular role at
any given time. They may be software developers or testers, designers; systems
support personnel or anyone else that needs to be considered in completing the
project.

• The Project Manager is ultimately responsible for the overall progress of the

project and for reporting to the Project Sponsor as needed.

• The Quality Assurance Lead is responsible for the development of the testing
plans and for insuring that all testing is properly done, possibly through the
maintenance cycle.

• The Requirements Lead is responsible for collecting requirements information

and organizing it for the design team. This person may need more technical
expertise than the Client Liaison, depending on the personnel available.

• The Security Lead is responsible for the security aspects of the software and the

implementation, possible through the maintenance cycle.

• The System Architect is responsible for the design phase of the project.

• The Integration Lead is responsible for developing the infrastructure and support
tools for the software and for the configuration and execution of the system
builds. This person is also responsible for interfacing with the system support
personnel as part of the process of insuring that computers for development and
testing are available and properly configured.

• The Trainer Lead is responsible for organizing and executing the training

program for the Users.

• The Users are the people who will actually use the product and the documentation
and will be the recipients of training. The Users role is part of the Client role.

 75

Appendix C – The SDLC Outline

The following is an outline of the tasks, deliverables and roles for the SDLC.

Software Development Life Cycle Process

Starting Condition

IT nomination request received or expected.
Deliverables

• Installed software.
• Defect Management System.
• User Training.
• Documentation.
• Customer support plan.
• SDLC Performance Report.

Roles
See Appendix B.

 76

Planning Phase

Starting Condition:
IT nomination request received or expected.

Objectives:
Identify a need to enhance business practice through a software
development project, determine the assumptions and constraints on the
solutions and propose a solution.

Tasks and Activities:
Requirements development and management

• Develop the project proposal
• Identify project stakeholders
• Develop a Project Boundary Document
• Develop the Concept of Operations document

Project management
• Identify project sponsor and project manager
• Develop a role statement
• Create a preliminary plan and schedule
• Develop a risk assessment statement
• Develop a Benefit/Cost Analysis
• Conduct the Phase Review

Software design
Create the Use Case business model.

Software development
Project implementation

Roles and Responsibilities:
• Sponsor - responsible for ensuring that resources for the project will be

available and for identifying underlying assumptions and integration with
the overall business process. If primarily responsible for identifying
project stakeholders and the benefit side of the Benefit/Cost Analysis.

• Project Manager - responsible for the technical aspects of the project
including identifying the necessary roles, plans and schedules, and
identifying project risk factors.

• Integration Lead - develop the Integration Plan and proceed with the
acquisition of the necessary hardware and software resources for the
project and provide a cost estimate.

Deliverables:
• Project Proposal
• Concept of Operations Document
• Use Case Business Model
• Role Statement
• Project Plan
• Project Boundary Document
• Benefit/Coat Analysis

 77

• Risk Assessment
• IT Nomination Packet
• Measurement Plan
• Conduct the Phase Review
• Project Audit Report

Issues for Consideration:

Phase Review Activity:

• Get approval for the Project Proposal as needed.
• Collect metrics regarding the time and other resources required for various

parts of this phase.
• Update the Project Audit Report continuously

 78

System Analysis Phase

Starting Condition:
Decision is made to proceed with the project.

Objectives:
Determine the functional design of the system with respect to inputs,
outputs, processes and interfaces and develop baseline plans for
proceeding.

Tasks and Activities:
Requirements development and management

• Develop the Requirements Document
• Develop a System Security Plan
• Develop a Quality Assurance Plan
• Develop an interface control document

Project management

• Develop a project workscope.
• Develop a baseline project plan and timeline.
• Develop the risk management plan.
• Develop a security and privacy plan.
• Create a defect tracking system.
• Select the project team.
• Begin the project costing document
• Conduct the Phase Review.

Software design
Software development
Project implementation

Roles and Responsibilities:
• Sponsor - Insure that resources for the improved plan are available and

that costs are within acceptable limits. Review and approve integration
between the client and the project team.

• Project Manager - responsible for directing the development of the project
plan and assigning roles to staff members. Responsible for the accuracy
and completeness of all deliverables, and for reporting on project progress.

• Project Team - Complete assigned tasks and contribute expertise in
planning the project and evaluating technical risk factors.

• Requirements Lead - Plan and conduct the collection of the data and the
formation of the Requirements Document. This will include considerable
work with clients identifying the appropriate means for data collection and
the vetting of the final document.

• System Architect - Work with the Requirements Lead and the other
Project Team members to insure that the requirements can be met within
the available resources.

 79

• Security Lead - Insure that security and privacy concerns are identified
and accounted for in the planning process.

• Chief Information Officer - Approval of project for continuance.
• Client Liaison - interface with the client to insure that the project meets

requirements by getting approval for the Requirements Document.
• Configuration Lead - insure that all documents are properly archived and

protected as necessary.
• Integration Lead - insure that the hardware and software system are

available and properly configured. Work with the Project Team to solve
problems.

Deliverables:
• Requirements Document
• Security Plan
• Interface Control Document
• Use Case Model
• Workscope
• Baseline Project Timeline
• Baseline Project Task list
• Risk Management Plan
• Quality Assurance Plan
• Defect Tracking System
• Configuration Management Plan
• Project Plan
• Master Test Plan
• Conduct the Phase Review
• Project Audit Report

Issues for Consideration:

• If sensitive data is involved, determine the appropriate standards for
privacy and insure that consideration is given to this issue. Insure that all
staff have the appropriate levels of access. Insure that the planned
implementation platforms can enforce the privacy standards.

• Give appropriate attention to the possibility of using an existing system or
purchasing software to meet these needs if the goals can be met and the
cost is advantageous.

• The Interface Control Document should identify all systems to which this
software will interface (software and otherwise) and determine how they
will interface with regard to business processes and data exchange. At this
point, the details may not be complete, but it is vital that all interactions be
known and understood.

Phase Review Activity:

• Does the project, as planned, meet the stated goals and is it feasible
technically and from a resource point-of-view.

 80

• Collect metrics regarding the time and other resources required for various
parts of this phase.

• Get approval to proceed.
• Update the Project Audit Report continuously.

 81

System Design Phase

Starting Condition:
Requirements document has reached a stable state, the plans covering
project content are in place, and planning has proceeded to the point that
tasks can be assigned.

Objectives:
Transform the system requirements into detailed specifications that
describe how the system is to meet the functional, physical, interface and
data requirements. This process may be iterative, producing several
models.

Tasks and Activities:
Requirements development and management

• Develop the system specification
• Update requirements

Project management

• Update the project plan
• Conduct the Phase Review

Software design

• Develop the Analysis Model
• Develop the user interface storyboards
• Develop change orders

Software development
Project implementation

• Develop a security plan
• Develop a system test plan
• Develop an acceptance test plan
• Develop the acceptance test cases
• Develop the documentation plan
• Develop a user support plan
• Develop a training plan
• Develop an integration plan
• Develop a conversion plan
• Develop a deployment plan

Roles and Responsibilities:
• Project Manager - leadership role in the staffing and development of the

specification and design. Must review all deliverables for accuracy and
approve. Responsible for interfacing with the Sponsor to insure that any
changes in cost or resources are approved.

• Project Team - responsible for task assignments.

 82

• Requirements Lead - responsible for insuring that the System
Specification accurately reflects the Requirements Document and get
client approval of any changes.

• System Architect - responsible for the overall design process, for risk
assessment and for the technical properties of the system and acceptance
tests.

• Procurement Officer - responsible for acquiring resources and contract
management.

• Client Liaison - interface with the client to insure that the project meets
requirements by doing necessary walkthroughs of design documents
(specifications and user interface storyboards) with the client and getting
approval. For any changes, produce change orders in collaboration with
the Project Manager.

• Configuration Lead - insure that all documents are properly archived and
protected as necessary.

• Integration Lead - insure that the hardware and software system are
available and properly configured. Work with the Project Team to solve
problems.

• Deployment Lead - develop a deployment plan and get approval.

Deliverables:
• System Specification
• Software Analysis Model
• User Interface Storyboards
• Acceptance Test Plan
• System Test Plan
• Acceptance Test Cases
• Change Order
• Documentation Plan
• User support Plan
• Training Plan
• Integration Plan
• Conversion Plan
• Deployment Plan
• Conduct the Phase Review
• Project Audit Report I
• Issues for Consideration:

Issues for Consideration:

Look for opportunities to use off-the-shelf (OTS) components, where
practical, in assessing the design. Pay particular attention to
implementation decisions, such a language and platform, and how they
affect the design.

 83

Phase Review Activity:
• The design phase is the best opportunity for the project team to identify

technological risk and its potential impact on the future of the project. It is
particularly important that all high-risk components be identified and
maximum delays and costs be properly inserted in the project plan and
project report.

• Insure that client approval of the specification and user interface is gained
before proceeding.

• Reassess cost and resource needs based on the updated project plan and
get approval for continuance.

• Collect metrics regarding the time and other resources required for various
parts of this phase.

• Review the overall handling of the phase to make recommendations for
improvements in future projects.

Update the Project Audit Report continuously.

 84

Technical Design Phase
Starting Condition:

The System Analysis Model has reached a state of detail that allows all or part
of the Technical Design to proceed.

Objectives:
Transform the system design into a language specific system specification that
will meet the system requirements for functional, physical, interface and data
requirements. This process may be iterative and create multiple designs.
Establish plans for the development and testing of the software.

Tasks:
Requirements development and management

• Update the requirements document.
• Update the system specification document.
• Project management.

Project management
• Update the project plan.
• Conduct the Phase Review.

Software design
• Develop the Design Model.
• Develop the data model specification.
• Develop the user interface mockups.
• Develop and process change orders.

Software development
• Develop a unit test plan.
• Develop a software standards document.

Project implementation
• Update the system test plan.
• Create a system operation plan.
• Create a configuration management system.
• Update the acceptance test plan.
• Develop a contingency plan.

Roles and Responsibilities:
• Project Manager - leadership role in the staffing and development of the

advanced design. Must review all deliverables for accuracy and approve.
Responsible for interfacing with the Sponsor to insure that any changes in
cost or resources are approved.

• Project Team - responsible for task assignments.
• Requirements Lead - responsible for insuring that the design accurately

reflects the Requirements Document and get client approval of any
changes.

• System Architect - responsible for the overall design process, and for the
quality of the design. Responsible for the programming standards
document and the unit test plan, system and acceptance tests.

 85

• Configuration Lead - with the System Architect, develop the configuration
management system.

• Procurement Officer - responsible for acquiring resources and contract
management.

• Client Liaison - interface with the client to insure that the project meets
requirements by doing necessary walkthroughs of design documents
(specifications and user interface storyboards) and getting approval. For
any changes, produce change orders in collaboration with the Project
Manager.

• Configuration Lead - insure that all documents are properly archived and
protected as necessary.

• Integration Lead - insure that the hardware and software system are
available and properly configured. Work with the Project Team to solve
problems. Develop or acquire software for installing and managing the
deployed system during the development cycle and create the System
Administration Plan.

Deliverables:

• Software Design Model
• Data Model Specification
• User Interface Mock-ups
• Unit Test Plan
• Change Order
• Programming Standards
• Development Contingency Plan
• Conduct the Phase Review
• Project Audit Report

Issues for Consideration:

• The team must be careful to maintain a design and not an implementation
at this phase. This is an opportunity to review the design in detail and find
any problems before they creep into the development.

• During this phase, there is an opportunity to begin development efforts on
foundational parts of the design that are necessary for the larger project
scope, and to work on high risk areas of the design.

• Because many security issues are programming language dependent, a
security analysis at this stage and an update of the security plan is
important. Security issues are a fundamental part of the programming
standards document.

Phase Review Activity:

• As with the previous phase, evaluate for high risk components or areas of
the implementations that have functionality that is not known by the
design team.

 86

• Insure that any changes in the Specification and user interface are reported
to the client and approval is gained before proceeding.

• Reassess cost and resource needs based on the updated project plan and
get approval for continuance.

• Collect metrics regarding the time and other resources required for various
parts of this phase.

• Review the overall handling of the phase to make recommendations for
improvements in future projects.

 87

Development Phase
Starting Condition:

The Technical Design has progressed to the point where development
tasks can be assigned, tested and monitored.

Objectives:
Create and test working software that meets the specifications for the
system.

Tasks:
Requirements development and management

• Update the requirements document
• Update the specification document
• Project management

Project management
• Update the project plan
• Conduct the Phase Review

Software design
• Update the system design
• Develop and process change orders

Software development
• Develop the running software
• Perform successful unit tests
• Defect list

Project implementation
• Develop the user documentation
• Develop the product documentation
• Develop the training courseware
• Develop the operations system and documentation
• Perform successful system tests

Roles and Responsibilities:
• Project Manager - leadership role in the staffing and direction of the

development team. Must review all deliverables for accuracy and
approve. Responsible for interfacing with the Sponsor to insure that any
changes in cost or resources are approved.

• Quality Assurance Officer - tests the product according to the system test
plan and reports any defects to the development team.

• Project Team - responsible for task assignments and for unit tests. Team
as a whole is responsible for smoke testing the software to insure that it
can past to quality assurance.

• Requirements Lead - insure that the developed software accurately reflects
the Requirements Document and get client approval of any changes.
Work closely with the Client Liaison to develop and execute a schedule of
demonstrations for the client. For any changes, produce change orders in
collaboration with the Project Manager.

• Documentation Lead - develop the documentation and verify through the
project team with approval by the Project Manager and System Architect.

 88

Work with the Client Liaison to get customer approval of the
documentation format.

• System Architect - responsible for the overall development process, and
for the quality of the software. Responsible for insuring that unit tests are
properly completed. Responsible for product documentation.

• Configuration Lead - work with the System Architect and the development
team to build and configure the product and to develop the operational
tools and documentation.

• Procurement Officer - responsible for acquiring resources and contract
management.

• Client Liaison - provide the client with demonstrations of the product at
regular intervals and obtain approval for the implementation or identify
areas that require modification. For any changes, produce change orders
in collaboration with the Project Manager.

• Configuration Lead - insure that all documents are properly archived and
protected as necessary. Work with the development team and the
Integration Lead to insure that the software versioning works properly and
effectively for development and quality assurance.

• Integration Lead - insure that the hardware and software system are
available and properly configured. Work with the Project Team to solve
problems. Insure that system builds operate properly and update the
System Administration and Deployment plans as necessary.

Deliverables:
• Functional software
• Documentation
• Successful System Test
• Change Order
• Training courseware
• System administration plan
• Conduct the Phase Review
• Project Audit Report

Issues for Consideration:

Software leaving development often has known defects that are minor or
are accepted by the client for the short term. Because this phase often
represents a majority of the time, the collection of metrics regarding the
time and other resources required for is particularly important.

Phase Review Activity:
• Insure that the Requirements Document, Specification and system

documentation are updated to reflect any changes.
• Collect metrics regarding the time and other resources required for this

phase.
• Review the overall handling of the phase to make recommendations for

improvements in future projects.
• Update the Project Audit Report continuously.

 89

Implementation Phase
Starting Condition:

All or part of the developed software is ready for installation and testing.
Objectives:

Install, operate and test the system to insure that it meets the established
system specifications, that all subsystems meet specification and that all
interfacing systems operate correctly. Specifications include user
satisfaction, documentation acceptance and successful training.

Tasks and Activities:
Requirements development and management

• Review and update the requirements document
• Review and update the specification document

Project management
• Conduct the Phase Review

Software design
• Develop and process change orders

Software development
• Update product
• Quality assurance testing

Project implementation
• Install and test software
• Test and finalize the system operation
• Perform system integration
• Collect user feedback
• Perform the acceptance test
• Revise the user support plan
• Perform training
• Execute a user survey

Roles and Responsibilities:
• Project Manager - leadership role directing the implementation team.

Must review all deliverables for accuracy and approve. Must interface
with the Sponsor for any issues that arise with the client.

• Quality Assurance Officer - continue product testing.
• Project Team - responsible for task assignments.
• Configuration Lead - test and finalize the operational system.
• Procurement Officer - responsible for acquiring resources and contract

management.
• Procurement Officer - responsible for acquiring resources and contract

management.
• Users - actively work with the product during training and system testing

and report any potential defects.
• Client Liaison - interface with the client to insure that the project meets

requirements by being actively involved in user testing and handling
insertion of defects. Responsible for the acceptance test, client training

 90

management and the user survey. For any changes, produce change orders
in collaboration with the Project Manager.

• Configuration Lead - insure that all documents are properly archived and
protected as necessary.

• Deployment Lead - oversee the deployment process.
• Integration Lead - insure that the hardware and software system are

available and properly configured. Work with the Project Team and users
to solve operational problems.

• Maintenance Team - develop a plan for maintaining the product and
integrating with the defect management system.

Deliverables:
• Deployed software
• Required training
• Successful implementation report
• Training survey
• User response surveys
• Completed acceptance test
• Change orders
• Maintenance plan
• Conduct the Phase Review
• Project Audit Report

Issues for Consideration:

Insure that any security testing is accomplished at this stage.
Phase Review Activity:
• Insure that the Requirements Document, Specification and system

documentation are updated to reflect any changes.
• Collect metrics regarding the time and other resources required for this phase.
• Review the overall handling of the phase to make recommendations for

improvements in future projects.
• Update the Project Audit Report continuously.

 91

Conclusion Phase
Starting Condition:

All testing is complete and accepted by the customer. All training is
complete and all deliverables are complete or a completion date can be
established.

Objectives:
Transition the software to the maintenance cycle and conduct a review of
the project for the purpose of improving the software development life
cycle.

Tasks:
Requirements development and management
Project management

• Create a maintenance plan
• Conduct the project review
• Update policies and procedures.

Roles and Responsibilities:
• Project Manager - leadership role directing the move to

maintenance mode. Must review all deliverables for accuracy and
approve. Provide the interface to the maintenance team.

• Quality Assurance Lead - continue product testing.
• Project Team - responsible for task assignments.
• Maintenance Team - begin maintenance of the product, including

the handling of defects, if so required.
• Procurement Officer - responsible for acquiring resources and

contract management.
• Client Liaison - Continue to assure client satisfaction and interface

with the Defect Management System and the Maintenance Team.
• Configuration Lead - insure that all documents are properly

archived and protected as necessary. Prepare the project repository
for closing.

Deliverables:
• Final customer approval
• Analysis of customer satisfaction
• Analysis of project performance
• Conduct the Phase Review
• Project Audit Report

Issues for Consideration:

Project Review Activity:

Evaluate the entire project for ways to improve the process at each phase
and to establish improved metrics for estimating projects.

 92

 93

Appendix D – SDLC Form List

The following is a list of all forms referenced in the SDLC outline.

Acceptance Test Case
Acceptance Test Plan
Acceptance Test Report
Analysis Model
Change Order
Concept Of Operations
Configuration Management Plan
Conversion Plan
Cost Benefit Analysis
Customer Approval
Customer Satisfaction Report
Data Model Item
Data Model Specification
Deployment Plan
Design Model
Development Contingency Plan
Documentation Plan
Integration Plan
Interface Control Document
IT Nomination Packet
Maintenance Plan
Master Test Plan
Measurement Plan
Phase Review
Programming Standards
Project Boundary Document
Project Cost Document

Project Performance Report
Project Plan
Project Proposal
Project Status Report
Project Tasklist
Project Timeline
Quality Assurance Plan
Requirements Document
Risk Assessment
Risk Management Plan
Role Statement
Security Plan
Storyboard
System Administration Plan
System Test Plan
Training Courseware
Training Plan
Training Survey
Unit Test
Unit Test Plan
Use Case Business Model
Use Case Model
User Interface Mockup
User Response Survey
User Support Plan
Workscope

Appendix E – SDLC Forms

The following are the Word document versions of the forms listed in Appendix D, and
referenced in Appendix C. They were generated from XML descriptions of the forms. XML
was used to describe the forms because it is easily understood and it is also, with the use of
XSLT processing, easily converted to any desirable form, such as web pages or Word
documents.

 94

 95

 96

 97

 98

 99

 100

 101

 102

 103

 104

 105

 106

 107

 108

 109

 110

 111

 112

 113

 114

 115

 116

 117

 118

 119

 120

 121

 122

 123

 124

 125

 126

 127

 128

 129

 130

 131

 132

 133

 134

 135

 136

 137

 138

 139

 140

 141

 142

 143

 144

 145

 146

 147

 148

 149

 150

 151

 152

This document was published electronically at an estimated
cost of $0.00 each, for a total cost of $0.00. This includes
$0.00 for postage and $0.00 for printing.

	REPORT_COVER
	FINAL_REPORT-11-20-07
	1 Introduction
	2 The Software Development Life Cycle
	3 Requirements Development
	4 Project Management
	5 Process Measurement
	6 Software Design
	Unit Test Plan
	A defect tracking system is more complex than a simple form so it is discussed in a separate section.
	Deployment Management Plan
	Configuration Management Plan
	Quality Assurance

	7 User Interface Development
	8 Software Development
	9 Documentation
	During this phase the development team develops the product and user documentation according to the specifications established earlier in the project process. The documentation process starts in the System Design phase with a Documentation Plan which describes the things which are to be done with regard to documentation:

	10 Training Plan and Training
	11 References
	Appendix A - UML Example
	Use Case MODEL Report
	Use Case Model
	Package Documentation: NONE
	Use Case Diagram - Main

	Actor - Customer
	Documentation: NONE

	Actor - Shipping Clerk
	Documentation: NONE

	Actor - Shipper
	Documentation: NONE

	Actor - Receiving Clerk
	Documentation: NONE

	Actor - Inventory Clerk
	Documentation: NONE

	Actor - Shipping Station
	Documentation: NONE

	Actor - Receiving Station
	Documentation: NONE

	Use Case - Add Item to Shopping Cart
	Documentation: NONE
	List of Associations

	Use Case - Browse List of Books
	Documentation:
	List of Associations

	Use Case - Cancel Order
	Documentation:
	List of Associations

	Use Case - Check Out
	Documentation:
	List of Associations

	Use Case - Edit Contents of Shopping Cart
	Documentation:
	List of Associations
	Class Diagram - Edit Contents of Shopping Cart Robustness
	Interaction Diagram - Edit Contents of Shopping Cart Sequence

	Use Case - Log In
	Documentation:
	List of Associations
	Interaction Diagram - Log In Sequence

	Use Case - Open Account
	Documentation:
	List of Associations
	Interaction Diagram - Open Account Sequence Diagram

	Use Case - Process Received Shipment
	Documentation:
	List of Associations

	Use Case - Search by Author
	Documentation:
	List of Associations
	Interaction Diagram - Search by Author Sequence

	Use Case - Ship Order
	Documentation:
	List of Associations
	Class Diagram - Ship Order Robustness
	Interaction Diagram - Ship Order Sequence

	Use Case - Track Recent Orders
	Documentation:
	List of Associations
	Class Diagram - Track Recent Orders Robustness
	Interaction Diagram - Track Recent Orders Sequence

	Domain Model
	Static Object Model

	Appendix B – SDLC Roles
	Appendix C – The SDLC Outline
	Software Development Life Cycle Process
	Planning Phase
	System Analysis Phase
	System Design Phase
	Technical Design Phase
	Development Phase
	Implementation Phase
	Conclusion Phase

	Appendix D – SDLC Form List
	Appendix E – SDLC Forms

	final.pdf
	1 Introduction
	2 The Software Development Life Cycle
	3 Requirements Development
	4 Project Management
	5 Process Measurement
	6 Software Design
	Unit Test Plan
	A defect tracking system is more complex than a simple form so it is discussed in a separate section.
	Deployment Management Plan
	Configuration Management Plan
	Quality Assurance

	7 User Interface Development
	8 Software Development
	9 Documentation
	During this phase the development team develops the product and user documentation according to the specifications established earlier in the project process. The documentation process starts in the System Design phase with a Documentation Plan which describes the things which are to be done with regard to documentation:

	10 Training Plan and Training
	11 References
	Appendix A - UML Example
	Use Case MODEL Report
	Use Case Model
	Package Documentation: NONE
	Use Case Diagram - Main

	Actor - Customer
	Documentation: NONE

	Actor - Shipping Clerk
	Documentation: NONE

	Actor - Shipper
	Documentation: NONE

	Actor - Receiving Clerk
	Documentation: NONE

	Actor - Inventory Clerk
	Documentation: NONE

	Actor - Shipping Station
	Documentation: NONE

	Actor - Receiving Station
	Documentation: NONE

	Use Case - Add Item to Shopping Cart
	Documentation: NONE
	List of Associations

	Use Case - Browse List of Books
	Documentation:
	List of Associations

	Use Case - Cancel Order
	Documentation:
	List of Associations

	Use Case - Check Out
	Documentation:
	List of Associations

	Use Case - Edit Contents of Shopping Cart
	Documentation:
	List of Associations
	Class Diagram - Edit Contents of Shopping Cart Robustness
	Interaction Diagram - Edit Contents of Shopping Cart Sequence

	Use Case - Log In
	Documentation:
	List of Associations
	Interaction Diagram - Log In Sequence

	Use Case - Open Account
	Documentation:
	List of Associations
	Interaction Diagram - Open Account Sequence Diagram

	Use Case - Process Received Shipment
	Documentation:
	List of Associations

	Use Case - Search by Author
	Documentation:
	List of Associations
	Interaction Diagram - Search by Author Sequence

	Use Case - Ship Order
	Documentation:
	List of Associations
	Class Diagram - Ship Order Robustness
	Interaction Diagram - Ship Order Sequence

	Use Case - Track Recent Orders
	Documentation:
	List of Associations
	Class Diagram - Track Recent Orders Robustness
	Interaction Diagram - Track Recent Orders Sequence

	Domain Model
	Static Object Model

	Appendix B – SDLC Roles
	Appendix C – The SDLC Outline
	Software Development Life Cycle Process
	Planning Phase
	System Analysis Phase
	System Design Phase
	Technical Design Phase
	Development Phase
	Implementation Phase
	Conclusion Phase

	Appendix D – SDLC Form List
	Appendix E – SDLC Forms

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

