MONTANA DEPARTMENT OF TRANSPORTATION WETLAND MITIGATION MONITORING REPORT: YEAR 2013

Rostad Ranch Meagher County, Montana

Prepared for:

Prepared by:

PO Box 1133 Bozeman, MT 59771-1133

December 2013

MONTANA DEPARTMENT OF TRANSPORTATION

WETLAND MITIGATION MONITORING REPORT:

YEAR 2013

Rostad Ranch Meagher County, Montana

MDT Project Number STPX-0002(749) Control Number 5565

USACE: NWO-2006-90851-MTB

Prepared for:

MONTANA DEPARTMENT OF TRANSPORTATION 2701 Prospect Ave Helena, MT 59620-1001

Prepared by:

Confluence Consulting, Inc. P.O. Box 1133 Bozeman, MT 59771

December 2013

CCI Project No: MDT.006

"MDT attempts to provide accommodations for any known disability that may interfere with a person participating in any service, program, or activity of the Department of Transportation. Alternative accessible formats of this information will be provided upon request. For further information, call 406-444-7228, TTY at 800-335-7592, or Montana Relay at 711."

TABLE OF CONTENTS

1.	INTRODUCTION1
2.	METHODS
2.1.	Hydrology6
2.2.	Vegetation6
2.3.	Soil7
2.4.	Wetland Delineation7
2.5.	Wildlife
2.6.	Functional Assessment8
2.7.	Photo Documentation8
2.8.	GPS Data9
2.9.	Maintenance Needs9
3.	RESULTS9
3. 3.1.	RESULTS
-	
3.1.	Hydrology9
3.1. 3.2.	Hydrology9 Vegetation10
3.1. 3.2. 3.3.	Hydrology9Vegetation10Soil18
3.1. 3.2. 3.3. 3.4.	Hydrology
3.1.3.2.3.3.3.4.3.5.	Hydrology
 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 	Hydrology9Vegetation10Soil18Wetland Delineation18Wildlife19Functional Assessment20
 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 	Hydrology9Vegetation10Soil18Wetland Delineation18Wildlife19Functional Assessment20Photo Documentation21

TABLES

Table 1. Wetland Credit Determination for the Rostad Ranch Wetland	
Mitigation Site.	3
Table 2. Vegetation species observed in 2013 at the Rostad Ranch	
Wetland Mitigation Site.	11
Table 3. Data summary for Transect T-1 from 2013 at the Rostad	
Ranch Wetland Mitigation Site	13
Table 4. Data summary for Transect T-2 in 2013 at the Rostad Ranch	
Wetland Mitigation Site.	15
Table 5. Data summary for Transect T-3 in 2013 at the Rostad Ranch	
Wetland Mitigation Site.	16
Table 6. Total wetland acres delineated in 2013 at the Rostad Ranch	
Wetland Mitigation Site.	19
Table 7. Wildlife species observed in 2013 at the Rostad Ranch	
Wetland Mitigation Site.	20
Table 8. Functions and Values of the Rostad Ranch Wetland Mitigation	
Site from 2013	21
Table 9. Summary of wetland credits at the Rostad Ranch Wetland	
Mitigation Site from 2013.	23

CHARTS

Chart 1. Transect maps showing community types on Transect T-1 in 2013 at the Rostad Ranch Wetland Mitigation Site	11
Chart 2. Length of habitat types within Transect T-1 in 2013 at the	. 14
Rostad Ranch Wetland Mitigation Site	14
Chart 3. Transect maps showing community types on Transect T-2 in	
2013 at the Rostad Ranch Wetland Mitigation Site	. 15
Chart 4. Length of habitat types within Transect T-2 in 2013 at the	
Rostad Ranch Wetland Mitigation Site	. 16
Chart 5. Transect maps showing community types on Transect T-3 in	
2013 at the Rostad Ranch Wetland Mitigation Site	. 17
Chart 6. Length of habitat types within Transect T-3 in 2013 at the	
Rostad Ranch Wetland Mitigation Site	.17

FIGURES

Figure 1. Project location of Rostad Ranch Wetland Mitigation Site.	2
Figure 2. 2013 Monitoring Activity Locations	Appendix A
Figure 3. 2013 Mapped Site Features	Appendix A

APPENDICES

- Appendix A Project Area Maps Figures 2 and 3
- Appendix B 2013 MDT Wetland Mitigation Site Monitoring Form 2013 USACE Wetland Determination Data Forms 2013 MDT Montana Wetland Assessment Method Forms
- Appendix C Project Area Photographs
- Appendix D Project Plan Sheet

Cover: View of the inundated man-made impoundment at the Rostad Ranch wetland mitigation site.

1. INTRODUCTION

The Rostad Ranch Wetland Mitigation 2013 Monitoring Report presents the results of the first year of post-construction monitoring at the Rostad Ranch wetland mitigation site. The Montana Department of Transportation (MDT) Rostad Ranch wetland mitigation project is located in the southwest quarter of Section 12, Township 8 North, Range 11 East, Meagher County, Montana. The property is located approximately 0.6 miles northeast of Martinsdale, Montana (Figure 1). The wetland site was constructed to provide MDT with an estimated 39.70 acres of wetland mitigation credits on a private ranch that has been historically utilized for grazing cattle and hay production.

Long-term protection of the wetland mitigation site is provided by a MDT Wetland Conservation Easement with the land owner and encompasses the entire 60-acre mitigation monitoring area. The site is demarcated by a newly installed fence along the boundaries of the MDT Conservation Easement.

Figures 2 and 3 in Appendix A show the site Monitoring Activity Locations and Mapped Site Features, respectively. The 2008 MDT Mitigation Site Monitoring Form, US Army Corps of Engineers (USACE) Wetland Determination Data Forms Great Plains Region (USACE 2010), and the 2008 MDT Montana Wetland Assessment Forms are included in Appendix B. Project area photographs are included in Appendix C and the Project Plan Sheet is included in Appendix D.

The wetland mitigation site is located within Watershed 10 – Musselshell River Basin. Wetlands were developed at this location to provide compensatory mitigation for wetland impacts associated with future transportation projects in the Musselshell River Basin. The Ranch site was selected based on site evaluations and project feasibility assessments initiated by MDT in 2002.

The project objectives include:

- Provide 39.70 acres of wetland mitigation credits resulting from restoration, creation, rehabilitation, and preservation within the site.
- Establish three types of wetland vegetation communities, including;
 - 1.) Palustrine, emergent, wet meadow
 - 2.) Palustrine, scrub/shrub
 - 3.) Lacustrine, littoral emergent zones around the open water areas around the perimeter of wetlands.

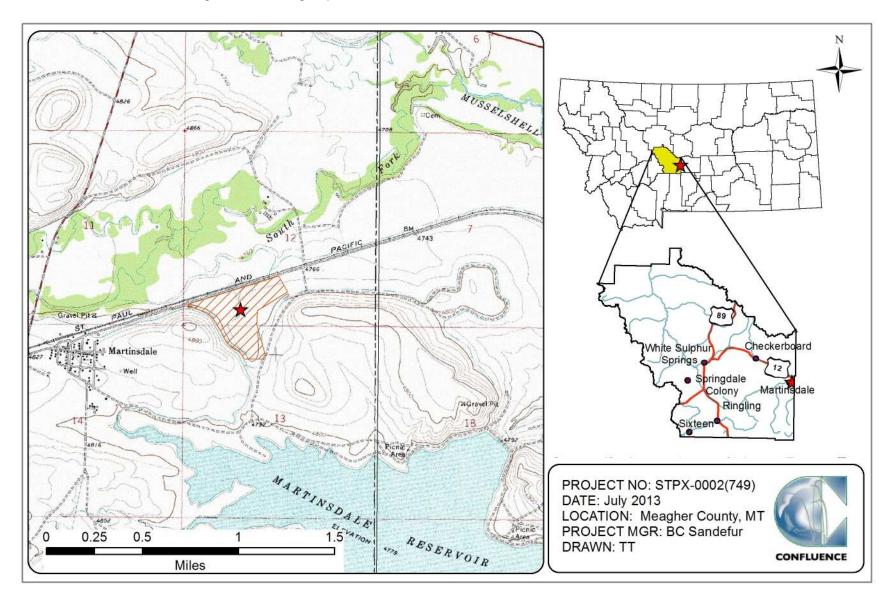


Figure 1. Project location of Rostad Ranch wetland mitigation site.

The project credit ratios as presented in the Rostad Ranch Wetland Mitigation Plan approved by the USACE are shown in Table 1.

Compensatory Mitigation Type	Proposed Wetland Type (Cowardin)	Anticipated Mitigation Area (acres)	Approved Mitigation Ratios*	Anticipated Mitigation Credit (acres)
Restoration (Re-establishment)	Palustrine Emergent & Scrub/shrub Lacustrine, Littoral	27.11	1:1	27.11
Creation (Establishment)	Palustrine Emergent & Scrub/shrub Lacustrine, Littoral	9.84	1:1	9.84
Restoration (Rehabilitation)	Palustrine Emergent & Lacustrine, Littoral	2.63	1.5:1	1.75
Preservation	Palustrine, Scrub/shrub	0.25	4:1	0.06
Upland Buffer	N/A	6.76	5:1	1.35
Permanent Wetland Impact	N/A	N/A	1:1	-0.41
Totals	Site Acreage	46.59	Credit Acre	39.70

 Table 1. Wetland Credit Determination for the Rostad Ranch Wetland Mitigation

 Site.

*Mitigation credit ratios utilized were from the Montana Corps Regulatory Programs 2005 Wetland Credit Ratios (USACE 2005)

The USACE approved performance standards are listed below.

- 1. Wetland Characteristics: All restored, created, enhanced, and preserved wetlands within the project limits will meet the standard three criteria (hydrology, hydrophytic vegetation, and hydric soils) established for determining wetland areas as outlined in the *1987 Corps of Engineers Wetland Delineation Manual* (Environmental Laboratory 1987) and the 2010 Regional Supplement to the USACE of Engineers Manual: Great Plains Region (USACE 2010).
 - a) Wetland Hydrology Success will be achieved where wetland hydrology is observed according to technical guidelines in the above-referenced documents. The USACE technical standard for monitoring wetland hydrology requires 14 or more consecutive days of flooding or ponding, or a water table 12 inches (30 centimeters) or less below the soils surface, during the growing season at a

minimum frequency of 5 years in 10 (50 percent or higher probability).

- b) **Hydric Soil Success** will be achieved where hydric soil conditions are present [per the most recent Natural Resource Conservation Service (NRCS) definitions for hydric soil] or appear to be forming, the soil is sufficiently stable to prevent erosion, and the soil is able to support plant cover. Soil sampling will be conducted during the course of the monitoring period to determine if wetland areas are exhibiting characteristics of hydric soils per the 1987 Wetland Manual. Since typical hydric soil indicators may require long periods to form, a lack of distinctive hydric soil features will not be considered a failure if hydrologic and vegetation success is achieved.
- c) Hydrophytic Vegetation Success will be achieved where combined absolute cover of facultative or wetter species is greater than or equal to 70 percent and Montana State-listed noxious weeds do not exceed 5 percent absolute cover. The following concept of "dominance", as defined in the new Regional supplement to the 1987 US Army Corps of Engineers Wetland Delineation Manual for the Great Plains Region, will be applied during future routine wetland determinations in the created/restored wetlands: "Subjectively determine the dominant species by estimating those having the largest relative basal area (woody overstory), greatest height (woody understory), and/or greatest number of stems (woody vines)."
 - i. Woody Plants Plantings will be considered successful where they exceed 50 percent survival after 5 years. We anticipate natural colonization of woody plant species from nearby sources after construction activities are complete. The rate and extent of natural woody plant colonization will be dependent on factors such as habitat availability, animal activity, seed sources, and other natural selection factors.
 - ii. Herbaceous Plants At the conclusion of the monitoring period, ocular coverage of desirable hydrophytic vegetation (wetland plants listed as OBL, FACW and FAC) will be at least 80 percent. A wetland seed mix was prepared for this site that included tufted hairgrass (*Deschampsia cespitosa*), Northwest Territory sedge (*Carex utriculata*), Arctic rush (*Juncus arcticus*), American sloughgrass (*Beckmannia syzigachne*), American mannagrass (*Glyceria grandis*), and bluejoint reedgrass (*Calamagrostis canadensis*).

- 2. **Open Water Areas** It is the intent of the project to provide seasonal open water in the wetland enhancement areas where excavation in the existing wetland and upland will be completed. Open water that is established within the designated open water areas will be considered successful and creditable if it does not exceed 10 percent of the total wetland acreage (39.70 acres).
- 3. **Upland Buffer:** Success will be achieved when noxious weeds do not exceed 5 percent of cover within the buffer areas on site. Any area within the creditable buffer zone disturbed by project construction must have at least 50 percent aerial cover of desirable upland plant species by the end of the monitoring period.
- 4. Weed Control: Implementation of weed control will be based on annual monitoring of the site to determine the weed species present, degree of infestation within the site, and control measures based on the monitoring results will be implemented by MDT to minimize and/or eliminate infestations of state-listed noxious weed species within the site.
- 5. **Fencing:** Fencing for the proposed mitigation site has been installed along the perimeter of the easement boundary to protect the integrity of the wetland from disturbance that may be detrimental to the site. The installed fencing is designed to be wildlife-friendly, to allow for wildlife movement into and out of the wetland mitigation site.

Construction entailed filling of existing ditches, excavation and grading the site to distribute water across the mitigation site, and creation of open water areas. The primary source of wetland hydrology for the site is groundwater. A groundwater seep located in the southern portion of the site contributes water to the site during high groundwater periods. Also, the site is supplemented by surface water from an irrigation ditch that runs along the south boundary of the site. A diversion structure was installed at the south end of the project to direct surface water onto the site as a supplement to the groundwater.

Revegetation tasks included a combination of wetland seed mixes, planting native shrubs/trees, and planting willow cuttings from a variety of native species. Mitigation habitat types developed on the site through the construction process include: restored open water; created, restored, and enhanced wetland areas; and upland buffer areas. Specific revegetation tasks were developed for each habitat type.

Monitoring of the MDT wetland mitigation site will be completed according to MDT's Standard Monitoring Protocol utilized for all MDT wetland mitigation sites since 1998. Monitoring will be implemented for a minimum of 5 years or longer as determined by the USACE – Montana Regulatory Office's review of the

annual monitoring reports for the site. The USACE will make the final decision as to whether the site has met wetland success criteria.

2. METHODS

The first year of monitoring at the Rostad Ranch wetland mitigation site was completed on August 21, 2013. During this visit, MDT and Confluence personnel established permanent photo points and vegetation transects within the site. Information for the Mitigation Monitoring Form and Wetland Determination Data Form was entered electronically in the field on a palmtop computer during the field investigation (Appendix B). Monitoring activity sites were located with a global positioning system (GPS) as shown on Figure 2 (Appendix A). Information collected included a wetland delineation, vegetation community mapping, vegetation transect monitoring, soil and hydrology data collection, bird and wildlife use documentation, photographic documentation, and a non-engineering examination of the infrastructure established within the mitigation project area.

2.1. Hydrology

The presence of hydrological indicators as outlined on the Wetland Determination Data Form was assessed at four data points established within the project area. The hydrologic indicators were evaluated according to features observed during the site visit. The data were recorded on the electronic Wetland Determination Data Form (Appendix B). Hydrologic assessments allow evaluation of mitigation criteria addressing inundation/saturation requirements.

Technical criteria for wetland hydrology guidelines have been established as "permanent or periodic inundation, or soil saturation within 12 inches of the ground surface for a significant period (12.5 percent of the growing season) during the growing season" (USACE 2010). Systems with continuous inundation or saturation for greater than 12.5 percent of the growing season are considered wetlands. The growing season is defined for purposes of this report as the number of days when there is a 50 percent probability that the minimum daily temperature is greater than or equal to 28.5 degrees Fahrenheit (Environmental Laboratory 1987). Temperature data recorded for the meteorological station at Martinsdale 3NNW, Montana (245387) weather station located approximately 1 mile from the wetland mitigation site has a median (5 years in 10) growing season length of 119 days. Areas defined as wetlands would require 15 days of inundation or saturation within 12 inches of the ground surface to meet the hydrology criteria. Soil pits excavated during the wetland delineation were used to evaluate groundwater levels within 18 inches of the ground surface. The data were recorded on the Wetland Determination Data Form (Appendix B).

2.2. Vegetation

The boundaries of the dominant vegetation communities were determined in the field during the active growing season and subsequently delineated on the 2013 aerial photograph. Percent cover of dominant species within a community type was visually estimated and recorded using the following classes: 0 (less than 1 percent), 1 (1 to 5 percent), 2 (6 to10 percent), 3 (11 to 20 percent), 4 (21 to 50

percent), and 5 (greater than 50 percent) (Appendix B). Community types were named based on the dominant vegetation species that characterized each mapped polygon (Figure 3, Appendix A).

Temporal changes in vegetation will be evaluated through annual assessments of static belt transects established in August, 2013 (Figure 2, Appendix A). Vegetation composition was assessed and recorded along three vegetation belt transects (T-1, T-2, T-3) approximately 10 feet wide and 422, 453, and 320 feet long, respectively (Figure 2, Appendix A).

The transect locations were recorded with a resource-grade GPS unit. Spatial changes in the dominant vegetation communities were recorded along the stationed transect. The percent aerial cover of each vegetation species within the belt transect was estimated using the same values and cover ranges used for the vegetation community composition (Figure 3, Appendix B). Photographs were taken at the endpoints of each transect during the monitoring event (Appendix C).

The survival of woody species planted onsite was recorded during monitoring. Survival rates will be evaluated annually. The Montana State Noxious Weed List (September 2010), prepared by the Montana Department of Agriculture, was used to categorize weeds identified within the site. The location of noxious weeds was noted in the field and mapped on the aerial photograph (Figure 3, Appendix A). The noxious weed species identified are color-coded and the locations are denoted with the symbol "**x**", "**A**", or "**u**" representing 0 to 0.1 acre, .1 to 1 acre, or greater than 1 acre in extent, respectively. Cover classes are represented by T, L, M, or H, for less than 1 percent, 1 to 5 percent, 6 to 25 percent, and 26 to 100 percent, respectively.

2.3. Soil

Soil information was obtained from the *Soil Survey for Meagher County Area* (SSURGO 2012) and *in situ* soil descriptions. Soil cores were excavated using a hand auger and evaluated according to procedures outlined in the 1987 Manual and the 2010 Regional Supplement. A description of the soil profile, including hydric soil indicators when present, was recorded on the Wetland Determination Data Form for each profile (Appendix B).

2.4. Wetland Delineation

Waters of the U.S. including special aquatic sites and jurisdictional wetlands were delineated throughout the project area in accordance with criteria established in the 1987 Manual and the 2010 Regional Supplement. The technical criteria for hydrophytic vegetation, hydric soil, and wetland hydrology described in the 2010 Regional Supplement must be satisfied to delineate a representative area as jurisdictional. The name and indicator status of plant species was derived from the Draft 2012 National Wetland Plant List (NWPL) (Lichvar and Kartesz. 2009). A Routine Level-2 on-site Determination Method (Environmental Laboratory 1987) was used to delineate jurisdictional areas within

the project boundaries. The information was recorded electronically on the Wetland Determination Data Form (Appendix B).

The wetland boundary was determined in the field based on changes in plant communities and/or hydrology, and changes in soil characteristics. Topographic relief boundaries within the project area were also examined and cross-referenced with soil and vegetation communities as supportive information for this delineation. Vegetation composition, soil characteristics, and hydrology were assessed at likely wetland and adjacent upland locations. If all three parameters met the criteria, the area was designated as wetland and mapped by vegetation community type. If any one of the parameters did not exhibit positive wetland indicators, the area was determined to be upland unless the site was classified as an atypical situation, potential problem area, or special aquatic site, i.e., mudflat. The wetland boundary was GPS surveyed and is shown on the 2013 aerial photograph (Figure 3). Wetland areas were estimated using geographic information system (GIS) methods.

2.5. Wildlife

Observations of mammal, reptile, amphibian, and bird use were recorded on the Mitigation Monitoring form during the site visit. Indirect use indicators including tracks, scat, burrow, eggshells, skins, and bones were also recorded. These signs were recorded while traversing the site for other required activities. Direct sampling methods such as snap traps, live traps, and pitfall traps, were not used. A comprehensive species list of wildlife observed during the annual monitoring periods has been compiled and is presented in the results section.

2.6. Functional Assessment

The 1999 MDT Montana Wetland Assessment Method (Berglund 1999) was used to evaluate the functions and values of the 1.2 acres of existing wetlands identified on the site in 2004. The 2008 MDT Montana Wetland Assessment Method (Berglund and McEldowney 2008) was used to evaluate functions and values of wetland delineated on the site in 2013. This method provides an objective means of assigning wetlands an overall rating and provides regulators a means of assessing mitigation success based on wetland functions. Functions are self-sustaining properties of a wetland ecosystem that exist in the absence of society and relate to ecological significance without regard to subjective human values (Berglund and McEldowney 2008). Field data for this assessment were collected during the site visit. The Wetland Assessment Form was completed for one assessment area (AA) that included both created and existing wetlands within the mitigation site (Appendix B).

2.7. Photo Documentation

Monitoring at photo points provided supplemental information documenting wetland, upland, and vegetation transect conditions; site trends; and current land uses surrounding the site. Photographs were taken at established photo points throughout the mitigation area during the site visit (Appendix C). Photo point locations were recorded with a resource grade GPS unit (Figure 2, Appendix A).

2.8. GPS Data

Site features and survey points were collected with a resource grade Thales Pro Mark III GPS unit during the 2013 monitoring season. Points were collected using WAAS-enabled differential correction satellites, typically improving resolution to sub-meter accuracy. The collected data were then transferred to a personal computer, imported into GIS, and presented in Montana State Plane Single Zone NAD 83 meters. Site features and survey points that were located with GPS included wetland boundaries, fence boundaries, photograph points, transect endpoints, and wetland/upland data points.

2.9. Maintenance Needs

Channels, engineered structures, fencing, and other features were examined during the site visit for obvious signs of breaching, damage, or other problems. This was a cursory examination and did not constitute an engineering-level structural inspection.

3. RESULTS

3.1. Hydrology

Climate data from the meteorological station at the Martinsdale 3 NNW, Montana (245387) weather station recorded an average annual precipitation rate of 13.24 inches from January 1893 to July 2012 (Western Region Climate Center [WRCC] 2013). This station was missing precipitation data for the latter part of 2011 and for 2012, with recorded precipitation for both 2011 and 2012 an underestimation of the actual precipitation at this station. The historic precipitation average from January to August (1893 through 2012) was 10.55 inches. The Martinsdale 10NW station is near the site with a period of record beginning May 2012. Based on data recorded at both stations for the January through August time period, precipitation totals for the region of this mitigation site received 13.49 inches in 2011, 5.87 inches in 2012, and 9.59 inches in 2013. The data since construction show below average precipitation in 2012 and near average precipitation in 2013.

The hydrology for the wetland mitigation site is supplied from multiple sources, including a shallow seasonal groundwater table, groundwater emerging from a natural spring located near the willow (*salix sp.*) stand in southern portion of the site, direct precipitation, and surface runoff. Construction included excavation and grading to fill drainage ditches, distribute water across the mitigation site, create open water areas, and also the installation of a diversion structure in the southern end of the site to direct irrigation water to the mitigation site. To supplement the groundwater, MDT has secured water rights to utilize surface water as a secondary source of hydrology and ensure long-term viability of the wetland mitigation site.

During the 2013 field survey, approximately 40 percent of the wetland area was inundated. Water depths in the lacustrine, littoral areas ranged from 0.25 to 3.5 feet and averaged 0.5 feet. Areas not inundated exhibited seasonal soil saturation within 12 inches of the ground surface. One groundwater monitoring well (MW-1) located along the constructed dike (Figure 2, Appendix A) was dry at

the time of survey. Other evidence of wetland hydrology observed on the site in 2013 included drainage patterns, soil saturation, water marks, drift deposits, algal mat, and geomorphic position.

Four data points were sampled to determine the wetland/upland boundaries. Data points Ro-1w and Ro-2w were located in areas that met the wetland criteria. Wetland hydrology indicators at Ro-1w, located near the edge of a created wetland cell, included saturation at 12 inches below the ground surface and drainage patterns. Data point Ro-2w was located near the southern end of the site in an area recently excavated to lower the ground surface elevation. One primary wetland hydrology indicator (iron deposits), and two secondary indicators (surface soil cracks and FAC-neutral test) provided positive signs of wetland hydrology at this data point. There were no hydrological indicators observed at data points Ro-1u or Ro-2u.

3.2. Vegetation

Monitoring year 2013 marked the first year of monitoring on the Rostad Ranch wetland mitigation site. A total of fifty-six plant species were observed on the site in 2013 (Table 2). Vegetation plant communities were identified by plant composition and dominance. Four community types were identified in 2013 and included upland Type 1 – *Phleum pratense/Trifolium* spp., wetland Type 2 – *Juncus arcticus/Carex nebrascensis*, wetland Type 3 – *Salix exigua*, and wetland Type 4 – Open water. The community composition is provided on the Monitoring Form in Appendix B and the community boundaries are shown on Figure 3 in Appendix A. These community types are discussed below.

Upland community Type 1 – *Phleum pratense/Trifolium* spp. was identified across the majority of the site on approximately 46.26 acres. This community generally represented the undisturbed uplands historically used for hay and cattle production and areas where spoils from excavation activities were deposited. Dominant species included common timothy (*Phleum pratense*) and white clover (*Trifolium repens*), with other common species including red clover (*Trifolium repens*), Kentucky bluegrass (*Poa pratensis*), creeping wild rye (*Elymus repens*), smooth brome (*Bromus inermis*), and alfalfa (*Medicago sativa*). A total of thirty-five species were identified in this community.

Wetland community Type 2 – Juncus arcticus/Carex nebrascensis represented the majority of the total wetland area delineated in 2013. This community was mapped across 10.59 acres within creation, re-establishment, and rehabilitation areas of the mitigation site. Arctic rush (Juncus arcticus), Nebraska sedge (Carex nebrascensis) and American Slough grass (Beckmannia syzigachne) were common components of this community. Community Type 2 included a diverse mix of wetland species, including Great Basin calico-flower (Downingia laeta), a species identified by the Montana Natural Heritage Program (MTNHP) as a species rated S2S3, rare in Montana.

Scientific Names	Common Names	GP Indicator Status ¹		
Achillea millefolium	Common Yarrow	FACU		
Agrostis gigantea	Black Bent	FACW		
Algae, green	Algae, green	NL		
Alopecurus pratensis	Field Meadow-Foxtail	FACW		
Amaranthus retroflexus	Red-Root	FACU		
Ambrosia acanthicarpa	Flatspine Burr Ragweed	UPL		
Aster sp.	Aster	NL		
Bassia scoparia	Mexican-Fireweed	FACU		
Beckmannia syzigachne	American Slough Grass	OBL		
Berteroa incana	Hoary False Madwort	UPL		
Bromus arvensis	Japanese Brome	FACU		
Bromus carinatus	California Brome	UPL		
Bromus inermis	Smooth Brome	FAC		
Carex nebrascensis	Nebraska Sedge	OBL		
Carex utriculata	Northwest Territory Sedge	OBL		
Centaurea maculosa	Spotted knapweed	UPL		
Chenopodium album	Lamb's-Quarters	FACU		
Chenopodium sp.	Goosefoot	NL		
Cirsium arvense	Canadian Thistle	FACU		
Cynoglossum officinale	Gypsy-Flower	FACU		
Deschampsia caespitosa	Tufted Hairgrass	FACW		
Descurainia sophia	Herb Sophia	UPL		
Downingia laeta	Great Basin Calico-Flower	NL		
Eleocharis palustris	Common Spike-Rush	OBL		
Elymus repens	Creeping Wild Rye	FACU		
Elymus trachycaulus	Slender Wild Rye	FACU		
Epilobium ciliatum	Fringed Willowherb	FACW		
Helianthus annuus	Common Sunflower	FACU		
Hordeum jubatum	Fox-Tail Barley	FACW		
Juncus arcticus	Arctic Rush	FACW		
Juncus articulatus	Joint-Leaf Rush	OBL		
Juncus bufonius	Toad Rush	OBL		
Lactuca serriola	Prickly Lettuce	FAC		
Lepidium densiflorum	Miner's Pepperwort	FAC		
Medicago sativa	Alfalfa	UPL		
Pascopyrum smithii	Western-Wheat Grass	FACU		

Table 2. Vegetation species observed in 2013 at the Rostad Ranch WetlandMitigation Site.

¹Draft NWPL (Lichvar and Kartesz, 2009).

Scientific Names	Common Names	GP Indicator Status ¹
Phalaris arundinacea	Reed Canary Grass	FACW
Phleum pratense	Common Timothy	FACU
Poa palustris	Fowl Blue Grass	FACW
Poa pratensis	Kentucky Blue Grass	FACU
Polypogon monspeliensis	Annual Rabbit's-Foot Grass	FACW
Populus angustifolia	Narrow-Leaf Cottonwood	FACW
Ranunculus cymbalaria	Alkali Buttercup	OBL
Rumex crispus	Curly Dock	FAC
Rumex occidentalis	Western Dock	OBL
Salix exigua	Narrow-Leaf Willow	FACW
Sinapis Arvensis	Charlock Mustard	UPL
Sonchus arvensis	Field Sow-Thistle	FAC
Taraxacum officinale	Common Dandelion	FACU
Thlaspi arvense	Field Penny-Cress	FACU
Tragopogon dubius	Yellow Salsify	UPL
Trifolium arvense	Rabbitfoot Clover	UPL
Trifolium pratense	Red Clover	FACU
Trifolium repens	White Clover	FACU
Typha latifolia	Broad-Leaf Cat-Tail	OBL
Veronica peregrina	Neckweed	FACW

Table 2. (Continued). Vegetation species observed in 2013 at the Rostad	Ranch
Wetland Mitigation Site.	

¹Draft NWPL (Lichvar and Kartesz, 2009).

Wetland community Type 3 – Salix exigua consisted of the 0.31-acre pre-existing wetland area in the southern end that remained undisturbed during the 2012 construction of the mitigation site. Narrow-leaf willow (Salix exigua) dominated this area and exhibited willow regeneration around the margins of the community, likely to result in an increase of this community type over time. Fowl bluegrass (*Poa palustris*), Nebraska sedge, Northwest Territory sedge (*Carex utriculata*), field meadow-foxtail (*Alopecurus pratensis*), black bentgrass (*Agrostis gigantea*), tufted hairgrass (*Deschampsia caespitosa*), annual rabbit's-foot grass (*Polypogon monspeliensis*), and neckweed (*Veronica peregrina*) were also identified within this community.

Wetland community Type 4 – Open water was mapped on 2.83 acres and was characterized by inundated conditions during the 2013 field survey. Two areas of community Type 4 have been constructed within the mitigation site and include an area of open water impounded by a constructed dike in the northern portion of the site and an excavated depression in the southern half. Very low vegetation cover was documented throughout this community and likely reflects an insufficient amount of time following construction disturbance in 2012 for the establishment of aquatic plants adapted for growth in perennial inundated

conditions. Common spikerush (*Eleocharis palustris*), broad-leaf cat-tail (*Typha latifolia*), and American slough grass were noted around the shallower margins of this community. The Great Basin calico-flower was also identified along the margin of this community. A trace amount of green algae (a protist) was present in the open water.

Vegetation cover was measured along three transects at the Rostad Ranch Mitigation Site in 2013 (Figure 2, Appendix A). The data recorded on Transect 1 (Monitoring Forms, Appendix B) are summarized in tabular and graphical formats in Table 3 and Chart 1 and Chart 2, respectively. Photographs of the transect ends are provided on Page C-4 of Appendix C. Transect T-1 extends 422 feet from a corner of the easement area into the large open water area impounded by the constructed dike. This transect intercepted upland community Type 1, Type 2 wetland, and ended within the open water community (Type 4). A total of 27 vegetative species were identified along this transect and included nine hydrophytes. Approximately 30 percent of the length of this transect was located in the Type 2 (*Juncus arcticus/Carex nebrascensis*) hydrophytic community and approximately twelve percent of the transect intercepted the open water.

Monitoring Year	2013
Transect Length (feet)	422
Vegetation Community Transitions along Transect	4
Vegetation Communities along Transect	2
Hydrophytic Vegetation Communities along Transect	1
Total Vegetative Species	27
Total Hydrophytic Species	9
Total Upland Species	18
Estimated % Total Vegetative Cover	90
% Transect Length Comprising Hydrophytic Vegetation Communities	30.6
% Transect Length Comprising Upland Vegetation Communities	56.9
% Transect Length Comprising Unvegetated Open Water	12.6
% Transect Length Comprising Bare Substrate	0

 Table 3. Data summary for Transect T-1 from 2013 at the Rostad Ranch Wetland

 Mitigation Site.

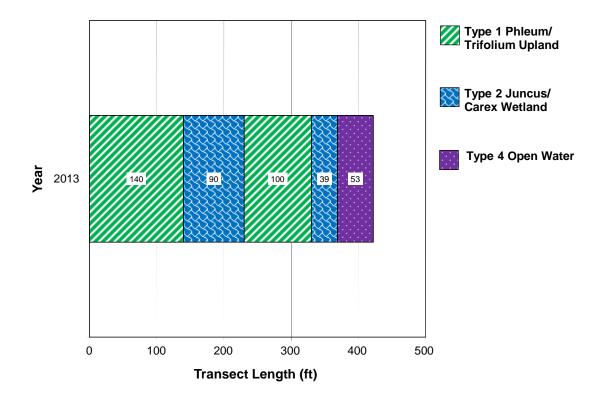


Chart 1. Transect maps showing community types on Transect T-1 in 2013 at the Rostad Ranch Wetland Mitigation Site.

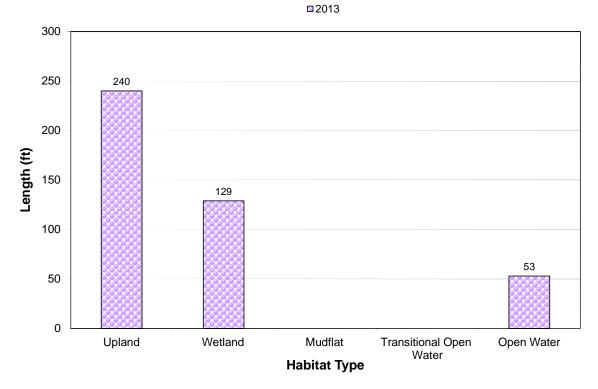


Chart 2. Length of habitat types within Transect T-1 in 2013 at the Rostad Ranch Wetland Mitigation Site.

Data collected on Transect T-2 (Monitoring Form, Appendix B) are summarized in tabular and graphic formats (Table 4, Charts 3 and 4, respectively) with photographs taken at the endpoints provided on Page C-4 of Appendix C. This transect began at a mature cottonwood (*Populus sp.*) near the entrance of the site and extended 453 feet, alternating between upland community Type 1 and wetland community Type 2. Approximately forty-five percent of this transect was located in Type 2 community.

Table 4. Data summary for	Transect	T-2 in	2013	at the	Rostad	Ranch	Wetland
Mitigation Site.							

Monitoring Year	2013
Transect Length (feet)	453
Vegetation Community Transitions along Transect	4
Vegetation Communities along Transect	2
Hydrophytic Vegetation Communities along Transect	1
Total Vegetative Species	26
Total Hydrophytic Species	8
Total Upland Species	18
Estimated % Total Vegetative Cover	90
% Transect Length Comprising Hydrophytic Vegetation Communities	44.6
% Transect Length Comprising Upland Vegetation Communities	55.4
% Transect Length Comprising Unvegetated Open Water	0
% Transect Length Comprising Bare Substrate	0

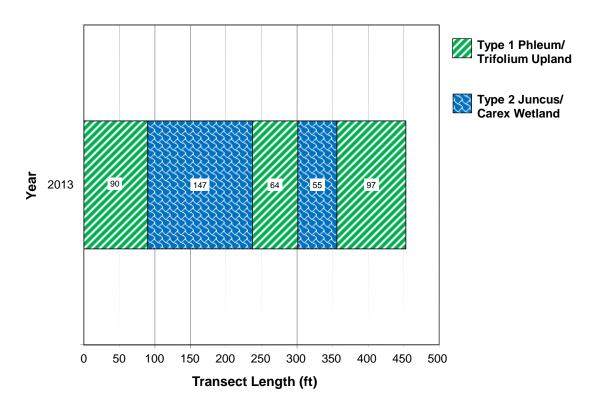


Chart 3. Transect maps showing community types on Transect T-2 in 2013 at the Rostad Ranch Wetland Mitigation Site.



Chart 4. Length of habitat types within Transect T-2 in 2013 at the Rostad Ranch Wetland Mitigation Site.

Transect T-3 was established in the southern end of the mitigation site and traversed the excavated re-establishment and rehabilitation credit areas. Transect T-3 also began at a mature cottonwood and extended east for 320 feet (Figure 2, Appendix A). This transect originated in the upland *Phleum* community, transitioned into community Type 2, continued through the excavated open water depression, and ended in community Type 2. Approximately fifteen percent of this transect consisted of bare ground reflecting the recently disturbed conditions of constructed wetland mitigation area.

 Table 5. Data summary for Transect T-3 in 2013 at the Rostad Ranch Wetland

 Mitigation Site.

Monitoring Year	2013
Transect Length (feet)	320
Vegetation Community Transitions along Transect	3
Vegetation Communities along Transect	2
Hydrophytic Vegetation Communities along Transect	1
Total Vegetative Species	25
Total Hydrophytic Species	14
Total Upland Species	11
Estimated % Total Vegetative Cover	85
% Transect Length Comprising Hydrophytic Vegetation Communities	65.3
% Transect Length Comprising Upland Vegetation Communities	6.6
% Transect Length Comprising Unvegetated Open Water	28.1
% Transect Length Comprising Bare Substrate	15

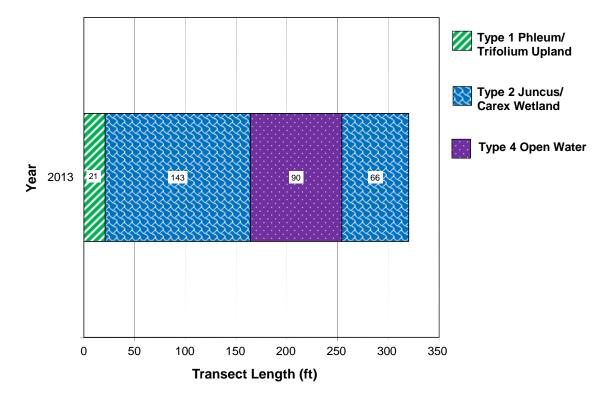


Chart 5. Transect maps showing community types on Transect T-3 in 2013 at the Rostad Ranch Wetland Mitigation Site.

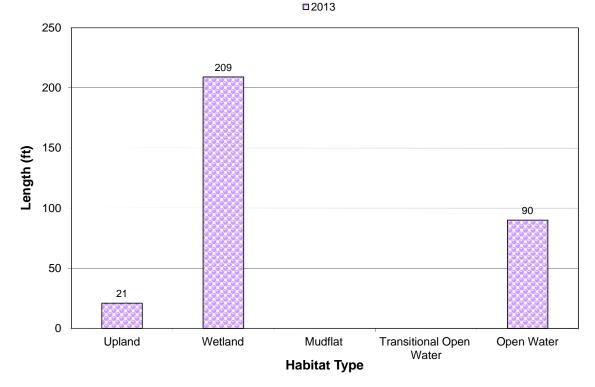


Chart 6. Length of habitat types within Transect T-3 in 2013 at the Rostad Ranch Wetland Mitigation Site.

Priority 2B noxious weeds identified within the Rostad Ranch mitigation site included spotted knapweed (*Centaurea maculosa*), Gypsy-flower (Houndstongue – *Cynoglossum officinale*), Canadian thistle (*Cirsium arvense*), field bindweed (*Convulvulus arvensis*), and the Priority 2A listed hoary false madwort (Hoary alyssum-*Berteroa incana*). A total of seventeen infestation areas were mapped in 2013, ranging in size from less than 0.1 acre to 1 to 5 acres in size. The majority of the infestation areas were located in upland community Type 1 and appeared to have been established within the site prior to mitigation construction.

Approximately 2,000 willow cuttings were planted throughout the excavated wetland mitigation areas. A survival rate of approximately 95 percent among the willow cuttings was observed during the 2013 site visit. These cuttings looked healthy with little to no browse and were growing vigorously. Additionally, 100 black cottonwoods (*Populus balsamifera*) and 100 quaking aspens (*Populus tremuloides*) were installed around the perimeter of the proposed open water areas. Survival among these containerized (5-gallon) plantings was estimated around 95 percent.

3.3. Soil

The project site was identified in the *Meagher County Soil Survey* (SSURGO 2012) within the Varney-Notter cobbly loams and Delpoint variant-Marmarth-Cabbart loams mapped soil series. The Varney-Notter mapped soil unit was located across the northern half of the mitigation site and the Delpoint variant-Marmarth-Cabbart loams were mapped across the southern half. These series generally consist of very deep, well drained soils formed in alluvium. These mapped soil units were not identified on the Montana Hydric Soils list.

Soil test pits were excavated at four locations (Figure 2, Appendix A). Data points Ro-1u and Ro-1w were located in areas originally mapped in the Varney-Notter series and generally conformed to the Varney series. Data points Ro-2u and Ro-2w were located in areas mapped in the Delpoint variant-Marmarth-Cabbart loam series. Soils in these two pits generally confirmed the mapped Delpoint series. Data points Ro-1w and Ro-2w were located in areas that qualified as hydric soils. The soil at Ro-1w consisted of a dark grayish brown (10YR 4/2) clay matrix with ten percent dark yellowish brown (10YR 4/6) redoximorphic concentrations and qualified as hydric with a depleted matrix (F3). The soil profile at Ro-2w exhibited a gray (10YR 5/1) sandy clay loam with ten percent strong brown (7.5YR 4/6) redoximorphic concentrations and met the hydric criteria for a depleted matrix (F3). The soil profile at Ro-1u expressed redox concentrations below 12 inches, indicating a fluctuating water table below one foot of the surface at this location. No redoximorphic characteristics were identified within the soil profile at Ro-2u.

3.4. Wetland Delineation

Four data points were used to define the wetland boundary in 2013 (Figure 2, Appendix A and Wetland Determination Data Forms, Appendix B). Data points Ro-1w and Ro-2w were located in areas that qualified as wetlands. The total

wetland acreage delineated in 2013, including pre-existing wetland areas, totaled 13.74 acres (Table 6). The 2013 delineation included the 0.25 wetland preservation area, 10.89 wetland acres within the re-establishment credit area, 1.53 acres within the wetland rehabilitation credit area, and 1.07 acres of created wetland. As this year represents the first baseline year of monitoring, the site has the potential to expand and develop over the course of the 5-year monitoring period.

Table 6. Total	wetland	acres	delineated	in	2013	at	the	Rostad	Ranch	Wetland
Mitigation Site.										

WETLAND AND UPLAND HABITATS	2013 Delineated Acres
Project Area	60.00
Total Wetlands	13.74
Created Wetlands	1.07
Restoration Wetlands (Re-establishment)	10.89
Restoration Wetlands (Rehabilitation)	1.53
Preservation Wetlands	0.25
Upland Buffer	46.26

3.5. Wildlife

A comprehensive list of bird and other wildlife species observed directly or indirectly in 2013 is presented in Table 7. Seven bird species were identified and included an American goldfinch (*Spinus tristus*), a northern harrier (*Circus cyaneus*), four sandhill cranes (*Grus Canadensis*), a Wilson's snipe (*Gallinago delicata*), two grasshopper sparrows (*Ammodramus savannarum*), a red-tailed hawk (*Buteo jamaicensis*), and several dozen Canada Geese (*Branta canadensis*). Black bear (*Ursus americanus*) scat was observed within the mitigation boundary. Deer (*Odocoileus* sp.) tracks and muskrat (*Ondatra zibethicus*) tracks were also documented within the site.

COMMON NAME	SCIENTIFIC NAME
В	IRDS
American Goldfinch	Spinus tristus
Brewer's Blackbird*	Euphagus cyanocephalus
Canada Goose	Branta canadensis
Grasshopper Sparrow	Ammodramus savannarum
Green-winged Teal*	Anas crecca
Mallard	Anas platyrhynchos
Northern Harrier	Circus cyaneus
Red-tailed Hawk	Buteo jamaicensis
Sandhill Crane	Grus canadensis
Spotted Sandpiper*	Actitis macularius
Tree Swallow*	Tachycineta bicolor
Wilson's Snipe	Gallinago delicata
MAI	MMALS
Black Bear	Ursus americanus
Coyote*	Canis latrans
Deer Sp.	Odocoileus sp.
Raccoon*	Procyon lotor
Muskrat	Ondatra zibethicus

Table 7. Wildlife species observed in 2013 at the Rostad Ranch Wetland MitigationSite.

*Species observed by MDT Wetland Mitigation Specialist

3.6. Functional Assessment

The 1999 MDT Montana Wetland Assessment Method (MWAM) (Berglund 1999) was used to evaluate the three existing wetlands identified within the site in 2004. The 2008 MWAM (Berglund and McEldowney 2008) was used to evaluate the site in 2013. All wetlands identified in 2013 were evaluated as one AA. The results of the 2004 and 2013 assessments are summarized in Table 8. The completed 2013 MWAM form is located in Appendix B.

The 2004 assessment identified a total of 3.4 acres of Category III wetlands. The majority of the existing wetlands within the site prior to construction consisted of man-made drainage and irrigation ditches constructed through the site to drain and disperse water through the site. The only remnants of these areas are the willow thicket and the roadside drainage ditch. These wetlands averaged 34 percent of the possible score and attained a total of 12.46 functional units. Due to the complex boundaries of the proposed mitigation credits within the site, the Rostad Ranch mitigation wetland was assessed as one AA in 2013. The 2013 AA totaled 13.74 acres and rated as a Category II wetland, scoring 65.6 percent of the possible points and attaining 72.1 functional units. This AA included high ratings for MTNHP species habitat (documented primary habitat for the Great Basin calico-flower), short and long term surface water storage, production

export/food chain support, and groundwater discharge/recharge. The total functional units are expected to increase within this AA as the recently disturbed areas establish wetland vegetation and additional wetland areas develop within the site.

Table 8. Functions	and Values	of the Rostad	Ranch Wetland	Mitigation Site from
2013.				

Function and Value Parameters from the Montana Wetland Assessment Method	2004* W-1-04	2004* W-2-04	2004* W-3-04	2013**
Listed/Proposed T&E Species Habitat	Low (0.0)	Low (0.0)	Low (0.0)	Low (0.0)
MTNHP Species Habitat	Low (0.2)	Low (0.2)	Low (0.2)	High (0.9)
General Wildlife Habitat	Low (0.3)	Low (0.3)	Low (0.3)	Mod (0.5)
General Fish/Aquatic Habitat	NA	NA	NA	NA
Flood Attenuation	NA	NA	NA	NA
Short and Long Term Surface Water Storage	Low (0.2)	Low (0.2)	Low (0.2)	High (0.8)
Sediment/Nutrient/Toxicant Removal	Mod (0.6)	Mod (0.6)	Mod (0.6)	Mod (0.7)
Sediment/Shoreline Stabilization	Mod (0.6)	Mod (0.6)	NA	NA
Production Export/Food Chain Support	Mod (0.7)	Mod (0.7)	Low (0.3)	High (0.9)
Groundwater Discharge/Recharge	High (1.0)	High (1.0)	NA	High (1.0)
Uniqueness	Low (0.2)	Low (0.2)	Low (0.2)	Mod (0.4)
Recreation/Education Potential (bonus points)	Low (0.1)	Low (0.1)	Low (0.1)	Low (0.05)
Actual Points/Possible Points	3.9 / 10	3.9 / 10	1.9/8	5.25 / 8
% of Possible Score Achieved	39.0%	39.0%	24.0%	65.6%
Overall Category			- 111	Ш
Total Acreage of Assessed Wetlands within Site	1.2	1.8	0.4	13.74
Functional Units (acreage x actual points)	4.68	7.02	0.76	72.1

*1999 MWAM form (Berglund, 1999)

**2008 MWAM form (Berglund and McEldowney, 2008)

3.7. Photo Documentation

Photographs taken at photo points one through seven (PP1 through PP7; Figure 2, Appendix A) in 2013 are shown on pages C-1 to C-3 of Appendix C. Vegetation transect end points are shown on page C-4. Photographs of the data points are included on page C-5.

3.8. Maintenance Needs

Priority 2B noxious weeds identified within the Rostad Ranch mitigation site included spotted knapweed, Gypsy-flower, Canadian thistle, field bindweed, and the Priority 2A listed hoary false madwort. A total of seventeen infestation areas were mapped in 2013, ranging in size from less than 0.1 acre to 1 to 5 acres in size. The majority of the infestation areas were located in upland community Type 1 and appeared to have been established within the site prior to mitigation construction.

The irrigation diversion structure was closed during the August 2013 investigation. Several areas of the constructed embankment dike around the northern cell had breached during the early summer and MDT had made some

temporary repairs with coir logs and rock to prevent further washouts and degradation of the structure. Subsequent evaluation of the embankment dike structure indicated that it had been constructed at an elevation lower than the constructed outlet structure. MDT required the contractor to undertake corrective actions in November 2013 to raise the level of the dike and repair all breaches in the structure. In addition to the structure, spreader berms were extended at several locations to spread water further across the site. Seven bluebird boxes had been installed around the site perimeter. Several of the bird boxes appeared to be occupied and all were in good condition. The wildlife-friendly fence installed around the easement area was intact. Besides those corrective actions undertaken by MDT to repair the northern embankment structure, no maintenance was identified for any of the structures in 2013.

3.9. Current Credit Summary

Table 9 summarizes the current wetland credits based on the USACE-approved credit ratios and the wetland delineation completed in August 2013. Proposed mitigation credit from the 2007 Rostad Ranch Mitigation Plan included the reestablishment of 27.11 acres, rehabilitation of 2.63 wetland acres, creation of 9.84 acres, preservation of 0.25 acres, and maintenance of a 6.76-acre upland buffer (Table 1). The actual wetland acreages delineated in 2013 included 10.89 acres within the re-establishment credit area, 1.53 acres of rehabilitated wetland, 1.07 acres of created wetland, and 0.25 acres of preservation wetland (community Type 3). The total mitigation credit estimated in 2013, including the upland buffer credit and deducting the 0.41-acre wetland impact incurred during construction of the mitigation site, totaled 13.89 acres.

All wetlands delineated at the Rostad Ranch wetland mitigation site in 2013 satisfied the three wetland criteria of wetland hydrology, hydrophytic vegetation, and hydric soils. Willow stakes planted within the site exhibited a 95 percent survival rate during the first year of planting. Although recently disturbed, the site was moderately well-vegetated with aerial coverage by state-listed noxious weed less than 5 percent. The extent of the open water surveyed in 2013 comprised 20 percent of the total wetland acreage, exceeding the cap of 10 percent stipulated in the USACE-approved performance criteria. The percentage of open water is expected to decrease as additional emergent wetlands develop on site. The entire 60-acre easement area has been fenced to exclude grazing.

Palustrine Emergent,

Lacustrine, Littoral Palustrine

Restoration

(Re-establishment)

from 2013.							
Compensatory Mitigation Type	Wetland Type (Cowardin)	Anticipated Mitigation Area (acres)	Migiation	Anticipated Mitigation Credit	2013 Delineated Mitigation Areas	2013 Estimated Mitigation Credit	

1:1

27.11

(acres)

27.11

(acres)

10.89

(acres)

10.89

Table 9. Summary of wetland credits at the Rostad Ranch Wetland Mitigation Site
from 2013.

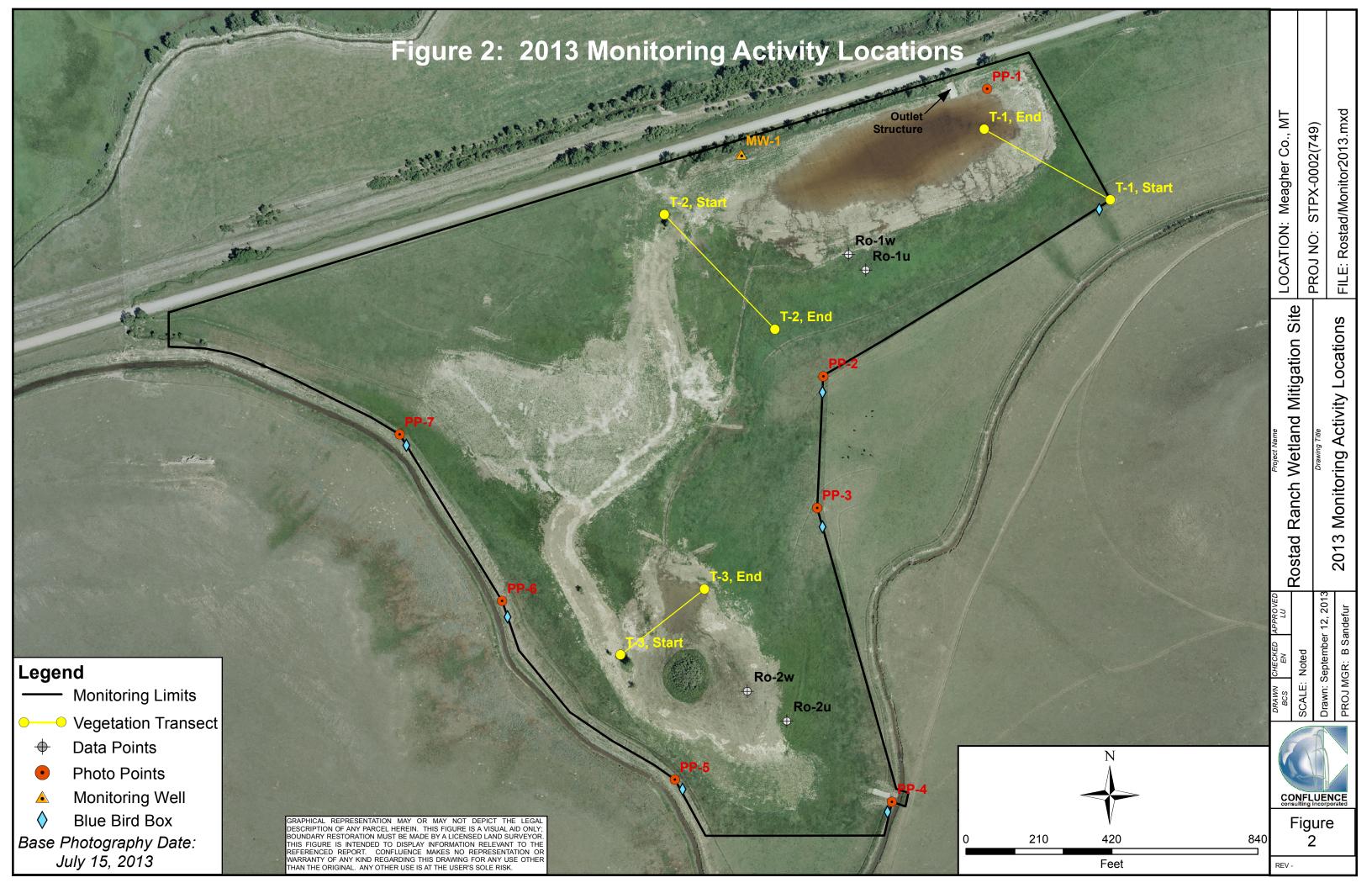
Creation Emergent, 9.84 9.84 1.07 1.07 1:1 (Establishment) Lacustrine, Littoral Palustrine Restoration Emergent & 2.63 1.5:1 1.75 1.53 1.02 (Rehabilitation) Lacustrine, Littoral Palustrine, Preservation 0.25 4:1 0.06 0.25 0.06 Scrub/shrub N/A Upland Buffer 6.76 5:1 1.35 6.76 1.35 Permanent Wetland N/A N/A 1:1 -0.41 N/A -0.41 Impact Totals 46.59 39.70 20.5 13.98

Mitigation credit ratios utilized were from the Montana Corps Regulatory Programs 2005 Wetland Credit Ratios (USACE 2005)

4. **REFERENCES**

- Berglund, J. and R. McEldowney. 2008. *MDT Montana Wetland Assessment Method.* Prepared for Montana Department of Transportation, Helena, Montana. Post, Buckley, Schuh, & Jernigan, Helena, Montana. 42pp.
- Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. FWS/OBS-79/31. U.S.D.I Fish and Wildlife Service. Washington D.C.
- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. U.S. Army Corps of Engineers. Washington, DC.
- Lichvar, Robert W. and Kartesz, John T. 2009. North American Digital Flora: National Wetland Plant List, version 2.4.0 (https://wetland_plants.usace.army.mil). U.S. Army Corps of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, NH, and BONAP, Chapel Hill, *Downloaded from National Wetland Plant List website 5/9/12. Effective June 1, 2012.*
- USDA, Natural Resource Conservation Service. *Montana Hydric Soils List*. April 2012.
- U.S. Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Great Plains Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-1.Vicksburg, MS: U.S. Army Engineer Research and Development Center.

Websites:


- Montana Natural Heritage Program website. Accessed in September 2013 at http://mtnhp.org/nwi/PUB_PAB.asp.
- USDA, Natural Resources Conservation Service Soil Survey Geographic (SSURGO) Data. Meagher County, Montana. Time Stamped September 2012.
- WRCC United States Historical Climatology Network. Accessed November 2013 at: http://www.wrcc.dri.edu/CLIMATEDATA.html.

Appendix A

Project Area Maps - Figures 2 and 3

MDT Wetland Mitigation Monitoring Rostad Ranch Meagher County, Montana

Figure 3: 2013 Mapped Site Features

(4)

1

- - - -

1

<u>ACREAGES</u>

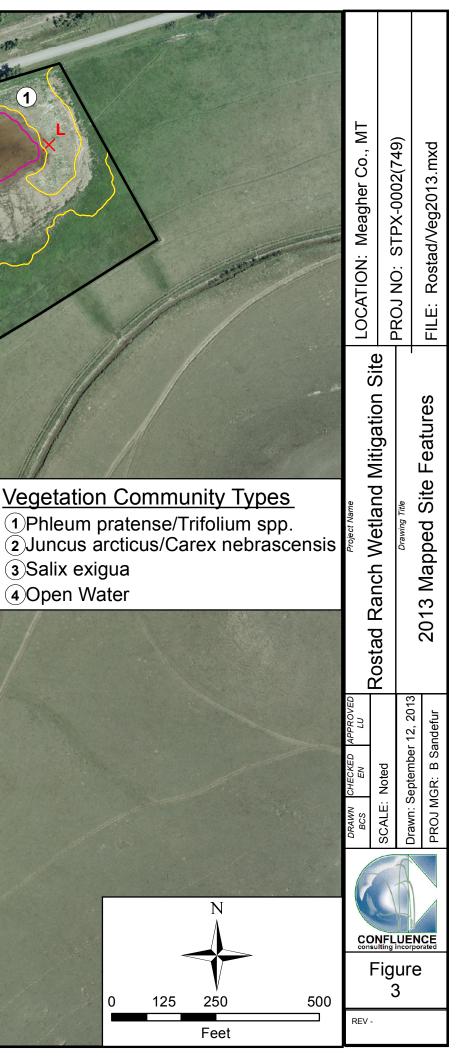
Project Area	60.00 acres
Total Wetlands	13.74 acres
Existing Wetlands	12.67 acres
Created Wetlands	1.07 acres
Upland	46.26 acres

Noxious Weeds Centaurea maculosa Cynoglossum officinale Berteroa incana Cirsium arvense Convulvulus arvensis Infestation Size X = <0.1 acre $\blacktriangle = 0.1$ to 1 acre $\blacksquare = 1$ to 5 acre Cover Class T = Trace (<1% cover) L = Low (1-5% cover) M = Moderate (6-25% cover)H = High (26-100% cover)

Legend

Monitoring Limits – Wetland Limits – Vegetation Communities – Base Photography Date: July 15, 2013

GRAPHICAL REPRESENTATION MAY OR MAY NOT DEPICT THE LEGAL DESCRIPTION OF ANY PARCEL HEREIN. THIS FIGURE IS A VISUAL AID ONLY; BOUNDARY RESTORATION MUST BE MADE BY A LICENSED LAND SURVEYOR. THIS FIGURE IS INTENDED TO DISPLAY INFORMATION RELEVANT TO THE REFERENCED REPORT. CONFLUENCE MAKES NO REPRESENTATION OR WARRANTY OF ANY KIND REGARDING THIS DRAWING FOR ANY USE OTHER THAN THE ORIGINAL. ANY OTHER USE IS AT THE USER'S SOLE RISK.


(1)

2

4

3

(2)

Appendix B

2013 MDT Wetland Mitigation Site Monitoring Form 2013 USACE Wetland Determination Data Form 2013 MDT Montana Wetland Assessment Form

MDT Wetland Mitigation Monitoring Rostad Ranch Meagher County, Montana

MDT WETLAND MITIGATION SITE MONITORING FORM

Project Site: Rostad Ranch	Assessment Date/Time	<u>8/21/2013 7:57:34</u> AM				
Person(s) conducting the assessment: <u>E Nyquist, B Sandefur</u>						
Weather: Sunny & smokey, warm Location: Martinsdale, MT						
MDT District: 5	Milepost:					
Legal Description: T <u>8N</u> R <u>11E</u> Section	on(s) <u>12 and 13</u>					
Initial Evaluation Date: 8/21/2013 M	onitoring Year: <u>1</u> #Visits in Year: <u>1</u>					
Size of Evaluation Area: 60 (acres)						
Land use surrounding wetland:						
Agriculture						

HYDROLOGY

					, ,,
Surface Water Source:	Groundwater.	supplemental	hydrology from	n ditch/headdate.	surface runoff
	oroananatori	oapprontental		n anton i noalagato,	

Inundation: Average Depth: 0.5 (ft) Range of Depths: 0.25-3.5 (ft)

Percent of assessment area under inundation: 40 %

Depth at emergent vegetation-open water boundary: _____ 0.5 (ft)

If assessment area is not inundated then are the soils saturated within 12 inches of surface: Yes

Other evidence of hydrology on the site (ex. - drift lines, erosion, stained vegetation, etc:

Drainage patterns, soil saturation, water marks, drift deposits, iron deposits, surface soil cracks, algal mat, geomorphic position, positive FAC-neutral test.

Groundwater Monitoring Wells

Record depth of water surface below ground surface, in feet.

Well ID Water Surface Depth (ft)

MW-1 DRY

Additional Activities Checklist:

Map emergent vegetation-open water boundary on aerial photograph.

Observe extent of surface water during each site visit and look for evidence of past surface water

elevations (drift lines, erosion, vegetation staining, etc.)

Use GPS to survey groundwater monitoring well locations, if present.

Hydrology Notes:

MW-1 with groundwater greater than 6ft below ground surface, located in upland near levee.

VEGETATION COMMUNITIES

Site Rostad Ranch

(Cover Class Codes 0 = < 1%, 1 = 1-5%, 2 = 6-10%, 3 = 11-20%, 4 = 21-50%, 5 = >50%)

<u> </u>	ommannty Type: <u>-</u>	nicum praterioe / Thioliam opp.	Acres	<u>+0.2</u>
Species	Cover class	Species	Cover class	
Achillea millefolium	1	Amaranthus retroflexus	0	
Ambrosia acanthicarpa	0	Aster sp.	0	
Bare Ground	0	Bassia scoparia	3	
Berteroa incana	0	Brassica kaber	0	
Bromus arvensis	0	Bromus carinatus	0	
Bromus inermis	1	Centaurea maculosa	0	
Chenopodium sp.	2	Cirsium arvense	0	
Cynoglossum officinale	0	Deschampsia cespitosa	0	
Descurainia sophia	1	Elymus repens	2	
Elymus trachycaulus	0	Festuca pratensis	1	
Helianthus annuus	1	Hordeum jubatum	1	
Juncus arcticus	0	Lactuca serriola	0	
Medicago sativa	1	Pascopyrum smithii	1	
Phalaris arundinacea	0	Phleum pratense	4	
Poa pratensis	2	Populus angustifolia	1	
Rumex occidentalis	0	Taraxacum officinale	0	
Thlaspi arvense	0	Tragopogon dubius	0	
Trifolium arvense	0	Trifolium pratense	1	
Trifolium repens	3			
Comments:				

Community # <u>1</u> Community Type: <u>Phleum pratense / Trifolium spp.</u>

Acres <u>46.26</u>

One upland community on site and represented by previously grazed meadow.

Community # <u>2</u>	Community Type:	Juncus arcticus / Carex nebrascens	sis Acres	<u>10.59</u>
Species	Cover class	Species	Cover class	
Algae, green	0	Bare Ground	3	
Bassia scoparia	0	Beckmannia syzigachne	3	
Carex nebrascensis	4	Centaurea maculosa	0	
Chenopodium sp.	0	Deschampsia cespitosa	0	
Downingia laeta	0	Eleocharis palustris	0	
Elymus repens	0	Epilobium ciliatum	0	
Hordeum jubatum	1	Juncus arcticus	4	
Juncus articulatus	0	Juncus bufonius	0	
Lactuca serriola	0	Lepidium densiflorum	0	
Open Water	0	Pascopyrum smithii	0	
Phalaris arundinacea	1	Phleum pratense	0	
Poa palustris	0	Ranunculus cymbalaria	0	
Rumex crispus	0	Rumex occidentalis	0	
Salix exigua	1	Sonchus arvensis	0	
Thlaspi arvense	0	Trifolium pratense	0	
Typha latifolia	1	Veronica peregrina	0	
Comments:				

Community #	2	Community Type:	Juncus arcticus / Carex nebrascensis

J	O	ш	ш	er	its:	

Wet meadow community, mostly disturbed during construction.

Community # <u>3</u> Co	ommunity Type:	<u>Salix exigua /</u>	Acres	<u>0.31</u>
Species	Cover class	Species	Cover class	
Agrostis gigantea	0	Alopecurus pratensis	1	
Beckmannia syzigachne	0	Carex nebrascensis	1	
Carex utriculata	1	Deschampsia cespitosa	1	
Poa palustris	2	Polypogon monspeliensis	0	
Salix exigua	5	Veronica peregrina	0	
•				

Comments:

Undisturbed salix community near southern extent of monitoring boundary.

Community # <u>4</u> Community Type: Open Water /

Species	Cover class	Species	Cover class
Algae, green	0	Bare Ground	1
Beckmannia syzigachne	0	Berteroa incana	0
Chenopodium album	0	Downingia laeta	0
Eleocharis palustris	1	Open Water	5
Polypogon monspeliensis	0	Typha latifolia	0
Veronica peregrina	0		

Acres

2.83

Comments:

VEGETATION TRANSECTS

Rostad Ranch		Da	te: 8/21/2013	7:57:34 AM
Transect Number: 1		_ Compass Di	rection from Start: 2	90_
Interval Data:				
Ending Station	140	Community Type:	Phleum pratense / Trifoliun	n spp.
Species		Cover class	Species	Cover class
Achillea millefolium		1	Aster sp.	2
Bromus inermis		5	Centaurea maculosa	0
Cirsium arvense		0	Cynoglossum officinale	0
Medicago sativa		1	Pascopyrum smithii	1
Phleum pratense		1	Taraxacum officinale	1
Tragopogon dubius		1	Trifolium pratense	2
Ending Station	230	Community Type:	Juncus arcticus / Carex ne	brascensis
Species		Cover class	Species	Cover class
Bare Ground		1	Carex nebrascensis	1
Eleocharis palustris		1	Juncus arcticus	3
Phalaris arundinacea		1	Phleum pratense	1
Poa palustris		3	Rumex crispus	0
Trifolium pratense		2		
Ending Station	330	Community Type:	Phleum pratense / Trifoliun	n spp.
Ending Station Species	330	Community Type: Cover class	Phleum pratense / Trifoliun Species	n spp. Cover class
	330		-	
Species	330	Cover class	Species	Cover class
Species Amaranthus retroflexus	330	Cover class	Species Bromus carinatus	Cover class
Species Amaranthus retroflexus Cynoglossum officinale	330	Cover class 1 0	Species Bromus carinatus Lactuca serriola	Cover class 2 1
Species Amaranthus retroflexus Cynoglossum officinale Medicago sativa	330	Cover class 1 0 1	Species Bromus carinatus Lactuca serriola Pascopyrum smithii	Cover class 2 1 2
Species Amaranthus retroflexus Cynoglossum officinale Medicago sativa Phleum pratense		Cover class 1 0 1 3	Species Bromus carinatus Lactuca serriola Pascopyrum smithii	Cover class 2 1 2 1
Species Amaranthus retroflexus Cynoglossum officinale Medicago sativa Phleum pratense Trifolium pratense		Cover class 1 0 1 3 2	Species Bromus carinatus Lactuca serriola Pascopyrum smithii Thlaspi arvense	Cover class 2 1 2 1
Species Amaranthus retroflexus Cynoglossum officinale Medicago sativa Phleum pratense Trifolium pratense Ending Station		Cover class 1 0 1 3 2 Community Type:	Species Bromus carinatus Lactuca serriola Pascopyrum smithii Thlaspi arvense Juncus arcticus / Carex ne	Cover class 2 1 2 1 2 1
Species Amaranthus retroflexus Cynoglossum officinale Medicago sativa Phleum pratense Trifolium pratense Ending Station Species		Cover class 1 0 1 3 2 Community Type: Cover class	Species Bromus carinatus Lactuca serriola Pascopyrum smithii Thlaspi arvense Juncus arcticus / Carex ne Species	Cover class 2 1 2 1 brascensis Cover class
Species Amaranthus retroflexus Cynoglossum officinale Medicago sativa Phleum pratense Trifolium pratense Ending Station Species Bare Ground		Cover class 1 0 1 3 2 Community Type: Gover class 3	Species Bromus carinatus Lactuca serriola Pascopyrum smithii Thlaspi arvense Juncus arcticus / Carex ne Species Beckmannia syzigachne	Cover class 2 1 2 1 brascensis Cover class 1
Species Amaranthus retroflexus Cynoglossum officinale Medicago sativa Phleum pratense Trifolium pratense Ending Station Species Bare Ground Carex nebrascensis		Cover class 1 0 1 3 2 Community Type: Cover class 3 2	Species Bromus carinatus Lactuca serriola Pascopyrum smithii Thlaspi arvense Juncus arcticus / Carex ne Species Beckmannia syzigachne Eleocharis palustris	Cover class 2 1 2 1 brascensis Cover class 1 2
Species Amaranthus retroflexus Cynoglossum officinale Medicago sativa Phleum pratense Trifolium pratense Ending Station Species Bare Ground Carex nebrascensis Juncus arcticus		Cover class	Species Bromus carinatus Lactuca serriola Pascopyrum smithii Thlaspi arvense Juncus arcticus / Carex ne Species Beckmannia syzigachne Eleocharis palustris Phleum pratense	Cover class 2 1 2 1 brascensis Cover class 1 2 1 1
Species Amaranthus retroflexus Cynoglossum officinale Medicago sativa Phleum pratense Trifolium pratense Ending Station Species Bare Ground Carex nebrascensis Juncus arcticus Rumex crispus	369	Cover class	Species Bromus carinatus Lactuca serriola Pascopyrum smithii Thlaspi arvense Juncus arcticus / Carex ne Species Beckmannia syzigachne Eleocharis palustris Phleum pratense Thlaspi arvense	Cover class 2 1 2 1 brascensis Cover class 1 2 1 1
Species Amaranthus retroflexus Cynoglossum officinale Medicago sativa Phleum pratense Trifolium pratense Ending Station Species Bare Ground Carex nebrascensis Juncus arcticus Rumex crispus Trifolium pratense	369	Cover class	Species Bromus carinatus Lactuca serriola Pascopyrum smithii Thlaspi arvense Juncus arcticus / Carex ne Species Beckmannia syzigachne Eleocharis palustris Phleum pratense Thlaspi arvense	Cover class 2 1 2 1 brascensis Cover class 1 2 1 1
Species Amaranthus retroflexus Cynoglossum officinale Medicago sativa Phleum pratense Trifolium pratense Ending Station Species Bare Ground Carex nebrascensis Juncus arcticus Rumex crispus Trifolium pratense Ending Station	369	Cover class	Species Bromus carinatus Lactuca serriola Pascopyrum smithii Thlaspi arvense Juncus arcticus / Carex ne Species Beckmannia syzigachne Eleocharis palustris Phleum pratense Thlaspi arvense Open Water /	Cover class 2 1 2 1 brascensis Cover class 1 2 1 0

 Transect Number:
 2
 Compass Direction from Start:
 120

Interval Data:

Ending Station	90 Community Type :	Phleum pratense / Trifolium spp.

Ending Station	90 Community Type: Phleum prat		1	nleum pratense / Trifolium spp.	
Species	Cover class		Species	Cover class	
Achillea millefolium		0	Aster sp.	1	
Bare Ground		2	Bassia scoparia	1	
Bromus inermis		3	Chenopodium sp.	2	
Cirsium arvense		0	Descurainia sophia	1	
Elymus repens		2	Phleum pratense	2	
Populus angustifolia		0	Rumex occidentalis	1	
Taraxacum officinale		1	Thlaspi arvense	0	
Trifolium pratense		3			
Ending Station	237	Community Type:	Juncus arcticus / Carex n	ebrascensis	
Species		Cover class	Species	Cover class	
Carex nebrascensis		3	Juncus arcticus	4	
Rumex occidentalis		0	Salix exigua	1	
Trifolium pratense	3		Typha latifolia 1		
Ending Station	301	a	Dhlaum protonog / Trifaliu		
	301	Community Type:	Phleum pratense / Trifoliu	im spp.	
Species	301	Community Type: Cover class	Species		
	301		-		
Species		Cover class	Species	Cover class	
Species Achillea millefolium		Cover class	Species Bromus inermis	Cover class	
Species Achillea millefolium Elymus trachycaulus	301	Cover class 0	Species Bromus inermis Hordeum jubatum	Cover class 3 1	
Species Achillea millefolium Elymus trachycaulus Pascopyrum smithii		Cover class 0 0	Species Bromus inermis Hordeum jubatum Phleum pratense	Cover class 3 1 5 2	
Species Achillea millefolium Elymus trachycaulus Pascopyrum smithii Trifolium arvense		Cover class 0 0 1	Species Bromus inermis Hordeum jubatum Phleum pratense Trifolium pratense	Cover class 3 1 5 2 ebrascensis	
Species Achillea millefolium Elymus trachycaulus Pascopyrum smithii Trifolium arvense Ending Station		Cover class 0 0 1 Community Type:	Species Bromus inermis Hordeum jubatum Phleum pratense Trifolium pratense Juncus arcticus / Carex n	Cover class 3 1 5 2 ebrascensis	
Species Achillea millefolium Elymus trachycaulus Pascopyrum smithii Trifolium arvense Ending Station Species		Cover class 0 1 Community Type: Cover class	Species Bromus inermis Hordeum jubatum Phleum pratense Trifolium pratense Juncus arcticus / Carex n Species	Cover class 3 1 5 2 ebrascensis Cover class	
Species Achillea millefolium Elymus trachycaulus Pascopyrum smithii Trifolium arvense Ending Station Species Bare Ground		Cover class 0 1 Community Type: Cover class 2	Species Bromus inermis Hordeum jubatum Phleum pratense Trifolium pratense Juncus arcticus / Carex n Species Carex nebrascensis	Cover class 3 1 5 2 ebrascensis Cover class 3	
Species Achillea millefolium Elymus trachycaulus Pascopyrum smithii Trifolium arvense Ending Station Species Bare Ground Juncus arcticus		Cover class 0 1 Community Type: Cover class 2 3	Species Bromus inermis Hordeum jubatum Phleum pratense Trifolium pratense Juncus arcticus / Carex n Species Carex nebrascensis Pascopyrum smithii	Cover class 3 1 5 2 ebrascensis Cover class 3 1	
Species Achillea millefolium Elymus trachycaulus Pascopyrum smithii Trifolium arvense Ending Station Species Bare Ground Juncus arcticus Phalaris arundinacea		Cover class 0 1 Community Type: Cover class 2 3 2	Species Bromus inermis Hordeum jubatum Phleum pratense Trifolium pratense Juncus arcticus / Carex n Species Carex nebrascensis Pascopyrum smithii Phleum pratense	Cover class 3 1 5 2 ebrascensis Cover class 3 1 1	

Ending Station	453 Community Type: Phleum pratense / Trifolium spp.				
Species	Cover class	Species	Cover class		
Achillea millefolium	1	Aster sp.	0		
Bromus inermis	2	Elymus repens	2		
Elymus trachycaulus	2	Hordeum jubatum	0		
Juncus arcticus	1	Medicago sativa	0		
Pascopyrum smithii	2	Phalaris arundinacea	2		
Phleum pratense	2	Rumex occidentalis	0		
Taraxacum officinale	0	Trifolium pratense	1		

Transect Notes:

Transect Number: <u>3</u> Compass Direction from Start: <u>30</u>

Interval Data:

Ending Station	21 Community Type:	Phleum pratense / Trifolium	spp.
Species	Cover class	Species	Cover class
Amaranthus retroflexus	2	Bare Ground	2
Brassica kaber	1	Bromus arvensis	1
Cynoglossum officinale	0	Deschampsia cespitosa	0
Elymus repens	2	Hordeum jubatum	0
Phleum pratense	1	Populus angustifolia	4
Ending Station	164 Community Type:	Juncus arcticus / Carex neb	orascensis
Species	Cover class	Species	Cover class
Bare Ground	2	Beckmannia syzigachne	1
Carex nebrascensis	0	Chenopodium sp.	1
Deschampsia cespitosa	3	Epilobium ciliatum	0
Hordeum jubatum	3	Juncus arcticus	1
Juncus articulatus	0	Juncus bufonius	2
Ranunculus cymbalaria	0	Sonchus arvensis	0
Veronica peregrina	0		

Ending Station 254 Community Type: Open Water /

Species	Cover class	Species	Cover class
Algae, green	1	Beckmannia syzigachne	0
Downingia laeta	0	Eleocharis palustris	0
Open Water	5	Polypogon monspeliensis	0
Typha latifolia	0	Veronica peregrina	0

320 Community Type: Juncus arcticus / Carex nebrascensis Ending Station

Species	Cover class	Species	Cover class
Algae, green	0	Beckmannia syzigachne	1
Centaurea maculosa		Eleocharis palustris	4
Juncus arcticus	1	Open Water	3
Typha latifolia	2		

Transect Notes:

PLANTED WOODY VEGETATION SURVIVAL

Rostad Ranch

Planting Type	#Planted	#Alive Notes
Black cottonwoods	100	95% survival rate approximated during field survey
Quaking aspen	100	95% survival rate approximated during field survey
Willow cuttings	2000	95% survival rate approximated during field survey

Comments

Willow stakes were planted in Spring 2013 with observations of approximately 95% survival. Plants looked healthy with little to no browse and growing vigorously. Approximately 95% survival of planted cottonwoods and quaking aspen.

Rostad Ranch

WILDLIFE

Birds

Were man-made nesting structures installed?	Yes
If yes, type of structure: Blue bird boxes	
How many? 7	
Are the nesting structures being used?	Yes
Do the nesting structures need repairs?	No

Nesting Structure Comments:

All blue bird boxes were in good functioning condition with evidence of use (feathers, dropping etc.) in 4 of the 7 boxes

Species	#Observed	Behavior	Habitat
American Goldfinch	1	F	MF, OW, WM
Canada Goose	82	FO	OW, WM
Grasshopper Sparrow	2	F, FO	WM
Northern Harrier	1	F, FO	UP, WM
Red-tailed Hawk	1	F, FO	WM
Sandhill Crane	4	F, FO	MF, WM
Wilson's Snipe	1	F, L	AB, MA, WM
Bird Comments			

BEHAVIOR CODES

BP = One of a <u>breeding pair</u> **BD** = Breeding display F = Foraging FO = Flyover L = Loafing N = Nesting

HABITAT CODES

AB = Aquatic bed SS = Scrub/Shrub FO = Forested UP = Upland buffer I = Island

WM = Wet meadow MA = Marsh US = Unconsolidated shore MF = Mud Flat OW = Open Water

Mammals and Herptiles

Species	# Observed	Tracks	Scat	Burrows	Comments
Black Bear		No	Yes	No	
Deer Sp.		Yes	Yes	No	
Muskrat		Yes	No	No	
Wildlife Comments:					

PHOTOGRAPHS

Take photographs of the following permanent reference points listed in the check list below. Record the direction of the photograph using a compass. When at the site for the first time, establish a permanent reference point by setting a ½ inch rebar or fencepost extending 2-3 feet above ground. Survey the location with a resource grade GPS and mark the location on the aerial photograph.

Photograph Checklist:

One photograph for each of the four cardinal directions surrounding the wetland.

At least one photograph showing upland use surrounding the wetland. If more than one upland exists then take additional photographs.

- At least one photograph showing the buffer surrounding the wetland.
- One photograph from each end of the vegetation transect, showing the transect.

Photo #	Latitude	Longitude	Bearing	Description
1406	46.462532	-110.294189	45	Ro-1w
14-20	46.458241	-110.29377	290	PP-4, panoramic 190-340 degrees
1-5	46.463894	-110.292686	140	PP-1, panoramic 140-240 degrees
21-26	46.458417	-110.296185	200	PP-5, panoramic 300-110 degrees
27	46.459839	-110.298195	30	PP-6
28	46.45982	-110.298035	100	PP-6
29-34	46.461119	-110.299371	300	PP-7, panoramic 0-300 degrees
35	46.46286	-110.296341	130	T-2, start
36	46.46191	-110.295059	310	T-2, end
37	46.463043	-110.291222	290	T-1, start
38	46.463577	-110.29274	110	T-1, end
39	46.462399	-110.294083	340	Ro-1u
40	46.459026	-110.295227	250	Ro-2w
41	46.458927	-110.295059	260	Ro-2u
43	46.459347	-110.296814	30	T-3, start
46	46.459827	-110.295876	210	T-3, end
47-53	46.460579	-110.294502	270	PP-3, panoramic 160-360 degrees
				3
6-13	46.461612	-110.294534	180	PP-2, panoramic 180-70 degrees
Comm	onto			

Comments:

Rostad Ranch

ADDITIONAL ITEMS CHECKLIST

Hydrology

Map emergent vegetation/open water boundary on aerial photos.

Observe extent of surface water. Look for evidence of past surface water elevations (e.g. drift lines, vegetation staining, erosion, etc).

Photos

- One photo from the wetland toward each of the four cardinal directions
- One photo showing upland use surrounding the wetland.
- One photo showing the buffer around the wetland
- One photo from each end of each vegetation transect, toward the transect

Vegetation

Map vegetation community boundaries

Complete Vegetation Transects

Soils

✓ Assess soils

Wetland Delineations

Delineate wetlands according to applicable USACE protocol (1987 form or Supplement)

Delineate wetland – upland boundary onto aerial photograph.

Wetland Delineation Comments

Functional Assessments

Complete and attach full MDT Montana Wetland Assessment Method field forms.

Functional Assessment Comments:

Maintenance

Were man-made nesting structure installed at this site? Yes

If yes, do they need to be repaired? No

If yes, describe the problems below and indicate if any actions were taken to remedy the problems

Were man-made structures built or installed to impound water or control water flow

into or out of the wetland? Yes

If yes, are the structures in need of repair? No

If yes, describe the problems below.

Water control structure and bird boxes appear to be in good functioning condition

WETLAND DETERMINATION DATA FORM – Great Plains Region

Project/Site: Rostad Ranch	City/County: Meag	her Co.	Sampling Date:	8/21/2013
Applicant/Owner: MDT		State: MT	Sampling Point:	Ro-1u
Investigator(s): E Nyquist	Section, Township,	40	8N 11E	
Landform (hillslope, terrace, etc.): Lowland	Local relief (concav	/e, convex, none): fla	t Sic	ope (%): 3.49
Subregion (LRR): LRR F Lat:	46.4624566666	667 Long: -110	0.294063333333 Datu	um: WGS84
Soil Map Unit Name: Varney-Notter cobbly loam		NWI (classification: Upland	
Are climatic / hydrologic conditions on the site typical for this time o Are Vegetation, Soil, or Hydrology significa Are Vegetation, Soil, or Hydrology naturally	ntly disturbed? A problematic? (li	re "Normal Circumsta f needed, explain any	ances" present? Yes	
SUMMARY OF FINDINGS – Attach site map show	ing sampling poin	t locations, tran	sects, important fe	eatures, etc.
Hydrophytic Vegetation Present? Yes No _ Hydric Soil Present? Yes No _ Wetland Hydrology Present? Yes No _	Is the Samp within a We		nsNo☑	_

Remarks: DP companion to R-1w, gradual wetland boundary transition into upland.

VEGETATION – Use scientific names of plants.

	Absolute		t Indicator	Dominance Test worksheet:
Tree Stratum (Plot size:)	<u>% Cover</u> 0	_Species?	Status	Number of Dominant Species
1	0			That Are OBL, FACW, or FAC (excluding FAC-): 0 (A)
2				
3	0			Total Number of Dominant 3 Species Across All Strata: 3 (B)
4				
Sapling/Shrub Stratum (Plot size:)		= Total Co	over	Percent of Dominant Species 0.00% (A/B)
1	0			That Are OBL, FACW, or FAC: (A/B)
2	0			Prevalence Index worksheet:
3.	0			Total % Cover of: Multiply by:
4	0			OBL species 0 x 1 = 0
5	0			FACW species10 x 2 =20
•	0	= Total Co		FAC species x 3 =
Herb Stratum (Plot size: 5ft)				FACU species 90 x 4 =360
1. Phleum pratense	20		FACU	UPL species x 5 =
2. Pascopyrum smithii	10		FACU	Column Totals 100 (A) 380 (B)
3. Elymus trachycaulus	20		FACU	3.8
4. Juncus arcticus	10		FACW	Prevalence Index = B/A =
5. Trifolium pratense	40		FACU	Hydrophytic Vegetation Indicators:
6	0			□ 1 - Rapid Test for Hydrophytic Vegetation
7	0			2 - Dominance Test is >50%
8	0			
9				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
10	0			Problematic Hydrophytic Vegetation ¹ (Explain)
	100	= Total Co	over	
Woody Vine Stratum (Plot size:)				Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
1	0			
2	0			Hydrophytic
% Bare Ground in Herb Stratum	0	= Total Co	over	Vegetation Present? Yes No
Remarks:				1

SOIL

					x Feature		2		Remarks			
(inches)			Col	or (moist)	%	Туре	_Loc ²			Remarks		
0-12	10YR 4/3	100						Clay Loam				
12-18	10YR 4/2	95	С	М	5YR	4/6	5	Clay Loam				
								·				
								·				
		=Depletion, RM pplicable to all					d Sand G		cation: PL=Po for Problema			
-	-	pplicable to all	LRRS,	_		-				-	5011S :	
Histoso	pipedon (A2)				Gleyed Ma Redox (S5				Muck (A9) (LR Prairie Redox	. ,		
	listic (A3)				d Matrix (S				Surface (S7) (г, С, п)	
	en Sulfide (A4)					neral (F1)			Plains Depress			
	d Layers (A5) (I	LRR F)			Gleyed M				RR H outside	. ,	8.73)	
_	uck (A9) (LRR F	,			d Matrix (_	ed Vertic (F18		,	
Deplete	d Below Dark S	urface (A11)		Redox	Dark Surfa	ace (F6)		🗌 Red F	arent Material	(TF2)		
Thick D	ark Surface (A1	2)		Deplete	ed Dark Si	urface (F7)			Shallow Dark S		2)	
	Mucky Mineral (Depressio	. ,			(Explain in Re			
		Peat (S2) (LRR				essions (F	-		of hydrophytic			
5 cm M	ucky Peat or Pe	at (S3) (LRR F)		(ML	.RA 72 &	73 of LRR	.H)		d hydrology m		ent,	
	/:							unless	s disturbed or p	problematic.		
	i aver (it prese	nt):										
Type: Depth (in								Hydric Soi	Present?	Yes	No 🗹	
Depth (in	iches):	per 12in, hydri		v 12in.				Hydric Soi	l Present?	Yes	No 🗹	
Type: Depth (in	iches):			v 12in.				Hydric Soi	l Present?	Yes	No 🗹	
Type: Depth (in emarks: N	iches): lo redox in upp DGY	per 12in, hydri		v 12in.				Hydric Soi	I Present?	Yes	No 🗹	
Type: Depth (in emarks: N /DROLC	iches): lo redox in up DGY rdrology Indica	per 12in, hydri tors:	c belov									
Type: Depth (in remarks: N /DROLC /etland Hy	Iches): lo redox in upp DGY rdrology Indica cators (minimur	per 12in, hydri	c belov	<u>all that appl</u>	••			Second	ary Indicators	(minimum of		
Type: Depth (in remarks: N /DROLC /etland Hy rimary Indi 	Iches): lo redox in upp DGY rdrology Indica cators (minimur Water (A1)	per 12in, hydri tors:	c belov	<u>x all that appl</u> Salt Crust	(B11)			Second	ary Indicators face Soil Crac	(minimum of ks (B6)	f two require	
Type: Depth (in remarks: N /DROLC /etland Hy rimary Indi Surface High Wa	Iches): lo redox in upp OGY rdrology Indica cators (minimur Water (A1) ater Table (A2)	per 12in, hydri tors:	c belov	<u>x all that appl</u> Salt Crust Aquatic In	(B11) vertebrate			Second	ary Indicators face Soil Crac arsely Vegetate	(minimum of ks (B6) ed Concave	f two require	
Type: Depth (in remarks: N / DROLC / dtland Hy rimary Indi Surface High Wa Saturati	DGY drology Indica cators (minimur Water (A1) ater Table (A2) on (A3)	per 12in, hydri tors:	c belov	<u>all that appl</u> Salt Crust Aquatic In Hydrogen	(B11) vertebrate Sulfide O	dor (C1)		Second	ary Indicators face Soil Crac arsely Vegetate inage Patterns	(minimum of ks (B6) ed Concave s (B10)	f <u>two require</u> Surface (B8	
Type: Depth (in remarks: N //DROLC /etland Hy rimary Indi Surface High Wa Saturati Water N	DGY drology Indica cators (minimur Water (A1) ater Table (A2) on (A3) Marks (B1)	per 12in, hydri tors: n of one require	c belov	<u>all that appl</u> Salt Crust Aquatic In Hydrogen Dry-Seaso	(B11) vertebrate Sulfide O on Water ⁻	dor (C1) Fable (C2)		Second Sur Sur Dra Oxi	ary Indicators face Soil Crac arsely Vegetate inage Patterns dized Rhizosp	(minimum of ks (B6) ed Concave s (B10)	f <u>two require</u> Surface (B8	
Type: Depth (in remarks: N /DROLC /etland Hy rimary Indi Surface High Wa Saturati Saturati Water M Sedime	DGY drology Indica cators (minimur Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2)	per 12in, hydri tors: n of one require	c belov	<u>all that appl</u> Salt Crust Aquatic In Hydrogen Dry-Seasc Oxidized F	(B11) vertebrate Sulfide O on Water ⁻ Rhizosphe	dor (C1) Table (C2) eres on Liv	ing Roots	Second Sur Sur Dra CXi (C3) (V	ary Indicators i face Soil Crac arsely Vegetate inage Patterns dized Rhizosp vhere tilled)	(minimum of ks (B6) ed Concave s (B10) heres on Liv	f <u>two require</u> Surface (B8	
Type: Depth (in temarks: N /DROLC /etland Hy rimary Indi Surface High Wa Saturati Saturati Sedime Drift De	Io redox in up Io redox in up OGY Idrology Indica cators (minimur Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3)	per 12in, hydri tors: n of one require	c belov	<u>x all that appl</u> Salt Crust Aquatic In Hydrogen Dry-Seaso Oxidized F (where	(B11) vertebrate Sulfide O on Water ⁻ Rhizosphe not tilled)	dor (C1) Table (C2) eres on Liv	-	Second Sur Sur Dra Oxi (C3) (v Cra	ary Indicators I face Soil Crac arsely Vegetate inage Patterns dized Rhizosp vhere tilled) yfish Burrows	(minimum of ks (B6) ed Concave s (B10) heres on Liv (C8)	^f <u>two require</u> Surface (B8 ring Roots (C	
Type: Depth (in temarks: N /DROLC /etland Hy rimary Indi Surface High Wa Saturati Water M Sedime Drift De Algal M	Io redox in upp Io redox in upp OGY rdrology Indica cators (minimur Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4)	per 12in, hydri tors: n of one require	c belov	 all that appl Salt Crust Aquatic In Hydrogen Dry-Sease Oxidized F (where Presence 	(B11) vertebrate Sulfide O on Water Rhizosphe not tilled) of Reduce	dor (C1) Table (C2) eres on Liv ed Iron (C4	-	Second Sur Sur Dra Coxi (C3) (v Cra Sat	ary Indicators face Soil Crac arsely Vegetate inage Patterns dized Rhizosp vhere tilled) yfish Burrows uration Visible	(minimum of ks (B6) ed Concave s (B10) heres on Liv (C8) on Aerial In	^f <u>two require</u> Surface (B8 ring Roots (C	
Type: Depth (in remarks: N /DROLC /etland Hy rimary Indi Surface J High Wa Saturati J Saturati Water N Sedime Drift De Algal Ma I Iron Dej	Io redox in up Io redox in up OGY drology Indica cators (minimur Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5)	per 12in, hydri tors: n of one require	d; checl	 all that appl Salt Crust Aquatic In Hydrogen Dry-Sease Oxidized F (where F Presence Thin Muck 	(B11) vertebrate Sulfide O on Water Rhizosphe not tilled) of Reduce	dor (C1) Table (C2) eres on Liv ed Iron (C4 (C7)	-	Second Sur Sur Dra Cra (C3) (v Cra Sat Geo	ary Indicators I face Soil Crac arsely Vegetate inage Patterns dized Rhizosp vhere tilled) yfish Burrows uration Visible pmorphic Posit	(minimum of ks (B6) ed Concave s (B10) heres on Liv (C8) on Aerial In tion (D2)	^f <u>two require</u> Surface (B8 ring Roots (C	
Type: Depth (in temarks: N //DROLC //etland Hy rimary Indi Surface High Wa Saturati Vater N Sedime Drift De Algal Ma Iron Dej Inundat	DGY drology Indica cators (minimur Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) ion Visible on A	per 12in, hydri tors: n of one require) erial Imagery (B	d; checl	 all that appl Salt Crust Aquatic In Hydrogen Dry-Sease Oxidized F (where Presence 	(B11) vertebrate Sulfide O on Water Rhizosphe not tilled) of Reduce	dor (C1) Table (C2) eres on Liv ed Iron (C4 (C7)	-	Second Sur Spa Dra Coxi (C3) (v Cra Sat Sat FAG	ary Indicators face Soil Crac arsely Vegetate inage Patterns dized Rhizosp vhere tilled) yfish Burrows uration Visible comorphic Posit C-Neutral Test	(minimum of ks (B6) ed Concave s (B10) heres on Liv (C8) on Aerial Im tion (D2) (D5)	f <u>two require</u> Surface (B8 ring Roots (C nagery (C9)	
Type: Depth (in Remarks: N YDROLC Vetland Hy Primary Indi Surface High Wa Saturati Vater N Sedime Drift De Algal Ma Iron De Inundat Water-S	DGY drology Indica cators (minimur Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) ion Visible on A Stained Leaves	per 12in, hydri tors: n of one require) erial Imagery (B	d; checl	 all that appl Salt Crust Aquatic In Hydrogen Dry-Sease Oxidized F (where F Presence Thin Muck 	(B11) vertebrate Sulfide O on Water Rhizosphe not tilled) of Reduce	dor (C1) Table (C2) eres on Liv ed Iron (C4 (C7)	-	Second Sur Spa Dra Coxi (C3) (v Cra Sat Sat FAG	ary Indicators I face Soil Crac arsely Vegetate inage Patterns dized Rhizosp vhere tilled) yfish Burrows uration Visible pmorphic Posit	(minimum of ks (B6) ed Concave s (B10) heres on Liv (C8) on Aerial Im tion (D2) (D5)	f <u>two require</u> Surface (B8 ring Roots (C nagery (C9)	
Type: Depth (in Remarks: N YDROLC Vetland Hy Primary Indi Surface High Wa Saturati Vater M Sedime Drift De Algal M Iron De Inundat Water-S iield Obser	Io redox in upp Io redox in upp OGY drology Indica cators (minimur Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) ion Visible on A Stained Leaves (rvations:	per 12in, hydri tors: n of one require) erial Imagery (B (B9)	d; check	 all that appl Salt Crust Aquatic In Hydrogen Dry-Seasc Oxidized F (where Presence Thin Muck Other (Expanded) 	(B11) vertebrate Sulfide O on Water ⁻ Rhizosphe not tilled) of Reduce Surface o plain in Re	dor (C1) Fable (C2) eres on Liv ed Iron (C4 (C7) emarks)	- 	Second Sur Spa Dra Coxi (C3) (v Cra Sat Sat FAG	ary Indicators face Soil Crac arsely Vegetate inage Patterns dized Rhizosp vhere tilled) yfish Burrows uration Visible comorphic Posit C-Neutral Test	(minimum of ks (B6) ed Concave s (B10) heres on Liv (C8) on Aerial Im tion (D2) (D5)	f <u>two require</u> Surface (B8 ring Roots (C nagery (C9)	
Type: Depth (in Remarks: N YDROLC Yetland Hy Primary Indi Surface High Wa Saturati Vater N Saturati Vater N Sedime Algal Ma Iron Dej Inundat Water-S Field Obser	DGY Io redox in upp DGY drology Indica cators (minimur Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) ion Visible on A Stained Leaves of vations: ter Present?	per 12in, hydri tors: n of one require) erial Imagery (B (B9) Yes	c belov d; checl □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	 <u>all that appl</u> Salt Crust Aquatic In Hydrogen Dry-Seaso Oxidized F (where I) Presence Thin Muck Other (Exponent) Depth (in 	(B11) vertebrate Sulfide O on Water ⁻ Rhizosphe not tilled) of Reduce Surface o plain in Re ches):	dor (C1) Table (C2) eres on Liv ed Iron (C4 (C7) emarks)	.)	Second Sur Spa Dra Coxi (C3) (v Cra Sat Sat FAG	ary Indicators face Soil Crac arsely Vegetate inage Patterns dized Rhizosp vhere tilled) yfish Burrows uration Visible comorphic Posit C-Neutral Test	(minimum of ks (B6) ed Concave s (B10) heres on Liv (C8) on Aerial Im tion (D2) (D5)	f <u>two required</u> Surface (B8 <u>)</u> ring Roots (C nagery (C9)	
Type: Depth (in Remarks: N YDROLC Vetland Hy Primary Indi Surface High Wa Saturati Vater M Sedime Drift De Algal M Iron De Inundat Water-S ield Obser	DGY drology Indica cators (minimur Water (A1) ater Table (A2) on (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) ion Visible on A Stained Leaves (rvations: ter Present?	per 12in, hydri tors: n of one require) erial Imagery (B (B9) Yes Yes	c belov	 all that appl Salt Crust Aquatic In Hydrogen Dry-Seasc Oxidized F (where Presence Thin Muck Other (Expanded) 	(B11) vertebrate Sulfide O on Water ⁻ Rhizosphe not tilled) of Reduce Surface o plain in Re ches): ches):	dor (C1) Fable (C2) eres on Liv ed Iron (C4 (C7) emarks)	+) 	Second Sur Spa Dra Coxi (C3) (v Cra Sat Sat FAG	ary Indicators (face Soil Crac arsely Vegetate inage Patterns dized Rhizosp vhere tilled) yfish Burrows uration Visible omorphic Posit C-Neutral Test st-Heave Hum	(minimum of ks (B6) ed Concave s (B10) heres on Liv (C8) on Aerial In tion (D2) (D5) imocks (D7)	f <u>two required</u> Surface (B8) ring Roots (C nagery (C9) (LRR F)	

Remarks: No hydro indicators, seasonal groundwater below 1 foot based on redox in soil profile.

WETLAND DETERMINATION DATA FORM – Great Plains Region

Project/Site: Rostad Ranch	C	City/County	. Meagher	Co.	Sampling Date:	8/21/2013
Applicant/Owner: MDT				State: MT		
nvestigator(s): E. Nyquist	S	Section, To	wnship, Rar			
				convex, none): flat	Slo	pe (%): 3.49
Subregion (LRR): LRR F						
Soil Map Unit Name: Varney-Notter cobbly loam				NWI classific		
are climatic / hydrologic conditions on the site typical for this			_			
Are Vegetation, Soil, or Hydrologysi						1 No
Are Vegetation, Soil, or Hydrology and Are Vegetation, Soil, or Hydrology n				eded, explain any answe		NO
SUMMARY OF FINDINGS – Attach site map	showing	samplin	ig point lo	ocations, transects	, important fe	atures, etc.
	o o		ne Sampled			
	o	with	nin a Wetlan	d? Yes 🖳	No	-
Remarks: DP in undisturbed wetland.						
VEGETATION – Use scientific names of plan	nts.					
	Absolute	Dominar	nt Indicator	Dominance Test wor	ksheet:	
Tree Stratum (Plot size:)		Species	? Status	Number of Dominant S	Species	
1				That Are OBL, FACW, (excluding FAC-):	or FAC	1 _(A)
2	0			(excluding rAC-).		(A)
3	0			Total Number of Domi		2 (B)
4		= Total Co				(D)
Sapling/Shrub Stratum (Plot size:)			over	Percent of Dominant S That Are OBL, FACW,		00% _(A/B)
1	0					(//////
2	0			Prevalence Index wo		
3	0			Total % Cover of:		<u> </u>
4	0			OBL species FACW species	XI	10
5				FAC species		140
Herb Stratum (Plot size: _5ft)	0	= Total Co	over		20 x 4 =	80
1. Elymus repens	20	\checkmark	FACU	UPL species	0 x 5 =	0
2 Juncus arcticus	60	\checkmark	FACW	Column Totals 10		230 (B)
3. Carex nebrascensis	10		OBL		- / .	2.3
4. Poa palustris	10		FACW	Prevalence Index		
5	0			Hydrophytic Vegetati	ion Indicators: Hydrophytic Vege	tation
6				2 - Dominance Te		lation
7				3 - Prevalence Inc		
8	0			4 - Morphological		vide supportina
9	0			data in Remark	ks or on a separate	e sheet)
10				Problematic Hydro	ophytic Vegetation	¹ (Explain)
Woody Vine Stratum (Plot size:)		= Total Co	over	¹ Indicators of hydric so	oil and wetland hyc	irology must
1	0			be present, unless dist		
2.	0			Hydrophytic		
V Bara Crownd in Llash Stratum 0	0	= Total Co	over	Vegetation	esNo	
% Bare Ground in Herb Stratum				riesentr Ye	- 01/1 <u> </u>	

Remarks:

SOIL

	-	Matrix				x Features				
(inches)		r (moist)			lor (moist)	%	Туре	_Loc ²	Texture	Remarks
0-8	10YR	4/2	90	С	М	10YR	4/6	10	Clay	
8-14	10YR	5/1	85	С	Μ	5YR	4/6	15	Clay	
	-									
									·	
			·							
					ced Matrix, CS			d Sand G		cation: PL=Pore Lining, M=Matrix.
-		s: (Applic	able to all	LRRs,	unless other		-		_	for Problematic Hydric Soils ³ :
Histoso						Gleyed Ma				Muck (A9) (LRR I, J)
	pipedon (/	A2)			`	Redox (S5	•			Prairie Redox (A16) (LRR F, G, H)
	istic (A3) en Sulfide	() 4)				d Matrix (S Musky Mis				Surface (S7) (L RR G) Plains Depressions (F16)
		(A4) (A5) (LRR F	-)			Mucky Mir Gleyed Ma				RR H outside of MLRA 72 & 73)
	•	LRR F, G, I	·			d Matrix (F				ced Vertic (F18)
		Dark Surface				Dark Surfa	-		_	arent Material (TF2)
	ark Surfac		. ,		Deplete	d Dark Su	rface (F7)			Shallow Dark Surface (TF12)
🗌 Sandy M	/lucky Mir	neral (S1)			🗌 Redox I	Depression	ns (F8)		Other	(Explain in Remarks)
		at or Peat (, .	. ,		ains Depre				of hydrophytic vegetation and
5 cm Mi	ucky Peat	or Peat (S3	8) (LRR F)		(ML	.RA 72 & 7	'3 of LRR	H)		d hydrology must be present,
									unless	disturbed or problematic.
Restrictive	Layer (if	present):								
⊺уре:										
⊺ype: Depth (in									Hydric Soil	Present? Yes 🗹 No
⊺уре:									Hydric Soil	Present? Yes 🧖 No
Type: Depth (in									Hydric Soil	Present? Yes 🗹 No
Type: Depth (in Remarks:	ches):								Hydric Soil	Present? Yes 🗹 No
Type: Depth (in emarks: /DROLC	ches):								Hydric Soil	Present? Yes <u></u> No
Type: Depth (in remarks: /DROLC	ches): GY drology I	ndicators:								
Type: Depth (in Remarks: YDROLO Vetland Hy Irimary Indi	ches): GY drology I cators (mi	ndicators: nimum of o			k all that appl	у)				Present? Yes <u>No</u> No
Type: Depth (in Remarks: YDROLC Vetland Hy rimary Indi Surface	ches): GY drology I cators (mi Water (A	ndicators: nimum of o 1)			Salt Crust	(B11)			Second	ary Indicators (minimum of two require face Soil Cracks (B6)
Type: Depth (in Remarks: YDROLO Vetland Hy Primary Indi Surface High Wa	ches): GY drology I cators (mi Water (A ater Table	ndicators: nimum of o 1)			Salt Crust	(B11) vertebrate	. ,		Seconda Sur Spa	ary Indicators (minimum of two require face Soil Cracks (B6) irsely Vegetated Concave Surface (B8
Type: Depth (in Remarks: YDROLC Yetland Hy Inimary Indi Surface High Wa Saturati	ches): GY drology I cators (mi Water (A ater Table on (A3)	ndicators: nimum of o 1) (A2)			Salt Crust Aquatic In Hydrogen	(B11) vertebrate Sulfide Oc	dor (C1)		Seconda Sur Sur Spa V Dra	ary Indicators (minimum of two require face Soil Cracks (B6) irsely Vegetated Concave Surface (B8 inage Patterns (B10)
Type: Depth (in Remarks: YDROLO Vetland Hy Inimary Indi Surface High Wa Saturati Water M	ches): GY drology I cators (mi Water (A ter Table on (A3) larks (B1)	ndicators: nimum of o 1) (A2)			Salt Crust Aquatic In Hydrogen Dry-Seasc	(B11) vertebrate Sulfide Oc on Water T	lor (C1) able (C2)		Seconda Sur Sur Spa Dra Oxi	ary Indicators (minimum of two require face Soil Cracks (B6) irsely Vegetated Concave Surface (B8 inage Patterns (B10) dized Rhizospheres on Living Roots (C
Type: Depth (in Remarks: YDROLC Vetland Hy Primary Indi Surface High Wa Saturati Water M Sedime	ches): drology I cators (mi Water (A ater Table on (A3) Iarks (B1) nt Deposi	ndicators: nimum of o 1) (A2) ts (B2)			Salt Crust Aquatic In Hydrogen Dry-Seaso Oxidized F	(B11) vertebrate Sulfide Oc on Water T Rhizosphe	lor (C1) able (C2)	ng Roots	Seconda □_Sur □_Spa ✔_Dra □_Oxi (C3) (v	ary Indicators (minimum of two require face Soil Cracks (B6) arsely Vegetated Concave Surface (B8 inage Patterns (B10) dized Rhizospheres on Living Roots (C vhere tilled)
Type: Depth (in Remarks: YDROLC Vetland Hy Primary Indi Surface High Wa Saturati Vater M Sedime Drift De	GY drology I cators (mi Water (A ater Table on (A3) larks (B1) nt Deposit posits (B3)	ndicators: nimum of o 1) (A2) ts (B2)			Salt Crust Aquatic In Hydrogen Dry-Seaso Oxidized F (where I	(B11) vertebrate Sulfide Oc on Water T Rhizosphe not tilled)	dor (C1) able (C2) res on Livi	-	Seconda Sur Sur Spa ✓ Dra Oxi (C3) (v Cra	ary Indicators (minimum of two require face Soil Cracks (B6) arsely Vegetated Concave Surface (B8 inage Patterns (B10) dized Rhizospheres on Living Roots (C vhere tilled) yfish Burrows (C8)
Type: Depth (in Remarks: YDROLC Vetland Hy Primary Indi Surface High Wa Saturati Water M Sedime Drift De Algal Ma	GY drology I cators (mi Water (A ater Table on (A3) larks (B1) nt Deposit posits (B3 at or Crus	ndicators: nimum of o 1) (A2) ts (B2) ts (B2) t) t (B4)			Salt Crust Aquatic In Hydrogen Dry-Seasc Oxidized F (where i Presence	(B11) vertebrate Sulfide Oc on Water T Rhizosphe not tilled) of Reduce	dor (C1) able (C2) res on Livi d Iron (C4	-	Seconda Sur Spa ✓ Dra (C3) (v Cra Sat	ary Indicators (minimum of two require face Soil Cracks (B6) irsely Vegetated Concave Surface (B8 inage Patterns (B10) dized Rhizospheres on Living Roots (C vhere tilled) yfish Burrows (C8) uration Visible on Aerial Imagery (C9)
Type: Depth (in Remarks: YDROLC Yetland Hy Primary Indi Surface High Wa Saturati Water M Sedime Drift De Algal Ma Iron Deg	GY drology I cators (mi Water (A ater Table on (A3) larks (B1) nt Deposit posits (B3 at or Crus posits (B5	ndicators: nimum of o 1) (A2) ts (B2) t (B4))	ne require	<u>d; chec</u>	Salt Crust Aquatic In Hydrogen Dry-Seasc Oxidized F (where i Presence Thin Muck	(B11) vertebrate Sulfide Oc on Water T Rhizosphe not tilled) of Reduce s Surface (dor (C1) able (C2) res on Livi d Iron (C4 C7)	-	Seconda Sur Spa ✓ Dra (C3) (v Cra Sat Geo	ary Indicators (minimum of two require face Soil Cracks (B6) insely Vegetated Concave Surface (B8 inage Patterns (B10) dized Rhizospheres on Living Roots (C vhere tilled) yfish Burrows (C8) uration Visible on Aerial Imagery (C9) omorphic Position (D2)
Type: Depth (in Remarks: YDROLC Vetland Hy Primary Indi Surface High Wa Saturati Water M Sedime Drift De Algal Ma Iron De Inundati	GY drology I cators (mi Water (A ater Table on (A3) larks (B1) nt Deposits posits (B3 at or Crus posits (B5 on Visible	ndicators: nimum of o 1) (A2) ts (B2) t) t (B4)) e on Aerial II	ne require	<u>d; chec</u>	Salt Crust Aquatic In Hydrogen Dry-Seasc Oxidized F (where i Presence	(B11) vertebrate Sulfide Oc on Water T Rhizosphe not tilled) of Reduce s Surface (dor (C1) able (C2) res on Livi d Iron (C4 C7)	-	Seconda Sur Spa V Dra Oxi (C3) (v Cra Sat Geo FAC	ary Indicators (minimum of two require face Soil Cracks (B6) insely Vegetated Concave Surface (B8 inage Patterns (B10) dized Rhizospheres on Living Roots (C vhere tilled) yfish Burrows (C8) uration Visible on Aerial Imagery (C9) pomorphic Position (D2) C-Neutral Test (D5)
Type: Depth (in Remarks: YDROLO Vetland Hy Primary Indi Surface High Wa Saturati Vater M Sedime Sedime Drift Dej Algal Ma Iron Dej Inundati Water-S	GY drology I cators (mi Water (A ater Table on (A3) larks (B1) nt Deposits posits (B3 at or Crus posits (B5 on Visible stained Le	ndicators: nimum of o 1) (A2) ts (B2) t (B4))	ne require	<u>d; chec</u>	Salt Crust Aquatic In Hydrogen Dry-Seasc Oxidized F (where i Presence Thin Muck	(B11) vertebrate Sulfide Oc on Water T Rhizosphe not tilled) of Reduce s Surface (dor (C1) able (C2) res on Livi d Iron (C4 C7)	-	Seconda Sur Spa V Dra Oxi (C3) (v Cra Sat Geo FAC	ary Indicators (minimum of two require face Soil Cracks (B6) insely Vegetated Concave Surface (B8 inage Patterns (B10) dized Rhizospheres on Living Roots (C vhere tilled) yfish Burrows (C8) uration Visible on Aerial Imagery (C9) omorphic Position (D2)
Type: Depth (in Remarks: YDROLC Vetland Hy Primary Indi Surface High Wa Saturati Water M Sedime Drift De Algal Ma Iron De Inundati Water-S Sield Obser	GY drology I cators (mi Water (A ater Table on (A3) larks (B1) nt Deposit posits (B3) at or Crus posits (B3) at or Crus posits (B5) on Visible catined Le vations:	ndicators: nimum of o 1) (A2) ts (B2) t) t (B4)) e on Aerial I aves (B9)	<u>ne require</u> magery (B	d; chec [[[[[7]]	Salt Crust Aquatic In Hydrogen Dry-Seasc Oxidized F (where i Presence Thin Muck Other (Exp	(B11) vertebrate Sulfide Oc on Water T Rhizosphe not tilled) of Reduce Surface (blain in Re	dor (C1) 'able (C2) res on Livi d Iron (C4 C7) marks))	Seconda Sur Spa V Dra Oxi (C3) (v Cra Sat Geo FAC	ary Indicators (minimum of two require face Soil Cracks (B6) insely Vegetated Concave Surface (B8 inage Patterns (B10) dized Rhizospheres on Living Roots (C vhere tilled) yfish Burrows (C8) uration Visible on Aerial Imagery (C9) pomorphic Position (D2) C-Neutral Test (D5)
Type: Depth (in Remarks: YDROLC Vetland Hy Primary Indi Garage High Wa Surface High Wa Saturati Water M Sedime Algal Ma Iron Dep Inundati Water-S Field Obser Surface Water	GY drology I cators (mi Water (A ater Table on (A3) larks (B1) nt Deposits posits (B3 at or Crus posits (B5 on Visible ctained Le vations: er Presen	ndicators: nimum of o 1) (A2) ts (B2) t) t (B4)) e on Aerial II aves (B9)	ne require magery (B	d; chec [[[[7] No	Salt Crust Aquatic In Hydrogen Dry-Seasc Oxidized F (where r Presence Thin Muck Other (Exp	(B11) vertebrate Sulfide Oc on Water T Rhizosphe: not tilled) of Reduce Surface (blain in Re ches):	dor (C1) rable (C2) res on Livi d Iron (C4 C7) marks))	Seconda Sur Spa V Dra Oxi (C3) (v Cra Sat Geo FAC	ary Indicators (minimum of two require face Soil Cracks (B6) insely Vegetated Concave Surface (B8 inage Patterns (B10) dized Rhizospheres on Living Roots (C vhere tilled) yfish Burrows (C8) uration Visible on Aerial Imagery (C9) pomorphic Position (D2) C-Neutral Test (D5)
Type: Depth (in Remarks: YDROLO Vetland Hy Primary Indi Garage High Wa Saturati Water N Sedime Drift De Drift De Algal Ma Iron Dep Inundati Water-S Field Obser Surface Water	GY drology I cators (mi Water (A ater Table on (A3) larks (B1) nt Deposits posits (B3 at or Crus posits (B5 on Visible stained Le vations: er Present?	ndicators: nimum of o 1) (A2) ts (B2) t) t (B4)) e on Aerial Ii aves (B9) nt? Yi	ne require magery (B es es	d; chec [[[[[[] [] [] [] [] [] []	Salt Crust Aquatic Im Hydrogen Dry-Seaso Oxidized F (where n Presence Thin Muck Other (Exp Ø Depth (in Depth (in	(B11) vertebrate Sulfide Oc on Water T Rhizosphe not tilled) of Reduce Surface (blain in Re ches): ches):	dor (C1) fable (C2) res on Livi d Iron (C4 C7) marks))	Seconda Spa Spa ✓ Dra ○ Oxi (C3) (v ○ Cra ○ Sat ○ Geo ○ FAC ○ Fro	ary Indicators (minimum of two require face Soil Cracks (B6) insely Vegetated Concave Surface (B8 inage Patterns (B10) dized Rhizospheres on Living Roots (C vhere tilled) yfish Burrows (C8) uration Visible on Aerial Imagery (C9) omorphic Position (D2) C-Neutral Test (D5) st-Heave Hummocks (D7) (LRR F)
Type: Depth (in Remarks: YDROLC Vetland Hy Primary Indi Surface High Wa Saturati Water M Sedime Algal Ma Iron Dep Inundati Water-S Sield Obser	ches): drology I cators (mi Water (A ater Table on (A3) larks (B1) nt Deposits (B3 at or Crus posits (B5 on Visible itained Le vations: er Present?	ndicators: nimum of o 1) (A2) ts (B2) t) t (B4)) e on Aerial II aves (B9) nt? Y Y	ne require magery (B	d; chec [[[[[[] [] [] [] [] [] []	Salt Crust Aquatic Im Hydrogen Dry-Seaso Oxidized F (where n Presence Thin Muck Other (Exp Ø Depth (in Depth (in	(B11) vertebrate Sulfide Oc on Water T Rhizosphe: not tilled) of Reduce Surface (blain in Re ches):	dor (C1) rable (C2) res on Livi d Iron (C4 C7) marks))	Seconda Spa Spa ✓ Dra ○ Oxi (C3) (v ○ Cra ○ Sat ○ Geo ○ FAC ○ Fro	ary Indicators (minimum of two require face Soil Cracks (B6) insely Vegetated Concave Surface (B8 inage Patterns (B10) dized Rhizospheres on Living Roots (C vhere tilled) yfish Burrows (C8) uration Visible on Aerial Imagery (C9) pmorphic Position (D2) C-Neutral Test (D5)

Remarks: Hydro from seepage along ditch.

WETLAND DETERMINATION DATA FORM – Great Plains Region

Project/Site: Rostad Ranch	(City/County: Meagher Co.		Sa	mpling Date: _	8/21/2013
Applicant/Owner: MDT			State: MT		mpling Point: _	
Investigator(s): E Nyquist		Section, Township, Range:	40	8N	11E	
Landform (hillslope, terrace, etc.): Lowland		Local relief (concave, conve	ex, none): flat		Slop	be (%): 3.49
Subregion (LRR): LRR F		46.4588916666667 Lor				
Soil Map Unit Name: Delpoint variant-Marmarth-Cabbart lo	bams		NWI c	lassificatio	n: Upland	
Are climatic / hydrologic conditions on the site typical for this tin Are Vegetation, Soil, or Hydrology signi Are Vegetation, Soil, or Hydrology natu	ficantly rally pro	disturbed? Are "Norm oblematic? (If needed	l, explain any	nces" pres answers ir	ent? Yes 🗹 Remarks.)	
SUMMARY OF FINDINGS – Attach site map sho	owing	sampling point local	tions, trans	sects, in	nportant fea	atures, etc.
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No	☑	Is the Sampled Area within a Wetland?		3	No	

Remarks: DP companion to R-2w.

VEGETATION – Use scientific names of plants.

Tree Stratum (Plot size:) % Cover Species? Status Number of Dominant Species 1. 0		Absolute	Dominan	t Indicator	Dominance Test worksheet:
1 0			Species?	Status	
2 0	1				
4. 0 Image: Species Across All Strata: 0 (B) Saping/Shrub Stratum (Plot size:) 0 Image: Total Cover Percent of Dominant Species 0.00% (A/B) 1 0 Image: Total Cover Prevalence Index worksheet: Multiply by: 3 0 Image: Total Cover FACW species 0 X1 = 0 4 0 Image: Total Cover FACW species 0 X1 = 0 5 0 Image: Total Cover FACW species 0 X1 = 0 1 0 Image: Total Cover FACW species 0 X2 = 0 1 FACW species 0 X3 = 0 FACU species 7 X1 = 0 2 Phleum pratense 20 Image: FACU FACU species 7 X5 = 125 (B) 3 Tirfolium pratense 20 Image: FACU FACU Prevalence Index = B/A = 4.25 (B) 4 Achillea millefolium 5 FACU Prevalence Index = S3.0 ¹ 2 D Image: Achillea S3.0 ¹ 2 D Image: Achillea S3.0 ¹ 2 D Image: Achillea S3.0 ¹ </td <td>2</td> <td>0</td> <td></td> <td></td> <td></td>	2	0			
4. 0 Image: Species Across All Strata: 0 (B) Saping/Shrub Stratum (Plot size:) 0 Image: Total Cover Percent of Dominant Species 0.00% (A/B) 1 0 Image: Total Cover Prevalence Index worksheet: Multiply by: 3 0 Image: Total Cover FACW species 0 X1 = 0 4 0 Image: Total Cover FACW species 0 X1 = 0 5 0 Image: Total Cover FACW species 0 X1 = 0 1 0 Image: Total Cover FACW species 0 X2 = 0 1 FACW species 0 X3 = 0 FACU species 7 X1 = 0 2 Phleum pratense 20 Image: FACU FACU species 7 X5 = 125 (B) 3 Tirfolium pratense 20 Image: FACU FACU Prevalence Index = B/A = 4.25 (B) 4 Achillea millefolium 5 FACU Prevalence Index = S3.0 ¹ 2 D Image: Achillea S3.0 ¹ 2 D Image: Achillea S3.0 ¹ 2 D Image: Achillea S3.0 ¹ </td <td>3</td> <td>0</td> <td></td> <td></td> <td></td>	3	0			
Sapling/Shrub Stratum (Plot size:) 0 = Total Cover Percent of Dominant Species That Are OBL, FACW, or FAC:0.00% (A/B) 1 0 0 0 Prevalence Index worksheet: 2 0 0 0 0 0 4 0 0 0 0 0 0 4 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 1 Bromus inermis 25 V UPL Species 0 3 0 0 2 Phleum pratense 20 V FACU Prevalence Index = B/A = 4.25 4.25 4 Achillea millefolium 5 FACU Prevalence Index = B/A = 4.25 4.25 4 Achillea millefolium 5 FACU Prevalence Index is \$3.0' 1 1.25 0 6 Elymus repens 15 FACU Prevalence Index is \$3.0' 4 4.00 2.20 Dominance Test is >50% 3 2.20 Dominance Test is >50% 3		0			Species Across All Strata: (B)
Sapling/Shrub Stratum (Plot size:) 0 </td <td></td> <td>0</td> <td>= Total Co</td> <td>over</td> <td>Percent of Dominant Species</td>		0	= Total Co	over	Percent of Dominant Species
2. 0	Sapling/Shrub Stratum (Plot size:)				
2. 0 0 Total % Cover of: Multiply by: 3. 0 0 Total % Cover of: Multiply by: 4. 0 0 FACW species 0 x 1 = 0 5. 0 0 FACW species 0 x 1 = 0 6. 0 0 FACW species 0 x 2 = 0 7. 20 Image: FACU FACU FACU Species 7. x 4 = 300 9. 20 Image: FACU FACU Prevalence Index worksnet: Multiply by: 0 0 10 (A) 425 (B) 7. 20 Image: FACU FACU Prevalence Index = B/A =	1	0			
3. 0		0			
4. 0		0			
5. 0 \bigcirc FACW species 0 x 2 = 0 Herb Stratum (Plot size: 5ft 0 = Total Cover FAC species 0 x 3 = 0 1 Bromus inermis 25 \checkmark UPL FACU species 75 x 4 = 300 2 Phleum pratense 20 \checkmark FACU FACU species 25 x 5 = 125 3 Trifolium pratense 20 \checkmark FACU Hydrophytic Vegetation Indicators: (A) 4.25 (B) 5 Festuca pratensis 15 FACU Hydrophytic Vegetation Indicators: 1 1 Rapid Test for Hydrophytic Vegetation 6 Elymus repens 15 FACU 1 Rapid Test for Hydrophytic Vegetation 2 Dominance Test is >50% 3 3 Prevalence Index is \$3.0' 4 4 Morphological Adaptations' (Provide supporting data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain) 'Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 9 0 0 0 Hydrophytic Vegetation 'Indicators of hydric soil and we		0			
Herb Stratum (Plot size: $5ft$) 0 = Total CoverFAC species 0 x 3 = 0 1. Bromus inermis 25 VUPL2. Phleum pratense 20 VFACU3. Trifolium pratense 20 VFACU4. Achillea millefolium 5 Festuca pratensis 15 FACU5. Festuca pratensis 15 FACUFACU6. Elymus repens 15 FACU $1 - Rapid Test for Hydrophytic Vegetation9.0 C0 C9.0 C0 C10.0 C0 C10.0 C0 C11.0 C0 C11.0 C0 C12.0 C0 C13.0 C0 C14.0 C0 C15.0 C16.0 C17.0 C18.0 C19.0 C10.0 C11.0 C12.0 C13.0 C14.0 C15.0 C16.0 C17.0 C18.0 C19.0 C10.0 C11.0 C12.0 C13.0 C14.0 C15.0 C16.0 C17.0 C18.0 C19.0 C10.0 C10.0 C10.0 C10.0 C10.<$		0			FACW species0 x 2 =
Herb Stratum (Plot size: 5ft) 25 Image: Constraint of the size: 5ft) 1. Bromus inermis 25 Image: Constraint of the size: 5ft) 2. Phleum pratense 20 Image: Constraint of the size: 5ft) 3. Trifolium pratense 20 Image: Constraint of the size: 5ft) 3. Trifolium pratense 20 Image: Constraint of the size: 5ft 4. Achillea millefolium 5 Image: Constraint of the size: 5ft 5. Festuca pratensis 15 Image: Constraint of the size size size size size size size siz	•	0	= Total Co		FAC species x 3 =
2. Phleum pratense 20 Image: FACU Column Totals 100 (A) 425 (B) 3. Trifolium pratense 20 Image: FACU Column Totals 100 (A) 425 (B) 4. Achillea millefolium 5 FACU FACU Prevalence Index = B/A = 4.25 5. Festuca pratensis 15 FACU Hydrophytic Vegetation Indicators: 1 1 Rapid Test for Hydrophytic Vegetation 6. Elymus repens 15 FACU 1 Rapid Test for Hydrophytic Vegetation 2 Dominance Test is >50% 3 3 Prevalence Index is ≤3.0 ¹ 4 4 Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 9 4 4 Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 9 Problematic Hydrophytic Vegetation ¹ (Explain) 1 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 1 0 0 1 Hydrophytic Vegetation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <	Herb Stratum (Plot size: 5ft)				FACU species 75 x 4 = 300
2 Initial platence 20 Initial platence 100 (A) 1425 (B) 3. Trifolium pratense 20 Initial platence 20 Initial platence 100 (A) 1425 (B) 4. Achillea millefolium 5 FACU FACU Prevalence Index = B/A =	1. Bromus inermis	25	\checkmark	UPL	UPL species25 x 5 = 125
3. Interfactories 3. Achillea millefolium 5. Festuca pratensis 5. Festuca pratensis 6. Elymus repens 7. 0 7. 0 8. 0 9. 10. Woody Vine Stratum (Plot size: 1. 0 1. 0 0 0 0 0 0 0 1. 0 0 0 1. 0 0 0 0 0 1. 0 0 0 1. 0 1. 0 0 1. 0 0 1. 0 1. 0 0 1. 0 1. 0 1. 0 0 0 0 0 0 0 0 0 0 1. 0 1. 0 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. <	2. Phleum pratense	20	\checkmark	FACU	Column Totals 100 (A) 425 (B)
4. Achillea millefolium 5 FACU Prevalence Index = B/A = 5. Festuca pratensis 15 FACU Hydrophytic Vegetation Indicators: 6. Elymus repens 15 FACU - 7. 0 - 1 - Rapid Test for Hydrophytic Vegetation 8. 0 - 3 - Prevalence Index is ≤3.0° 9. 0 - - 10. 0 - - 10. 0 - - 10. 0 - - 10. 0 - - 11. 0 - - 12. 0 - - 0 - - - 11. 0 - - 11. 0 - - 11. 0 - - 11. 0 - - 11. 0 - - 12. 0 - - 0 - - - 11. - -	3. Trifolium pratense	20	\checkmark	FACU	4.25
5. restura praterists 13 $rACO$ 1 - Rapid Test for Hydrophytic Vegetation 6. Elymus repens 15 $rACO$ 2 - Dominance Test is >50% 7. 0 3 - Prevalence Index is $\leq 3.0^{\circ}$ 8. 0 4 - Morphological Adaptations' (Provide supporting data in Remarks or on a separate sheet) 10. 0 0 10. 100 = Total Cover 11. 0 0 2. 0 0 0 0 0 1. 0 0 2. 0 0 0 0 0 1. 0 0 2. 0 0 0 0 0 1. 0 0 2. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	4. Achillea millefolium	5		FACU	Prevalence Index = B/A =
6. Elymos repens 13 \square PACO 2 - Dominance Test is >50% 7. 0 \square 3 - Prevalence Index is ≤3.0 ¹ 8. 0 \square 4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 10. \square \square \square Problematic Hydrophytic Vegetation ¹ (Explain) 10. \square \square \square Problematic Hydrophytic Vegetation ¹ (Explain) 1. \square \square \square 2. \square	5. Festuca pratensis	15		FACU	
7. 0 1 2 - Dominance Test is >50% 8. 0 1 3 - Prevalence Index is $\leq 3.0^{\circ}$ 9. 0 1 4 - Morphological Adaptations' (Provide supporting data in Remarks or on a separate sheet) 10. 0 100 = Total Cover 1. 0 1 100 2. 0 0 1 0 0 0 1 1. 0 0 1 2. 0 0 1 0 0 0 1 1. 0 0 1 2. 0 0 1 0 0 0 1 1. 0 0 1 2. 0 0 1 0 0 0 1 0 0 1 1 1. 0 1 1 1. 0 1 1 1. 0 1 1 1. 0 1 1 1. <td>6 Elymus repens</td> <td>15</td> <td></td> <td>FACU</td> <td></td>	6 Elymus repens	15		FACU	
8. 0 0 3 - Prevalence index is \$3.0° 9. 0 0 0 4 - Morphological Adaptations' (Provide supporting data in Remarks or on a separate sheet) 10. 100 = Total Cover Problematic Hydrophytic Vegetation ¹ (Explain) 1. 0 0 1 2. 0 0 1 0 0 0 1 1. 0 0 1 2. 0 0 0 0 0 0 1 0 0 0 1 1. 0 0 1 2. 0 0 1 0 0 0 1 1. 0 0 1 1. 0 0 1 1. 0 0 1 1. 0 0 1 1. 0 0 1 1. 0 0 1 1. 0 0 1 1. 0 1 1 <		0			
9. 0		0			
10. 0		0			4 - Morphological Adaptations ¹ (Provide supporting
$\frac{100}{1.} = \text{Total Cover}$ $\frac{100}{0} = \text{Total Cover}$ $\frac{100}{1.} = \text{Total Cover}$		0			
Woody Vine Stratum (Plot size:) 0 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 1. 0 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 2. 0 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 0 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 0 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 0 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 0 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 0 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 0 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 0 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 0 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 0 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 0 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.	10	100	– Total Co		Problematic Hydrophytic Vegetation (Explain)
1. 0 Image: begin	Woody Vine Stratum (Plot size:)			Jvei	Indicators of hydric soil and wetland hydrology must
2 0 \Box Hydrophytic Vegetation Vegetation		0			be present, unless disturbed or problematic.
$\frac{0}{1} = \text{Total Cover}$		0			Hydrophytic
		0	= Total Co	over	Vegetation
	% Bare Ground in Herb Stratum0				Present? Yes No

SOIL

			the depth	needed to docu			or confir	m the absence	e of indicators.)	
Depth (inches)	Color (m	Matrix	%	Redo Color (moist)	ox Feature %		_Loc ²	Texture	Remarks	
0-16		/3	100		/0	ype		Sandy Loam		•
			·							
	10YR 4	/2	100					Sandy Loam		
	-									
¹ Type: C=C	oncentration	D=Deple	tion RM=R	educed Matrix, C	S=Covere	d or Coate	d Sand (Srains ² Lo	cation: PL=Pore Lining,	M=Matrix
				Rs, unless othe					s for Problematic Hydri	
Histoso					Gleyed Ma	-			Muck (A9) (LRR I, J)	
	pipedon (A2)				Redox (S5				Prairie Redox (A16) (LF	R F. G. H)
	istic (A3)				d Matrix (S				Surface (S7) (LRR G)	
	en Sulfide (A4	4)		Loamy	Mucky Mi	neral (F1)			Plains Depressions (F16))
📃 Stratifie	d Layers (A5)	(LRR F)		📃 Loamy	Gleyed M	atrix (F2)		(LI	RR H outside of MLRA	72 & 73)
	uck (A9) (LRF			_	ed Matrix (-			ced Vertic (F18)	
	d Below Dark		(A11)		Dark Surfa				Parent Material (TF2)	
	ark Surface (/					urface (F7))		Shallow Dark Surface (TI	=12)
	Mucky Minera	. ,			Depressio	. ,	40		(Explain in Remarks)	
	Mucky Peat o	-			-	essions (F	-		s of hydrophytic vegetatic	
	ucky Peat or I	real (55)	(LKK F)		.KA / Z &	73 of LRR	(H)		id hydrology must be pre s disturbed or problemati	
Restrictive	Layer (if pre	sent):							a disturbed of problemati	.
Type:										
Depth (in				_				Hydric Soi	I Present? Yes	No
	lo hydric soi	il indicat	ore observ	 ed				-		
	io nyane soi	in intercett		cu.						
HYDROLC	GY									
	drology Indi	cators:								
			e required: r	check all that app				Second	ary Indicators (minimum	of two required)
	Water (A1)		<u>e required, e</u>	_					face Soil Cracks (B6)	or two required)
_		ור		Salt Crust	• /	(P12)				
	ater Table (A2	<u><</u>)		Aquatic In					arsely Vegetated Concav ainage Patterns (B10)	e Sunace (Do)
Saturati	larks (B1)			Hydrogen					idized Rhizospheres on L	iving Poots (C2)
	nt Deposits (E	221		Oxidized						Iving Roots (CS)
_	posits (B3)	52)			not tilled)		ing Roots		where tilled) ayfish Burrows (C8)	
	at or Crust (B	4)		Presence			1)		uration Visible on Aerial	
_	oosits (B5)	-)		Thin Muck		-	•/		omorphic Position (D2)	magery (00)
	ion Visible on	Aerial Im	agen((B7)	Other (Ex					C-Neutral Test (D5)	
	Stained Leave		agery (D7)		piani in ite	anarka)		_	ist-Heave Hummocks (D	
Field Obser		.5 (155)								
		Vo	n No	Depth (in	choc):					
Surface Wat										
Water Table				Depth (in					D (0)	
Saturation P (includes ca	resent? pillary fringe)	Ye	s No	Depth (in	cnes):		_ We	tiand Hydrolog	gy Present? Yes	No
		(stream g	auge, monit	toring well, aerial	photos, pr	revious ins	pections)), if available:		
		-	_		•		,			

Remarks: No hydrology indicators observed.

WETLAND DETERMINATION DATA FORM – Great Plains Region

Project/Site: Rostad Ranch	City/County: Meagher Co. Sampling Date:	8/21/2013
Applicant/Owner: MDT	State: MT Sampling Point: _	
Investigator(s): E Nyquist	_ Section, Township, Range:13 8N 11E	
Landform (hillslope, terrace, etc.): Lowland	_ Local relief (concave, convex, none): flat Slope	e (%): <u>3.49</u>
Subregion (LRR): LRR F Lat:	46.45912166666667 Long:110.2953683333333 Datum	u: WGS84
Soil Map Unit Name: Delpoint variant-Marmarth-Cabbart loams	NWI classification: Upland	
Are climatic / hydrologic conditions on the site typical for this time of y Are Vegetation, Soil, or Hydrology significantly Are Vegetation, Soil, or Hydrology naturally pi SUMMARY OF FINDINGS – Attach site map showing	y disturbed? Are "Normal Circumstances" present? Yes 🗹	
Hydrophytic Vegetation Present? Yes Image: Constraint of the sent	→ Is the Sampled Area → within a Wetland? Yes <u>√</u> No	

VEGETATION – Use scientific names of plants.

	Absolute	Dominar	nt Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size:)			<u>? Status</u>	Number of Dominant Species
1	0			That Are OBL_EACW or EAC
2.	0			(excluding FAC-):6 (A)
3.				Total Number of Dominant →
4	0			Species Across All Strata: (B)
	0	= Total Co	over	Derest of Deminent Species
Sapling/Shrub Stratum (Plot size:)				Percent of Dominant Species 85.71% (A/B)
1	0			
2	0			Prevalence Index worksheet:
3	0			Total % Cover of:Multiply by:
4	~			OBL species x 1 =
5	0			FACW species25 x 2 =50
•	0	= Total Co		FAC species x 3 =
Herb Stratum (Plot size: 5ft)				FACU species x 4 =60
1. Phleum pratense	15	\checkmark	FACU	UPL species $0 \times 5 = 0$
2. Carex nebrascensis	15	\checkmark	OBL	Column Totals 70 (A) 140 (B)
3. Juncus bufonius	10	\checkmark	OBL	2
4. Beckmannia syzigachne	5	\checkmark	OBL	Prevalence Index = B/A =
5. Juncus arcticus	15	\checkmark	FACW	Hydrophytic Vegetation Indicators:
6 Poa palustris	5	\checkmark	FACW	☐ 1 - Rapid Test for Hydrophytic Vegetation
7 Deschampsia caespitosa	5	\checkmark	FACW	
8	0			3 - Prevalence Index is ≤3.0 ¹
9			·	4 - Morphological Adaptations ¹ (Provide supporting
10.	0			data in Remarks or on a separate sheet)
10	70	= Total Co		Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size:)			JVC1	¹ Indicators of hydric soil and wetland hydrology must
1	0			be present, unless disturbed or problematic.
2	0			Hydrophytic
		= Total Co	over	Vegetation
% Bare Ground in Herb Stratum				Present? Yes <u>Ves</u> No
Remarks:				

SOIL

		Matrix			Rede	ox Features	5			
(inches)	Color	r (moist)	%	Col	lor (moist)	%	_Type ¹	_Loc ²		Remarks
0-6	10YR	4/3	100						Sandy Clay Loa	
6-18	10YR	5/1	90	С	М	7.5YR	4/6	10	Sandy Clay Loa	
	_									
Type: C=C	- Concentrat	ion, D=Dep	letion, RM	=Reduc	ced Matrix, C	 S=Covered	or Coate	d Sand G	- Grains. ² Lo	ocation: PL=Pore Lining, M=Matrix.
					unless othe					s for Problematic Hydric Soils ³ :
Histoso	ol (A1)				Sandy	Gleyed Ma	trix (S4)		<u> </u>	Muck (A9) (LRR I, J)
	Epipedon (A	A2)			Sandy	Redox (S5))			t Prairie Redox (A16) (LRR F, G, H)
	Histic (A3)					d Matrix (S	,		_	Surface (S7) (LRR G)
_	en Sulfide	. ,			_ `	Mucky Min	. ,			Plains Depressions (F16)
	•	(A5) (LRR F	,			Gleyed Ma			<u> </u>	RR H outside of MLRA 72 & 73)
		LRR F, G, I	-			ed Matrix (F	-		_	ced Vertic (F18)
		Dark Surfac	e (A11)		_	Dark Surfa ed Dark Sur				Parent Material (TF2) Shellow Dark Surface (TF12)
	Dark Surfac Mucky Mir					Depression		ł		Shallow Dark Surface (TF12) · (Explain in Remarks)
		at or Peat (S2) (I RR)	G H)		ains Depre	. ,	16)		s of hydrophytic vegetation and
		or Peat (S	, ,	. ,		RA 72 & 7				nd hydrology must be present,
			., (=,		(,		s disturbed or problematic.
									unica	s distuibed of problematic.
	Layer (if	present):							umea	s disturbed of problematic.
									unies	
Restrictive Type:										
Restrictive Type: Depth (ir										
Restrictive Type: Depth (ir										
Restrictive Type: Depth (ir										
Restrictive Type: Depth (ir Remarks:	nches):									
Restrictive Type: Depth (ir Remarks: YDROLC	nches):									
Restrictive Type: Depth (ir Remarks: YDROLO	nches): DGY ydrology I	ndicators:			k all that app				Hydric So	il Present? Yes <u>√</u> No
Restrictive Type: Depth (in Remarks: YDROLC Wetland Hy Primary Ind	nches): DGY ydrology I licators (mi	ndicators: nimum of o			k all that app	•••			Hydric So Second	il Present? Yes No lary Indicators (minimum of two required)
Restrictive Type: Depth (in Remarks: YDROLC Wetland Hy Primary Ind Surface	nches): DGY ydrology I licators (mi e Water (A	ndicators: nimum of o 1)			Salt Crus	: (B11)	s (B13)		Hydric So Second	il Present? Yes No lary Indicators (minimum of two required)
Restrictive Type: Depth (in Remarks: YDROLC Wetland Hy Primary Ind Surface High W	nches):	ndicators: nimum of o 1)			Salt Crus	(B11) vertebrates	. ,		Hydric So Second V_ Su Su Sp	il Present? Yes No lary Indicators (minimum of two required) rface Soil Cracks (B6) arsely Vegetated Concave Surface (B8)
Restrictive Type: Depth (ir Remarks: YDROLC Wetland Hy Primary Ind Surface High W Saturat	nches): DGY ydrology I licators (mi e Water (A /ater Table tion (A3)	ndicators: nimum of o 1) (A2)			Salt Crus	: (B11) ivertebrates Sulfide Od	lor (C1)		Hydric So Second L Su Su Dra	Il Present? Yes No Hary Indicators (minimum of two required) rface Soil Cracks (B6) arsely Vegetated Concave Surface (B8) ainage Patterns (B10)
Restrictive Type: Depth (ir Remarks: YDROLC Wetland Hy Primary Ind Surface High W Saturat Water 1	nches): DGY ydrology I licators (mi e Water (A /ater Table tion (A3) Marks (B1)	ndicators: nimum of o 1) (A2)			_ Salt Crus _ Aquatic Ir _ Hydrogen _ Dry-Seas	(B11) wertebrates Sulfide Od on Water T	lor (C1) able (C2)		Hydric So Second Second Su Sp Dra Ox	Il Present? Yes No Hary Indicators (minimum of two required) rface Soil Cracks (B6) arsely Vegetated Concave Surface (B8) ainage Patterns (B10) idized Rhizospheres on Living Roots (C3
Restrictive Type: Depth (ir Remarks: YDROLC Wetland Hy Primary IndSurfaceHigh WSaturatWater fSedime	DGY ydrology I licators (mi e Water (A /ater Table tion (A3) Marks (B1) ent Deposi	ndicators: nimum of o 1) (A2) ts (B2)			Salt Crus Aquatic Ir Hydrogen Dry-Seas Oxidized	: (B11) ivertebrates Sulfide Od on Water T Rhizospher	lor (C1) able (C2)		Hydric So Second ✓_ Su □ Dra □ Ox 5 (C3) _ (il Present? Yes No lary Indicators (minimum of two required) rface Soil Cracks (B6) arsely Vegetated Concave Surface (B8) ainage Patterns (B10) idized Rhizospheres on Living Roots (C3 where tilled)
Restrictive Type: Depth (in Remarks: YDROLC Wetland Hy Primary IndSurfaceHigh WSaturatWater ISedimeDrift De	nches): DGY ydrology I licators (mi e Water (A /ater Table tion (A3) Marks (B1) ent Deposit eposits (B3	ndicators: nimum of o 1) (A2) ts (B2)			Salt Crus Aquatic Ir Hydrogen Dry-Seas Oxidized (where	(B11) vertebrates Sulfide Od on Water T Rhizospher not tilled)	lor (C1) able (C2) res on Liv	ing Roots	Hydric So Second Second Su Sp Dra (C3) ((Cra Cra	il Present? Yes No lary Indicators (minimum of two required) rface Soil Cracks (B6) arsely Vegetated Concave Surface (B8) ainage Patterns (B10) idized Rhizospheres on Living Roots (C3 where tilled) ayfish Burrows (C8)
Restrictive Type: Depth (in Remarks: YDROLC Wetland Hy Primary Ind Surface High W Saturat Water I Sedime Drift De Algal M	DGY ydrology I licators (mi e Water (A /ater Table tion (A3) Marks (B1) ent Deposit eposits (B3 fat or Crus	ndicators: nimum of o 1) (A2) ts (B2) i) t (B4)			Salt Crus Aquatic Ir Hydrogen Dry-Seas Oxidized (where Presence	(B11) vertebrates Sulfide Od on Water T Rhizospher not tilled) of Reduce	lor (C1) able (C2) res on Liv d Iron (C4	ing Roots	Hydric So Second ✓_ Su □ Sp □ Dra 5 (C3) ((□ Cra □ Sa	il Present? Yes No dary Indicators (minimum of two required) rface Soil Cracks (B6) arsely Vegetated Concave Surface (B8) ainage Patterns (B10) idized Rhizospheres on Living Roots (C3 where tilled) ayfish Burrows (C8) turation Visible on Aerial Imagery (C9)
Restrictive Type: Depth (ir Remarks: YDROLO Wetland Hy Primary Ind Surface High W Saturat Water I Sedime Drift De Algal M V Iron De	DGY ydrology I licators (mi e Water (A /ater Table tion (A3) Marks (B1) ent Deposit eposits (B3 fat or Crus eposits (B5	ndicators: nimum of o 1) (A2) ts (B2) t) t (B4))	ne require	<u>d; chec</u>	Salt Crus Aquatic Ir Hydrogen Dry-Seas Oxidized (where Presence Thin Muc	(B11) vertebrates Sulfide Od on Water T Rhizospher not tilled) of Reduces Surface ((lor (C1) able (C2) res on Liv d Iron (C4 C7)	ing Roots	Hydric So Second ✓ Su □ Su □ Dra □ Cra 5 (C3) ((□ Cra □ Sa □ Ge	Il Present? Yes No dary Indicators (minimum of two required) rface Soil Cracks (B6) arsely Vegetated Concave Surface (B8) ainage Patterns (B10) idized Rhizospheres on Living Roots (C3 where tilled) ayfish Burrows (C8) turation Visible on Aerial Imagery (C9) omorphic Position (D2)
Restrictive Type: Depth (ir Remarks: YDROLC Vetland Hy Crimary Ind Surface High W Saturat Water I Sedime Algal M I non De I Inundal	DGY ydrology I licators (mi e Water (A /ater Table tion (A3) Marks (B1) ent Deposit eposits (B3 fat or Crus eposits (B5	ndicators: nimum of o 1) (A2) ts (B2) t (B4)) con Aerial I	ne require	<u>d; chec</u>	Salt Crus Aquatic Ir Hydrogen Dry-Seas Oxidized (where Presence Thin Muc	(B11) vertebrates Sulfide Od on Water T Rhizospher not tilled) of Reduce	lor (C1) able (C2) res on Liv d Iron (C4 C7)	ing Roots	Hydric So Second ✓ Su □ Dra □ Dra □ Ox c(C3) ((□ Cra □ Sa □ Ge ✓ FA	il Present? Yes No dary Indicators (minimum of two required) rface Soil Cracks (B6) arsely Vegetated Concave Surface (B8) ainage Patterns (B10) idized Rhizospheres on Living Roots (C3 where tilled) ayfish Burrows (C8) turation Visible on Aerial Imagery (C9)
Restrictive Type: Depth (ir Remarks: YDROLC Wetland Hy Crimary Ind Surface High W Saturat Water I Sedime Algal M I non De I Inundal	DGY ydrology I licators (mi e Water (A /ater Table tion (A3) Marks (B1) ent Deposits (B3 Marks (B5 tion Visible Stained Le	ndicators: nimum of o 1) (A2) ts (B2) t (B4)) con Aerial I	ne require	<u>d; chec</u>	Salt Crus Aquatic Ir Hydrogen Dry-Seas Oxidized (where Presence Thin Muc	(B11) vertebrates Sulfide Od on Water T Rhizospher not tilled) of Reduces Surface ((lor (C1) able (C2) res on Liv d Iron (C4 C7)	ing Roots	Hydric So Second ✓ Su □ Dra □ Dra □ Ox c(C3) ((□ Cra □ Sa □ Ge ✓ FA	Il Present? Yes No Hary Indicators (minimum of two required) rface Soil Cracks (B6) arsely Vegetated Concave Surface (B8) ainage Patterns (B10) idized Rhizospheres on Living Roots (C3 where tilled) ayfish Burrows (C8) turation Visible on Aerial Imagery (C9) omorphic Position (D2) C-Neutral Test (D5)
Restrictive Type: Depth (in Remarks: YDROLC Wetland Hy Primary Ind Surface High W Saturat Water I Sedime Drift De Algal M I Iron De Inundal Water-S Field Obse	DGY ydrology I licators (mi e Water (A /ater Table tion (A3) Marks (B1) ent Deposits (B3 Marks (B3 Marks (B3 Marks (B5 tion Visible Stained Le rvations:	ndicators: nimum of o 1) (A2) its (B2) i) t (B4)) e on Aerial I aves (B9)	ne require magery (B	d; chec	Salt Crus Aquatic Ir Hydrogen Dry-Seas Oxidized (where Presence Thin Muc	(B11) vertebrates Sulfide Od on Water T. Rhizospher not tilled) of Reduces Surface (C plain in Re	lor (C1) able (C2) res on Liv d Iron (C4 C7) marks)	ing Roots	Hydric So Second ✓ Su □ Dra □ Dra □ Ox c(C3) ((□ Cra □ Sa □ Ge ✓ FA	Il Present? Yes No Hary Indicators (minimum of two required) rface Soil Cracks (B6) arsely Vegetated Concave Surface (B8) ainage Patterns (B10) idized Rhizospheres on Living Roots (C3 where tilled) ayfish Burrows (C8) turation Visible on Aerial Imagery (C9) omorphic Position (D2) C-Neutral Test (D5)
Restrictive Type: Depth (ir Remarks: YDROLC Wetland Hy Primary Ind Surface High W Saturat Water I Sedime Drift De Algal M I Nuter-S	DGY ydrology I licators (mi e Water (A /ater Table tion (A3) Marks (B1) ent Deposits eposits (B3 Marks (B5 tion Visible Stained Le rvations: ater Presen	ndicators: nimum of o 1) (A2) ts (B2) t) t (B4)) t (B4)) e on Aerial I aves (B9) nt? Y	ne require magery (B	d; chec	Salt Crus Aquatic Ir Hydrogen Dry-Seas Oxidized (where Presence Thin Mucl Other (Ex	(B11) vertebrates Sulfide Od on Water T Rhizospher not tilled) of Reduce Surface (C plain in Rei	lor (C1) able (C2) res on Liv d Iron (C4 C7) marks)	ing Roots	Hydric So Second ✓ Su □ Dra □ Dra □ Ox c(C3) ((□ Cra □ Sa □ Ge ✓ FA	Il Present? Yes No Hary Indicators (minimum of two required) rface Soil Cracks (B6) arsely Vegetated Concave Surface (B8) ainage Patterns (B10) idized Rhizospheres on Living Roots (C3 where tilled) ayfish Burrows (C8) turation Visible on Aerial Imagery (C9) omorphic Position (D2) C-Neutral Test (D5)
Restrictive Type: Depth (in Remarks: YDROLO Vetland Hy Primary Ind Surface High W Saturat Water I Sedime Algal M Iron De Inundal Water-5 Field Obse Surface Wa	DGY ydrology I licators (mi e Water (A /ater Table tion (A3) Marks (B1) ent Deposits eposits (B3 fat or Crus eposits (B5 tion Visible Stained Le rvations: e Present?	ndicators: nimum of o 1) (A2) ts (B2) t (B4)) e on Aerial I aves (B9) nt? Y	ne require magery (B es es	d; chec	Salt Crus Aquatic Ir Hydrogen Dry-Seas Oxidized (where Presence Thin Mucl Other (Ex	(B11) vertebrates Sulfide Od on Water T. Rhizospher not tilled) of Reduces Courface (C plain in Res uches): iches):	lor (C1) able (C2) res on Liv d Iron (C4 C7) marks)	ing Roots 	Hydric So Second Second Su Su Su Su Su Su Su Su Su Su Su Su Su	Il Present? Yes No Hary Indicators (minimum of two required) rface Soil Cracks (B6) arsely Vegetated Concave Surface (B8) ainage Patterns (B10) idized Rhizospheres on Living Roots (C3 where tilled) ayfish Burrows (C8) turation Visible on Aerial Imagery (C9) omorphic Position (D2) C-Neutral Test (D5)

Remarks:

MDT Montana Wetland Assessment Form (revised March 2008)

1. Project name	ject name Rostad Ranch					2. MDT p	oroject#	ST	STPX-0002(749)			Con	Control# 5565	
3. Evaluation D	valuation Date 9/21/2013 4. Evaluators E. N					/quist 5. V			Wetland/Site# (s) Rosta			d Ranch - all wetlands		
6. Wetland Loca	Wetland Location(s): T 8N R 11E				11E	Sec1	12	Т	8N	R	11E	Sec2	13	
Approx Stationi	ng or Mi	leposts												
Watershed	1004020	1		w	atersł	ned/Count	y Upper	Muse	selshell Ri	ver W	atershed,	Meaghe	Count	y
7. Evaluating Ag	gency	Conflu	uence for M	IDT					8. Wetl	and s	size acres			13.74
Purpose of Eva	aluation								How as	sess	ed:	Measure	ed e.g.	by GPS
Wetlands p				oject					9. Asse (AA) siz		nent area res)			13.74
Mitigation V		•							How as	sess	ed:	Measure	d e.g.	by GPS
Mitigation V	Vetlands	: post cor	struction											
Other														

10. Classification of Wetland and Aquatic Habitats in AA

Class (Cowardin)	Modifier (Cowardin)	Water Regime	% of AA
Emergent Wetland	Excavated	Seasonal/Intermittent	60
Scrub-Shrub Wetland		Seasonal/Intermittent	5
Unconsolidated Bottom	Excavated	Permanent/Perennial	35
	Emergent Wetland Scrub-Shrub Wetland	Emergent Wetland Excavated Scrub-Shrub Wetland	Emergent Wetland Excavated Seasonal/Intermittent Scrub-Shrub Wetland Seasonal/Intermittent

11. Estimated Relative Abundance

12. General Condition of AA

i. Disturbance: (use matrix below to determine [circle] appropriate response – see instructions for Montana-listed noxious weed and aquatic nuisance vegetation species (ANVS) lists)

Common

	Predo	minant conditions adjacent to (within 500	feet of) AA
Conditions within AA	Managed in predominantly natural state; is not grazed, hayed, logged, or otherwise converted; does not contain roads or buildings; and noxious weed or ANVS cover is <=15%.	Land not cultivated, but may be moderately grazed or hayed or selectively logged; or has been subject to minor clearing; contains few roads or buildings; noxious weed or ANVS cover is <=30%.	Land cultivated or heavily grazed or logged; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density; or noxious weed or ANVS cover is >=30%.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, logged, or otherwise converted; does not contain roads or occupied buildings; and noxious weed or ANVS cover is <=15%.	low disturbance	low disturbance	moderate disturbance
AA not cultivated, but may be moderately grazed or hayed or selectively logged; or has been subject to relatively minor clearing, fill placement, or hydrological alteration; contains few roads or buildings; noxious weed or ANVS cover is <=30%.	moderate disturbance	moderate disturbance	high disturbance
AA cultivated or heavily grazed or logged; subject to relatively substantial fill placement, grading, clearing, or hydrological alteration; high road or building density; or noxious weed or ANVS cover is >=30%.	high disturbance	high disturbance	high disturbance

Comments: (types of disturbance, intensity, season, etc)

The wetland mitigation site was constructed in Fall 2012/Spring 2013. Extensive excavation occurred to create depressional areas and spread out water moving across site. Site was revegetated in Fall 2012/Spring 2013 with good growth observed during the first growing season (2013) following construction activities.

ii. Prominent noxious, aquatic nuisance, other exotic species:

Spotted knapweed, Canada thistle, houndstongue, field bindweed

iii. Provide brief descriptive summary of AA and surrounding land use/habitat

The AA is a historically drained wetland area/meadow that was heavily grazed by cattle. A drainage ditch bisected the property prior to wetland mitigation construction. Existing wetlands were expanded through construction activities with emergent and scrub-shrub wetland communities present. Surrounding land use includes transportation (county road, historic railroad berm), agriculture (hay production and cattle grazing), and the South Fork of the Musselshell River located to the north of the mitigation site.

13. Structural Diversity: (based on number of "Cowardin" vegetated classes present [do not include unvegetated classes], see #10 above)

Existing # of "Cowardin" Vegetated Classes in AA	Initial Rating	Is current management existence of additional		Modified R ating
>=3 (or 2 if 1 is forested) classes	Н	NA	NA	NA
2 (or 1 if forested) classes	м	NA	NA	NA
1 class, but not a monoculture	М	<no< td=""><td>YES></td><td>L</td></no<>	YES>	L
1 class, monoculture (1 species comprises>=90% of total cover)	L	NA	NA	NA

Comments: Emergent and scrub-shrub vegetative communities on site.

SECTION PERTAINING to FUNCTIONS VALUES ASSESSMENT

14A. Habitat for Federally Listed or Proposed Threatened or Endangered Plants or Animals:

i. AA is Documented (D) or Suspected (S) to contain (check one based on definitions contained in instructions):

Primary or critical habitat	(list species)	🔘 D 🔘) S				
Secondary habitat (list Sp	oecies)) D	S				
Incidental habitat (list sp	ecies)	○ D ○	S				
No usable habitat		✓ S					
ii. Rating (use the cond	usions from i a	bove and the m	atrix below to arrive	e at [check] the fun	ctional points and	rating)	
Highest Habitat Level	doc/primary	sus/primary	doc/secondary	sus/secondary	doc/incidental	sus/incidental	None
Functional Points and Rating	1H	.9H	.8H	.7M	3L	.1L	OL
Sources for US documented use	SFWS list for M	eagher County;	no habitat specific	ation present for sp	pecies or documer	nted occurences.	

14B. Habitat for plant or animals rated S1, S2, or S3 by the Montana Natural Heritage Program: (not including species listed in14A above)

i. AA is Documented (D) or Suspected (S) to contain (check one based on definitions contained in instructions):

Primary or critical habitat (list species)	\odot d \bigcirc s	Downingia laeta (S2S3)
Secondary habitat (list Species)	\odot d \bigcirc s	Long-billed curlew (S3B); Mountain plover (S2B)
Incidental habitat (list species)	🔘 D 🔘 S	
No usable habitat	S	

ii. Rating (use the conclusions from i above and the matrix below to arrive at [check] the functional points and rating)

Highest Habitat Level	doc/primary	sus/primary	doc/secondary	sus/secondary	doc/incidental	sus/incidental	None
S1 Species: Functional Points and Rating	1H	.8H	.7M	.6M	.2L	.1L	0L
S2 and S3 Species: Functional Points and Rating	.9H	.7M	.6M	.5M	.2L	.1L	OL

Observed Downingia laeta in wetland during 2013 site visit; past observation of curlew/plover

Sources for documented use

14C. General Wildlife Habitat Rating:

i. Evidence of overall wildlife use in the AA (check substantial, moderate, or low based on supporting evidence):

Substantial (based on any of the following [check]):

- observations of abundant wildlife #s or high species diversity (during any period)
- abundant wildlife sign such as scat, tracks, nest structures, game trails, etc.
- presence of extremely limiting habitat features not available in the surrounding area
- interviews with local biologists with knowledge of the AA

Minimal (based on any of the following [check]):

few or no wildlife observations during peak use periods

Moderate

- little to no wildlife sign
- sparse adjacent upland food sources
- interviews with local biologists with knowledge of the AA

Moderate (based on any of the following [check]):

observations of scattered wildlife groups or individuals or relatively few species during peak periods

common occurrence of wildlife sign such as scat, tracks, nest structures, game trails, etc.

adequate adjacent upland food sources

interviews with local biologists with knowledge of the AA

ii. Wildlife habitat features (Working from top to bottom, check appropriate AA attributes in matrix to arrive at rating. Structural diversity is from #13. For class cover to be considered evenly distributed, the most and least prevalent **vegetated** classes must be within 20% of each other in terms of their percent composition of the AA (see #10). Abbreviations for surface water durations are as follows: P/P = permanent/perennial; S/I = seasonal/intermittent; T/E = temporary/ephemeral; and A = absent [see instructions for further definitions of these terms])

Structural diversity (see #13)	High									Moderate								Low			
Class cover distribution (all vegetated classes)	Even					Uneven			Even			Uneven				Even					
Duration of surface water in ≥ 10% of AA	P/P	S/I	T/E	A	P/P	S/I	T/E	A	P/P	S/I	T/E	A	P/P	S/I	T/E	А	P/P	S/I	T/E	A	
Low disturbance at AA (see #12i)	Е	E	E	н	E	E	н	н	E	н	н	м	E	Н	м	м	Е	H	м	м	
Moderate disturbance at AA (see #12i)	н	н	н	н	н	н	н	м	н	н	м	м	н	М	м	L	н	м	L	L	
High disturbance at AA (see #12i)	М	М	м	L	М	М	L	L	М	м	L	L	м	L	L	L	L	L	L	L	

iii. Rating (use the conclusions from i and ii above and the matrix below to arrive at [check] the functional points and rating)

Evidence of wildlife use (i)		Wildlife habit	tat features rating (ii)	
	Exceptional	High	Moderate	Low
Substantial	1E	.9H	.8H	.7M
Moderate	.9H	.7M	.5M	.3L
Minimal	.6M	.4M	.2L	.1L

Comments Moderate use of the AA area by wildlife observed.

14D. General Fish Habitat Rating: (Assess this function if the AA is used by fish or the existing situation is "correctable" such that the AA could be used by fish [i.e., fish use is precluded by perched culvert or other barrier, etc.]. If the AA is not used by fish, fish use is not restorable due to habitat constraints, or is not desired from a management perspective [such as fish entrapped in a canal], then check **NA** here and proceed to 14E.)

i. Habitat Quality and Known / Suspected Fish Species in AA (use matrix to arrive at [check the functional points and ratin

													0,						
Duration of surface water in AA		Pe	rmanent /	Perennial	l			Seasonal / Intermittent						Temporary / Ephemeral					
Aquatic hiding / resting / escape cover	Op	timal	Adeq	luate	Po	oor	Opti	mal	Ade	quate	Po	or	Opti	mal	Adeo	quate	Po	or	
Thermal cover optimal/ suboptimal	0	S	ο	S	0	S	ο	S	0	S	0	S	0	S	0	S	0	S	
FWP Tier I fish species	1E	.9H	.8H	.7M	.6M	.5M	.9H	.8H	.7M	.6M	.5M	.4M	.7M	.6M	.5M	.4M	.3L	.3L	
FWP Tier II or Native Game fish species	.9H	.8H	.7M	.6M	.5M	.5M	.8H	.7M	.6M	.5M	.4M	.4M	.6M	.5M	.4M	.3L	.2L	.2L	
FWP Tier III or Introduced Game fish	.8H	.7M	.6M	.5M	.5M	.4M	.7M	.6M	.5M	.4M	.4M	.3L	.5M	.4M	.3L	.2L	.2L	.1L	
FWP Non-Game Tier IV or No fish species	.5M	.5M	.5M	.4M	.4M	.3L	.4M	.4M	.4M	.3L	.3L	.2L	.2L	.2L	.2L	.1L	.1L	.1L	

Sources used for identifying fish sp. potentially found in AA:

ii.	Modified Rating	(NOTE:	Modified score cannot exceed 1 or be less than 0.1)	ļ
-----	-----------------	--------	---	---

ii. Modified Rating (NOTE: Modified score cann a) Is fish use of the AA significantly reduced by a c current final MDEQ list of waterbodies in need of T fishery or aquatic life support, or do aquatic nuisar yes, reduce score in i above by 0.1: Modified R	ulvert, dike MDL devel ace plant or	, or other m opment with	han-made s h listed "Pr	structure or obable Imp	aired Úses'	' including	cold or w	varm water	ne If	
b) Does the AA contain a documented spawning an comments) for native fish or introduced game fish?	~	r critical hab		• •	ctuary pool, he adjusted					
	_			Modifed	Rating					
iii. Final Score and Rating: ONA	Comments	s: No pere	ennially f	flowing w	ater withi	n AA fo	r fish ha	abitat.		
14E. Flood Attenuation: (Applies only to wetlan channel or overbank flow, click V NA here a	and procee	d to 14F.)					s in AA ar	e not floode	d from in-	
i. Rating (working from top to bottom, use the main Estimated or Calculated Entrenchment (Rosgen		to arrive at entrenched -		0	points and ely entrench		Entrenc	hed-A, F, G	stream	
1994, 1996) % of flooded wetland classified as forested		tream types			stream type			types		
and/or scrub/shrub	75%	25-75%	<25%	75%	25-75%	<25%	75%	25-75%	<25%	
AA contains no outlet or restricted outlet	1H	.9H	.6M	.8H	.7M	.5M	.4M	.3L	.2L	
AA contains unrestricted outlet	.9H	.8H	.5M	.7M	.6M	.4M	.3L	.2L	.1L	
Slightly Entrenched ER = >2.2		Moderately I ER = 1.4					ntrenched = 1.0 - 1.4]
C stream type D stream type E stream ty	pe	B strear	m type	As	stream type	F	stream typ	e Gs	stream type	-
						t				
2 x Bankfull Dep		Bankfull De	epth		En ist war	nod-pron full Widt				
Floodprone width	/ Bankfu width	III			=	Entrenc ratio	hment			
ii. Are ≥10 acres of wetland in the AA subject to fl within 0.5 mile downstream of the AA (check)? Comments:	ooding ANI Y ()	Dare man-n N ()	nade featu	res which r	nay be sign	ificantly d	amaged b	y floods loca	ated	
No flooding occurs via in-cha	annel or o	overbank	flow.							

14F. Short and Long Term Surface Water Storage: (Applies to wetlands that flood or pond from overbank or in-channel flow, precipitation, upland surface flow, or groundwater flow. If no wetlands in the AA are subject to flooding or ponding, dick **NA** here and proceed to 14G.)

i. Rating (Working from top to bottom, use the matrix below to arrive at [check] the functional points and rating. Abbreviations for surface water durations are as follows: P/P = permanent/perennial; S/I = seasonal/intermittent; and T/E = temporary/ephemeral [see instructions for further definitions of these terms].)

Estimated maximum acre feet of water contained in wetlands within the AA that are subject to periodic flooding or ponding	>5 acre feet			1.1	to 5 acre feet	≤1 acre foot			
Duration of surface water at wetlands within the AA	P/P	P/P S/I T/E			S/I	T/E	P/P	S/I	T/E
Wetlands in AA flood or pond ≥ 5 out of 10 years	1H	.9H	.8H	.8H	.6M	.5M	.4M	.3L	.2L
Wetlands in AA flood or pond < 5 out of 10 years	.9H	.8H	.7M	.7M	.5M	.4M	.3L	.2L	.1L

Comments:	Depressional area and portions of slope wetlands maintain water perennially.	Estimating approximately 10 acres indundated
	to 0.5 foot.	

14G. Sediment/Nutrient/Toxicant Retention and Removal: (Applies to wetlands with potential to receive sediments, nutrients, or toxicants through influx of surface or ground water or direct input. If no wetlands in the AA are subject to such input, click 🗌 NA here and proceed to 14H.)

i. Rating (working from top to bottom, use the matrix below to arrive at [check] the functional points and rating [H = high, M = moderate, or L = low1)

Sediment, nutrient, and toxicant input					Waterbody on MDEQ list of waterbodies in need of TMDL					
levels within AA	AA rece	eives or surro	unding land us	e with potential	development for "probable causes" related to sediment,					
	to d	eliver levels of	of sediments, r	utrients, or	nutrients, or to	xicants or AA rec	eives or surrou	nding land use		
	compou	undsatlevels	such that othe	er functions are		o deliver high leve				
			paired. Minor s		compounds such that other functions are substantially impaired.					
	sour		ntsortoxicants	, 0	Major sedimen	tation, sources of		icants, or signs		
		eutroph	nication presen	t.	of eutrophication present.					
% cover of wetland vegetation in AA	\geq	70%	<	70%	≥ 70% < 70%			70%		
Evidence of flooding / ponding in AA										
	Yes	No	Yes	No	Yes	No	Yes	No		
AA contains no or restricted outlet			L							
	1H	.8H	.7M	.5M	.5M	.4M	.3L	.2L		
AA contains unrestricted outlet			_							
	.9H	.7M	.6M	.4M	.4M	.3L	.2L	.1L		

Comments: Approximately 60 percent of the AA is vegetated. A restricted outlet is located on the depressional area as a constructed overflow channel.

14H Sediment/Shoreline Stabilization: (Applies only if AA occurs on or within the banks or a river, stream, or other natural or man-made drainage, or on the shoreline of a standing water body which is subject to wave action. If 14H does not apply, click ✓ NA here and proceed to 14I.)

i. Rating (working from top to bottom, use the matrix below to arrive at [check] the functional points and rating)

% Cover of wetland streambank or	Duration of surface water adjacent to rooted vegetation							
shoreline by species with stability ratings of ≥ 6 (see Appendix F).	Permanent / Per	Seasonal / Intermittent			Temporary / Ephemeral			
≥ 65%	1H			.9H			.7M	
35-64%	.7M			.6M			.5M	
< 35%	.3L			.2L			.1L	

The AA does not occur within the banks of a stream or drainage subject to wave action.

Comments:

14I. Production Export/Food Chain Support:

i. Level of Biological Activity (synthesis of wildlife and fish habitat ratings [check])

General Fish Habitat	General Wildlife Habitat Rating (14C.iii.)						
Rating (14D.iii.)	E/H	М	L				
E/H	н	н	м				
М	н	м	м				
L	М	м	L				
N/A	н	М	L				

ii. Rating (Working from top to bottom, use the matrix below to arrive at [check] the functional points and rating. Factor A = acreage of vegetated wetland component in the AA; Factor B = level of biological activity rating from above (14l.i.); Factor C = whether or not the AA contains a surface or subsurface outlet; the final three rows pertain to duration of surface water in the AA, where P/P, S/I, and T/E are as previously defined, and A = "absent" [see instructions for further definitions of these terms].)

1000 11	01100101	10 101 101	anor aon		1 110000													
Α		Veg	etated com	ponent >5	acres		Vegetated cor			onent 1-5 a	acres		Vegetated component <1 acre					
В	Hi	gh	Mode	erate	L	.OW	H	igh	Mod	erate	Lo	w	Hi	gh	Mode	erate	Lo	wc
С	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
P/P	1E	.7H	.8H	.5M	.6M	.4M	.9H	.6M	.7H	.4M	.5M	.3L	.8H	.6M	.6M	.4M	.3L	.2L
S/I	.9H	.6M	.7H	.4M	.5M	.3L	.8H	.5M	.6M	.3L	.4M	.2L	.7H	.5M	.5M	.3L	.3L	.2L
T/E/A	.8H	.5M	.6M	.3L	.4M	.2L	.7H	.4M	.5M	.2L	.3L	.1L	.6M	.4M	.4M	.2L	.2L	.1L

iii. Modified Rating (NOTE: Modified score cannot exceed 1 or be less than 0.1.) Vegetated Upland Buffer (VUB): Area with ≥ 30% plant cover, ≤ 15% noxious weed or ANVS cover, and that is not subjected to periodic mechanical mowing or clearing (unless for weed control).

NО a) Is there an average ≥ 50 foot-wide vegetated upland buffer around ≥ 75% of the AA circumference? **γ** (•) If ves. add 0.1 to the score in ii above and adjust rating accordingly: Modified Rating .9H

Comments: Moderate biological activity; no fish habitat; vegetative component >5 acres with a upland buffer.

14J. Groundwater Discharge/Recharge: (check the appropriate indicators in i & ii below)

	i. Discharge Indicators	 ii. Recharge Indicators	
✓	The AA is a slope wetland	Permeable substrate present without underlying impeding layer	
\checkmark	Springs or seeps are known or observed	Wetland contains inlet but no outlet	
\checkmark	Vegetation growing during dormant season/drought	Stream is a known 'losing' stream; discharge volume decreases	
✓	Wetland occurs at the toe of a natural slope	Other:	٦
	Seeps are present at the wetland edge		
✓	AA permanently flooded during drought periods		
V	Wetland contains an outlet, but no inlet		
	Shallow water table and the site is saturated to the surface		
	Other:		

iii. Rating (use the information from i and ii above and the table below to arrive at [check] the functional points and rating)

	Duration of saturation at AA Wetlands <u>FROM GROUNDWATER DISCHARGE OR WITH WATER</u> <u>THAT IS RECHARGING THE GROUNDWATER SYSTEM</u>							
Criteria	P/P	S/I	т	None				
Groundwater Discharge or Recharge	1H	.7M	.4M	.1L				
Insufficient Data/Information			NA					

Comments: Saturation present throughout the majority of the AA late in the growing season with little precipitation for growing season.

14K. Uniqueness:

i. Rating (working from top to bottom, use the matrix below to arrive at [check] the functional points and rating)

Replacement potential				cited rar diversity (not contain p e types and #13) is high o ciation listed the MTNHP	structural or contains	AA does not contain previously cited rare types or associations and structural diversity (#13) is low-moderate			
Estimated relative abundance (#11)	rare	commo n	abundant	rare common		abundant	rare	common	abundant	
Low disturbance at AA (#12i)	1H	.9H	.8H	.8H	.6M	.5M	.5M	.4M	.3L	
Moderate disturbance at AA (#12i)	.9H	.8H	.7M	.7M	.5M	.4M	.4M	.3L	.2L	
High disturbance at AA (#12i)	.8H	.7H	.6M	.6M	.4M	.3L	.3L	.2L	.1L	

Comments: Downingia laeta was observed in wetland area.

14L. Recreation/Education Potential: (affords "bonus" points if AA provides recreation or education opportunity)

i. Is the AA a known or potential rec./ed. site: (check) Y
N
(if 'Yes' continue with the evaluation; if 'No' then click NA here and proceed to the overall summary and rating page)

ii. Check categories that apply to the AA: 🗹 Educational/scientific study; 🗌 Consumptive rec.; 📝 Non-consumptive rec.;

iii. Rating (use the matrix below to arrive at [check] the functional points and rating)

Known or Potential Recreation or Education Area	Known	Potential
Public ownership or public easement with general public access (no permission required)	.2H	.15H
Private ownership with general public access (no permission required)	.15H	.1M
Private or public ownership without general public access, or requiring permission for public access	.1M	.05L

Comments:

Currently no recreation/education occurs at the site.

General Site Notes

Several areas of the constructed embankment dike around the northern cell had breached during the early summer, and MDT had made some temporary repairs with coir logs and rock to prevent further washouts and degradation of the structure. Subsequent evaluation of the embankment dike structure indicated that it had been constructed at an elevation lower than the constructed outlet structure. MDT required the contractor to undertake corrective actions in November of 2013 to raise the level of the dike and repair all breaches in the structure. In addition to the structure, spreader berms were extended at several locations to spread water further across the site.

Function & Value Variables	Rating	Actual Functional Points	Possible Functional Points	Functional Units: (Actual Points x Estimated AA Acreage)	Indicate the four most prominent functions with an asterisk (*)
A. Listed/Proposed T&E Species Habitat	L	0	1	0	
B. MT Natural Heritage Program Species Habitat	н	.9	1	12.366	
C. General Wildlife Habitat	М	.5	1	6.87	
D. General Fish Habitat	NA	0	0	0	
E. Flood Attenuation	NA	0	0	0	
F. Short and Long Term Surface Water Storage	н	.8	1	10.992	
G. Sediment/Nutrient/Toxicant Removal	М	.7	1	9.618	
H. Sediment/Shoreline Stabilization	NA	0	0	0	
I. Production Export/Food Chain Support	н	.9	1	12.366	
J. Groundwater Discharge/Recharge	н	1	1	13.74	
K. Uniqueness	М	.4	1	5.496	
L. Recreation/Education Potential (bonus points)	L	.05	NA	0.687	
Totals:		5.25	8	72.135	
Percent of Possible Score			65.63 %		

Category I Wetland: (must satisfy one of the following criteria; otherwise go to Category II)

Score of 1 functional point for Listed/Proposed Threatened or Endangered Species; or

- Score of 1 functional point for Uniqueness; or
- Score of 1 functional point for Flood Attenuation and answer to Question 14E.ii is "yes"; or
- Percent of possible score > 80% (round to nearest whole #).

Category II Wetland: (Criteria for Category I not satisfied and meets any one of the following criteria; otherwise go to Category IV) Score of 1 functional point for MT Natural Heritage Program Species Habitat; or

- Score of .9 or 1 functional point for General Wildlife Habitat; or
- Score of .9 or 1 functional point for General Fish Habitat; or
 - "High" to "Exceptional" ratings for both General Wildlife Habitat and General Fish/Aquatic Habitat; or
- Score of .9 functional point for Uniqueness; or

✓ Percent of possible score > 65% (round to nearest whole #).

Category III Wetland: (Criteria for Categories I, II, or IV not satisfied)

Category IV Wetland: (Criteria for Categories I or II are not satisfied and all of the following criteria are met; otherwise go to Category III)

"Low" rating for Uniqueness; and

- Vegetated wetland component < 1 acre (do not include upland vegetated buffer); and
- Percent of possible score < 35% (round to nearest whole #).

OVERALL ANALYSIS AREA RATING:

(check appropriate category based on the criteria outlined above)

Appendix C

Project Area Photographs

MDT Wetland Mitigation Monitoring Rostad Ranch Meagher County, Montana

Photo Point 1 – Panorama Bearing: 140-240 degrees Location: Northeast corner of site Taken in 2013

Photo Point 2 – Panorama Bearing: 180 -70 degrees Location: East fence corner Taken in 2013

Photo Point 3 – Panorama Bearing: 160-360 degrees Location: East fence line Taken in 2013

Photo Point 4 – Panorama Bearing: 190-340 degrees

Location: Southeast fence corner Taken in 2013

Photo Point 5 – Panorama Bearing: 300-110 degrees Location: Southwest fence corner Taken in 2013

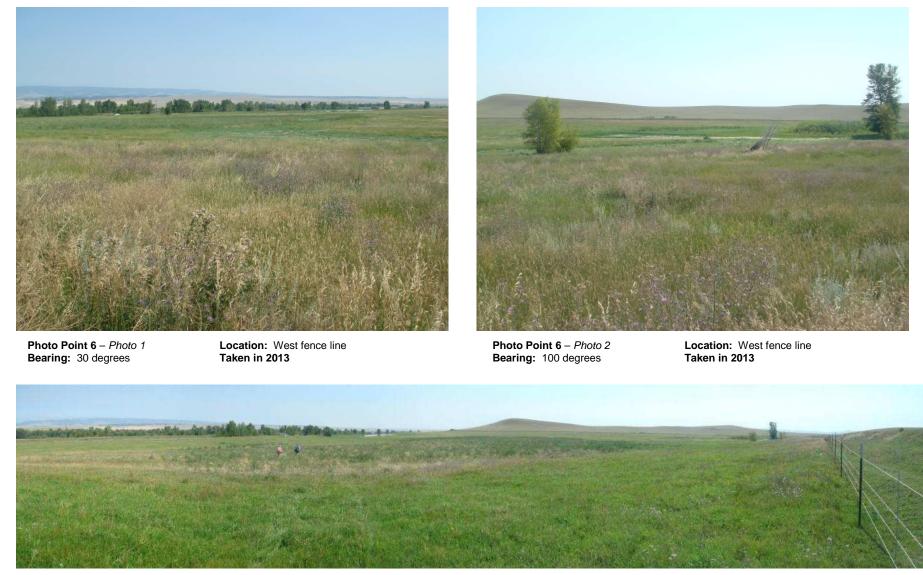


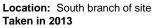
Photo Point 7 – Panorama Bearing: 0-330 degrees Location: West fence corner Taken in 2013

Transect 1 – Beginning Bearing: 290 degrees

Location: NE branch of site Taken in 2013

Transect 1 – *End* Bearing: 110 degrees

Location: NE branch of site Taken in 2013


- Transect 2 Beginning Bearing: 130 degrees
- Location: North central Taken in 2013

- Transect 2 *End* Bearing: 310 degrees
- Location: North central Taken in 2013

Transect 3 – Beginning Bearing: 30 degrees

Transect 3 – *End* Bearing: 210 degrees

Location: South branch of site Taken in 2013

Data Point – Ro-1u Bearing: 340 degrees

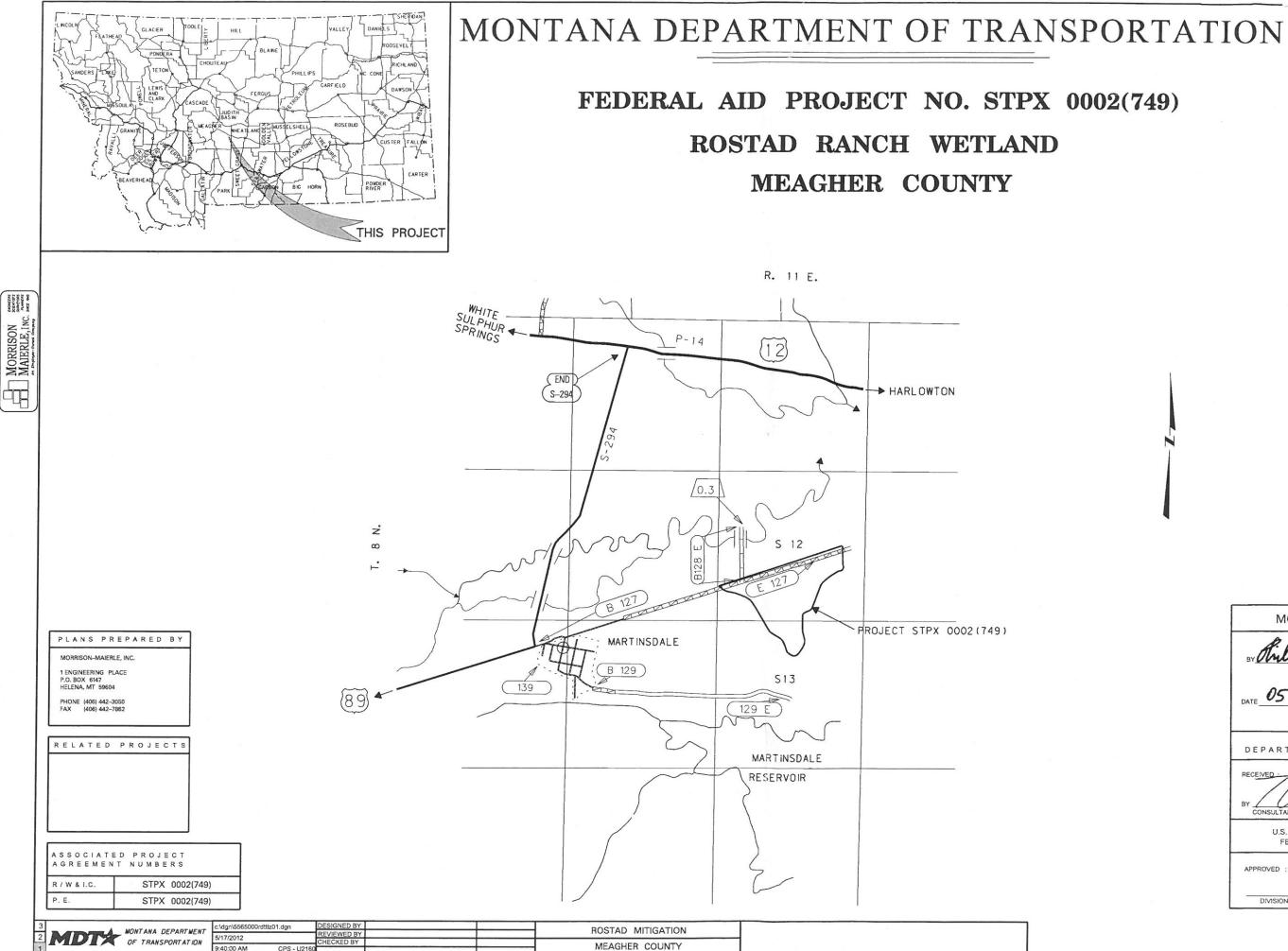
Location: Veg community 1 Taken in 2013

Data Point – Ro-1w Bearing: 45 degrees

Location: Veg community 2 Taken in 2013

Data Point – Ro-2u Bearing: 260 degrees

Location: Veg community 1 Taken in 2013


Data Point – Ro-2w Bearing: 250 degrees

Location: Veg community 2 Taken in 2013

Appendix D

Project Plan Sheets

MDT Wetland Mitigation Monitoring Rostad Ranch Meagher County, Montana

MORRISON-MA	MERLE, INC.						
BY Hillip / Ford	PHILLIP J. CLIMAN						
MONTANA DEPARTMENT OF TRANSPORTATION							
	MAY 14, ZUIZ						
U.S. DEPARTMENT OF FEDERAL HIGHWAY A							
APPROVED :							
DIVISION ADMINISTRATOR	DATE						

TABLE OF CONTENTS

ENCINEERS SCIENTSTS SUPPERS PLANE PS SUPERS

MORRISON MAIERLE, INC.

<u>PLANS</u>	SHEET NO.
TITLE SHEET	1
TABLE OF CONTENTS	2
NOTES	2
LINEAR & LEVEL DATA	2
CONTROL DIAGRAM	3
SUMMARIES	4
GRADING	4
REVEGETATION CULVERTS	4
CULVERT SUMMARY RECAP	4
DIVERSION STRUCTURE	4
FENCING ABANDON PIEZOMETER	4
BROAD-CRESTED WEIR	4
DETAILS	5-9
DIVERSION STRUCTURE INLET	5
DIVERSION STRUCTURE CROSS SECTION BROAD-CRESTED WEIR	6
FENCING	7
OBLITERATE DRAIN	8
SPREADER BERM	9
EXISTING SITE OVERVIEW	10
PROPOSED SITE OVERVIEW	11
PROPOSED GRADING PLAN	12
TOPSOIL SALVAGE PLAN	13
WORK AREA #1 PLAN	14
WORK AREA #2 PLAN	15
WORK AREA #3 PLAN	16
WETLAND MITIGATION OVERVIEW	17
CONCEPTUAL REVEGETATION PLAN	18
WATER DISTRIBUTION OVERVIEW	19

NOTES

TEMPORARY EROSION AND SEDIMENT CONTROL REFER TO SECTION 208 OF THE MDT DETAILED DRAWINGS FOR EROSION AND SEDIMENT CONTROL BEST MANAGEMENT PRACTICES. INSTALL TEMPORARY EROSION CONTROL CONTROL BEST MANAGEMENT PRACTICES. INSTALL TEMPORARY EROSION CONTROL MEASURES AS DEEMED NECESSARY BY THE ENGINEER. PAYMENT TO BE DETERMINED BY USING THE EROSION AND SEDIMENT CONTROL RATE SCHEDULE AND PAID FOR UNDER MISCELLANEOUS WORK. ALL INSTALLED TEMPORARY EROSION CONTROL BLANKETS MUST BE COMPOSED AND CONSTRUCTED OF 100% BIODEGRADABLE FIBERS, NETING, AND STITCHING. SOILS INFORMATION TO OBTAIN THE COMPLETE SOILS INFORMATION CONTACT THE MDT GEOTECHNICAL SECTION AT (406) 444-6281. UTILITIES CONTACT THE UTILITIES UNDERGROUND LOCATION CENTER (1-800-424-5555) OR OTHER NOTIFICATION SYSTEM FOR THE MARKING AND LOCATION OF ALL LINES AND SERVICES BEFORE EXCAVATING. CLEARING AND GRUBBING CLEAR AND GRUB TO STAKED GRADING LIMITS. INCLUDE THE COST OF CLEARING AND GRUBBING IN THE UNIT PRICE BID FOR UNCLASSIFIED EXCAVATION. TOPSOIL SALVAGING AND PLACING TOPSOIL QUANTITIES SHOWN IN THE PLANS ARE SUFFICIENT TO RE-TOPSOIL IN AREAS WHERE CUTS OR FILLS EXCEED 1 FOOT. ALL REMAINING GRADING IS CONSIDERED UNCLASSIFIED EXCAVATION. PIEZOMETER REMOVAL SEE SHEET 10 FOR LOCATIONS OF PIEZOMETERS ON THE PROJECT. ABANDON WELLS IN ACCORDANCE WITH ARM 36.21.810. LINEAR & LEVEL DATA BEARING SOURCE

NAVD 88

BENCH MARKS

C.ldg/h556500010lliz01.dg/h	NED BY WETLAND P	LANS	ROSTAD RANC	CH WETLAND	PROJECT NO. STPX 0002(749)
DEF TRANSPORTATION	KED BY MEAGHER CC	DUNTY	CSF = 0.99922160	UPN NUMBER 5565	SHEET 2 OF 19

WETLANDS

ONLY WETLANDS WITHIN THE PROJECT LIMITS HAVE BEEN DELINEATED. WEILANDS MAY EXIST BEYOND THE PROJECT LIMITS AND ANY ACTION AFFECTING SUCH WEILANDS IS THE RESPONSIBILITY OF THE CONTRACTOR.

WETLANDS LEGEND

DELINEATED WETLANDS

IMPACTED WETLANDS

COMBINATION SCALE FACTOR

ALL SURVEY AND STAKING WILL REQUIRE THE USE OF A COMBINATION SCALE FACTOR (CSF) 0.99922160. ALL DIMENSIONS ON THE PLANS ARE GRID DIMENSIONS AND MUST BE DIVIDED BY THE CSF TO ARRIVE AT GROUND DIMENSIONS.

SURVEY DATA

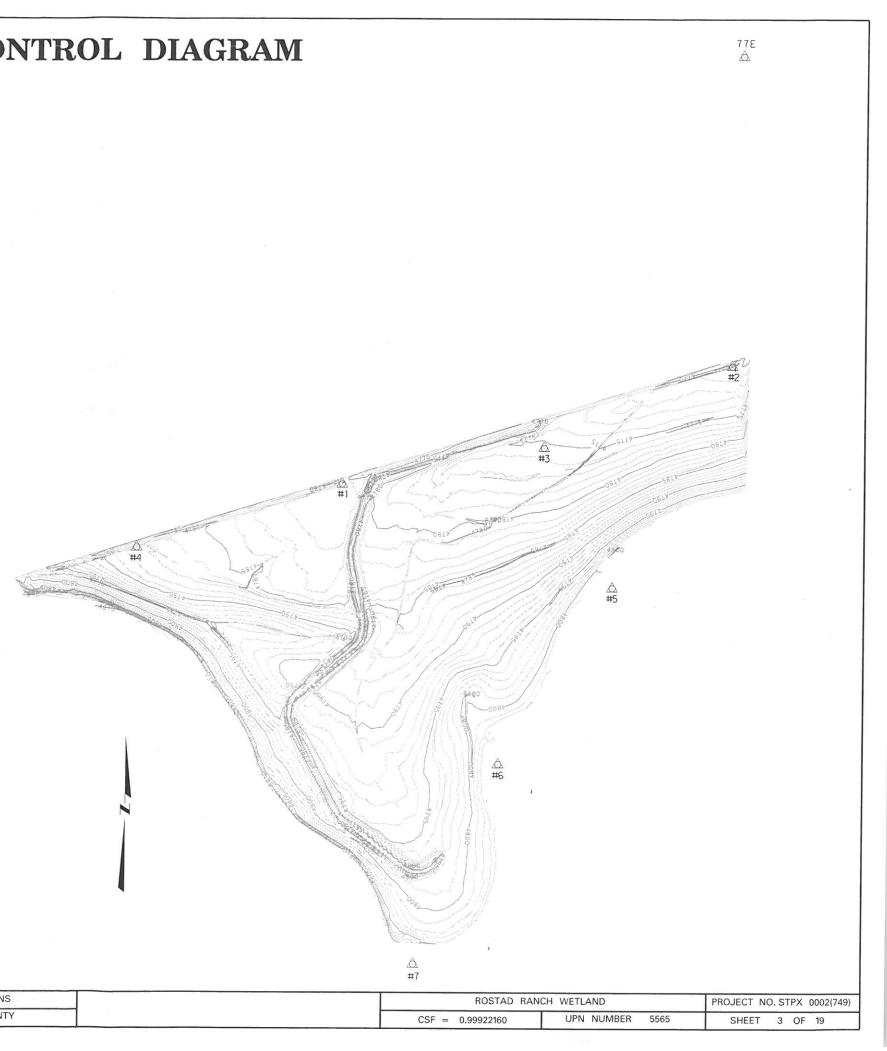
DTM FILES FORMATTED FOR TRIMBLE, LEICA, AND TOPCON SURVEY CONTROLLERS ARE AVAILABLE UPON REDUEST. CONTACT WADE SALYARDS, MDT WETLAND ENGINEER. AT 444-0451.

NAD 83 (1992)

LEVEL DATUM SOURCE

SEE CONTROL ABSTRACT FOR BENCHMARK INFORMATION

CONTROL DIAGRAM 2JEB


Control marks 1 through 7 were established to provide control in the areas of future wetlands mitigation. MDT secondary control procedures were used to establish the state plane coordinates and GPS derived orthometric heights of the new control.

Coordinates shown hereon are referenced to the Montana Coordinate System NADB3(1992), internationalfeet. Elevations are referenced to NAVD88. U.S. Feet (Geoid03). Redundant GPS RTK methods of survey were used to tie this survey to MDT control survey CN 4889, which was tied to the NationalSpatial Reference System through first-order order or better control points "A 295", "B80RESET" and "K8T2", using GPS static procedures with dual-frequency GPS receivers.

In order to maintain a relative accuracy of 1:50,000, one Combination Scale Factor can be used for this project: .99922160, which is the Combination Scale Factor for CN 4889.

			CONTRO	OL MARK ABSTRACT
POINT NAME/NUMBER	N OR Y COORDINATE	E OR X COORDINATE	POINT	LOCATION AND DESCRIPTION
2 JEB	820176.707	1755842.913	4837.33	FOUND USGS BENCHMARK. FROM THE JUNCTION OF HIGHWAY 294 AND 12, GO 2 MILES WEST ALONG HIGHWAY 12. THE MARK IS 95' NORTHWEST OF AND 59' SOUTHWEST OF A "T' ROAD GDING NORTH OF FOF HIGHWAY 12, 71' WEST OF AND IRRIGATION DITCH CROSSING HIGHWAY 12, 1' NORTH OF SOUTH R/W FENCE AND POST WITH SURVEY MARKER SIGN, BRASS CAP STAMPED 2-JEB, 1972."
77E	815626.843	1773445. 444	4735.58	FOUND MOT CONTROL CAP AT MP 77,55, A STANDARD MOT CONTROL CAP ON 59" REBAR O.03m BELDW GROUND STAMPED "77E 2003", CAP IS 250 'NORTH OF THE PTW, 195' NORTH OF CORNER IN NORTH R/W FENCE WEST FOR THE NORTH ROAD TO MARTINSDALE HUTTERITE COLONY, 82' WEST FOR EXE ALONG THE ROAD, 42' WEST DF AN IRRIGATION DITCH, 15' EAST OF A POWER POLE "TAP B", AND ON HIGH POINT ABOVE AN IRRIGATION DITCH, WINESS POSTS SET 7' NORTH AND SOUTH.
1	807908.694	1767815.256	4781.01	SET MOT CONTROL CAP, FLUSH WITH GROUND, STAMPED "I 2008". MARK IS 2.6' NORTH O THE SOUTH ROW FENCE OF MARTINSDALE ROAD, IS' WEST OF AN APPROACH, AND 2.6' NORTH OF A WITNESS POST.
2	808455.543	1769626.308	4770.81	SET MOT CONTROL CAP, FLUSH WITH GROUND, STAMPED "2 2008". MARK IS 2' SOUTH OF THE SOUTH ROW FENCE OF MARTINSDALE ROAD, T.Y. WEST OF A FENCE CORNER, 35' WEST OF AN APPROACH, AND 2' SOUTH OF A WITHESS POST.
3	808076.674	1768751.668	4775.16	SET MOT CONTROL CAP. FLUSH WITH GROUND, STAMPED "3 2008". MARK IS 100' SOUTH O THE SOUTH ROW FENCE OF MARTINSDALE ROAD, AND 2' NORTH OF A WITNESS POST.
4	807615.353	1766864.291	4787.63	SET MOT CONTROL CAP, FLUSH WITH GROUND, STAMPED "4 2008". MARK IS 3' SOUTH OF THE SOUTH ROW FENCE OF MARTINSDALE ROAD, 450' EAST OF A DIVERSION STRUCTURE, AND 2' SOUTH OF A WITNESS POST.
5	807432.042	1769072.531	4808.98	SET MOT CONTROL CAP, FLUSH WITH GROUND, STAMPED "5 2008". MARK IS 2' NORTH OF AN EAST-WEST FENCE, AND 2' SOUTH OF A WITNESS POST.
6	806616.942	1768550. 880	4806.07	SET MOT CONTROL CAP. FLUSH WITH GROUND, STAMPED "5 2008". MARK IS IN AN OPEN FIELD, 30' EAST OF AN IRRIGATION CANAL, AND 2' SDUTH OF A WITNESS POST.
7	805695.871	1768165.498		SET MDT CONTROL CAP, FLUSH WITH GROUND, STAMPED '7 2008''. MARK IS ON TOP OF THE EAST BANK OF CANAL, 40' NORTH OF AN EAST-WEST FENCE, 120' SOUTHEAST OF CONCRETE DIVERSION STRUCTURE, AND 2' SOUTH OF A WITHESS POST.

NDTE: CONTROL DIAGRAM NOT TO SCALE

MONTANA DEPARTMENT	c:\dgn\5565000rdtt 5/21/2012	azor.ogn	DESIGNED BY REVIEWED BY	 	WETLAND PLANS	
OF TRANSPORTATION	10:31:43 AM	CPS - U2160	CHECKED BY		MEAGHER COUNTY	CSF =

ENCINEERS SOLENTSYS SUPPEROPS FLANKERS SUPPEROPS MORRISON

SUMMARY

		GRA	DING	
		cubic yards		
TOTAL	UNCL. EXC.	EXCESS EXCAVATION	EMB.+	REMARKS
	9,400	9,400		SITE GRADING
	500		500	KEYED BERM
TOTAL	9,900	# 9,400	# 500	

			REVE	EGETAT	ION			
		lump	sum	cubic yards	acres			Τ
STA	TION	REVEGE- TATION		TOPSOIL SALVAGING & PLACING	WETLAND SEEDING	REMARKS	STATION	
FROM	то		**	a FLACING				
100.000		1	1	22,235	35.83			+
тс	TAL	1	1	22,235	\sim			+
OR INFORMA							TOTAL	+

** SEE SHEET 17 FOR CONCEPTUAL REVEGETATION PLAN

FOR INFORMATION ONLY

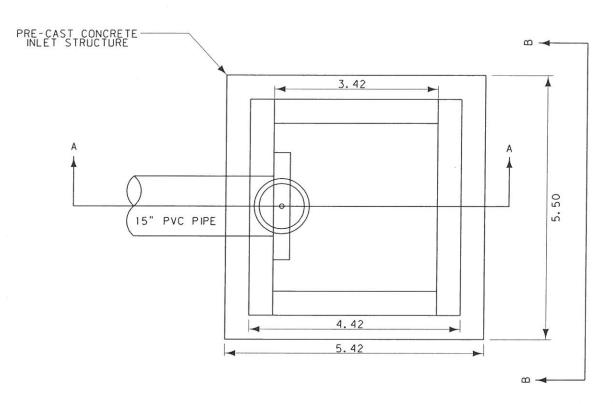
NOTE: 20% SHRINK FACTOR APPLIED TO GRADING

													CUL	/ERTS	INCLUDED	N CULVERT	SUMMARY F	RECAP)							
						BASIC BI	D ITEMS					PIPE OPTIONS in						cubi	c yards		square	linear feet			
	OUNTEDT		linear	feet				cubic yards			square vards	CONCRETE	CLASS	COATING	END SE	CTIONS	FOUND-			CULVERT	GEOTEX-	HEIGHT	SKEW	CULVERT IN PL.	REMARKS
CULVERT	CULVERT PIPE	LENGTH OF	RELAY	CLEAN	REMOVE	CULVERT EXC.	FOUND- ATION		CLASS "DD"		GEOTEX-	STEEL - 2 2/3 x 1/2 CORR. ALUMINUM - 2 2/3 x 1/2 CORR.	OR	*			ATION	BEDDING MATERIAL	CLASS "DD" CONCRETE	RIPRAP	TILE	OF COVER	ANGLE	in x ft	REWARKS
	in	PIPE	CULVERT	CULVERT	CULVERT	**	MATERIAL	MATERIAL	CONCRETE	CLASS	#		1		LEFT	RIGHT				CLASS					
VERT A					23.0																			18 X 23.0 CMP	REMOVE
EDT B					75.0																			18 X 75.0 CMP	REMOVE
VERT B					22.0																			18 X 22.0 CMP	REMOVE
					42.0																			18 X 42.0 CMP	REMOVE
TOTAL	\sim	\sim	\sim	\sim	162.0	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	

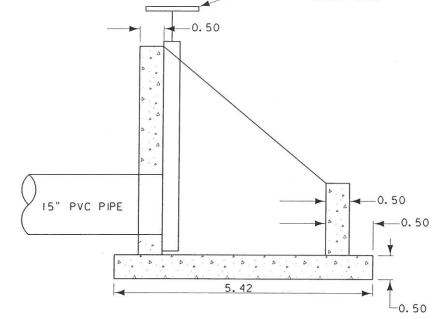
				BROAL	D-CRES	TED WE	EIR			
		cubic yards	square yards			ea				
STAT	ΓΙΟΝ	BANK PROTECTION	TURF REINFORCEMENT MAT	CANAL GATE	HEAD GATE	TRASH GUARD	CHECK	TURNOUT	REMOVE IRRIGATION STRUC-	REMARKS
FROM	то	TYPE 3	TYPE C350	in	in				TURE	
		35	120							BROAD-CRESTED WEIR
 тот	ſAL	35	120	\sim	\sim	\sim	\sim	\sim	\sim	

			CULVE	RT SUN	IMARY I	RECAP			
		linea	r feet			cubic	yards		square yards
BASIC								CULVERT	GEOTEXTILE
BID	NEW	RELAY	CLEAN	REMOVE	FOUND- ATION		CLASS "DD"		PERM. EROS. CNTRI
	(TOTAL)	CULVERT	CULVERT	CULVERT	MATERIAL	MATERIAL	CONCRETE	01.4.00	SURV.
								CLASS	CLASS
				162.0					
TOTAL	\sim	\sim	\sim	162.0	\sim	\sim	\sim	\sim	\sim

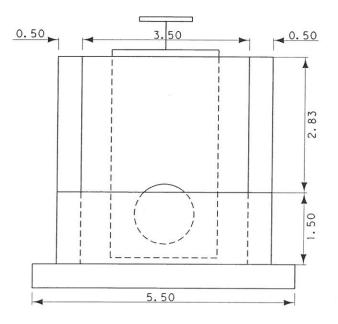
				FENG	CING										
		li	near feet			each		linea	r feet						
STAT	ION	WILDLIFE FRI			WILDLIFE FRIENDLY FENCE REMOVE FENCE								FARM GATE*		REMARKS
FROM	то	TYPE 1 - FM	TYPE 1 - FW		SINGLE	DOUBLE	1 1	TYPE G2	TYPE G3						
		2,592.4		2,592.4	4	1		12							
		495.2			1	1		12							
		974.6				2									
		379.2			1	1									
		838.9				2									
		215.8			1	4		12							
		530.3				1									
		99.5			1	1									
		2,271.7			4	1									
тот	AL	8,397.6	\sim	# 2,592.4	12	14	\sim	36	\sim						


			DIVERSION	STRU	CTURE			
	cut	bic yard	square yard	ea	ich	feet	lump sum	
DIVERSION	CLASS "DD" CONC.	BANK PROTECTION	TURF REINFORCEMENT MAT	CANAL GATE	HEAD GATE	PVC PIPE	TOTAL	REMARKS
	CONC.	TYPE 3	TYPE C350	15 in	15 in	15 in		
	4			1		20.0	1	SEE DETAIL
		20	70					SEE DETAIL
	\sim	20	70	\langle	\sim	\sim	1	

FOR INFORMATION ONLY


3 MONTANA DEPARTMENT C:\dgn\5565000rdsumz01.dgn	DESIGNED BY	WETLAND PLANS ROSTAD RANCH WE	TLAND MITIGATION	PROJECT NO. STPX 0002(749)		
2 MORTANA DEPARTVENT 1 DF TRANSPORTATION 1 DIS1:49 AM CPS- U2160	CHECKED BY	MEAGHER COUNTY		CSF = 0.99922160	UPN NUMBER 5565	SHEET 4 OF 19

ABA	NDON	PIEZOM	ETER	
ITEM DESCRIPTION	square yards	cubic yards	each	REMARKS
ABANDON WELL			4	SEE SHEET 10 FOR LOCATIONS
	\sim	\sim	4	

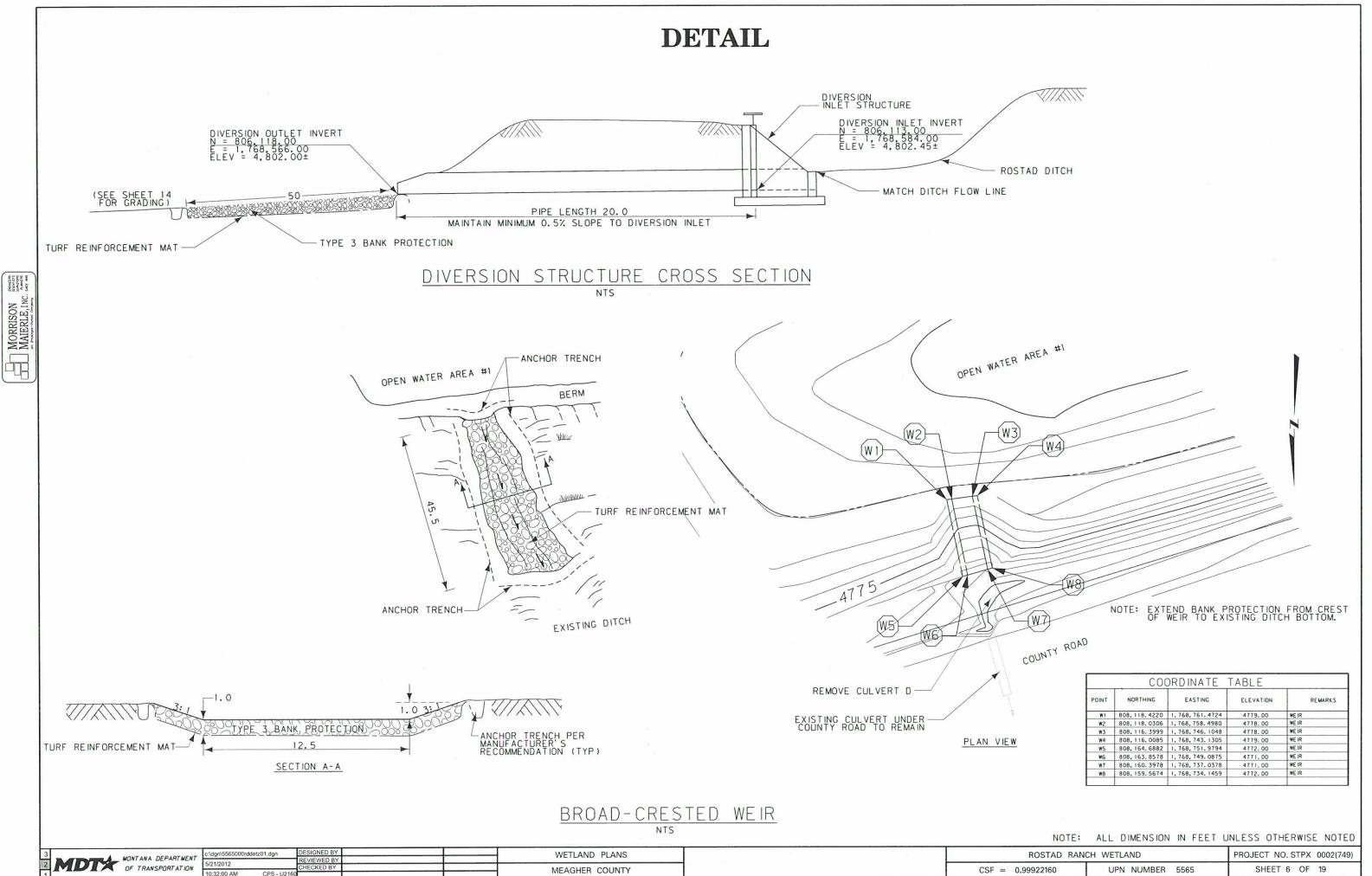

DETAIL

PLAN VIEW

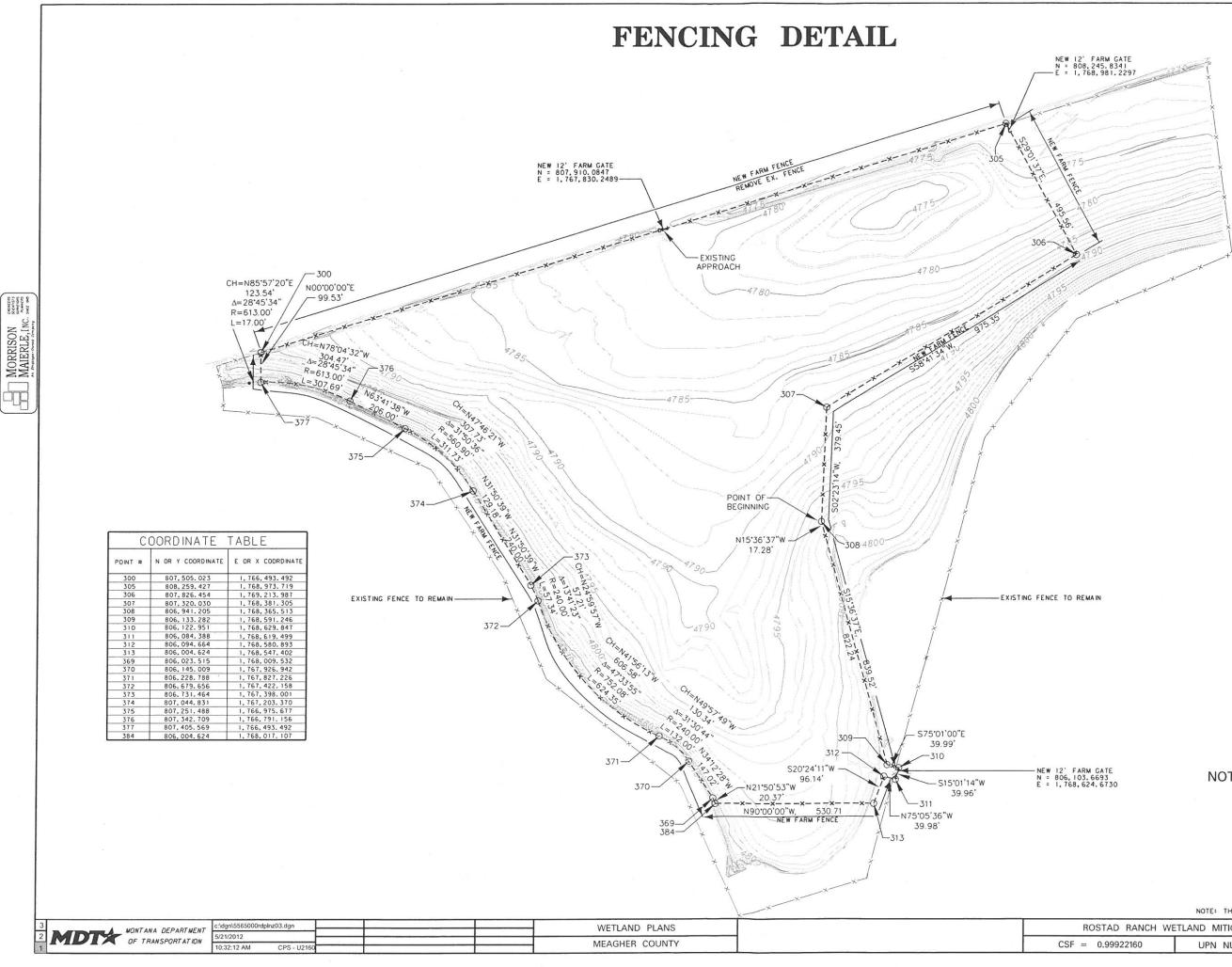
SECTION A-A

SECTION B-B

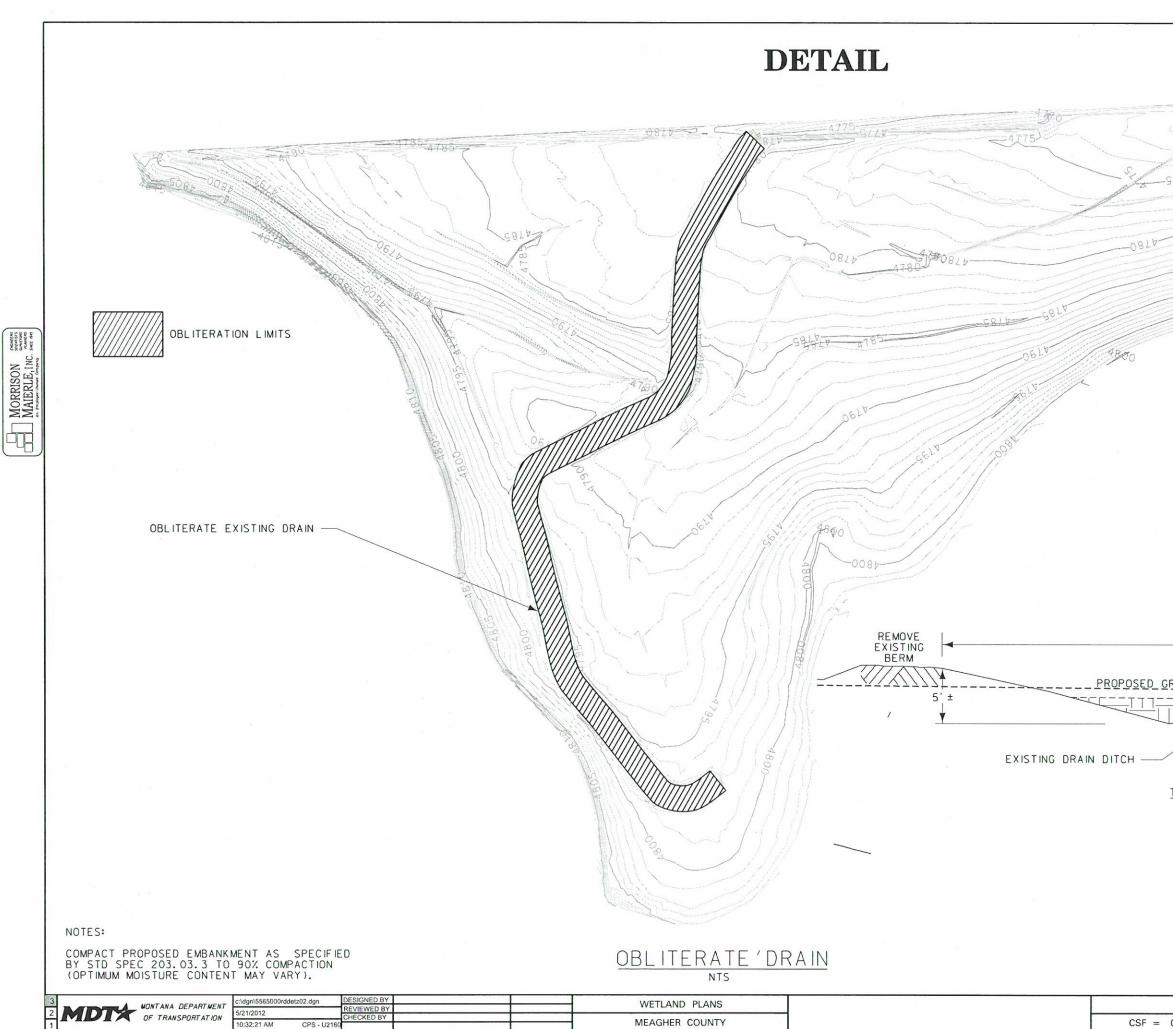
DIVERSION INLET STRUCTURE

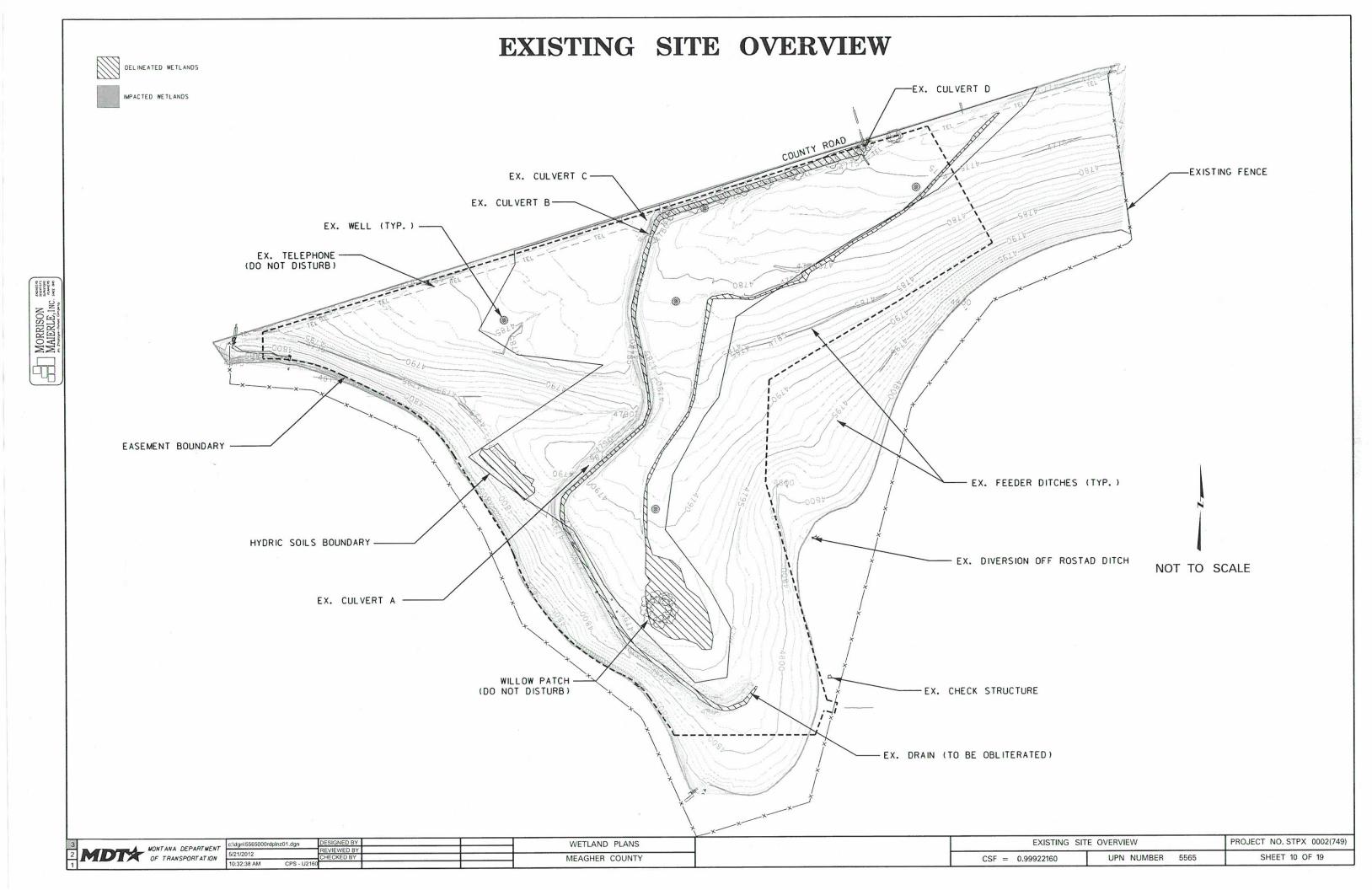

		NOTE: ALL DIMENSION IN FEET	UNLESS OTHERWISE NOTED
3 C:\dgn\5565000rddetz01.dgn DESIGNED BY 2 MONTANA DEPARTMENT OF TRANSPORTATION C:\dgn\5265000rddetz01.dgn DESIGNED BY	WETLAND PLANS	ROSTAD RANCH WETLAND PROJECT NO. STPX 000	
Implify OF TRANSPORTATION OZ 11/2012 CHECKED BY 1 10:31:57 AM CPS - U2160 CPS - U2160	MEAGHER COUNTY	CSF = 0.99922160 UPN NUMBER 5565	SHEET 5 OF 19

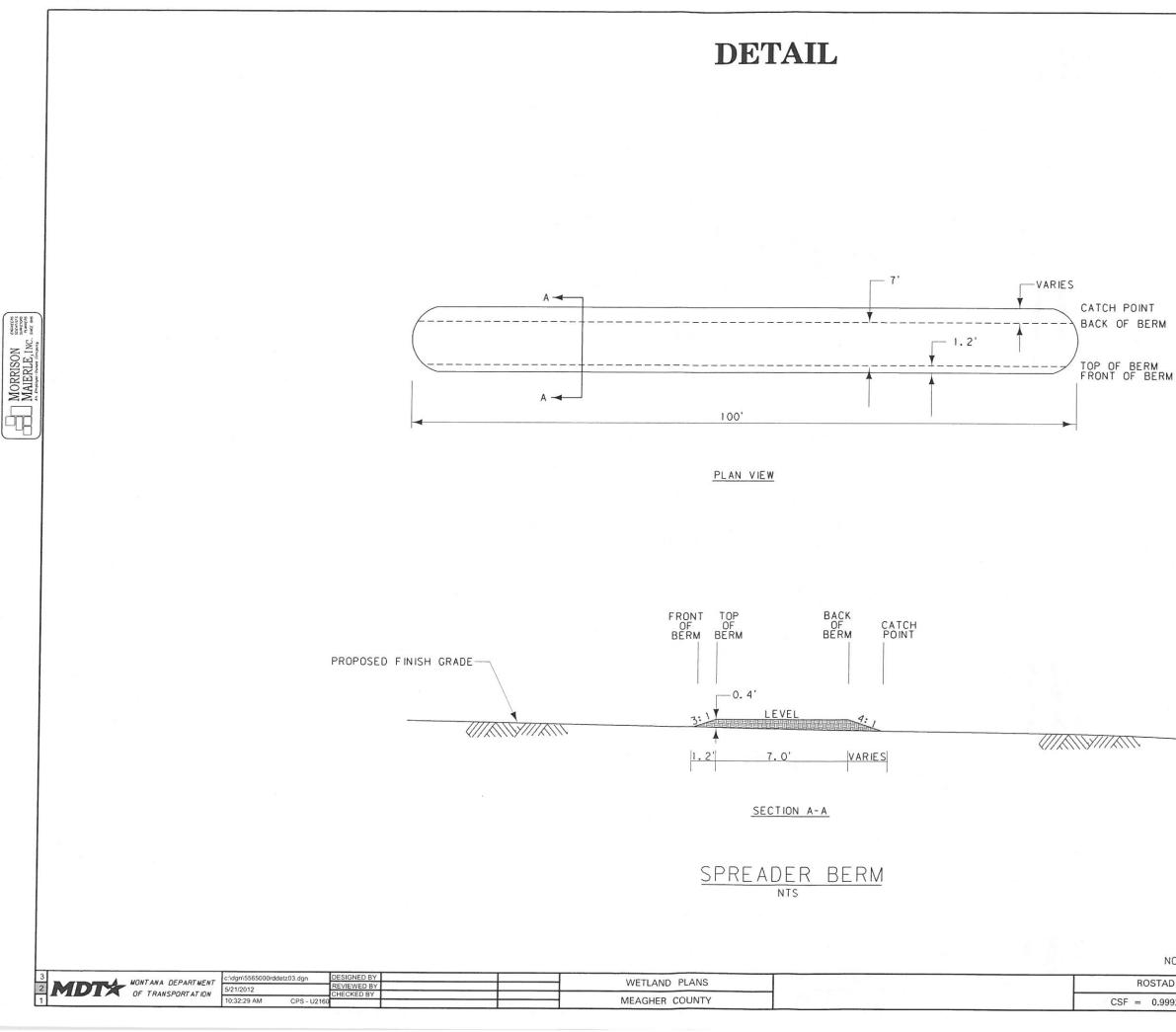
MORRISON EXCEPTION MAIERLE, INC. EXCEPTION An Explorement Construction


DIRECT BOND CANAL GATE

NOTE: ALL DIMENSION IN FEET UNLESS OTHERWIS	SE NO	DIFD
---	-------	------

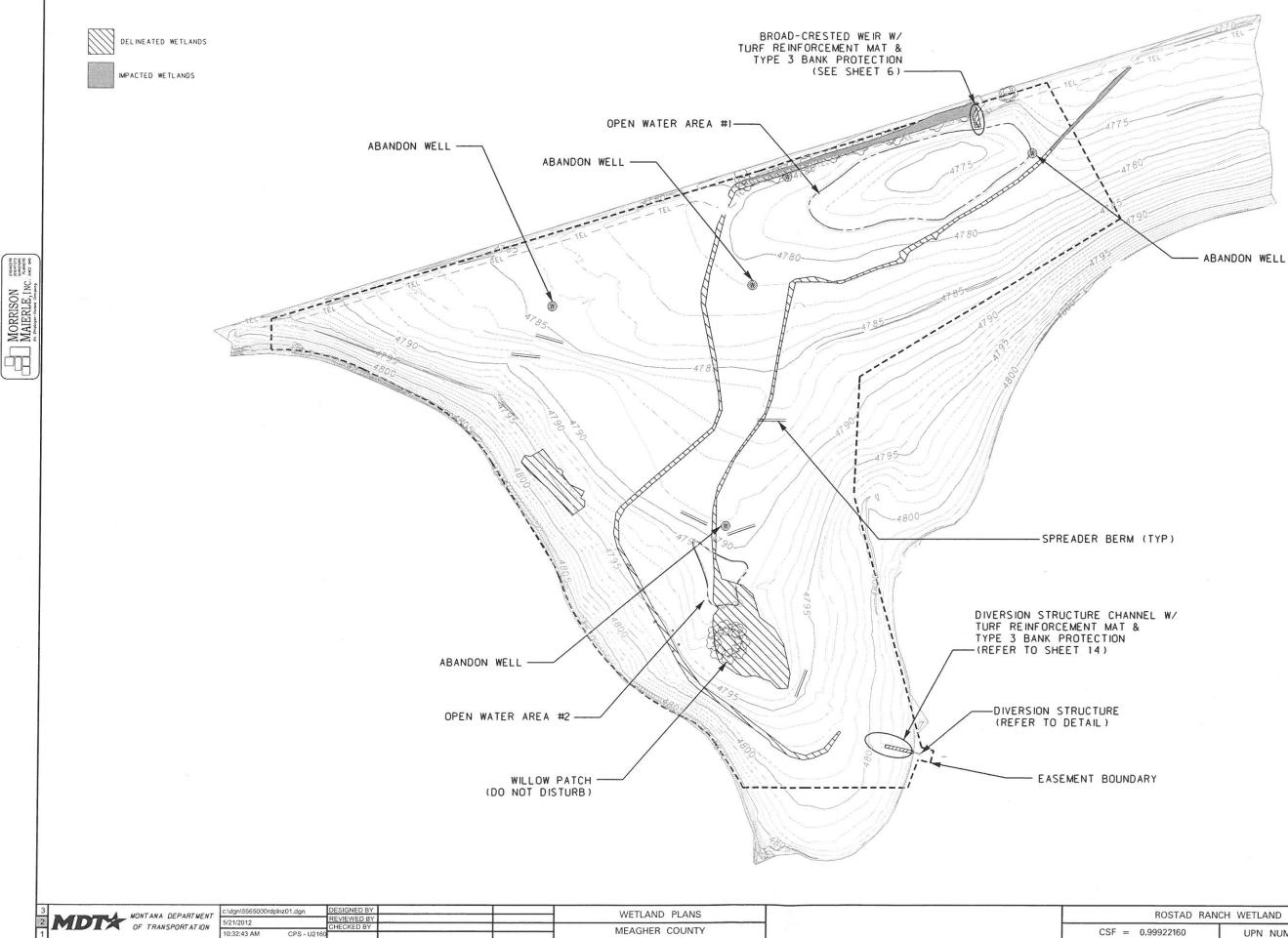

	ROSTAD RANCH WETL	AND	PROJECT NO	. STPX	0002(749)
= 0.9	9922160 UPM	NUMBER 5565	SHEET	6 OF	19


NOT TO SCALE

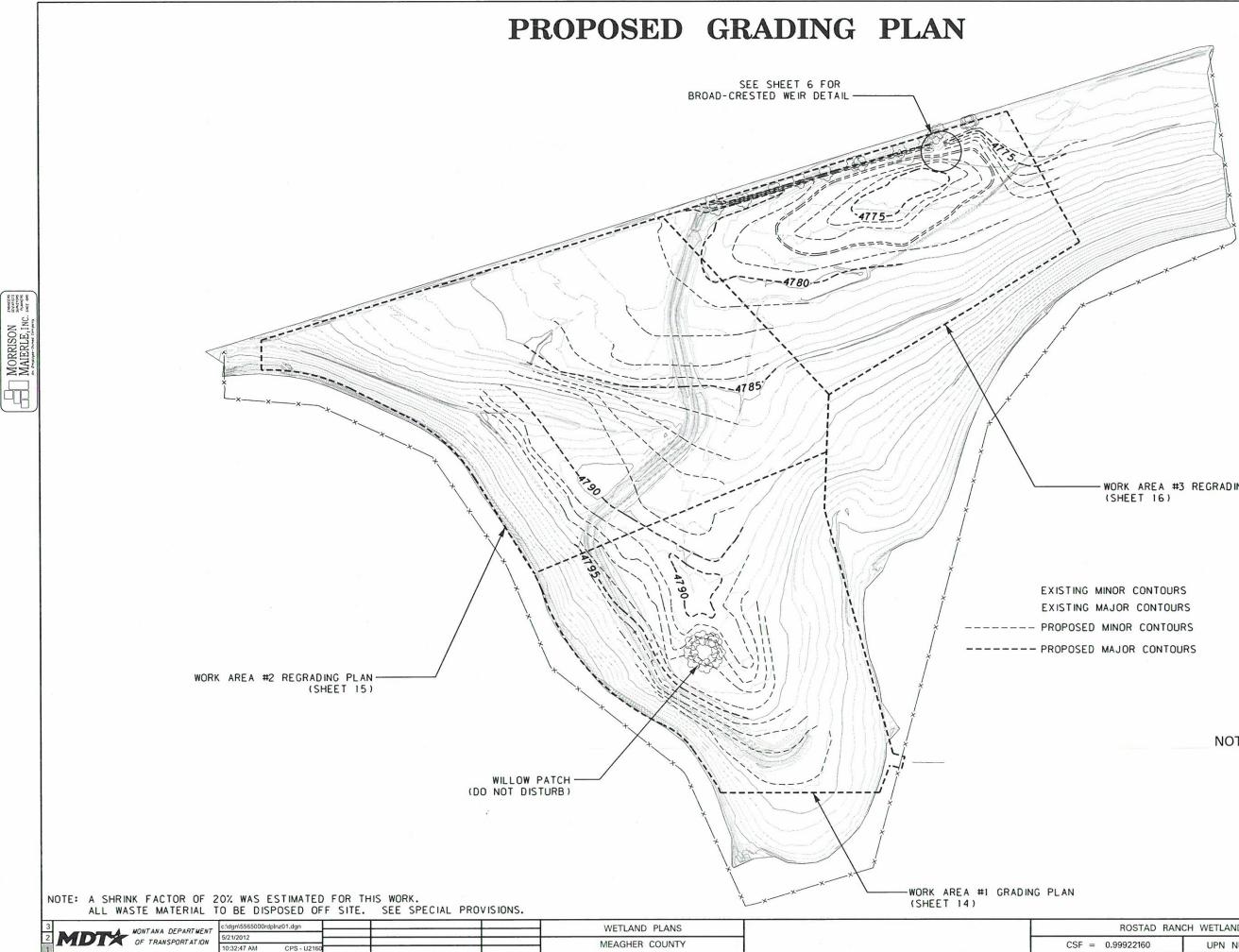

NOTE: THE CSF HAS BEEN APPLIED TO ALL DIMENSIONS ON THIS SHEET.

OSTAD RANCH WETLAND MI	TIGATION	PROJECT NO. STPX 0002(749)
0.99922160 UPN I	NUMBER 5565	SHEET 7 OF 19

	THE AND A DECEMBER OF A DECEMBER			
	0.1117-7			
		\sim		
· ·	¹ The second secon			
	4775	-cs)		
	0874			
582.6		2		
0616		ana d ^{al} 		
-062¥				
2012				
	1			
				n (28)
	O SCALE			
NOT	U SCALE			
			REMOVE	
80'±	10.1 3 -102		EXISTING BERM	5
GRADE (SEE SL			VIIAN	T
- ちぃんに ていってい うし	EETS 13-15)			
	EETS 13-15)			
			2" TOPSOIL N	1IN.
	COMP	ACTED EM	2" TOPSOIL N BANKMENT	IIN.
	COMP	ACTED EM		AIN.
	COMP	ACTED EM	BANKMENT	1IN.
	COMP	ACTED EM	BANKMENT	11N.
	COMP	ACTED EM	BANKMENT	AIN.
	COMP	ACTED EM	BANKMENT	11N.
	COMP	ACTED EM	BANKMENT	11N.
	COMP	ACTED EM	BANKMENT	11N.
	COMP	ACTED EM	BANKMENT	11N.
	COMP	ACTED EM	BANKMENT	11N.
	COMP	ACTED EM	BANKMENT	11N.
	COMP (INCI	ACTED EM	BANKMENT	PX 0002(749)

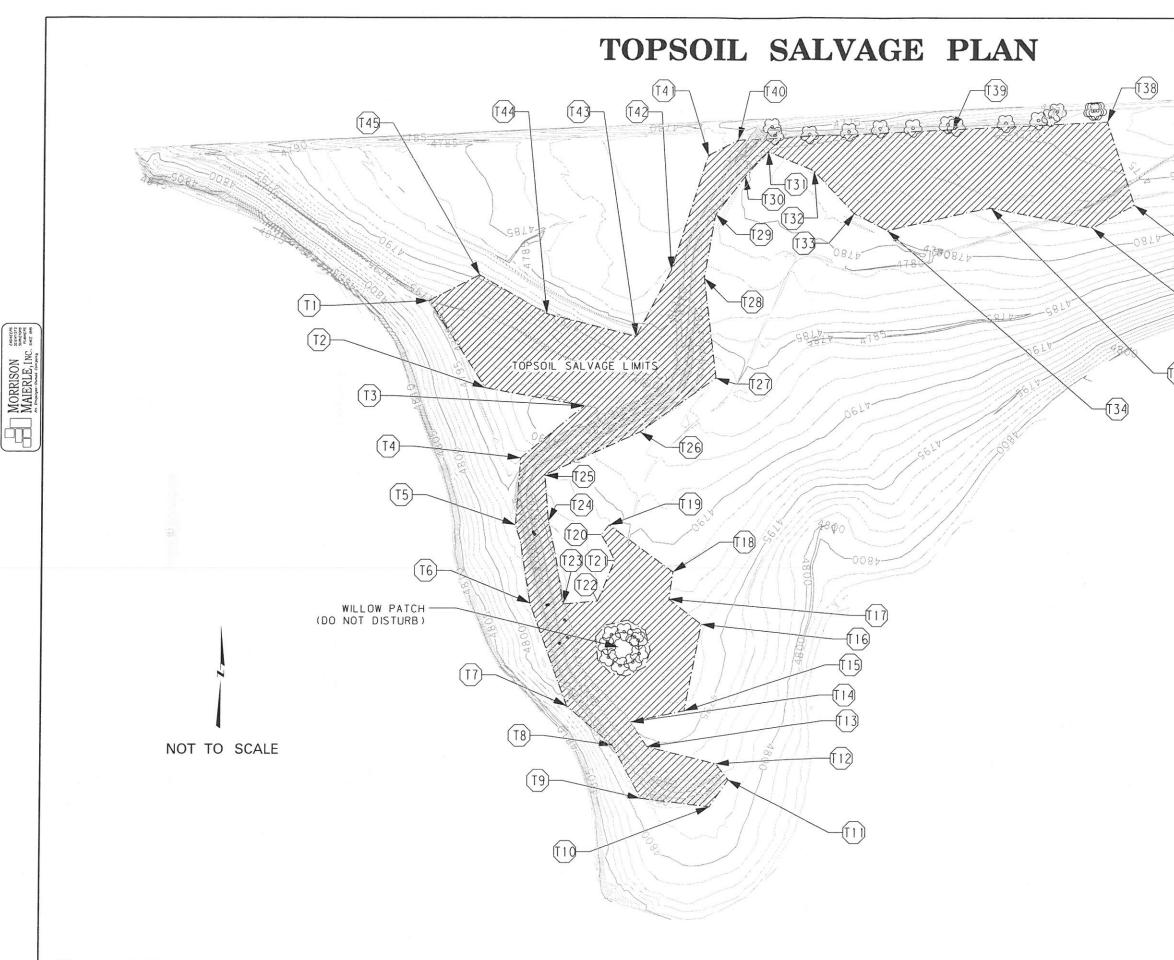


NOTE: SEE POINTS B1 THROUGH B36 ON SHEETS 14 AND 15.


0.99922160 UPN NUMBER 5565 SHEET 9 OF 19	STAD RANCH W	ETLAND MITIGATION	PROJECT NO. STPX 0002(749)
	0.99922160	UPN NUMBER 5565	SHEET 9 OF 19

PROPOSED SITE OVERVIEW

NOT TO SCALE

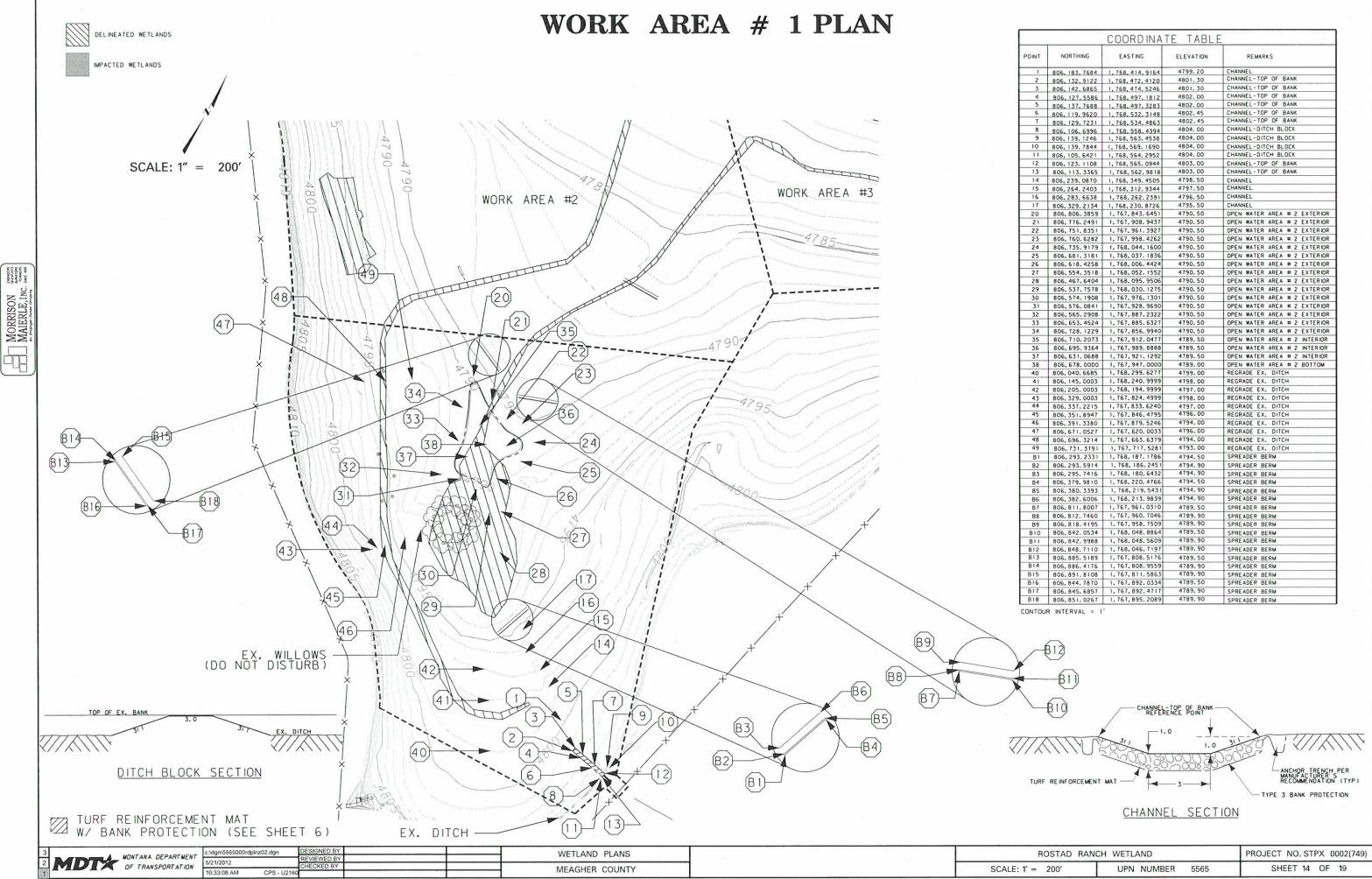

ROSTAD RANG	CH WETLAND	PROJECT NO. STPX 0002(749)
0.99922160	UPN NUMBER 5565	SHEET 11 OF 19

WORK AREA #3 REGRADING PLAN (SHEET 16)

NOT TO SCALE

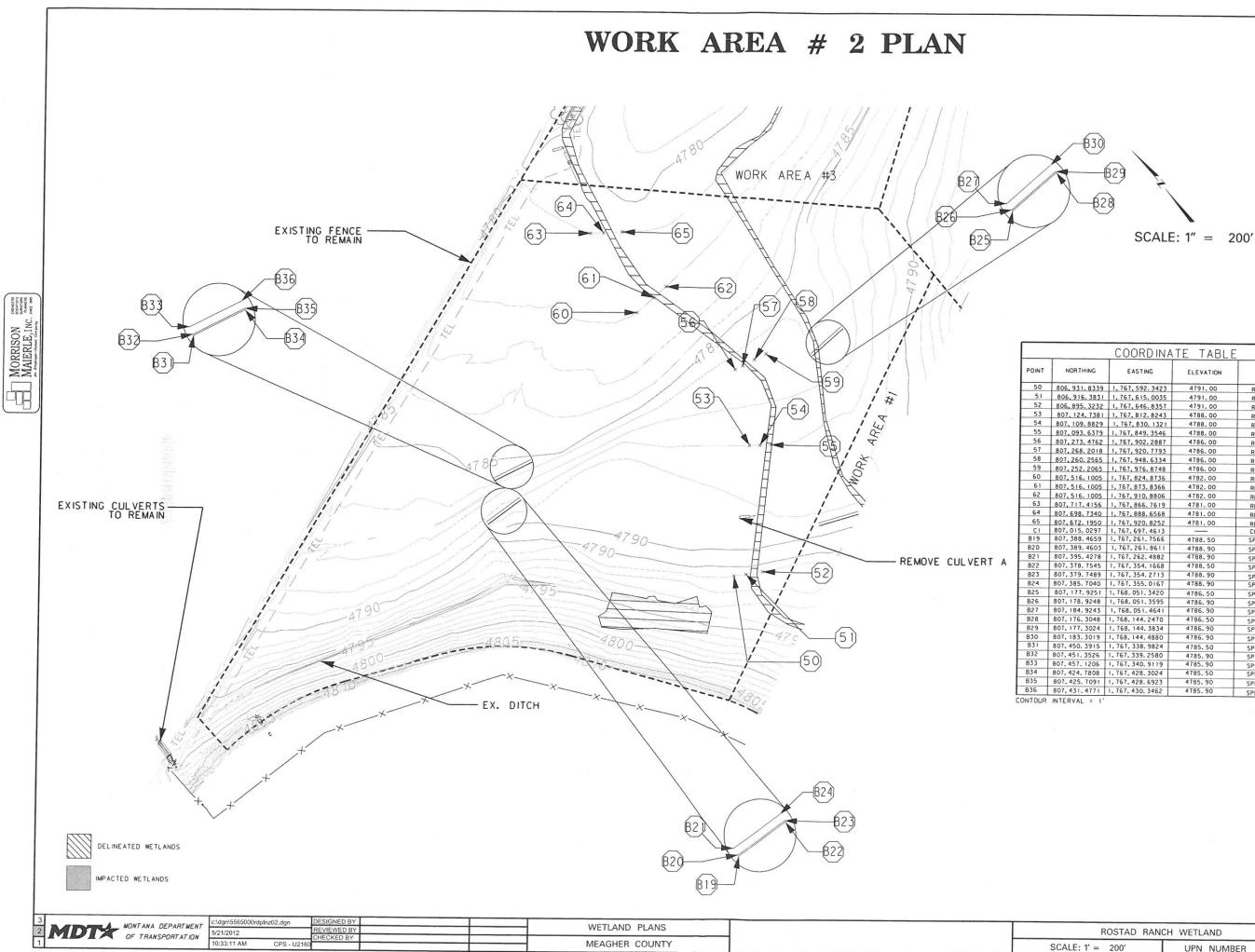
ROSTAD RANC	CH WETLAND	PROJECT NO. STPX 0002(749)
0.99922160	UPN NUMBER 5565	SHEET 12 OF 19

NOTE: SALVAGE TOPSOIL A MINIMUM OF 10 INCHES IN THE AREA SHOWN. ALL REMAINING GRADING IS CONSIDERED UNCLASSIFIED EXCAVATION.

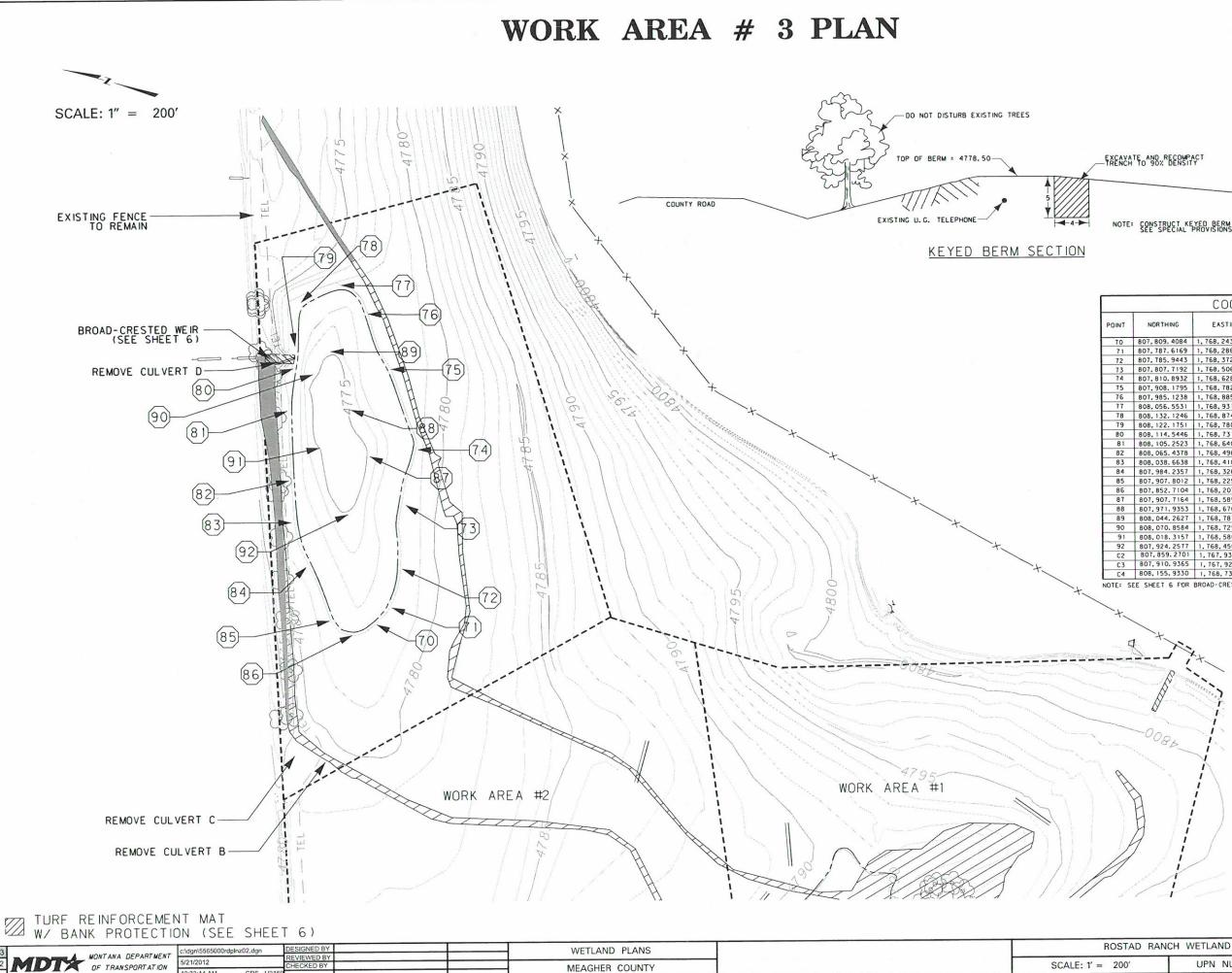

3 2 MONTANA DEPARTMENT 0F TRANSPORTATION 5/21/2012	DESIGNED BY REVIEWED BY	WETLAND PLANS	ROSTAD RANCH V	VETLAND MITIGATION	PROJECT NO. STPX 0002(749)
1 OF TRANSPORTATION 0/21/2012 1 10:32:56 AM CPS - U2160	CHECKED BY	MEAGHER COUNTY	CSF = 0.99922160	UPN NUMBER 5565	SHEET 13 OF 19

37 (136)

135


		DINATE T	ARLF
POINT	NORTHING	EASTING	REMARKS
T1	807, 264, 7516	1, 767, 201. 8270	TOPSOIL SALVAGE LIMIT
12	807,070.5917	1, 767, 413, 5761	TOPSOIL SALVAGE LIMIT
T3	807, 090, 0000	1, 767, 690, 0000	TOPSOIL SALVAGE LIMIT
T4	806, 908, 0360	1.767.556.9772	TOPSDIL SALVAGE LIMIT
T5	806, 726, 4550	1, 767, 589, 5919	TOPSDIL SALVAGE LIMIT
T6	806, 528, 8256	1, 767, 683. 0355	TOPSOIL SALVAGE LIMIT
17	806, 280. 0739	1, 767, 853, 0978	TOPSOIL SALVAGE LIMIT
T8	806, 205, 7849	1, 768, 002. 1935	TOPSOIL SALVAGE LIMIT
T9	806,083.5800	1, 768, 115, 3939	TOPSDIL SALVAGE LIMIT
T10	806. 107. 6820	1, 768, 303, 4910	TOPSDIL SALVAGE LIMIT
T11	806, 192, 5837	1, 768, 334, 8115	TOPSOIL SALVAGE LIMIT
T12	806, 226, 4927	1, 768, 290, 2898	TOPSDIL SALVAGE LIMIT
T13	806, 225, 4573	1, 768, 096, 1548	TOPSOIL SALVAGE LIMIT
T14	806.280.2004	1, 768, 035. 0730	TOPSDIL SALVAGE LIMIT
T15	806, 346, 4681	1, 768, 170, 3144	TOPSOIL SALVAGE LIMIT
T16	806, 588, 8780	1, 768, 154, 1365	TOPSOIL SALVAGE LIMIT
T17	806, 634, 1762	1, 768, 051, 8920	TOPSOIL SALVAGE LIMIT
T18	806, 709. 5006	1, 768, 043, 3501	TOPSOIL SALVAGE LIMIT
T19	806, 790, 0000	1, 767, 840, 0000	TOPSOIL SALVAGE LIMIT
T20	806, 759, 1991	1.767.824.8835	TOPSOIL SALVAGE LIMIT
T21	806.699.1467	1, 767, 878, 9824	TOPSOIL SALVAGE LIMIT
T22	806, 579, 9478	1, 767, 861, 6397	TOPSOIL SALVAGE LIMIT
T23	806, 549. 0156	1, 767, 771, 9493	TOPSOIL SALVAGE LIMIT
T24	806.759.6136	1, 767, 675, 1932	TOPSOIL SALVAGE LIMIT
T25	806, 880, 0805	1, 767, 633, 4664	TOPSOIL SALVAGE LIMIT
T26	807, 058, 5553	1, 767, 857, 7570	TOPSOIL SALVAGE LIMIT
T27	807, 253. 9846	1, 768, 021, 4775	TOPSOIL SALVAGE LIMIT
T28	807, 511, 5370	1, 767, 920, 3979	TOPSOIL SALVAGE LIMIT
129	807,688.7250	1.767.906.1007	TOPSOIL SALVAGE LIMIT
T30	807, 810.0000	1, 767, 960, 0000	TOPSOIL SALVAGE LIMIT
T31	807, 892, 3005	1, 768, 004, 3937	TOPSOIL SALVAGE LIMIT
T32	807, 870, 0000	1, 768, 140. 0000	TOPSOIL SALVAGE LIMIT
133	807, 785, 1380	1, 768, 277, 6063	TOPSOIL SALVAGE LIMIT
T34	807.762.8772	1, 768, 378, 0389	TOPSOIL SALVAGE LIMIT
135	807, 892, 3005	1, 768, 638, 4386	TOPSOIL SALVAGE LIMIT
T36	807, 909, 1255	1, 768, 923, 9465	TOPSDIL SALVAGE LIMIT
137	807, 998, 7840	1, 769, 020, 8917	TOPSOIL SALVAGE LIMIT
T38 T39	808, 200, 6612	1, 768, 890, 6318	TOPSOIL SALVAGE LIMIT
T40	808,075.3423	1. 768. 483. 4924	TOPSDIL SALVAGE LIMIT
T40	807, 900. 8424	1, 767, 915, 2210	TOPSOIL SALVAGE LIMIT
	807, 839, 2369	1, 767, 845, 5912	TOPSDIL SALVAGE LIMIT
T42	807, 511, 2782	1, 767, 828, 2485	TOPSOIL SALVAGE LIMIT
T43	807, 310, 0000	1, 767, 780, 3244	TOPSOIL SALVAGE LIMIT
T44	807, 310, 0000	1, 767, 525, 7237	TOPSOIL SALVAGE LIMIT
T45	807, 366, 8868	1, 767, 318, 9862	TOPSOIL SALVAGE LIMIT

CONTOUR INTERVAL = 1'


		COORDINA	<u>te tabl</u>	E
POINT	NORTHING	EASTING	ELEVATION	REMARKS
1	806. 183. 7684	1. 768. 414. 9164	4799.20	CHANNEL
2	806.132.9122	1. 768. 472. 4120	4801, 30	CHANNEL-TOP OF BANK
3	806, 142. 6865	1, 768, 474, 5246	4801.30	CHANNEL-TOP OF BANK
4	806. 127. 5586	1. 768, 497, 1812	4802.00	CHANNEL-TOP OF BANK CHANNEL-TOP OF BANK
	806.137.7688	1. 768. 497. 3283	4802.00	CHANNEL-TOP OF BANK
6	806, 119, 9620	1. 768. 532. 3148	4802.45	CHANNEL-TOP OF BANK
8	806. 129. 7231	1.768.534.4863	4804.00	CHANNEL-DITCH BLOCK
9	806, 106, 6996 806, 139, 1246	1, 768, 558, 4394	4804.00	CHANNEL-DITCH BLOCK
10	806, 139, 7844	1, 768, 569, 1690	4804.00	CHANNEL-DITCH BLOCK
11	806, 105, 6421	1, 768, 564, 2952	4804.00	CHANNEL-DITCH BLOCK
12	806.123.1108	1, 768, 565, 0944	4803.00	CHANNEL-TOP OF BANK
13	806, 113, 3365	1, 768, 562, 9818	4803.00	CHANNEL-TOP OF BANK
14	806, 239. 0870	1, 768, 349, 4505	4798.50	CHANNEL
15	806, 264, 2403	1, 768, 312, 9344	4797.50	CHANNEL
16	806, 283, 6638	1, 768, 262, 2391	4796.50	CHANNEL
17	806. 329. 2134	1, 768, 230, 8726	4795.50	CHANNEL
20	806, 806, 3859	1, 767, 843, 6451	4790.50	OPEN WATER AREA # 2 EXTERIOR
21	806, 776, 2491	1. 767. 908. 9437	4790.50	OPEN WATER AREA # 2 EXTERIOR
22	806, 751, 8351	1, 767, 961, 3927	4790.50	OPEN WATER AREA # 2 EXTERIOR
23	806, 760, 6282	1, 767, 998, 4262	4790.50	OPEN WATER AREA # 2 EXTERIOR
24	806. 735. 9179	1, 768, 044, 1600	4790.50	OPEN WATER AREA # 2 EXTERIOR
25	806.681.3181	1, 768, 037, 1836	4790.50	OPEN WATER AREA # 2 EXTERIOR
26	806.618.4258	1.768.006.4424	4790.50	OPEN WATER AREA # 2 EXTERIOR
27	806, 554, 3518	1, 768, 052, 1552	4790.50	OPEN WATER AREA # 2 EXTERIOR
28	806, 467, 6404	1, 768, 095, 9506	4790.50	OPEN WATER AREA # 2 EXTERIOR
29	806, 537, 7578	1, 768, 030, 1275	4790.50	OPEN WATER AREA # 2 EXTERIOR
30	806, 574, 1908	1, 767, 976, 1301	4790.50	OPEN WATER AREA # 2 EXTERIOR
31	806. 576. 0841	1, 767, 928, 9690	4790.50	OPEN WATER AREA # 2 EXTERIOR
32	806, 565, 2908	1, 767, 887, 2322	4790.50	OPEN WATER AREA # 2 EXTERIOR
33	806, 653, 4524	1, 767, 885, 6327	4790.50	OPEN WATER AREA # 2 EXTERIOR
34	806, 728, 1229	1.767.856.9940	4790.50 4789.50	OPEN WATER AREA # 2 EXTERIOR OPEN WATER AREA # 2 INTERIOR
36	806, 710. 2073 806, 695. 9364	1. 767, 989. 8888	4789.50	OPEN WATER AREA # 2 INTERIOR
37	806.631.0688	1, 767, 921, 1292	4789.50	OPEN WATER AREA # 2 INTERIOR
38	806, 678, 0000	1, 767, 947, 0000	4789.00	OPEN WATER AREA # 2 BOTTOM
40	806,040.6685	1, 768, 299, 6277	4799.00	REGRADE EX. DITCH
41	806, 145, 0003	1, 768, 240, 9999	4798.00	REGRADE EX. DITCH
42	806, 205, 0003	1. 768, 194. 9999	4797.00	REGRADE EX. DITCH
43	806, 329, 0003	1.767.824.4999	4798.00	REGRADE EX. DITCH
44	806, 337, 2215	1, 767, 833, 6240	4797.00	REGRADE EX. DITCH
45	806, 351, 8947	1, 767, 846, 4795	4796.00	REGRADE EX. DITCH
46	806, 391, 3380	1, 767, 879, 5246	4794.00	REGRADE EX. DITCH
47	806, 671. 0527	1.767.620.0033	4796.00	REGRADE EX. DITCH
48	806, 696. 3214	1.767.663.6379	4794.00	REGRADE EX. DITCH
49	806, 731, 3791	1, 767, 717, 5281	4793.00	REGRADE EX. DITCH
BI	806, 293, 2331	1, 768, 187, 1786	4794.50	SPREADER BERM
B2	806, 293, 5914	1, 768, 186, 2451	4794.90	SPREADER BERM
B3	806, 295, 7416	1, 768, 180, 6432	4794.90	SPREADER BERM
B4	806, 379, 9810	1, 768, 220, 4766	4794.50	SPREADER BERM
B5	806, 380. 3393	1, 768, 219, 5431	4794.90	SPREADER BERM
B6	806, 382, 6006	1, 768, 213, 9839	4794.90	SPREADER BERM
B7	806, 811, 8007	1.767.961.0310	4789.50	SPREADER BERM
88	806, 812, 7460	1.767,960.7046	4789.90	SPREADER BERM
B9	806, 818, 4195	1, 767, 958, 7509	4789.50	SPREADER BERM
B10	806, 842, 0534	1, 768, 048, 8864	4789.90	SPREADER BERM SPREADER BERM
B11	805, 842, 9988	1. 768. 048. 5609	4789.90	
B12 B13	806, 848, 7110 806, 885, 5189	1. 767. 808. 5176	4789.50	SPREADER BERM
B14	806, 885, 5189	1, 767, 808, 9559	4789.90	SPREADER BERM
B15	806, 891, 8108	1, 767, 811, 5863	4789.90	SPREADER BERM
B16	806, 844. 7870	1, 767, 892, 0334	4789.50	SPREADER BERM
B17	806, 845, 6857	1. 767. 892. 4717	4789.90	SPREADER BERM
B18	806, 851, 0267	1. 767. 895. 2089	4789.90	SPREADER BERM

ROSTAD RAN	CH WETLAND	PROJECT NO. STPX 0002(749)
E: 1' = 200'	UPN NUMBER 5565	SHEET 14 OF 19

	COORDINATE TABLE						
NG	EASTING	ELEVATION	REMARKS				
8339	1. 767, 592. 3423	4791.00	REGRADE EX. DITCH				
3831	1, 767, 615, 0035	4791.00	REGRADE EX. DITCH				
3232	1, 767, 646. 8357	4791.00	REGRADE EX. DITCH				
7381	1.767.812.8243	4788.00	REGRADE EX. DITCH				
8829	1, 767, 830, 1321	4788.00	REGRADE EX. DITCH				
6379	1, 767, 849, 3546	4788.00	REGRADE EX. DITCH				
4762	1, 767, 902, 2887	4786.00	REGRADE EX. DITCH				
2018	1, 767, 920, 7793	4786.00	REGRADE EX. DITCH				
2565	1, 767, 948, 6334	4786.00	REGRADE EX. DITCH				
2065	1, 767, 976. 8748	4786.00	REGRADE EX. DITCH				
1005	1, 767, 824, 8736	4782.00	REGRADE EX. DITCH				
1005	1, 767, 873, 8366	4782.00	REGRADE EX. DITCH				
1005	1, 767, 910. 8806	4782.00	REGRADE EX. DITCH				
4156	1, 767, 866, 7619	4781.00	REGRADE EX. DITCH				
7340	1, 767, 888. 6568	4781.00	REGRADE EX. DITCH				
1950	1, 767, 920, 8252	4781.00	REGRADE EX. DITCH				
0297	1, 767, 697, 4613		CULVERT A				
4659	1, 767, 261, 7566	4788.50	SPREADER BERM				
1603	1.767,261.8611	4788.90	SPREADER BERM				
1278	1.767.262.4882	4788.90	SPREADER BERM				
7545	1, 767, 354, 1668	4788.50	SPREADER BERM				
489	1, 767, 354, 2713	4788.90	SPREADER BERM				
040	1, 767, 355, 0167	4788.90	SPREADER BERM				
9251	1, 768. 051. 3420	4786.50	SPREADER BERM				
248	1, 768, 051, 3595	4786.90	SPREADER BERM				
243	1, 768, 051, 4641	4786.90	SPREADER BERM				
048	1, 768, 144. 2470	4786.50	SPREADER BERM				
024	1, 768, 144. 3834	4786.90	SPREADER BERM				
019	1, 768, 144, 4880	4786.90	SPREADER BERM				
915	1, 767, 338, 9824	4785.50	SPREADER BERM				
526	1, 767, 339, 2580	4785.90	SPREADER BERM				
206	1, 767, 340, 9119	4785.90	SPREADER BERM				
808	1, 767, 428. 3024	4785.50	SPREADER BERM				
091	1.767,428.6923	4785.90	SPREADER BERM				
771	1. 767. 430. 3462	4785.90	SPREADER BERM				
= 1'							

ROSTAD RAN	CH WETLAND	PROJECT NO. STPX 0002(749)		
1' = 200'	UPN NUMBER 5565	SHEET 15 OF 19		

MORRISON MAIERLE, INC.

CPS - U216

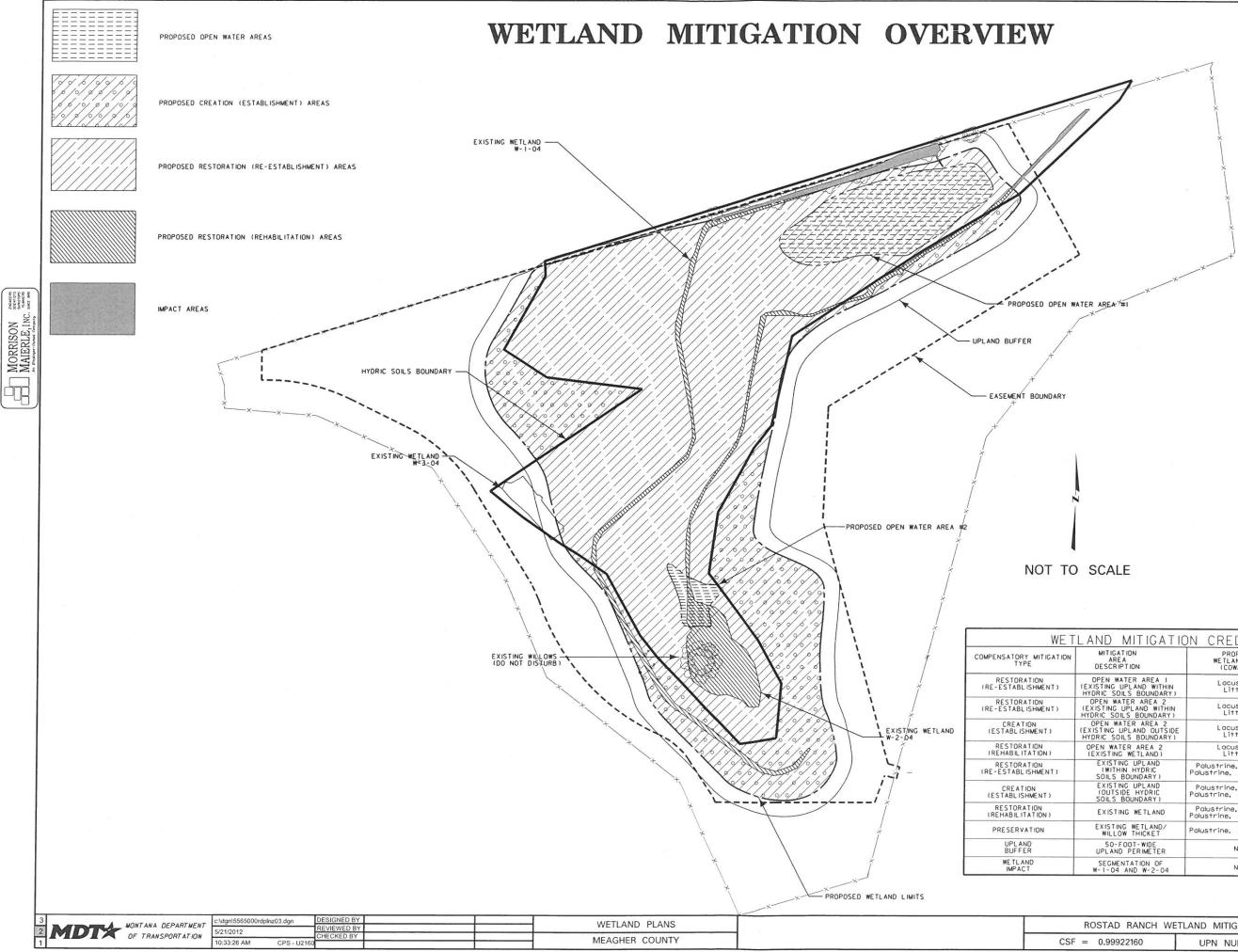
10:33:14 AM

ENCINEERS SCIENTISTS SURVETORS PLANNERS SINCE RHS

SCAL

OPEN WATER AREA #1

NOTE: CONSTRUCT KEYED BERM SECTION BETWEEN POINTS 78 AND 84. SEE SPECIAL PROVISIONS FOR MORE INFORMATION.


	1	T	NATE TAE	
POINT	NORTHING	EASTING	ELEVATION	REMARKS
70	807, 809, 4084	1, 768, 243, 5785	4778.50	OPEN WATER AREA # 1 EXTERIOR
71	807, 787. 6169	1, 768, 286, 8196	4778.50	OPEN WATER AREA # 1 EXTERIOR
72	807, 785, 9443	1, 768, 372, 4129	4778.50	OPEN WATER AREA # 1 EXTERIOR
73	807, 807, 7192	1, 768, 506, 7200	4778.50	OPEN WATER AREA # 1 EXTERIOR
74	807.810.8932	1. 768, 628, 8023	4778.50	OPEN WATER AREA # 1 EXTERIOR
75	807, 908, 1795	1, 768, 782, 5774	4778.50	OPEN WATER AREA # 1 EXTERIOR
76	807.985.1238	1, 768, 885, 7440	4778.50	OPEN WATER AREA # 1 EXTERIOR
77	808,056,5531	1, 768, 931, 6118	4778.50	OPEN WATER AREA # 1 EXTERIOR
78	808. 132. 1246	1. 768. 874. 1809	4778.50	OPEN WATER AREA # 1 EXTERIOR
79	808, 122, 1751	1, 768, 780, 3660	4778.50	OPEN WATER AREA # 1 EXTERIOR
80	808, 114. 5446	1, 768, 731, 7721	4778.50	OPEN WATER AREA # 1 EXTERIOR
81	808, 105, 2523	1.768,640.0309	4778.50	OPEN WATER AREA # 1 EXTERIOR
82	808.065.4378	1, 768, 496, 0431	4778.50	OPEN WATER AREA # 1 EXTERIOR
83	808,038.6638	1, 768, 410, 1362	4778.50	OPEN WATER AREA # 1 EXTERIOR
84	807.984.2357	1, 768, 326, 2839	4778.50	OPEN WATER AREA # 1 EXTERIOR
85	807, 907. 8012	1, 768, 225, 8626	4778.50	OPEN WATER AREA # 1 EXTERIOR
86	807, 852, 7104	1. 768. 207. 2386	4778.50	OPEN WATER AREA # 1 EXTERIOR
87	807.907.7164	1, 768, 589, 0907	4775.30	OPEN WATER AREA # 1 INTERIOR
88	807, 971, 9353	1. 768. 676. 0132	4775.30	OPEN WATER AREA # 1 INTERIOR
89	808.044.2627	1, 768, 787, 5855	4775.15	OPEN WATER AREA # 1 INTERIOR
90	808,070.8584	1.768.729.8534	4775.33	OPEN WATER AREA # 1 INTERIOR
91	808,018.3157	1.768.580.0092	4775.00	OPEN WATER AREA # 1 INTERIOR
92	807, 924. 2577	1. 768. 456. 7607	4775.20	OPEN WATER AREA # 1 INTERIOR
C2	807, 859, 2701	1, 767, 934, 9130		CULVERT B
C3	807, 910, 9365	1, 767, 928, 8917		CULVERT C
C4	808, 155, 9330	1. 768, 733, 3687		CULVERT D

NOTE: SEE SHEET & FOR BROAD-CRESTED WEIR LOCATION

DELINEATED WETLANDS

IMPACTED WETLANDS

ROSTAD RANG	CH WETLAND	PROJECT NO. STPX 0002(749)
LE: $1' = 200'$	UPN NUMBER 5565	SHEET 16 OF 19

ND MITIGATIC	N CREDITING	STRATEG	Y TABL	E
MITIGATION AREA DESCRIPTION	PROPOSED WETLAND TYPE (COWARDIN)	MITIGATION SURFACE AREA (ocres)	ANTICIPATED MITIGATION RATIOS	ANTICIPATED MITIGATION CREDIT (ocres)
PEN WATER AREA I STING UPLAND WITHIN RIC SOILS BOUNDARY)	Lacustrine, Littoral	3.21	1:1	3.21
PEN WATER AREA 2 ISTING UPLAND WITHIN Locustrine, RIC SOILS BOUNDARY) Littorol		0.45	1:1	0.45
PEN WATER AREA 2 STING UPLAND OUTSIDE RIC SOILS BOUNDARY)	Lacustrine, Littoral	0.04	1:1	0.04
EN WATER AREA 2 XISTING WETLAND)	Lacustrine, Littoral	0.30	1.5:1	0.20
EXISTING UPLAND (WITHIN HYDRIC SOILS BOUNDARY)	Palustrine, emergent/ Palustrine, scrub-shrub	23.45	1:1	23.45
EXISTING UPLAND (OUTSIDE HYDRIC SOILS BOUNDARY)	Palustrine, emergent/ Palustrine, scrub-shrub	9.80	1:1	9.80
EXISTING WETLAND	Palustrine, emergent/ Palustrine, scrub-shrub	2.33	1.5:1	1.55
EXISTING WETLAND/ WILLOW THICKET	Polustrine, scrub-shrub	0.25	4: 1	0.06
50-FODT-WIDE UPLAND PERIMETER	NZA	6.76	5: 1	1.35
SEGMENTATION OF 1-1-04 AND W-2-04	NZA	N/A	1:1	-0.41
		TOTAL MI	TIGATION CRED	IT = 39.70

STAD RANCH WI	ETLAND MITIGATION	PROJECT NO. STPX 0002(749)
0.99922160	UPN NUMBER 5565	SHEET 17 OF 19

CONCEPTUAL REVEGETATION PLAN

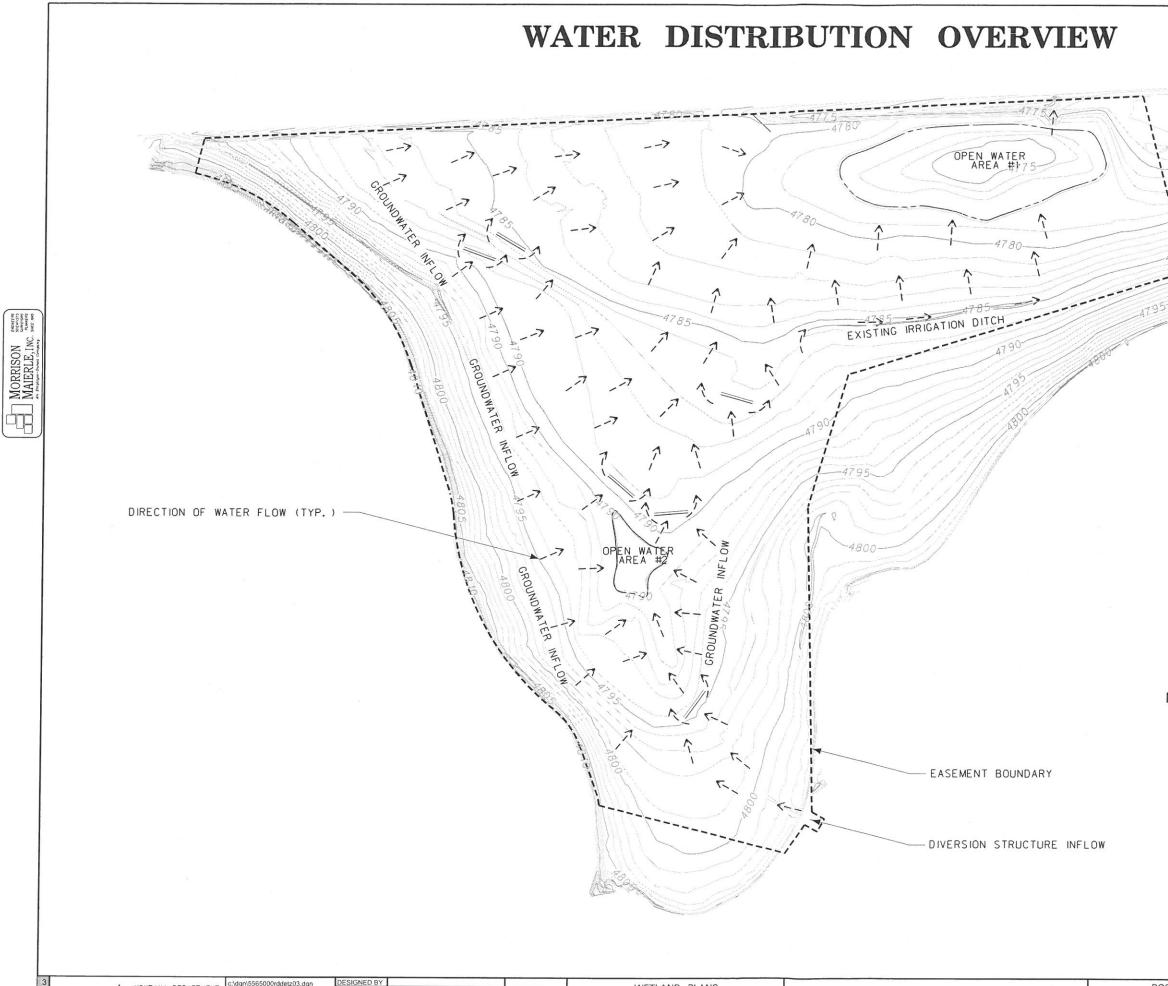
Area Descriptions 16A	Species – Common Name	Species – Scientific Name	Planting Methodology	Number of Plants*
2	Willows**	Salix species	Cuttings	2,000
	quaking aspen	Populus tremuloides	Containerized trees (5 gallon)	100
1, 3		Populus balsamifera	Containerized trees (5 gallon)	100

*Plant locations to be provided in the field by MDT personnel. ** Willow cuttings should be from a variety of species found in the region.

Table 2. Seed Mixtures

Area Descriptions 16A	Species – Common Name	Species – Scientific Name	Seeding Rate (Ibs. of PLS/acre)
	American mannagrass	Glyceria grandis	4.0
	American sloughgrass Beckmannia syzigad		7.0
Wetland Seed	Baltic rush	Juncus balticus	0.1
	Beaked sedge Carex utriculata		1.0
Mixture – Open	Nebraska sedge	Carex nebrascensis	2.0
Water Areas (2)	'Nortran' tufted hairgrass	Deschampsia cespitosa	1.0
	'Nortran' tufted hairgrass	Deschampsia cespitosa	2.0
W. A. J. C. J.	Bluejoint reedgrass	Calamagrostis canadensis	1.0
Wetland Seed	Baltic rush	Juncus balticus	0.1
Mixture – Restoration Area (1)	'Prior' slender wheatgrass	Elymus trachycaulus	2.0
	'Rosana' western wheatgrass	Pascopyrum smithii	5.0

Seed application rate by drill seeding (rates double for broadcast seeding)


3 NONTANA DEPARTMENT c:\dgn\5565000rdplnzt	3.dgn DESIGNED BY REVIEWED BY	 WETLAND PLANS	ROSTAD RANCH W	ETLAND MITIGATION	PROJECT NO. STPX 0002(749)
2 1 MDTX NONTANA DEPARTMENT OF TRANSPORTATION 10:33:30 AM	CHECKED BY CPS - U2160	MEAGHER COUNTY	CSF = 0.99922160	UPN NUMBER 5565	SHEET 18 OF 19

				1.00	mmmmmminin
		2			477
-Ch		3			
					185
				478	5
1190				1	
-xx-		4785-+		K	
					\sim
				47901	1795
PROPOSED WETLAND LIMITS					S.
				AL MF	4800
				- Control	() A
4805	1 34				
×					
PROPOSED OPEN WATER AREA #2	4.800				
	+			E	
EXISTING WILLOW PATCH TO REMAIN	+				
	+	+			KI
		+			lit"-
		*			
			A Real	S	Ĵ
1			X	×	×
NOT TO SCALE			×>	X	

GENERAL SEEDING & PLANTING LOCATIONS

*	WILLOW CUTTINGS	AREA 2
	CONTAINERIZED TREES AND SHRUBS (APPROXIMATE LOCATIONS)	AREA 1 & 3
	OPEN WATER AREA SEEDING	AREA 2
	RESTORATION AREA SEEDING	AREA 1

 NONT AN A DEPARTMENT OF TRANSPORTATION
 C:\dgn:5565000rddetz03.dgn
 DESIGNED BY
 C
 C
 ROSTA

 10:33:99 AM
 CPS-U2160
 CHECKED BY
 CHECKED BY

2

NOT TO SCALE

NOTE: FOR INFORMATION PURPOSES ONLY

STAD RANCH	WETLAND MITIGATION	PROJECT NO. STPX 0002(749)
0.99922160	UPN NUMBER 5565	SHEET 19 OF 19