MONTANA DEPARTMENT OF TRANSPORTATION WETLAND MITIGATION MONITORING REPORT: YEAR 2008

Alkali Lake Pondera County, Montana

Prepared for:

MONTANA DEPARTMENT OF TRANSPORTATION 2701 Prospect Ave Helena, MT 59620-1001

December 2008

Prepared by:

POST, BUCKLEY, SCHUH, AND JERNIGAN 801 North Last Chance Gulch, Suite 101 Helena, MT 59601-3360

PBS&J Project No: 0B4308801.04.02

MONTANA DEPARTMENT OF TRANSPORTATION

WETLAND MITIGATION MONITORING REPORT:

YEAR 2008

Alkali Lake Pondera County, Montana

Prepared for:

MONTANA DEPARTMENT OF TRANSPORTATION 2701 Prospect Ave Helena, MT 59620-1001

Prepared by:

POST, BUCKLEY, SCHUH, AND JERNIGAN 801 North Last Chance Gulch, Suite 101 Helena, MT 59601-3360

December 2008

Project No: 0B4308801.04.02

"MDT attempts to provide accommodations for any known disability that may interfere with a person participating in any service, program, or activity of the Department of Transportation. Alternative accessible formats of this information will be provided upon request. For further information, call 406-444-7228 or TTY (800-335-7592) or by calling Montana Relay at 711."

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	METHODS	4
	2.1 Monitoring Dates and Activities	4
	2.2 Hydrology	4
	2.3 Vegetation	5
	2.4 Soils	5
	2.5 Wetland Delineation	5
	2.6 Mammals, Reptiles, and Amphibians	6
	2.7 Birds	6
	2.8 Macroinvertebrates	6
	2.9 Functional Assessment	6
	2.10 Photographs	7
	2.11 GPS Data	7
	2.12 Maintenance Needs	7
3.0	RESULTS	7
	3.1 Hydrology	7
	3.2 Vegetation	8
	3.3 Soils	14
	3.4 Wetland Delineation	16
	3.5 Wildlife	17
	3.6 Macroinvertebrates	19
	3.7 Functional Assessment	20
	3.8 Photographs	20
	3.9 Maintenance Needs/Recommendations	20
	3.10 Current Credit Summary	21
4.0	REFERENCES	22

TABLES

Table 1 Final Tribal and Corps of Engineers credit ratios for the Alkali Lake Wetland Mitigation Project, August 2005. Table 2 2006 - 2008 vegetation species list for Alkali Lake Wetland Mitigation Site. Table 3 2006 - 2008 data summary for Transect 1. Table 4 2006 - 2008 data summary for Transect 2. Table 5 2006 - 2008 data summary for Transect 3. Table 6 Guidelines for metals in sediment for the protection of aquatic life. Table 7 2008 soil metals analysis for North Alkali, South Alkali, and Alkali Lakes. Table 8 Aquatic and wetland habitat types and acreages from 2006-2008 at the Alkali Lake Wetland Mitigation Site. Fish and wildlife species observed within the Alkali Lake Wetland Table 9 Mitigation Site, 2006 - 2008. Table 10 Summary of 2006 to 2008 wetland function/value ratings and functional points at the Alkali Lake Wetland Mitigation Site. Table 11 2008 Tribal and Corps of Engineers credits at the Alkali Lake Wetland Mitigation Site. Table 12 *Years sampled for each water (1-2) and soil (A-O) sample location at* North Alkali, South Alkali, and alkali Lakes.

CHARTS

Chart 1 Transect maps showing habitat types of Transect 1 from start (0 feet) to end (175 feet in 2006 and 412 feet in 2007-2008). Chart 2 *Length of habitat types within Transect 1 during 2006 to 2008.* Chart 3 Transect maps showing habitat types of Transect 2 from start (0 feet) to end (175 feet in 2006 and 297 feet in 2007-2008). Chart 4 Length of habitat types within Transect 2 during 2006 to 2008. Chart 5 *Transect maps showing vegetation types of Transect 3 from start (0 feet)* to end (100 feet in 2006 and 173 feet in 2007-2008). Chart 6 Length of habitat types within Transect 3 during 2006 to 2008. Chart 7 Bioassessment scores using the wetland index for 2006 (average of two samples) and 2007-2008 (one sample).

CHARTS (continued)

Chart 8

Arsenic metal levels in soil samples collected from 2004 (baseline) and 2006 to 2008 for North Alkali, South Alkali, and Alkali Lakes.

Chart 9

Cadmium metal levels in soil samples collected from 2004 (baseline) and 2006 to 2008 for North Alkali, South Alkali, and Alkali Lakes.

Chart 10

Nickel metal levels in soil samples collected from 2004 (baseline) and 2006 to 2008 for North Alkali, South Alkali, and Alkali Lakes.

Chart 11

Selenium metal levels in soil samples collected from 2004 (baseline) and 2006 to 2008 for North Alkali, South Alkali, and Alkali Lakes.

FIGURES

Figure 1 Project Site Location Map
Figure 2 2008 Monitoring Activity Locations
Figure 3 2008 Mapped Site Features
Figure 4 2004-2008 Soils Metals Data

APPENDICES

Appendix A Figures 2 & 3

Appendix B 2008 Wetland Mitigation Site Monitoring Form

2008 Bird Survey Form

2008 COE Wetland Delineation Forms 2008 MDT Functional Assessment Forms

Appendix C 2008 Representative Photographs

Appendix D Project Plan Sheet

Appendix E Bird Survey Protocol

GPS Protocol

Appendix F 2008 Macroinvertebrate Sampling Protocol and Data

Appendix G Figure 4

2004 - 2008 Soils Metal Data

1.0 INTRODUCTION

The Montana Department of Transportation (MDT) in cooperation with the Bureau of Indian Affairs (BIA) and the Blackfeet Nation's Environmental Office and Fish & Wildlife Department, designed and built a wetland restoration project within a historic lakebed (Southeast Alkali Lake) on the Blackfeet Indian Reservation in Pondera County, Montana (**Figure 1**). The Alkali Lake restoration project was originally proposed in 1996 by the Blackfeet Nation Fish & Wildlife program and the U.S. Fish and Wildlife Service (USFWS) as a means to re-establish shorebird and wetland habitat to the southeastern arm of Alkali Lake. The project was not pursued as it was considered to be extremely cost prohibitive at the time. In 2002, the Blackfeet Tribal Fish & Game Office and Environmental Office approached MDT to re-examine Alkali Lake. A feasibility study produced in 2003 indicated that Alkali Lake would be a suitable area for wetland restoration (Land and Water Consulting [LWC] 2003).

The Alkali Lake Wetland Mitigation project comprises approximately 175 acres of historic lakebed. The mitigation project was constructed and flooded in late summer/early fall of 2005 (**Appendix D**). Hydrology was restored to the lakebed by constructing a pipeline from the Birch Creek Main Canal to Blacktail Creek; water then flows from a diversion in Blacktail Creek into the Badger Fisher Main Canal, K Canal, and 19K Canal where another pipeline was built to deliver water to the Alkali Lake site (**Figure 1**). Project goals are to restore/re-establish approximately 74.42 acres of historic wetlands (an estimated 20-30 acres of which were dominated by remnant hydrophytic vegetation, but lacked wetland hydrology); restore/re-establish approximately 101.4 acres of historic open water/lakebed (some or much of which could also conceivably result in wetland restoration); and provide fencing and an upland buffer. The project credit ratios approved by the Corps of Engineers (Steinle pers. comm.; Steinle 2006) and the Blackfeet Tribe (Adams pers. comm.; Weatherwax 2005) are presented in **Table 1**.

MDT pursued wetland mitigation at this site to offset wetland impacts associated with the MDT Meriwether-East highway reconstruction project on the Blackfeet Reservation. Any leftover wetland credits would be held in reserve for application against future highway project-related wetland impacts on the Blackfeet Reservation.

Final approved performance standards (Steinle 2004a and 2004b) are as follows:

Wetland Hydrology Success will be achieved where wetland hydrology is present as per the technical guidelines in the 1987 COE Wetland Delineation Manual.

Hydric Soil Success will be achieved where hydric soil conditions are present (per the most recent NRCS definitions for hydric soil) or appear to be forming, the soil is sufficiently stable to prevent erosion, and the soil is able to support plant cover. Since typical hydric soil indicators may require long periods to form, a lack of distinctive hydric soil features will not be considered a failure if hydrologic and vegetation success is achieved.

Hydrophytic Vegetation Success will be achieved where wetland vegetation is dominant as per the technical guidelines in the 1987 COE Wetland Delineation Manual, canopy cover of facultative or wetter species is $\geq 50\%$, and noxious weeds do not exceed 10% cover.

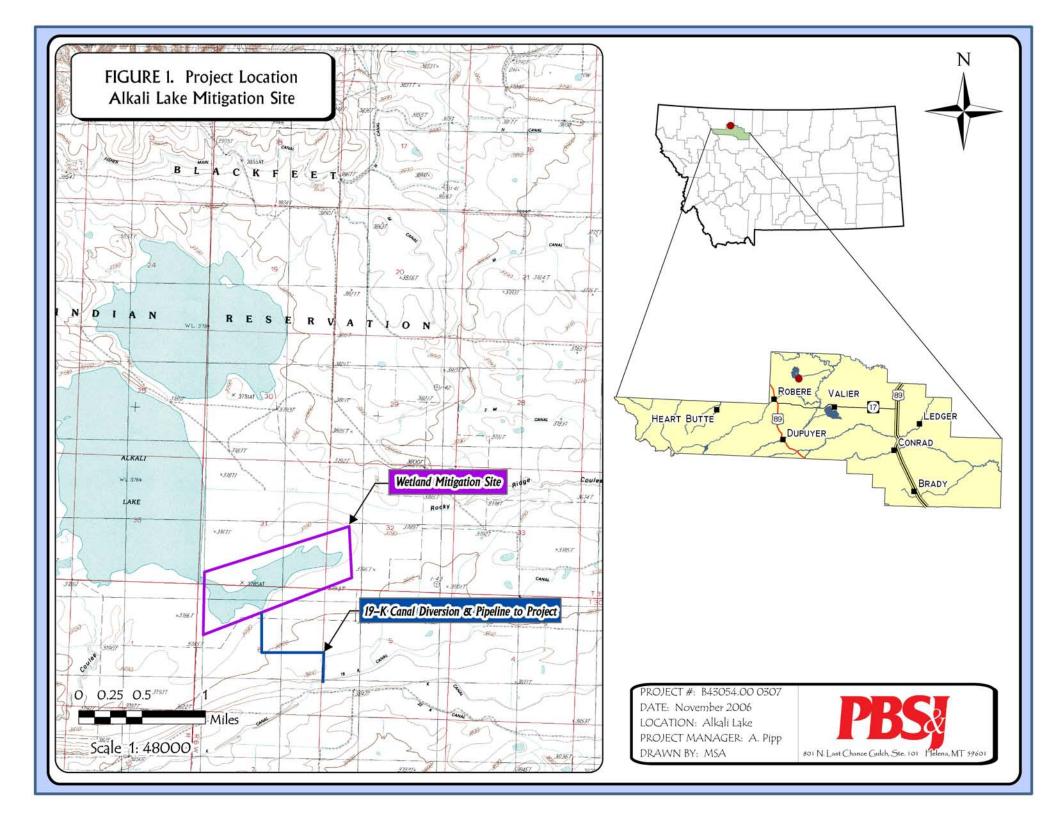


Table 1: Final Tribal and Corps of Engineers credit ratios for the Alkali Lake Wetland Mitigation Project, August 2005.

Table 1. Final Tribal and Corps of Engineers C	Form of Mitigation	Form of Mitigation	Mitigation Site Established Prior to Impacts			
Proposed Mitigation Feature	Using Tribal Definitions ¹	Using Corps of Engineers Definitions ²	Tribal Credit Ratio / Credit ¹	Corps of Engineers Credit Ratio / Credit ²		
Primary wetland restoration area consisting of	Primary Restoration	Restoration:	1:2.5 ratio	1:1 ratio		
approximately 74.42 acres between elevations 3785.0 and 3786.0 that would flood to depths between 0 and 1 foot.		Re-establishment	29.77 acres credit	74.42 acres credit		
Approximately 101.4 acres of the site between elevations 3784.0 and 3785.0 that would flood to depths between 1 and 2 feet (48.77 acres at 1-1.5 feet, 49.55 acres at 1.5-2 feet, 3.08 acres at 2 feet), which may result in additional wetland restoration, but was conservatively estimated to result in open water for purposes of credit calculation. For Corps of Engineers crediting, open water credit would be limited to an amount matching wetland restoration credit (74.42 acres).	Primary Restoration	Restoration: Re-establishment	1:2.5 ratio 40.56 acres credit	1:1 ratio for open water up to an amount matching wetland restoration credit 74.42 acres credit ³		
Approximately 45.12 acres of a 100 foot-wide upland buffer, which is proposed within the fenced easement along the lakebed's north, east, and south perimeter.	Upland Buffer	Upland Buffer	1:4 ratio	1:4 ratio on maximum 50-foot width (22.56 acres)		
			11.28 acres credit	5.64 acres credit		
	TOTAL 81.61 acres 154.48 acres ³					

¹From Blackfeet Tribe's Mitigation Policy.

² From COE (2005) Wetland Compensatory Mitigation Ratios, Montana Regulatory Program.

³ Credit could exceed this amount depending on whether any of the 1- to 2-foot deep areas restore to wetlands, rather than open water, to a maximum of 181.46 acres if the entire lakebed restores to wetland.

The following concept of "dominance", as defined in the 1987 Army COE wetland delineation manual, will be employed during future routine wetland determinations in created / restored wetlands: "Subjectively determine the dominant species by estimating those having the largest relative basal area (woody overstory), greatest height (woody understory), greatest percentage of aerial cover (herbaceous understory), and/or greatest number of stems (woody vines)."

No vegetative diversity standard is required at this site as many of the native wetland communities exhibit relatively low diversity in this alkaline environment. One such community, Nuttall's alkaligrass, was fairly dominant in the project area but lacked wetland hydrology. Efforts to increase vegetative diversity in this and other communities on the site included seeding the entire lakebed with eight native saline-tolerant and clay soil-adapted species suited for different inundation depths.

Upland Buffer Success will be achieved when the site is fenced and noxious weeds do not exceed 10% cover within the buffer. Further, any area within the creditable buffer zone disturbed by project construction must have at least 50% cover of non-weed species by the end of the monitoring period.

This report documents the third full year of monitoring results at the constructed mitigation site. (**Figure 2** in **Appendix A**).

2.0 METHODS

2.1 Monitoring Dates and Activities

The site was visited on May 16th (spring bird survey), August 14-15th (mid-season survey), and October 28th (fall bird survey) of 2007. All information contained on the Wetland Mitigation Site Monitoring Form was collected during these site visits (**Appendix B**). Monitoring activity locations are illustrated on **Figure 2** (**Appendix A**). Activities conducted and information collected included: wetland delineation; vegetation community mapping; vegetation transect monitoring; soils data collection; hydrology data collection; bird and wildlife use documentation; macroinvertebrate sampling; photographing; and a non-engineering examination of the site.

2.2 Hydrology

Hydrologic indicators were evaluated during all site visits. During the mid-season visit wetland hydrology indicators were recorded using procedures outlined in the COE 1987 Wetland Delineation Manual (Environmental Laboratory 1987). Hydrology data were recorded on COE Routine Wetland Delineation Data Forms and on the mitigation site monitoring form (**Appendix B**).

There are no groundwater monitoring wells at the site. Soil pits excavated for wetland delineation purposes were also used to evaluate the presence of groundwater if occurring within 12 inches from the ground surface; data was recorded on the routine wetland delineation data form (**Appendix B**).

2.3 Vegetation

General dominant species-based vegetation community types were delineated in the field during the mid-summer field visit. Standardized community mapping was not employed as many of these systems are geared towards climax vegetation. Estimated percent cover of the dominant species in each community type was recorded on the site monitoring form (**Appendix B**).

Annual changes in vegetation, especially the establishment and increase of hydrophytic plants, were evaluated through the use of belt transects. Three vegetation belt transects of approximately 10 feet wide and of various lengths were established in the fall of 2004 and spring of 2006 (**Figure 2** in **Appendix A**). The transect locations were recorded with a GPS unit in 2007. Percent cover was estimated for each successive vegetative species encountered within the "belt" using the following values: +(<1%); 1 (1-5%); 2 (6-10%); 3 (11-20%); 4 (21-50%); and 5 (>50%). Photographs were taken at the start of each transect during the mid-season visit (**Appendix C**).

No woody species were planted at the site. Consequently, no monitoring relative to the survival of such species was conducted. To help prevent weed dispersal, PBS&J vehicles were washed prior to each site visit.

2.4 Soils

Soil information was obtained from the Soil Survey for *Glacier County Area and Part of Pondera County, Montana* (NRCS 1980). Soils were evaluated during the mid-season visit according to procedures outlined in the COE 1987 Wetland Delineation Manual. In the field, surface soils were evaluated for signs of wetland formation during the mid-season visit. If wetland indicators for hydrology or plants were found then a soil pit was excavated to evaluate hydric soil formation. Soil data were then recorded on the COE Routine Wetland Delineation Form (**Appendix B**).

The U.S. Environmental Protection Agency's (EPA) conditional 401 certification for this wetland restoration project directed MDT to monitor soils for metals, particularly for selenium enrichment. Soil samples were collected at seven locations within the South Alkali Lake, North Alkali Lake, and Alkali Lake (project area) during August 2008. The South and North Alkali Lake soil samples serve as a comparison for the Alkali Lake soil samples. Soil was collected using a covered shovel blade. Soil in the upper six inches of a 1-foot radius was removed, bagged, and labeled at each sample site. Soil samples were analyzed for arsenic, cadmium, nickel, and selenium by Energy Laboratories in Billings, Montana (**Appendix G**).

2.5 Wetland Delineation

Wetland delineation was conducted during the mid-season visit according the 1987 COE Wetland Delineation Manual. In July 2008, consultation with the COE (Steinle pers. comm.) confirmed that, where the 1987 manual was used to establish baseline wetland conditions at MDT wetland mitigation sites, it should continue to be applied at such sites for the duration of the monitoring period. Consequently, application of the new *Interim Regional Supplement to the*

Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (COE 2008) was not required or undertaken at this site in 2008.

The monitoring area was investigated for the presence of wetland hydrology, hydrophytic vegetation, and hydric soils. The indicator status of vegetation was derived from the National List of Plant Species that Occur in Wetlands: Northwest Region 9 (Reed 1988). The information was recorded on a COE Routine Wetland Delineation Data Form (**Appendix B**).

2.6 Mammals, Reptiles, and Amphibians

Mammal, reptile, and amphibian species observations and other positive indicators of use, such as vocalizations, were recorded on the wetland monitoring form during the site visits. Indirect use indicators, including tracks, scat, burrow, eggshells, skins, and bones, were also recorded. These signs were recorded as the observer traversed the site while conducting other required activities. Direct sampling methods, such as snap traps, live traps, and pitfall traps, were not used. A comprehensive wildlife species list for the entire site was compiled.

2.7 Birds

Bird observations were recorded during all site visits. No formal census plots, spot mapping, point counts, or strip transects were conducted. However, bird observations were recorded in compliance with the Bird Survey Protocol during the spring and fall visits (**Appendix E**). During the mid-season visit, bird observations were recorded incidental to other monitoring activity observations. Observations were categorized by species, activity code, and general habitat association (Bird Survey Field Data Sheets in **Appendix B**). A comprehensive bird species list was compiled.

2.8 Macroinvertebrates

One macroinvertebrate sample was collected during the mid-season visit (**Figure 2** in **Appendix A**). The sample was collected and preserved according to the Macroinvertebrate Sampling Protocol (**Appendix F**). Laboratory analysis of the sample and reporting were conducted by Rhithron Associates, Inc. in Missoula, Montana.

2.9 Functional Assessment

In 2006 and 2007 a functional assessment was completed using the 1999 MDT Montana Wetland Assessment Method. In 2008 the 2008 MDT Montana Wetland Assessment Method (Berglund and McEldowney 2008) was applied. Field data necessary for this assessment were primarily collected during the mid-season site visit. The remainder of the functional assessment was completed in the office. For each wetland or group of wetlands a Functional Assessment Form was completed (**Appendix B**).

2.10 Photographs

Photographs were taken in 2008 to show the current land use surrounding the site, the upland buffer, the monitored area, and the vegetation transects. Three photograph points were established and their location recorded with a resource grade GPS unit in 2008 (**Figure 2** in **Appendix A**). Panoramic photographs were taken at each point.

2.11 GPS Data

During the 2008 monitoring season, site features and survey points were collected with a resource grade global positioning system (GPS) unit following the GPS protocols (**Appendix E**). In addition, some site features were hand-mapped onto an aerial photograph and then digitized. Site features and survey points that were mapped included fence boundaries, photograph points, transect beginnings and endings, wetland boundaries, non-wetland plant community boundaries, and a macroinvertebrate sampling location.

2.12 Maintenance Needs

The inlet channel, fencing, and other features were examined during the site visits for obvious signs of breaching, damage, or other problems. This did not constitute an engineering-level structural inspection, but rather a cursory examination.

3.0 RESULTS

3.1 Hydrology

Hydrology was restored to the lakebed by constructing an irrigation pipeline from the Birch Creek Main Canal to Blacktail Creek, which then connected to the Badger Fisher Main Canal, K Canal, and 19K Canal. Another pipeline was built to deliver water from the 19K Canal to the Alkali Lake site. The Blackfeet Tribe was to supply 200-acre feet of water between the dates of April 15th and May 15th (LWC 2004a). Upon filling of the 178-acre site, the flow rate was to be reduced to 0.7 cubic feet per second (or less) until June 1st, when inflow was to be terminated (LWC 2004a).

On May 16th irrigation water was flowing into the site. It was estimated that about 70-75% of the lakebed was inundated. Irrigation water was terminated and the site was allowed to draw down for a portion of the summer. On August 14th irrigation water was flowing into the site, but by the end of August 15th irrigation water had been turned off. The site was allowed to draw down again. On October 28th irrigation water to the 19-K Canal had been shut off and no water was entering into the mitigation site.

Although hydrology is primarily supplied from applied water rights, direct precipitation also influences wetland development. It was assumed that precipitation levels measured at the Valier Weather Station serve as an indicator of precipitation received at the mitigation site. From January to August 2008, 7.5 inches (in) of precipitation was measured at the Valier Weather

Station (#248501) (Western Regional Climate Center [WRCC] 2008). This represents about 75% of the mean (9.92 in) precipitation recorded between January and July from 1911 to August 2008 (WRCC 2008). This period in 2008 was moderately wet when compared to this period in 2007 (5.7 in) and 2006 (10.1 in) (WRCC 2008).

3.2 Vegetation

Vegetation community types were based on topography, hydrology, and plant composition. Plant species observed at the site have been compiled into a comprehensive list (**Table 2**). In 2003 *Salicornia rubra* was observed in the northwest corner of the site, but to date this species has not been since observed. Vegetation communities found in 2008 were Type 1 – Upland, Type 3 – *Hordeum* Wetland (formerly named *Puccinellia* Wetland), Type 4 – *Scirpus* Wetland, and Type 6 – Aquatic Wetland. The Type 5 – *Suaeda* Wetland, though expected, was not found in 2008. It was assumed that the site was too inundated for this community to develop in 2008.

Table 2: 2006 - 2008 vegetation species list for Alkali Lake Wetland Mitigation Site.

Scientific Name Indicator Status ¹		Scientific Name	Indicator Status ¹
Agropyron smithii	FACU	Iva axillaris	FAC
Alisma gramineum	OBL	Juncus balticus	OBL
Alopecurus arundinaceus	NI	Juncus torreyi	FACW
Aster campestris		Koeleria macrantha [syn. K. cristata]	
Aster falcatus	FACU	Lactuca serriola	FAC-
Astragalus (bisulcatus)	()	Lepidium (ramossissimum)	()
Atriplex gardneri [syn. A. nuttallii]		Melilotus spp.	
Atriplex patula	FACW	Najas guadalupensis	OBL
Chenopodium glaucum	FAC	Poa juncifolia	FACU+
Cirsium arvense ²	FACU+	Polygonum (amphibium) [syn. P. coccineum]	(OBL)
Distichlis spicata	FAC+	Polygonum ramosissimum	FAC-
Eleocharis acicularis	OBL	Potamogeton spp.	
Eleocharis palustris	OBL	Puccinellia nuttalliana	OBL
Grindelia squarrosa	FACU	Rumex crispus	FACW
Gutierrezia sarothrae		Sarcobatus vermiculatus	FACU+
Green algae		Scirpus acutus	OBL
Helianthus (nuttallii)	(FACW-)	Scirpus pungens [syn. S. americanus]	OBL
Hordeum brachyantherum	FACW	Suaeda calceoliformis [syn. S. depressa]	FACW-
Hordeum jubatum	FAC+	Typha latifolia	OBL

¹ Specific Epithets in parenthesis are not verified.

Bolded species were documented within the project area for the first time in 2008.

Vegetation Community Type 1 – Upland was comprised of a few wetland plants and a dominance of native upland plant species: *Atriplex gardneri, Poa juncifolia, Agropyron smithii,* Sarcobatus vermiculatus, Hordeum jubatum, and Suaeda calceoliformis (**Figure 3** in **Appendix A; Photos 22** and **23** in **Appendix C**).

Vegetation Community Type 3 – *Hordeum* Wetland (**Photos 10-11** in **Appendix C**) expanded in 2008 by occupying what was Type 5 – *Suaeda* Wetland. In 2007 the surface water in the lakebed was allowed to draw down to about two-thirds of the area. Type 5 colonized these drying, but still saturated soils in 2007. In 2008, the lakebed was inundated deeper and for

² Plant is designated as noxious in Montana.

longer periods with only a short draw-down period. It is hypothesized that the deeper and/or longer periods of inundation favor development of the *Hordeum* Wetland and drown out the *Suaeda calceoliformis* and *Chenopodium glaucum* plants (**Photos 9** and **19** in **Appendix C**). In August 2008 it was noticed that many seedlings (1/4 inch tall) of *S. calceoliformis* and *C. glaucum* had germinated in particular areas of Type 3 – *Hordeum* Wetland (**Photos 18** in **Appendix C**). These areas were saturated, but not inundated and it is assumed that surface soils were exposed for long enough to stimulate seed germination. The Type 3 – *Hordeum* Wetland was dominated by *Hordeum jubatum*, and mixed with *Puccinellia nuttalliana*, *Eleocharis palustris*, and *Iva axillaris* (**Photos 10-11** in **Appendix C**). The frequency of *Eleocharis palustris* plants increased throughout the site in 2008.

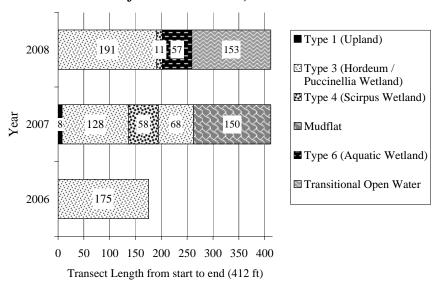
Vegetation Community Type 4 – *Scirpus* Wetland continued to expand in size and occurrence in 2008 (**Photos 14-15** in **Appendix C**). Type 4 – *Scirpus* Wetland polygons either consisted of *Scirpus pungens* or an assemblage of *S. pungens*, *S. acutus*, *Eleocharis acicularis*, and *Juncus torreyi*. In addition to the seven mapped polygons, single occurrences of *S. pungens* was found (**Figure 3** in **Appendix A**). The large Type 4 – *Scirpus* polygon near the inlet was inundated and plants were actively growing and flowering; some plants were browsed (**Photo 14** in **Appendix C**). For all other *Scirpus* occurrences, *S. pungens* plants were in poor shape, possibly because they are sought for food and shelter by many bird species (**Photo 15** in **Appendix C**).

Vegetation Community Type 6 – Aquatic Wetland was mapped as a new community (**Figure 3** in **Appendix A**; **Photos 12-13** in **Appendix C**). Type 6 – Aquatic Wetland was comprised of *Eleocharis acicularis* with patchy occurrences of *Potamogeton* spp. and *Najas guadalupensis*. In addition, it was characterized as being inundated and lacking *Hordeum* and *Scirpus* species. *E. acicularis* and *N. guadalupensis* were found in 2007 near the inlet, but were not extensive enough to map as a community. In 2008 this assemblage developed as a community and occupied an inner band to the Type 3 community. This community was absent or very sparse on the extreme northeast and southwest ends of the lakebed.

The remainder of the project site was mapped as Transitional Open Water (**Figure 3** in **Appendix A**). Transitional Open Water was characterized by inundated soils and an absence of plant life (**Photo 19** in **Appendix C**). Mudflat was not present in 2008; it is characterized by saturated soils with an absence of plant life.

The first noxious weed occurrence was found in 2008. A few basal rosettes of *Cirsium arvense* were found amongst the rocks at the inlet in August and October. Plants were removed each time by the PBS&J Botanist. Since 2006, PBS&J vehicles have been washed prior to entering the project site; this helps reduce the risk of introducing noxious weeds. PBS&J will continue to monitor for and pull small occurrences of noxious weeds. Also at the inlet, *Melilotus* spp. was found for the first time; it had already released its seeds. This sweet clover is not noxious, but can be a nuisance plant.

A green algal bloom was observed for the first time (**Photos 16-17** in **Appendix C**). The bloom was quite extensive along the north, east, and south shores on the north-eastern half of the project site. Algae were also present in the inlet channel. It seemed that the area of algal bloom and Type 6-Aquatic Wetland were mutually exclusive. The growth of green algae increases in


response to higher nutrient levels and/or higher light conditions (MacDonald et. al. 1991). Nutrient inputs (particularly phosphorus and nitrogen) for Alkali Lake would come from irrigation water (directly) and/or cattle (indirectly). High levels of free-floating plants (i.e. green algae) will impair the clarity of water, adversely effect aesthetic qualities, and under high concentrations can deplete oxygen levels in the water (MacDonald et. al. 1991). Cattle use has been greatest along the northeastern fence perimeter of Alkali Lake because soils remain saturated or inundated and grasses cure later.

Three vegetation transects were monitored at Alkali Lake in 2008 (**Figure 2** in **Appendix A**). Data recorded from Transect 1 (**Monitoring Form** in **Appendix B**) was summarized in tabular format (**Table 3**) and graphically illustrated (**Charts 1** and **2**). The start and end of Transect 1 were photographed (**Photos 4** and **5** in **Appendix C**). In 2008, Transect 1 was comprised of wetland, represented by three community types, and Transitional Open Water (**Table 2**; **Charts 2** and **3**). Overall wetland habitat increased slightly on Transect 1 (**Chart 3**).

Table 3: 2006 - 2008 data summary for Transect 1.

1 abic 5. 2000 - 2000 data summary for 17 ansect 1.			
Monitoring Year	2006	2007	2008
Transect Length (feet)	175	412	412
# Vegetation Community Transitions along Transect	1	3	2
# Vegetation Communities along Transect	1	4	3
# Hydrophytic Vegetation Communities along Transect	1	3	3
Total Vegetative Species	5	9	7
Total Hydrophytic Species	4	5	6
Total Upland Species	1	4	1
Estimated % Total Vegetative Cover	70	50	50
% Transect Length Comprised of Hydrophytic Vegetation Communities	100	62	63
% Transect Length Comprised of Upland Vegetation Communities	0	2	0
% Transect Length Comprised of Unvegetated Open Water	0	0	37
% Transect Length Comprised of Bare Substrate	0	36	0

Chart 1: Transect maps showing habitat types of Transect 1 from start (0 feet) to end (175 feet in 2006 and 412 feet in 2007-2008).

10

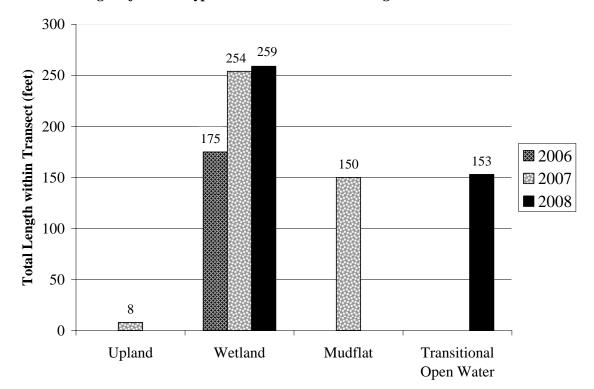


Chart 2: Length of habitat types within Transect 1 during 2006 to 2008.

Data recorded from Transect 2 (**Monitoring Form** in **Appendix B**) were summarized in tabular format (**Table 4**) and graphically illustrated (**Charts 3** and **4**). Transect 2 was lengthened in 2007 in order to capture the diversity of developing habitats. The start and end of Transect 2 were photographed (**Photos 6** and **7** in **Appendix C**). The number of vegetation communities found in 2007 decreased to 2006 levels in 2008; plant diversity declined slightly (**Table 4**). The upland found in 2007 was absent in 2008; as in 2007, two wetland communities were found, but differed in their type along Transect 2 (**Chart 3**). When compared to 2007, Upland decreased, Wetland decreased, and Transitional Open Water increased in 2008 (**Chart 4**).

Table 4: 2006 - 2008 data summary for Transect 2.

Table 4. 2000 - 2000 data summary for Transect 2.			
Monitoring Year	2006	2007	2008
Transect Length (feet)	175	297	297
# Vegetation Community Transitions along Transect	1	2	2
# Vegetation Communities along Transect	2	3	3
# Hydrophytic Vegetation Communities along Transect	1	2	2
Total Vegetative Species	8	10	7
Total Hydrophytic Species	3	5	5
Total Upland Species	5	5	2
Estimated % Total Vegetative Cover	70	57	57
% Transect Length Comprised of Hydrophytic Vegetation Communities	74	72	43
% Transect Length Comprised of Upland Vegetation Communities	3	20	2
% Transect Length Comprised of Unvegetated Open Water	23	0	55
% Transect Length Comprised of Bare Substrate	0	8	0

11

Chart 3: Transect maps showing habitat types of Transect 2 from start (0 feet) to end (175 feet in 2006 and 297 feet in 2007-2008).

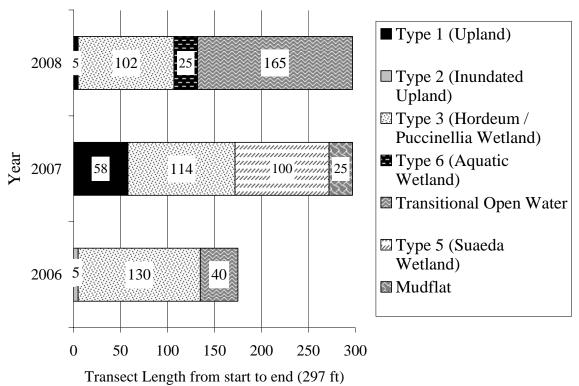
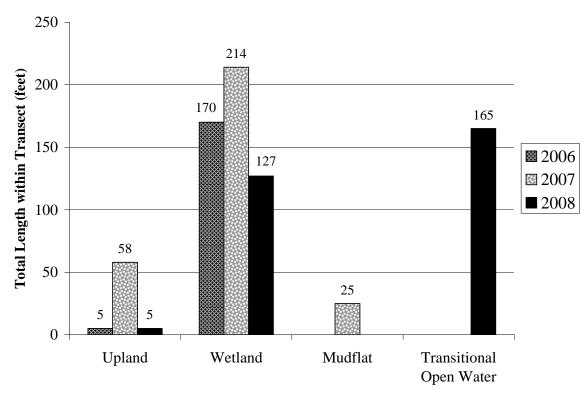
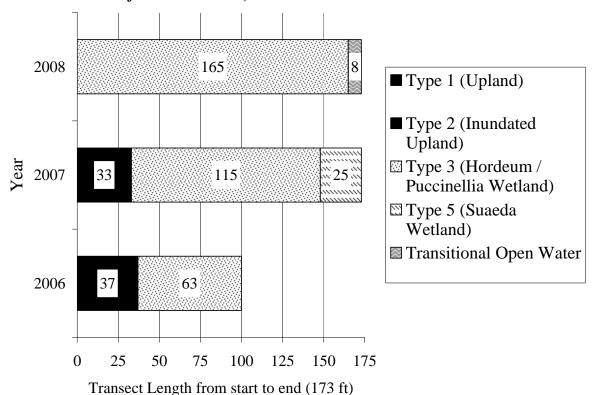



Chart 4: Length of habitat types within Transect 2 during 2006 to 2008.



Data recorded from Transect 3 (**Monitoring Form** in **Appendix B**) were summarized in tabular format (**Table 5**) and graphically illustrated (**Charts 5** and **6**). To serve as a better indicator of habitat changes on the western portion of the mitigation site, Transect 3 was lengthened. Vegetation communities simplified in 2008 and plant species richness decreased slightly (**Table 5**). In 2008 upland habitat transitioned to wetland and some wetland habitat was lost to Transitional Open Water (**Chart 5**). Overall upland habitat has declined and wetland habitat has increased since 2006 along Transect 3 (**Chart 6**).

Table 5: 2006 - 2008 data summary for Transect 3.

Monitoring Year	2006	2007	2008
Transect Length (feet)	100	173	173
# Vegetation Community Transitions along Transect	1	2	0
# Vegetation Communities along Transect	2	3	1
# Hydrophytic Vegetation Communities along Transect	1	2	1
Total Vegetative Species	8	10	7
Total Hydrophytic Species	5	6	5
Total Upland Species	3	4	2
Estimated % Total Vegetative Cover	55	53	50
% Transect Length Comprised of Hydrophytic Vegetation Communities	63	52	95
% Transect Length Comprised of Upland Vegetation Communities	37	19	0
% Transect Length Comprised of Unvegetated Open Water	0	0	5
% Transect Length Comprised of Bare Substrate	0	0	0

Chart 5: Transect maps showing habitat types of Transect 3 from start (0 feet) to end (100 feet in 2006 and 173 feet in 2007-2008).

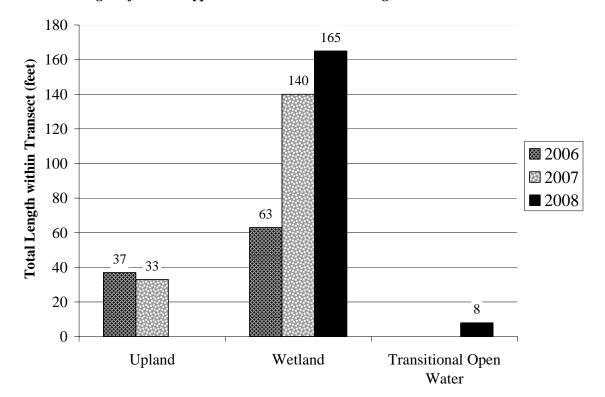


Chart 6: Length of habitat types within Transect 3 during 2006 to 2008.

3.3 Soils

Prior to construction of this wetland mitigation site, the project site was mapped as 'lakebed' with no soil mapping conducted (NRCS 1980). In 2004, nine soil pits sampled within the project area revealed dry, clay soils with matrix soil colors ranging from 2.5Y 4/1 (1 pit) to 2.5Y 4/2 (8 pits) to 2.5Y 5/2 (1 pit) (LWC 2005). Of these nine pits, three had mottle colors of 2.5Y 5/6 or 10YR 5/6 (LWC 2005). In 2008, 11 soil pits were dug, revealing dry to saturated clay soils with matrix colors of 2.5Y 4/1 or 2.5Y 5/1 (**COE Forms** in **Appendix B**). Of these 11 soil pits, eight had very fine mottle colors ranging from of 2.5Y 5/6 to 2.5Y 5/4. Since 2004, the number of soil pits with mottles has increased (**COE Forms** in **Appendix B**). For a second year in a row, a very thin layer of 10YR 2/1 soil has been present in vicinity of Transect 1.

In June 2004, baseline soil data was collected from 10 sites and analyzed for arsenic, cadmium, nickel, and selenium (**Figure 4**, **Table 12**, and **Charts 8-11** in **Appendix G**). Soils collected from the North Alkali and South Alkali Lakes were used as a comparison for the Alkali Lake (project area) samples. It is important to note that the water source for North and South Alkali Lakes differ from that of Alkali Lake and no water flows between the North/South Alkali lakes and Alkali Lake (project area). In order to evaluate metals levels from these 10 sites, health guidelines were assembled from a number of sources (LWC 2004b) (**Table 6**). Analysis in 2004 demonstrated that all soil metals were below the recommended limits for protection of aquatic life, with one exception (LWC 2004b). In 2004 the M1 soil site, on the eastern side of Alkali Lake, registered 9.7 mg/kg for arsenic; this falls within the low end of the concern range using the National Irrigation Water Quality Program guideline. In 2004 paired soil samples were collected to determine if vegetated and barren patches differed in their metals contents. The

14

2004 data showed that metals levels in vegetated and barren soils that occurred within 100 feet of each other were very similar. Thus it was decided that collecting paired soil samples were not necessary (MDT 2006). In 2006 soils were collected and analyzed for these metals at 10 sites (**Appendix G**). In 2007 soils were collected and analyzed for these metals at six sites (**Appendix G**).

Table 6: Guidelines for metals in sediment for the protection of aquatic life (LWC 2004b).

SOURCE	LEVEL	ARSENIC (As) mg/kg	CADMIUM (Cd) mg/kg	NICKEL (Ni) mg/kg	SELENIUM (Se) mg/kg
CAN 1	Aquatic Life Criteria	17	3.5		4
NIWQP ²	Concern	8.2 to 70			1 to 4
NIWQP ²	Toxicity	70			> 4
NEPC ³	Health Investigation Level	100	20	600	
NEPC ³	Ecological Investigation Level	20	3	60	

¹Canadian Interim sediment quality guideline for protection of aquatic life, probably effect level, and freshwater values for constituents in sediment

In 2008 seven soil samples were collected at or near (inundation prevented access to some locations) the 2004 and 2007 sampling locations (**Figure 4** and **Table 12** in **Appendix G**). Arsenic, cadmium, nickel, and selenium levels were measured in each soil sample collected in 2008 (**Table 7**). The pre- (2004) and post- (2006-2008) project data for each metal concentration was graphed (**Charts 8 - 11** in **Appendix G**).

Table 7: 2008 soil metals analyses for North Alkali, South Alkali, and Alkali Lakes.

LAKE LOCATION	SOIL SAMPLE MAP LOCATION ¹	ARSENIC (As) mg/kg	CADMIUM (Cd) mg/kg	NICKEL (Ni) mg/kg	SELENIUM (Se) mg/kg
North Alkali	B2	5.57	0.234	17.5	0.220
South Alkali	D	9.64	0.370	30.2	0.262
South Alkali	F	7.97	0.316	27.5	0.388
Alkali	J	4.31	0.234	14.6	0.116
Alkali	L2	5.60	0.401	12.0	0.137
Alkali	M2	3.96	0.165	10.2	0.092
Alkali	0	6.01	0.268	17.0	0.278

¹ Soil sample map is provided in **Appendix G**.

Arsenic concentrations in North and South Alkali Lakes were higher in 2008 than in 2004 (**Chart 8** in **Appendix G**). Of the three samples from North and South Alkali Lakes, only one sample (D) fell within the NIWQP range of concern for Arsenic (**Tables 6** and **7**). The 9.64 mg/kg level is on the low range of concern for the NIWQP guideline. Site D receives ephemeral water flow through a man-made ditch that drains agricultural fields and rangeland. It was observed that this ditch was excavated deeper in 2008; it is possible that excavated into the soil released some arsenic. Within the project site (Alkali Lake), arsenic levels were lower in 2008 then in 2004, and all were all below recommended guidelines for protection of aquatic life (**Tables 6** and **7**; **Chart 8** in **Appendix G**). In 2008, the mean (7.73 mg/kg) arsenic level for

² National Irrigation Water Quality Program, toxicity threshold for constituents in sediment. Selenium applies only in Western U.S. and includes the Rocky Mountains.

³ National Environment Protection Measure.

three collections outside the project area was higher than the mean (4.97 mg/kg) for four collections within the project area (**Table 7**).

Cadmium concentrations in North and South Alkali Lakes were higher in 2008 than in 2004, but were all below the recommended guidelines for protection of aquatic life (**Tables 6** and **7**; **Chart 9** in **Appendix G**). Within the project site, cadmium concentrations were also higher in 2008 than in 2004 (**Chart 9** in **Appendix G**). All soil samples had cadmium concentrations below the recommended guidelines for protection of aquatic life (**Tables 6** and **7**). In 2008, the mean (0.31 mg/kg) cadmium level for three collections outside the project area was slightly higher than the mean (0.27 mg/kg) for four collections within the project area (**Table 7**).

Nickel concentrations in North and South Alkali Lakes were similar or higher in 2008 than in 2004, but all were below the recommended guidelines for protection of aquatic life (**Tables 6** and **7**; **Chart 10** in **Appendix G**). Within the project site, nickel concentrations were similar to or lower in 2008 than in 2004, and all were below the recommended guidelines for protection of aquatic life (**Tables 6** and **7**; **Chart 10** in **Appendix G**). In 2008, the mean (25.07 mg/kg) nickel level for three collections outside the project area was higher than the mean (13.45 mg/kg) for four collections within the project area (**Table 7**).

Selenium concentrations in North and South Alkali lakes were similar, higher, and lower in 2008 when compared to 2004, but all samples were below those recommended for protection of aquatic life (**Tables 6** and **7**; **Chart 11** in **Appendix G**). Within the project site, selenium concentrations were lower in 2008 than in 2004, and all were below the recommended guidelines for protection of aquatic life (**Tables 6** and **7**; **Chart 11** in **Appendix G**). In 2008, the mean (0.29 mg/kg) selenium level for three collections outside the project area was higher than the mean (0.16 mg/kg) for four collections within the project area (**Table 7**).

3.4 Wetland Delineation

Prior to project implementation, wetland vegetation was ephemeral, hydric soils were present, and hydrology was absent within the lakebed. Therefore, no baseline wetlands were delineated. Vegetation and soils were discussed in previous sections. Following construction in fall 2005, the site was inundated and has been periodically filled throughout 2006, 2007, and 2008 (see Section 3.1 Hydrology).

Wetland habitat increased from about 39 acres in 2006 to about 85 acres in 2007 then decreased to approximately 57 acres in 2008 (**Table 8**). The 2008 decrease in wetland habitat is attributable to an increase in the area of Transitional Open Water. A diversity of wetland habitats was found throughout the site, though habitat types differed slightly from 2007 (**Figure 3** in **Appendix A**). As stated in Section 3.2 Vegetation, Type 5 – *Suaeda* Wetland converted to Type 3 – *Hordeum* Wetland. Type 4 – *Scirpus* Wetland continued to expand in 2008. Type 6 – Aquatic Wetland emerged in 2008 has a community. Mitigation credit is discussed in Section 3.10.

Table 8: Aquatic and wetland habitat types and acreages from 2006-2008 at the Alkali Lake Wetland Mitigation Site.

Weitana Miligation Site.				
AQUATIC AND WETLAND HABITATS	ACREAGE			
AQUATIC AND WEILAND HABITATS	2006	2007	2008	
Type 3 – Hordeum/Puccinellia Wetland	38.22	24.35	51.22	
Type 3/5 – Hordeum/Suaeda Wetland		37.78		
Type 4 – Scirpus Wetland	0.48	0.33	0.62	
Type 5 – Suaeda Wetland		22.31		
Type 6 – Aquatic Wetland			4.92	
Mudflat and/or Transitional Open Water	118.69	81.79	130.18	

3.5 Wildlife

Direct observations of all wildlife species and their sign (indicating presence) were recorded in 2008 and compiled from 2006-2008 (**Table 8**; **Monitoring Forms** in **Appendix B**). A group of pronghorn were observed for the first time. Deer tracks were observed for the third year in a row. Tracks or scat of coyote, skunk, and fox were also observed. Several ground squirrels and their burrows were observed, as were white-tailed jackrabbits. A domestic calf had entered the site and was found dead along the water's edge (**Photo 21** in **Appendix C**). Juvenile fish were observed in the inlet channel during the fall of 2006, but have not been observed since. No amphibian or reptile species have been observed at the site from 2006 to 2008.

Birds are the most abundant type of wildlife using the project area (**Table 8**). Upon filling of the site in fall 2005, a diversity of waterfowl species were observed. In 2008, about 25 bird species were observed using the site (**Bird Survey Forms** in **Appendix B**). The most abundant species found in 2008 included American Avocet (*Recurvirostra americana*), Marbled Godwit (*Limosa fedoa*), Western Sandpiper (*Calidris mauri*), and Wilson's Phalarope (*Phalaropus tricolor*).

In 2007 and 2008 the Piping Plover (*Charadrius melodus*) has been observed at the mitigation site. In 2008 one Piping Plover was seen foraging at the site. In 2007, two Piping Plovers, presumably a pair, were sighted during the May surveys (**Bird Survey Forms** in **Appendix B**).

In 1985 the Piping Plover was listed as a threatened species and in 2002 critical habitat was designated in Montana. Although the Alkali Lake area was not designated as critical habitat, it does provide habitat for the Piping Plover. The Alkali Lake area represents the western-most location in which Piping Plovers have been known to nest in the United States (Haneberry 1995). Nesting was documented along the North Alkali Lake in 1990 and 1992. According to the USFWS, Southeast Alkali Lake may contain the best potential plover habitat of the Alkali Lake complex (Martin 1996). A secondary purpose of this wetland mitigation project has been to manage water levels such that they may create habitat for the Piping Plover. Nesting Piping Plovers require unvegetated or sparsely-vegetated gravel and sand beaches located adjacent to alkaline wetlands (Root et al. 1998). Although nesting was not confirmed, Piping Plovers have been documented for two consecutive springs, indicating that the importance of managing the habitat and the water levels to facilitate use by the Piping Plover.

Table 9: Fish and wildlife species observed within the Alkali Lake Wetland Mitigation Site, *2006 - 2008.*

FISH, AMPHIBIAN, REPTILE

BIRD

American Avocet (Recurvirostra americana)

American White Pelican (*Pelecanus erythrorhynchos*)

American Wigeon (Anas americana)

Juvenile fish (unidentified species)

Brewer's Blackbird (Euphagus cyanocephalus)

Bufflehead (Bucephala albeola)

Canada Goose (Branta Canadensis)

Canvasback (*Aythya valisineria*) Cinnamon Teal (*Anas cyanoptera*)

Common Goldeneye (Bucephala clangula)

Common Snipe (Gallinago gallinago)

Common Tern (Sterna hirundo)

Franklin's Gull (*Larus pipixcan*)

Golden Eagle (Aquila chrysaetos)

Gadwall (Anas strepera)

Grasshopper Sparrow (Ammodramus savannarum)

Greater Yellowlegs (Tringa melanoleuca)

Green-winged Teal (Anas crecca)

Gull (California, Larus californixus,

and/or Ring-bill, L. delawarensis)

Horned Lark (Eremophila alpestris)

Killdeer (Charadrius vociferous)

Lesser Yellowlegs (Tringa flavipes)

Long-billed Curlew (Numenius americanus)

Long-billed Dowitcher (*Limnodromus scolopaceus*)

Mallard (Anas platyrhynchos)

Marbled Godwit (*Limosa fedoa*)

Northern Harrier (Circus cyaneus)

Northern Pintail (Anas acuta)

Northern Shoveler (*Anas clypeata*)

Osprey (Pandion haliaetus)

Piping Ployer (Charadrius melodus)

Prairie Falcon (Falco mexicanus)¹

Red-winged Blackbird (Agelaius phoeniceus)

Ring-necked Duck (Aythya collaris)

Ruddy Duck (Oxyura jamaicensis)

Sanderling (Calidris alba)

Sandhill Crane (*Grus Canadensis*)

Short-billed Dowitcher (*Limnodromus griseus*)

Snow Bunting (*Plectrophenax nivalis*)

Sparrow (unidentified species)

Swallow (unidentified species)

Tundra Swan (Cygnus columbianus)

Vesper Sparrow (Pooecetes gramineus)

Western Meadowlark (Sturnella neglecta)

Western Sandpiper (Calidris mauri)

Willet (Catoptrophorus semipalmatus)

Wilson's Phalarope (*Phalaropus tricolor*)

Yellow-headed Blackbird (Xanthocephalus

xanthocephalus)

MAMMAL

American badger (*Taxidea taxus*)

Black bear (*Ursus americanus*)

Coyote (Canis latrans)

Fox (unidentified species)

Mouse (unidentified species)

Porcupine (*Erethizon dorsatum*) Pronghorn (Antilocapra americana) Raccoon (Procyon lotor)

Richardson's Ground Squirrel (Spermophilus

richardsonii)

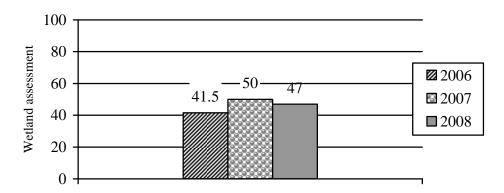
Striped Skunk (Mephitis mephitis)

Vole (unidentified species)

White-tailed Jack Rabbit (Lepus townsendii)

White-tailed Deer (Odocoileus virginianus)

Bolded species were observed in 2008.


3.6 Macroinvertebrates

Macroinvertebrate diversity and abundance have remained low (**Chart 7**), though composition has changed. Macroinvertebrate sampling occurred at one location (**Figure 2** in **Appendix A**; **Photo 5** in **Appendix C**). A summary of the 2008 data, provided by Rhithron and Associates, is presented below:

Invertebrates were neither abundant nor diverse at this site in 2008. Although taxonomic diversity remained about the same between 2007 and 2008, there was apparently a major functional shift this year. Immature hemipterans (Corixidae) replaced ostracods as the dominant faunal component, with a subsequent shift to herbivory in 2008 compared to 2007. The presence of brine flies (Ephydridae) and hemipterans (Corixidae) may be related to high salinity, which probably contributes to the relative simplicity of the faunal composition here. Thermal preference of the assemblage was calculated to be 20.5°C. (The 2006 score represents the average of scores from 2 samples collected from Alkali Lake.)

In 2008, 37 individuals representing 10 taxa were found in the macroinvertebrate sample (**Taxa Listing** in **Appendix F**). Members of the Families Corixidae (water boatman), Hydrophilidae (water scavenger beetle), Ceratopogonidae (biting midges), Ephydridae (brine flies), and Chironomidae (non-biting midges) were found. The dominance of non-insect species (i.e. nematodes, snails, seed shrimps (ostracods), and clitellate oligochaete worms) declined from a 75% (2007) to 35% (2008) occurrence (**Appendix F**). Conversely, hemipterans (Family Corixidae, the water boatman) increased from a 17% (2007) to 49% (2008) occurrence (**Appendix F**). As stated by Rhithron and Associates, this represents a functional change in that seed shrimps are 'collector-gatherers' while water boatman are 'piercer herbivores'. The simple aquatic faunal community is attributable to the natural alkaline conditions of the mitigation site. Likewise aquatic habitats are limited because the site is newly evolving and water levels are managed to allow for periods of 'draw-down'. A detailed report is provided in **Appendix F**. In addition to this data, a leech was collected from a soil pit.

Chart 7: Bioassessment scores using the wetland index for 2006 (average of two samples) and 2007-2008 (one sample).

19

3.7 Functional Assessment

As the Alkali wetland develops, its environmental functions and values also increase. A functional assessment was completed for the entire Alkali Lake site in 2006 and 2007 using the 1999 MDT Montana Wetland Assessment Method (MWAM). In 2008, conditions were assessed using the 2008 MWAM (Functional Assessment Form in Appendix B). Although direct comparisons cannot be made, general trends in wetland development can still be determined (Table 10). In 2008, the Alkali Lake Wetland Mitigation Site continued to rate as a Category II wetland (Table 10). However, the site scored lower in 2008 as a result of revised MWAM application. Despite a gain in total wetland/aquatic habitat, the functional units decreased slightly in 2008. The site continued to rate as exceptional or high for General Wildlife Habitat and Short and Long Term Surface Water Storage (Table 10).

Table 10: Summary of 2006 to 2008 wetland function/value ratings and functional points at the Alkali Lake Wetland Mitigation Site.

Function and Value Parameters from the Montana Wetland Assessment Method	20061	20071	2008 ²
Listed/Proposed T&E Species Habitat	Low (0.3)	Mod (0.8)	Mod (0.8)
MTNHP Species Habitat	Mod (0.6)	Mod (0.6)	Mod (0.5)
General Wildlife Habitat	High (0.9)	Exc (1.0)	Exc (1.0)
General Fish/Aquatic Habitat	N/A	N/A	N/A
Flood Attenuation	N/A	N/A	N/A
Short and Long Term Surface Water Storage	High (0.9)	High (0.9)	High (0.9)
Sediment/Nutrient/Toxicant Removal	Mod (0.7)	Mod (0.7)	Mod (0.7)
Sediment/Shoreline Stabilization	Low (0.2)	Low (0.3)	Low (0.2)
Production Export/Food Chain Support	Mod (0.6)	Mod (0.7)	Mod (0.7)
Groundwater Discharge/Recharge	Low (0.1)	Low (0.1)	Low (0.1)
Uniqueness	Mod (0.5)	Mod (0.5)	Mod (0.5)
Recreation/Education Potential	Mod (0.7)	Mod (0.7)	Low (0.05)
Actual Points/Possible Points	5.5 / 10	6.3 / 10.0	5.55 / 9.0
% of Possible Score Achieved	55%	63%	62%
Overall Category	II	II	II
Total Acreage of Assessed Wetlands and Other Aquatic Habitats within Site Boundaries (ac)	157.31	166.43	186.94
Functional Units (acreage x actual points)	865.2	1048.50	1037.52

¹Used the 1999 MWAM.

3.8 Photographs

The 2008 aerial photograph was taken on July 7th and used to create **Figures 2** and **3** (**Appendix A**). Representative photos were taken of the mitigation site, upland surroundings, transect starts and ends, and/or at permanent photo-points (**Appendix C**). Panoramic photos were taken at the three photo point locations (**Appendix C**).

3.9 Maintenance Needs / Recommendations

The excavated inlet channel was in good condition during all site visits. Fencing, control structures, and the western berm were also in good condition.

²Used the 2008 MWAM. The complete functional assessment form is in **Appendix B**.

How water is managed at Alkali Lake is dependent upon availability and the goals set for wetland and wildlife management. Type 4 and Types 3/5 wetland habitats require opposing amounts of water. Likewise, Piping Plovers and waterfowl/shorebird species require opposing amounts of water. In 2006 and 2008 the abundance of irrigation water promoted the development of Type 4 wetland and the use of the site by waterfowl and shorebirds throughout the entire growing season. In 2007, irrigation water flooded the site in the spring and fall, but allowed for a draw-down period from late spring to early fall. This promoted development of the Type 3 and Type 5 wetland areas and potential breeding habitat for the Piping Plover, but limited waterfowl/shorebird use of the site to the early spring and late fall time periods.

3.10 Current Credit Summary

In 2008, approximately 57 acres of emergent wetlands were delineated at the mitigation site. These acres satisfied soils, hydrology, and vegetation performance standards listed in **Section 1.0**. This represents a two-thirds increase in wetland habitat since 2006 (**Table 8**). All together, about 187 acres of aquatic habitat were mapped in 2008. The upland buffer also satisfied applicable performance standards as listed in **Section 1.0**. The 2008 credits at the site, applying Tribal and COE credit ratios, are presented in **Table 11**. The key to developing wetland habitat will come from managing the water levels that create the Transitional Open Water zone.

Table 11: 2008 Tribal and Corps of Engineers credits at the Alkali Lake Wetland Mitigation Site.

Proposed Feature	2008 Delineated Acres	Tribal Credit Ratio and 2008 Calculated Credit	Tribal Credit Target	Corps Credit Ratio and 2008 Calculated Credit ^a	Corps Credit Target
Primary emergent wetland restoration	56.76	1:2.5 credit ratio 22.70 credit acres	29.77 credit acres	1:1 credit ratio 56.76 credit acres	74.42 credit acres
Shallow open water restoration	130.18	1:2.5 credit ratio 52.07 credit acres	40.56 credit acres	1:1 credit ratio (to a max. matching wetland acres) 56.76 credit acres	74.42 credit acres
100-ft-wide upland buffer	45.12	1:4 credit ratio 11.28 credit acres	11.28 credit acres	1:4 credit ratio (on max. 50-ft width) 5.64 credit acres	1:4 credit ratio (on max. 50-ft width) 5.64 credit acres
TOTALS	186.94 (aquatic only)	86.05 credit acres	81.61 credit acres	119.16 credit acres ^a	154.48 credit acres

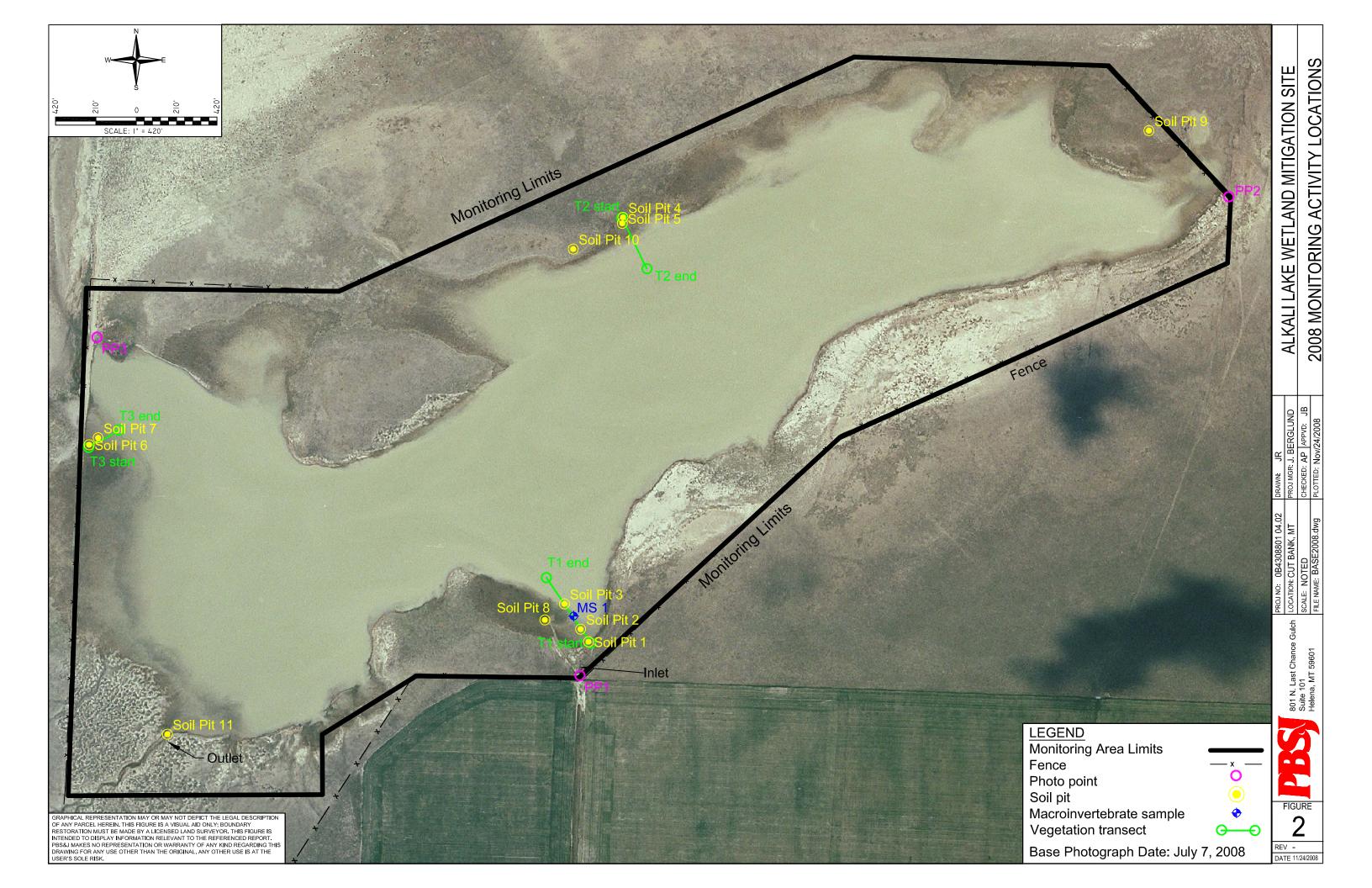
^a Maximum credits as of 2008. Final credits are subject to compliance with the performance standards at the end of the monitoring period.

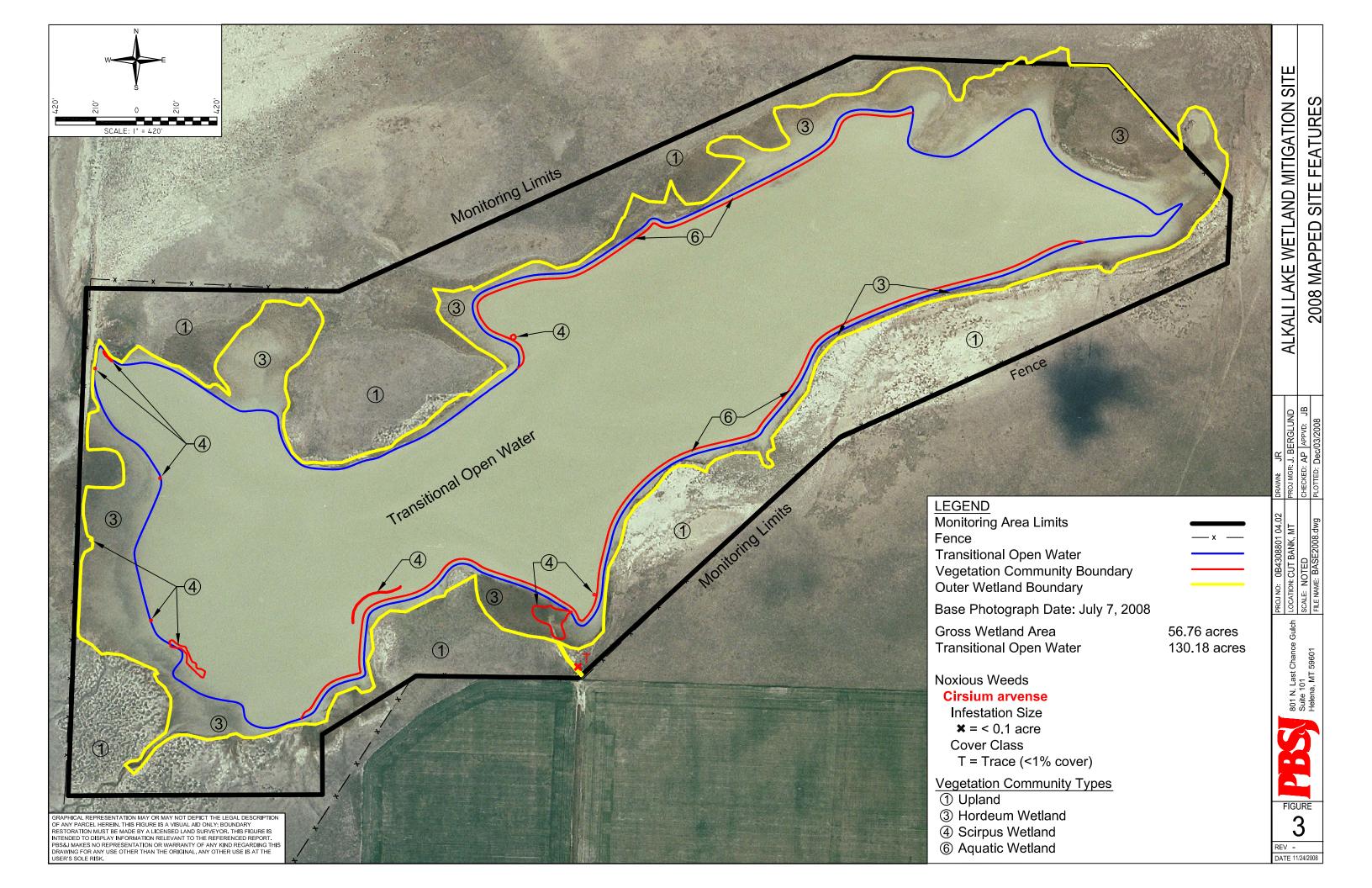
21

4.0 REFERENCES

- Adams, B. 2005. Environmental Office, Blackfeet Nation, Browning, Montana. September 22nd telephone conversation with Jeff Berglund, Land & Water Consulting, Helena, Montana.
- Berglund, J. and R. McEldowney. 2008. *MDT Montana Wetland Assessment Method*. Prepared for Montana Department of Transportation, Helena, Montana. Post, Buckley, Schuh, & Jernigan, Helena, Montana. 42pp.
- Berglund, J. 1999. *MDT Montana Wetland Assessment Method*. May 25th. Prepared for Montana Department of Transportation and Morrison-Maierle, Inc. Prepared by Western EcoTech. Helena, Montana. 18 pp.
- Bollman, W. 2008. MDT Mitigated Wetland Monitoring Project: Aquatic Invertebrate Monitoring Summary 2001 2008. Rhithron Associates, Inc., Missoula, Montana.
- Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*. U.S. Army Corps of Engineers. Washington, DC.
- MacDonald, L., A. Smart, and R. Wissmar. 1991. *Monitoring Guidelines to Evaluate Effects of Forestry Activities on Streams in the Pacific Northwest and Alaska*. May. EPA/910/9-91-001. U.S. Environmental Protection Agency and Center for Streamside Studies, College of Forestry and College of Ocean and Fishery Sciences, University of Washington. Seattle, Washington.
- Montana Natural Heritage Program and Montana Fish, Wildlife, and Parks (MTNHP). 2008. *Montana Animal Species of Concern.* October. MTNHP and Montana Fish, Wildlife, and Parks, Helena, Montana. 17pp.
- Land & Water Consulting, Inc. (LWC). 2004a. *Conceptual Wetland Mitigation Plan for Southeast Alkali Lake Wetland Mitigation Project*. November 12th. Prepared for Montana Department of Transportation, Helena, Montana.
- Land & Water Consulting, Inc. (LWC). 2004b. Review of Soil and Water Sampling Results for the Alkali Lake Wetland Restoration Project Area, Montana. Prepared for Montana Department of Transportation, Helena, Montana.
- Land & Water Consulting, Inc. (LWC). 2005. *Biological Resources Report for Southeast Alkali Lake Wetland Mitigation Site*. Prepared for Montana Department of Transportation, Helena, Montana.
- Pokorny, M. and J. Mangold. 2008. *Montana's Noxious Weeds*. Montana State University Extension Publications, Bozeman, Montana.

- Post, Buckley, Schuh, and Jernigan (PBS&J). 2006. *Montana Department of Transportation Wetland Mitigation Monitoring Report: Year 2006*. December. Prepared for Montana Department of Transportation, Helena, Montana.
- Reed, P.B. 1988. *National list of plant species that occur in wetlands: North West (Region 9)*. Biological Report 88(26.9), May 1988. U.S. Fish and Wildlife Service, Washington, D.C.
- Soil Conservation Service (SCS). 1980. Soil Survey of Glacier County Area and Part of Pondera County, Montana. In cooperation with Montana Agricultural Experiment Station.
- Steinle, A. 2008. Montana Program Manager, U.S. Army Corps of Engineers, Helena, Montana. July 14th telephone conversation.
- Steinle, A. 2006. Montana Program Manager, Helena Regulatory Office, U.S. Army Corps of Engineers, Helena, Montana. February 1st letter to Bonnie Steg, Montana Department of Transportation, regarding Alkali Lake Mitigation project, STPX-NH 0037(026), MDT Control Number 5000, Corps File Number 2003-90-853 and Meriwether-East, F-NH 1-3(31)225, MDT Control Number B594, Corps File Number 2001-90-007.
- Steinle, A. 2005. Montana Program Manager, Helena Regulatory Office, U.S. Army Corps of Engineers, Helena, Montana. September meeting with Jeff Berglund of Land & Water Consulting.
- Steinle, A. 2004a. Montana Program Manager, Helena Regulatory Office, U.S. Army Corps of Engineers, Helena, Montana. December 1st letter to Bonnie Steg, Montana Department of Transportation, regarding Southeast Alkali Lake Mitigation project, CN 5000, Corps File Number 200390853.
- Steinle, A. 2004b. Montana Program Manager, Helena Regulatory Office, U.S. Army Corps of Engineers, Helena, Montana. December 21st letter to Jeff Berglund, Land & Water Consulting, regarding Southeast Alkali Lake Mitigation project, CN 5000, Corps File Number 200390853.
- U.S. Army Corps of Engineers (COE). 2008. *Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region*, ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-08-13. U.S. Army Engineer Research and Development Center, Vicksburg, Missouri.
- U.S. Army Corps of Engineers (COE). 2005. Wetland compensatory mitigation ratios, Montana Regulatory Program, April 2005. Helena, Montana. 2 pp.


- Weatherwax, M. 2006. Wetland Coordinator, Blackfeet Nation, Browning, Montana. Electronic mail correspondence to Jeff Berglund, Land & Water Consulting, regarding acceptance of proposed Alkali lake mitigation project Tribal credit ratios on September 23rd.
- Weatherwax, M. 2007. Wetland Coordinator, Blackfeet Nation, Browning, Montana. Electronic mail correspondence on September 19th and 21st.
- Western Regional Climate Center (WRCC). 2008. Precipitation data for the Valier Weather Station, Montana (248501). Obtained on November 11th from http://www.wrcc.dri.edu/CLIMATEDATA.html.



Appendix A

FIGURES 2 & 3

MDT Wetland Mitigation Monitoring Alkali Lake Pondera County, Montana

Appendix B

2008 WETLAND MITIGATION SITE MONITORING FORM 2008 BIRD SURVEY FORM 2008 COE WETLAND DELINEATION FORMS 2008 MDT FUNCTIONAL ASSESSMENT FORM

MDT Wetland Mitigation Monitoring Alkali Lake Pondera County, Montana

PBS&J / MDT WETLAND MITIGATION SITE MONITORING FORM

Project Name: Alkali Lake Passessment Date: August 14-1 Location: 14 miles NW of Val Legal Description: T 31N R (Weather Conditions: Sunny wi Initial Evaluation Date: Augus Size of evaluation area: 178 ac	5, 2008 Person ier MDT District	n(s) conduct ict: Great I T 30N R 6V 10 mph winitoring Yea	ing the assessment Falls Milepost: W Section 6 Inds, high 70's T	ime of Day ear: <u>3</u>	
	H	YDROLOG	GY		
Surface Water Source: Birch (Inundation: Present Average Percent of assessment area und Depth at emergent vegetation-of If assessment area is not inundated Other evidence of hydrology of drift lines and cracked surface Groundwater Monitoring Wells	Depth: 1.0 feet er inundation: 6 open water boundated then are the n the site (ex. – ce soil	6% dary: <u>1 feet</u> soils satura drift lines, e	ted within 12 inch	es of surfac	
Record depth of water below g Well Number Depth	round surface (ii Well Number	n feet): Depth	Well Number	Depth	1
vven rumber Beptil	vv chi i vuinoci	Бери	vven rumber	Берин	
Additional Activities Checklist Map emergent vegetation-o Observe extent of surface we elevations (drift lines, erosi Use GPS to survey groundy COMMENTS / PROBLEMS On May 16 th , irrigation water been turned on. The lakebed as evidenced by drift lines an site and by late day on Augus	pen water bound vater during each on, vegetation st vater monitoring : r was flowing in was about 70%	n site visit and taining, etc. well location the site; inundated	nd look for evidend) ons, if present. it appeared that l. By mid-August	the water l	<u>1ad recently</u> ad drawn down

had drawn down a bit and was about 65-70% inundated.

VEGETATION COMMUNITIES

Community Number: **1** Community Title (main spp): **Type 1 - Dry Upland**

Dominant Species	% Cover	Dominant Species	% Cover
Agropyron smithii	5 = > 50%	Grindelia squarrosa	2 = 6-10%
Koeleria macrantha	1 = 1-5%	Gutierrezia sarothrae	2 = 6-10%
Poa juncifolia	4 = 21-50%	Suaeda calceoliformis	1 = 1-5%
Puccinellia nuttalliana	1 = 1-5%	Sarcobatus vermiculatus	1 = 1-5%
Astragalus (bisulcatus)	1 = 1-5%		
Atriplex nuttallii	4 = 21-50%		

Comments / Problems: Community present in 2006-2008.

Community Number: 2 Community Title (main spp): Type 2 - Inundated Upland

Dominant Species	% Cover	Dominant Species	% Cover
Agropyron smithii	5 = > 50%	Lepidium (ramosissimum)	1 = 1-5%
Poa juncifolia	4 = 21-50%	Polygonum spp.	1 = 1-5%
Puccinellia nuttalliana	1 = 1-5%		
Hordeum jubatum	2 = 6-10%		
Astragalus (bisulcatus)	1 = 1-5%		
Iva axillaris	2 = 6-10%		

Comments / Problems: Community present in 2006, but absent in 2007 and 2008.

Community Number: 3 Community Title (main spp): Type 3 - Hordeum Wetland

	11/		
Dominant Species	% Cover	Dominant Species	% Cover
Agropyron smithii	2 = 6-10%		
Puccinellia nuttalliana	3 = 11-20%	Polygonum ramossissimum	+=<1%
Hordeum jubatum	5 = > 50%	Atriplex patula	+=<1%
Astragalus (bisulcatus)		Hordeum brachyantherum	+ = < 1%
Iva axillaris	4 = 21-50%	Alopecurus arundinaceus	+ = < 1%
Suaeda calceoliformis	+=<1%	Chenopodium glaucum	+=<1%

Comments / Problems: <u>Same community as in 2006 (Type 3-Puccinellia Wetland).</u> <u>Community flourished in 2007 and 2008.</u>

Community Number: 4 Community Title (main spp): Type 4 - Scirpus Wetland

Dominant Species	% Cover	Dominant Species	% Cover
Scirpus pungens	3 = 11-20%	Eleocharis acicularis	1 = 1-5%
Scirpus acutus	1 = 1-5%	Najas guadalupensis	+ = < 1%
Typha latifolia (not observed in 2007-2008)			
Puccinellia nuttalliana	2 = 6-10%		
Hordeum jubatum	4 = 21-50%		
Juncus torreyi	+=<1%		

Comments / Problems: Since 2006 this community has increased in area.

VEGETATION COMMUNITIES (continued)

Community Number: <u>5</u> Community Title (main spp): <u>Type 5 - Suaeda Wetland</u>

Dominant Species	% Cover	Dominant Species	% Cover
Suaeda calceoliformis	4 = 21-50%	Atriplex patula	1 = 1-5%
Chenopodium glaucum	4 = 21-50%	Iva axillaris	+ = < 1%
Hordeum jubatum	2 = 6-10%		
Puccinellia nuttalliana	1 = 1-5%		
Scirpus pungens	+=<1%		
Polygonum ramossissimum	+ = < 1%		

Comments / Problems: Wetland community developed and flourished in 2007. In 2008 it was absent and became Hordeum wetland.

Community Number: 6 Community Title (main spp): Type 6 - Aquatic Wetland

edininanity reamour of commanity r	1 pe o fiquatie (fetialia		
Dominant Species	% Cover	Dominant Species	% Cover
Eleocharis acicularis	3 = 11-20%		
Potamogeton spp.	1 = 1-5%		
Najas guadalupensis	1 = 1-5%		
Algae			

Comments / Problems: <u>Community is characterized by a consistent presence of Eleocharis acicularis and inundated soils.</u> Algae are present in inlet channel and as a bloom in the northeastern portion of site.

Community Number: ___ Community Title (main spp): ____

Dominant Species	% Cover	Dominant Species	% Cover
			_

Comments / Problems: _____

Community Number: ___ Community Title (main spp): ____

Dominant Species	% Cover	Dominant Species	% Cover

Comments /	Problems:	
COMMUNICITIES /	i ionomonio.	

Additional Activities Checklist:

 \square Record and map vegetative communities on aerial photograph.

COMPREHENSIVE VEGETATION LIST

Plant Species	Vegetation Community Number (s)	Plant Species	Vegetation Community Number (s)
Agropyron smithii	1-3		
Alisma gramineum	3		
Alopecurus arundinaceus	3		
Aster campestris	1		
Aster falcatus	1		
Astragalus bisulcatus	1-3		
Atriplex nuttallii	1		
Atriplex patula	1-5		
Chenopodium glaucum	1-5		
Cirsium arvense (pulled)	1		
Distichlis spicata	1, 3		
Eleocharis acicularis	3, 4		
Eleocharis palustris	3		
Grindelia squarrosa	1		
Gutierrezia sarothrae	1		
Helianthus (nuttalii)	5		
Hordeum brachyantherum	3		
Hordeum jubatum	1-5		
Iva axillaris	1-5		
Juncus balticus	1		
Juncus torreyi	4		
Koeleria macrantha	1		
Lactuca serriola	1		
Lepidium (ramosissimum)	1-3		
Melilotus spp.	1		
Najas guadalupensis	5, 6		
Poa juncifolia	1, 2		
Polygonum amphibium [syn. P. coccinea]	4		
Polygonum ramosissimum	3-5		
Potamogeton spp.	6		
Puccinellia nuttalliana	1-5		
Rumex crispus	3		
Sarcobatus vermiculatus	1		
Scirpus acutus	4		
Scirpus pungens	3, 4, 5		
Suaeda calceoliformis [syn. S. depressa]	1-5		
Typha latifolia	4		

Comments A	' Prob	olems:	

PLANTED WOODY VEGETATION SURVIVAL

Plant Species	Number Originally Planted	Number Observed	Mortality Causes
Plants were seeded (see below).			
		-	

Comments / Problems: <u>Seeded species were: Eleocharis palustris, Juncus balticus, Juncus torreyi, Puccinellia nuttalliana, Scirpus acutus, Scirpus americanus (syn. S. pungens), Scirpus maritimus, and Triglochin maritima.</u>

WIL	DL	IF	Έ
-----	----	----	---

Dirus	
Were man-made nesting struct	tures installed? No
If yes, type of structure:	How many?
Are the nesting structures bein	ig used? NA
Do the nesting structures need	repairs?

Mammals and Herptiles

Mammal and Herptile Species	Number	Indirect Indication of Use			
Wiammai and Tier pune Species	Observed	Tracks	Scat	Burrows	Other
coyote			\boxtimes		
Richardson's ground squirrel	several			\boxtimes	
domestic calf	1				dead
white-tailed jackrabbit	2				
skunk		\boxtimes			
fox				\boxtimes	
pronghorn	4				1 male; 3 female
mouse-partially eaten with	2				
remains left on rock					

Additional Activities Checklist:

Yes Macroinvertebrate Sampling (if required)

Comments / Problems: <u>August/September: Many types of aquatic insects observed in water; blue dragonflies observed.</u> Collected one leach in a soil sample.

PHOTOGRAPHS

Using a camera with a 50mm lens and color film take photographs of the following permanent reference points listed in the check list below. Record the direction of the photograph using a compass. When at the site for the first time, establish a permanent reference point by setting a ½ inch rebar or fencepost extending 2-3 feet above ground. Survey the location with a resource grade GPS and mark the location on the aerial photograph.

At least one photograph showing upland use surrounding the wetland. If more than one upland

One photograph for each of the four cardinal directions surrounding the wetland.

At least one photograph showing the buffer surrounding the wetland.

exists then take additional photographs.

Photograph Checklist:

Location	Photograph Frame #	Photograph Description	Compass Reading (°)
		see photo sheets	

GPS SURVEYING

Using a resource grade GPS survey the items on the checklist below. Collect at least 3 location points set at a 5 second recording rate. Record file numbers for site in designated GPS field notebook.

GPS Checklist: ☐ Jurisdictional wetland boundary. ☐ 4-6 landmarks that are recognizable on the aerial photograph. ☐ Start and End points of vegetation transect(s). ☐ Photograph reference points. ☐ Groundwater monitoring well locations.
Comments / Problems:
WETLAND DELINEATION (attach COE delineation forms)
At each site conduct these checklist items: Delineate wetlands according to the 1987 Army COE manual. Delineate wetland – upland boundary onto aerial photograph. Yes Survey wetland – upland boundary with a resource grade GPS survey.
Comments / Problems:
FUNCTIONAL ASSESSMENT (Complete and attach full MDT Montana Wetland Assessment Method field forms.) (Also attach any completed abbreviated field forms, if used)
Comments / Problems:
MAINTENANCE
Were man-made nesting structure installed at this site? <u>No</u> If yes, do they need to be repaired? <u>NA</u> If yes, describe the problems below and indicate if any actions were taken to remedy the problems.
Were man-made structures built or installed to impound water or control water flow into or out of the wetland? <u>Yes</u> If yes, are the structures working properly and in good working order? <u>Yes</u> If no, describe the problems below.
Comments / Problems: <u>Pipeline diversion from 19-K Canal was examined as well as culvert at inlet.</u> <u>No problems were encountered.</u>

Site: Alkali Lake Date: August 14, 2008 Examiner: A. Pipp

Transect Number: <u>T-1</u> Approximate Transect Length: <u>412 feet</u> Compass Direction from Start: <u>311</u> Note: <u>Compass at 0 declination.</u>

Vegetation Type A: Type 3 - Hordeum Wetland (dry surface soils)				
Length of transect in this type: 0 - 15 f	Length of transect in this type: 0 - 15 feet			
Plant Species		Cover		
Hordeum jubatum		4 = 21-50%		
Iva axillaris		3 = 11-20%		
Agropyron smithii		+ = < 1%		
Puccinellia nuttalliana		2 = 6-10%		
Bare Ground (40%)				
	Total Vegetative Cover:	50%		

Vegetation Type B: Type 3 - Hordeum Wetland (inundated)		
Length of transect in this type: 15 - 191 feet		
Plant Species	Cover	
Hordeum jubatum	4 = 21-50%	
Puccinellia nuttalliana (not seen in 2008)		
Eleocharis acicularis	+=<1%	
Alisma gramineum	+=<1%	
Polygonum ramisossimum (not seen in 2008)		
Chenopodium glaucum (not seen in 2008)		
Suaeda calceoliformis (not seen in 2008)		
Bare Ground (50%)		
Total Vegetative Cover:	50%	

Vegetation Type C: Type 4 - Scirpus Wetland	
Length of transect in this type: 191-202 feet	
Plant Species	Cover
Scirpus pungens (browsed)	+=<1%
Hordeum jubatum	4 = 21-50%
Total Vegetative Cover:	40%

Vegetation Type D: Type 6 - Aquatic Wetland		
Length of transect in this type: 202 - 259 feet		
Plant Species	Cover	
Hordeum jubatum (live)	+ = < 1%	
Eleocharis acicularis	4 = 21-50%	
Indundated Bare Ground (60%)		
Dead clumps of Hordeum jubatum are also		
prevalent.		
Total Vegetative Cover:	40%	

Site: Alkali Lake Date: August 14, 2008 Examiner: A. Pipp

Transect Number: <u>T-1</u> Approximate Transect Length: <u>412 feet</u> Compass Direction from Start: <u>311</u> Note: <u>Compass at 0 declination.</u>

Vegetation Type A: Transitional Open Water		Vegetation Type B:	
Length of transect in this type: 259 - 412 feet		Length of transect in this type: feet	
Plant Species	Cover	Plant Species	Cover
No live plants.			
Total Vegetative Cover:	0%	Total Vegetative Cover:	%
Vegetation Type C:		Vegetation Type D:	
Length of transect in this type: feet		Length of transect in this type: feet	
Plant Species	Cover	Plant Species	Cover

Site: <u>Alkali Lake</u> Date: <u>August 14, 2008</u> Examiner: <u>A. Pipp</u>
Transect Number: <u>T-2</u> Approximate Transect Length: <u>297 feet</u> Compass Direction from Start: <u>136</u> Note: <u>Compass at 0 declination.</u>

Vegetation Type E: Type 1 - Upland		
Length of transect in this type: 0 - 5 fee	t	
Plant Species		Cover
Agropyron smithii		4 = 21-50%
Astragalus (bisulcatus)		+ = < 1%
Iva axillaris		3 = 11-20%
Atriplex patula		2 = 6-10%
Hordeum jubatum		3 = 11-20%
Puccinellia nuttalliana		3 = 11-20%
Т	otal Vegetative Cover:	70%

Vegetation Type F: Type 3 - Hordeum Wetland	
Length of transect in this type: 5 - 107 feet	
Plant Species	Cover
Agropyron smithii	1 = 1-5%
Hordeum jubatum	4 = 21-50%
Iva axillaris	3 = 11-20%
Polygonum ramosissimum (not seen in 2008)	
Atriplex patula (not seen in 2008)	
Puccinellia nuttalliana	1 = 1-5%
Bare ground = 40%	
Total Vegetative Cover:	60%

Vegetation Type G: Type 6 - Aquatic Wetland	
Length of transect in this type: 107 - 132 feet	
Plant Species	Cover
Eleocharis acicularis	4 = 21-50%
Bare ground = 60%	
Total Vegetative Cover:	40%

Vegetation Type H: Transitional Open Water				
Length of transect in this type: 132 - 297 feet				
Plant Species	Cover			
No Vegetation				
Total Vegetative Cover:	%			

Site: <u>Alkali Lake</u> Date: <u>August 14, 2008</u> Examiner: <u>A. Pipp</u>
Transect Number: <u>T-3</u> Approximate Transect Length: <u>173 feet</u> Compass Direction from Start: <u>46°</u> Note: <u>Compass at 0 declination</u>

Vegetation Type I: Type 3 - Hordeum Wetland	
Length of transect in this type: 0 - 165 feet	
Plant Species	Cover
Agropyron smithii	1 = 1-5%
Hordeum jubatum	4 = 21-50%
Iva axillaris	2 = 6-10%
Hordeum brachyantherum	+ = < 1%
Polygonum ramosissimum	1 = 1-5%
Puccinellia nuttalliana (not seen in 2008)	
Suaeda calceoliformis (dead stalks seen in 2008)	
Scirpus pungens	+ = < 1%
Atriplex patula	1 = 1-5%
Bare Ground = 50%	
Total Vegetative Cover:	50%

Vegetation Type J: Transitional Open Water	
Length of transect in this type: 165 - 173 feet	
Plant Species	Cover
No live vegetation.	
Total Vegetative Cover:	0%

Vegetation Type K: Open Water	
Length of transect in this type: feet	
Plant Species	Cover
Total Vegetative Cover:	50%

Vegetation Type L:	
Length of transect in this type: feet	
Plant Species	Cover
Total Vegetative Cover:	%

Cover Estima	ite	Indicator Class	Source
+ = < 1%	3 = 11-10%	+ = Obligate	P = Planted
1 = 1-5%	4 = 21-50%	- = Facultative/Wet	V = Volunteer
2 = 6-10%	5 = > 50%	0 = Facultative	

Percent of perimeter developing wetland vegetation (excluding dam/berm structures): 100%

Establish transects perpendicular to the shoreline (or saturated perimeter). The transect should begin in the upland area. Permanently mark this location with a standard metal fencepost. Extend the imaginary transect line towards the center of the wetland, ending at the 3 foot depth (in open water), or at the point where water depths or saturation are maximized. Mark this location with another metal fencepost.

Estimate cover within a 10 foot wide "belt" along the transect length. At a minimum, establish a transect at the windward and leeward sides of the wetland. Remember that the purpose of this sampling is to monitor, not inventory, representative portions of the wetland site.

Comments: The levels and timing of water are dictating the type of wetland that develops. The extensive area of Suaeda wetland that was seen in 2007 was absent in 2008. Suaeda wetland appears to require a long period of draw-down. The higher water levels in 2008 appear to favor the creation of Hordeum and Scirpus wetlands. Hordeum wetland was extensive and healthy. Scirpus wetland patches are increasing in frequency. The majority of Scirpus plants are not flowering and are in poor shape, presumeably because they are being targeted by wildlife species.

BIRD SURVEY – FIELD DATA SHEET

Site: <u>Alkali Lake</u> Date: <u>5/16/08</u> Survey Time: <u>9:00</u> am to <u>12:00</u> pm

Bird Species	#	Behavior	Habitat	Bird Species	#	Behavior	Habitat
American Avocet	40	F, BD	OW, MA, MF, US	Tern (vocal heard)	1-2	F	UP, OW
American Wigeon	2	F	OW	Vesper Sparrow	6	F	UP
California Gull	2	F	OW	Western Meadowlark	4	F, BD	UP
Canada Goose	2 pair	F	OW, MF, MA	Western Sandpiper	30	F	MA, MF, US
Green-winged Teal	2 pair	F	OW	Willet	12	F, BD	MA, MF, US
Horned Lark	12	F	UP, MA	Wilson's Phalarope	24	F	OW, MA, MF
Killdeer	10	F, N	MA, MF, US				
Long-billed Curlew	5	F	MA, MF, US				
Mallard	4 pairs	F	OW				
Marbled Godwit	20	F, BD	MA, MF, US				
Northern Harrier	1	F	UP				
Northern Pintail	2	F, FO	OW				
Northern Shoveler	2	F	OW				
Piping Plover	1	F	MF, US				
Red-winged Blackbird	4	F	MA				
Ring-necked Duck	6	F, FO	OW				
Sandhill Crane	1	F	UP				
Savannah Sparrow	2	F	UP				

BEHAVIOR CODES

BP = One of a breeding pair
BD = Breeding display
F = Foraging
FO = Flyover

L = LoafingN = Nesting

HABITAT CODES

 $\begin{array}{lll} \textbf{AB} = & \text{Aquatic bed} & \textbf{SS} = & \text{Scrub/Shrub} \\ \textbf{FO} = & \text{Forested} & \textbf{UP} = & \textbf{Upland buffer} \\ \textbf{I} = & \textbf{Island} & \textbf{WM} = & \textbf{Wet meadow} \\ \textbf{MA} = & \text{Marsh} & \textbf{US} = & \textbf{Unconsolidated shore} \\ \textbf{MF} = & \text{Mud Flat} & \textbf{OW} = & \textbf{Open Water} \\ \end{array}$

Weather: Sunny, light breeze, 65 degrees in morning, 80 degrees by noon hour.

Notes: Official Spring Bird Survey conducted by Larry Urban (MDT) and Jeff Berglund (PBS&J). Lakebed was inundated approximately 70-75%. Irrigation water was flowing into site and appeared to be recently turned on.

Also saw pronghorn and the signs of ground squirrel, coyote, skunk, and fox.

BIRD SURVEY - FIELD DATA SHEET

Site: Alkali Lake Date: 8/14-15/08 Survey Time: 8:00 am to 5:00 pm

Bird Species	#	Behavior	Habitat	Bird Species	#	Behavior	Habitat
Canada Geese	< 50	F, L, FO	MA, OW				
Long-billed Curlew	<15	F, FO	MA, OW,				
			UP				
California/Ring-billed	< 50	F, L	MA, OW				
Gull							
Killdeer	<5	F	MA, UP				
Greater Yellowlegs	3	F	MA, OW				
Sandpiper	<30	F	MA, OW				
Willett	<30	F	MA, OW				
Sparrow	<20	F, L, FO	UP				

BEHAVIOR CODES

BP = One of a breeding pair **BD** = Breeding display

F = Foraging **FO** = Flyover

L = LoafingN = Nesting

HABITAT CODES

OW = Open Water

 $\mathbf{AB} = \text{Aquatic bed}$ $\mathbf{SS} = \text{Scrub/Shrub}$ $\mathbf{FO} = \text{Forested}$ $\mathbf{UP} = \mathbf{Upland buffer}$ $\mathbf{I} = \mathbf{Island}$ $\mathbf{WM} = \mathbf{Wet meadow}$

 $\mathbf{M}\mathbf{A} = \mathbf{M}\mathbf{a}\mathbf{r}\mathbf{s}\mathbf{h}$ $\mathbf{U}\mathbf{S} = \mathbf{U}\mathbf{n}\mathbf{c}\mathbf{o}\mathbf{n}\mathbf{s}\mathbf{o}\mathbf{l}\mathbf{i}\mathbf{d}\mathbf{t}\mathbf{e}\mathbf{d}$ shore $\mathbf{M}\mathbf{F} = \mathbf{M}\mathbf{u}\mathbf{d}$ Flat

Weather: Sunny; high 70's; wind about 10 mph.

Notes: General bird species were noted while focusing on other wetland monitoring activities. In general, a large variety of shorebird species were using the site. Birds were often grouped and in fairly large numbers. Birds were using the open water, marsh, and unconsolidated shoreline for foraging and loafing. Canada geese were present, but duck, swan, and other geese species were not seen.

BIRD SURVEY – FIELD DATA SHEET

Site: <u>Alkali Lake</u> Date: <u>10/28/08</u> Survey Time: <u>12:15</u> pm to <u>1:40</u> pm

Bird Species	#	Behavior	Habitat	Bird Species	#	Behavior	Habitat
Tundra Swans	43	L	OW, MA,				
(mature & immature)			US				
Sparrows (unidentified)	13	L	MA, US				
Canada Geese	10	FO	entire site				

BEHAVIOR CODES

BP = One of a breeding pair **BD** = Breeding display

F = Foraging **FO** = Flyover

L = LoafingN = Nesting HABITAT CODES

AB = Aquatic bed
FO = Forested
I = Island
WM = Wet meadow
MA = Marsh
US = Unconsolidated shore

MF = Mud Flat OW = Open Water

Weather: Sunny; high 60's to low 70's; wind 0-3 mph.

Notes: Official Fall Bird Survey conducted by Andrea Pipp. Lakebed was 65-70% inundated. Irrigation water was not flowing. Inlet channel with aquatic insects and algae. Flying insects were common. Plants have all cured out in upland and in wetland. Pulled three Cirsium arvense plants (not flowering) from rocks at inlet.

Project/Site: Alkali - 2008 Applicant/Owner: -Montana Department of Investigators: Andrea Pipp	of Transporta	tion-	Pro	oject No:	County: F	Montana	3
Do Normal Circumstances exist on the s Is the site significantly disturbed (Atypic Is the area a potential Problem Area? (If needed, explain on the reverse side	al Situation	:)?	Yes No Yes No Yes No	Community ID: E Transect ID: Field Location: Betw. 0-8 feet on T			
VEGETATION	(USFWS	Region No. 9)			
Dominant Plant Species(Latin/Common)	Stratum	Indica	tor Plant Spe	cies(Latin/Commo	n)	Stratum	Indicate
Hordeum jubatum	Herb	FAC+		nuttalliana		Herb	OBL
Barley,Fox-Tail			Grass, Nut	tall's Alkali			
lva axillaris	Herb	FAC				FIN TOWN	
Sumpweed,Small-Flower							
			10000				
					The state of the s		
Remarks:							
HYDROLOGY							-
NO Recorded Data(Describe in Rema N/A Stream, Lake or Tide Gaug N/A Aerial Photographs N/A Other YES No Recorded Data		V	Primary In NO In NO S:NO W NO D:NO S:NO D:NO D: _	undated aturated in Upper later Marks rift Lines ediment Deposits rainage Patterns ir			
Depth of Surface Water:	N/A (in.)		YES O	Indicators xidized Root Chan		12 Inches	
Depth to Free Water in Pit:	N/A (in.)		NO Lo	ater-Stained Leave ocal Soil Survey Da			
Depth to Saturated Soil:	> 13 (in.)			AC-Neutral Test ther(Explain in Re	marks)		
Remarks: Dry from 0-6 inches; Moist from 6-11 inches; Nea season and for long enough duration. Surface so	arly saturated of cracks are a	from 11-1 abundant	12 inches, but no t and 2 inches de	ot quite saturated. Asseep. Few oxidized roo	sumed it was sat of channels prese	urated earlier ent from 6-12	in growin

DATA FORM ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Delineation Manual)

Project/S Applicant Investiga	t/Owner: -M	kali - 2008 Iontana Department Indrea Pipp	of Transportation-	Project No:			Date: 14-Aug-2008 County: Pondera State: Montana Plot ID: Soil Pit 1
SOILS							The state of the s
Map Unit Name (Series and Phase): Alkali Lake-not map Map Symbol: unk. Drainage Class: unknown Taxonomy (Subgroup): unknown Profile Description				upped as a soil unit Mapped Hydric Inclusion? Field Observations Confirm Mapped Type? Ye			
Depth (inches)	Horizon	Matrix Color (Munsell Moist)	Mottle Color (Munsell Moist)	Mottle Abundance/Contrast Texture, (Texture, Con	ncretions, Structure, etc
0-6	Α	2.5Y5/1	2.5Y5/4	Few	Faint	Clay	
6-12	В	2.5Y4/1	2.5Y4/4	Many	Faint	Clay, Oxidized rhizospheres	
Remarks	NO Sulfice NO Aquice NO Redu YES Gleye	e Epipedon dic Odor c Moisture Regime cing Conditions ed or Low Chroma		NO Ore	ganic Streak ted on Loca ted on Natio	content in Sur king in Sandy ! Il Hydric Soils onal Hydric So in Remarks)	List
WETLAND	DETERMI	NATION					
Wetland H	tic Vegetatio Hydrology Pr ils Present?		No	Is the San	npling Point	within the Wetla	and? (Yes) No
Remarks							

Page 1 of 2 WetFormtm

Page 2 of 2

Project/Site:

Alkali - 2008

Date: 14-Aug-2008

Do Normal Circumstances exist on the sit Is the site significantly disturbed (Atypica Is the area a potential Problem Area? (If needed, explain on the reverse side)		:)?	Yes No Community ID: Emergent Transect ID: Yes No Field Location: On Transect 1.					
VEGETATION	(1	USFWS F	Region No. 9			The Asia		
Dominant Plant Species(Latin/Common)	Stratum	Indicato	Plant Spec	ies(Latin/Co	mmon)		Stratum	Indicato
Hordeum jubatum	Herb	FAC+	Scirpus pu	ngens			Herb	OBL
Barley,Fox-Tail			Bulrush,Th	ree-Square				
Eleocharis palustris	Herb	OBL						
Spikerush,Creeping								
		1	10					
(excluding FAC-) 3/3 = 100.00%	L, FACW o	r FAC:	FAC Ne		2 = 100.00 5/3 = 1.6			
Remarks:	L, FACW o	r FAC:						
(excluding FAC-) 3/3 = 100.00% Remarks:	L, FACW o	r FAC:						
(excluding FAC-) 3/3 = 100.00% Remarks: HYDROLOGY NO Recorded Data(Describe in Remain N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other	rks):		etland Hydro Primary In YES In YES S	logy Indicated dicators undated aturated in U	5/3 = 1.6	7		
(excluding FAC-) 3/3 = 100.00% Remarks: HYDROLOGY NO Recorded Data(Describe in Rema N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other YES No Recorded Data	rks):		etland Hydro Primary in YES in YES S NO W NO D NO S	logy Indicated dicators undated aturated in U ater Marks rift Lines ediment Dep	ors Specific points S	7 :hes		
(excluding FAC-) 3/3 = 100.00% Remarks: HYDROLOGY NO Recorded Data(Describe in Remain N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other	rks):		etland Hydro Primary In YES In YES SI NO W NO D NO SS	logy Indicate dicators undated aturated in U ater Marks rift Lines	pors Apper 12 Incosits erns in Wetl	7 :hes	2 Inches	
(excluding FAC-) 3/3 = 100.00% Remarks: HYDROLOGY NO Recorded Data(Describe in Remannia N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other YES No Recorded Data Field Observations	rks):		etland Hydro Primary In YES In NO W NO D NO S NO D Secondary NO O NO W	logy Indicate dicators undated aturated in U ater Marks rift Lines ediment Dep rainage Patte	pper 12 Incosits Channels i Leaves	7 :hes	2 Inches	

DATA FORM ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Delineation Manual)

Project/Site:	Alkali - 2008	Project No:	Date: 14-Aug-2008
		Project No.	
Applicant/Owner	: -Montana Department of Transportation-		County: Pondera
Investigators:	Andrea Pipp		State: Montana
			Plot ID: Soil Pit 2

SOILS Map Unit Name (Series and Phase): Alkali Lake-not mapped as a soil unit Map Symbol: unk. Drainage Class: unknown Mapped Hydric Inclusion? Taxonomy (Subgroup): unknown Field Observations Confirm Mapped Type? Yes No Profile Description Matrix Color Mottle Color Mottle Depth (inches) Horizon (Munsell Moist) (Munsell Moist) Abundance/Contrast Texture, Concretions, Structure, etc Oi 10YR2/1 N/A N/A Organic 2.5Y5/1 2.5Y5/4 0.5-12 A/B Few Distinct Clay Hydric Soil Indicators: NO Histosol NO Histic Epipedon NO Concretions NO High Organic Content in Surface Layer in Sandy Soils NO Sulfidic Odor NO Aquic Moisture Regime NO Reducing Conditions YES Gleyed or Low Chroma Colors NO Organic Streaking in Sandy Soils NO Listed on Local Hydric Soils List NO Listed on National Hydric Soils List NO Other (Explain in Remarks)

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	Yes Yes Yes	No No No	Is the Sampling Point within the Wetland?	Yes No
Remarks:				

 Page 1 of 2
 WetFormth
 Page 2 of 2
 WetFormth

Remarks:

Project/Site: Alkali - 2008 Applicant/Owner: -Montana Department of Tinvestigators: Andrea Pipp	Fransporta	tion-	Pr	oject No:	County: F	Montana	3
Do Normal Circumstances exist on the site Is the site significantly disturbed (Atypical Is the area a potential Problem Area? (If needed, explain on the reverse side))? Y	es No es No es No	Community ID: E Transect ID: Field Location: On T-1 in Aquatic P			
VEGETATION	(1	JSFWS Re	gion No.	9)			
Dominant Plant Species(Latin/Common)	Stratum		Plant Spe	ecies(Latin/Commo	1)	Stratum	Indicato
Eleocharis acicularis Spikerush Least	Herb	OBL					
Opiner dan, Eduar							
		0.00					
Percent of Dominant Species that are OBL (excluding FAC-) 1/1 = 100.00% Remarks:	, FACW o	r FAC:		eutral: 1/1 = 1 ric Index: 1/1	00.00% = 1.00		
NO Recorded Data(Describe in Remark	(s):	Wet	and Hydr	ology Indicators			
N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other YES No Recorded Data	·- /·		Primary In YES II YES S NO V	ndicators nundated Saturated in Upper 1 Vater Marks Orift Lines	2 Inches		
Field Observations			NO	Sediment Deposits Prainage Patterns in y Indicators	Wetlands		
	= 4.0 (in.)		NO C	oxidized Root Chan Vater-Stained Leave		12 Inches	
Depth to Free Water in Pit: Depth to Saturated Soil:	N/A (in.) N/A (in.)		YES F	ocal Soil Survey Da AC-Neutral Test Other(Explain in Rer			
Remarks; Also dominant was a species of Potamogeton.							

DATA FORM **ROUTINE WETLAND DETERMINATION** (1987 COE Wetlands Delineation Manual)

Applican	Project/Site: Alkali - 2008 Applicant/Owner: -Montana Department of Transportation- investigators: Andrea Pipp				Project No:		Date: 14-Aug-2008 County: Pondera State: Montana Plot ID: Soil Pit 3
SOILS		1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2				***	
Map Sym	bol: unk. y (Subgroup	Drainage Class:	Alkali Lake-not ma unknown		Map	ped Hydric Inclu ervations Confir	sion? m Mapped Type? Yes No
Depth (inches)	Horizon	Matrix Color (Munsell Moist)			le /Contrast	Texture, Concr	etions, Structure, etc
0-12	A/B	2.5Y5/1	N/A	N/A	N/A	Clay	
Remarks	NO Sulfic NO Aquic NO Redu YES Gleye	: Epipedon dic Odor : Moisture Regime cing Conditions d or Low Chroma		NO Orga NO Liste NO Liste	nic Streak d on Loca d on Natio	Content in Surfac king in Sandy So il Hydric Soils conal Hydric Soils in Remarks)	st
WETLANI	DETERMIN	NATION		5 Z-14			
Wetland I	tic Vegetatio Hydrology Pr ills Present?) No	Is the Samp	ling Point	within the Wetland	d? (Yes) No
Remarks							

Page 1 of 2 Page 2 of 2 WetFormtm

DATA FORM **ROUTINE WETLAND DETERMINATION**

(1987 COE Wetlands Delineation Manual)

Project/Site: Applicant/Owner: Investigators:	Alkali - 2008 -Montana Department of Transportation- Andrea Pipp	Pi	roject No:	State:	14-Aug-2008 r: Pondera Montana r: Soil Pit 4	
	nstances exist on the site? cantly disturbed (Atypical Situation:)?		Community ID: Transect ID:	Emergent		

Yes No Field Location: (If needed, explain on the reverse side) Between 0-5 feet on Transect 2. VEGETATION (USFWS Region No. 9) Dominant Plant Species(Latin/Common) Stratum Indicator Plant Species(Latin/Common) Stratum Indicator Agropyron smithii Herb FACU Iva axillaris Herb FAC Wheatgrass, Western Sumpweed, Small-Flower Percent of Dominant Species that are OBL, FACW or FAC: FAC Neutral: 0/1 = 0.00% (excluding FAC-) 1/2 = 50.00% Numeric Index: 7/2 = 3.50 Remarks: Present, but not dominant were Hordeum jubatum and Puccinellia nuttalliana.

HYDROLOGY

NO Recorded Data(Describe in Re	marks):	Wetland Hydrology Indicators
N/A Stream, Lake or Tide Gau	ige	Primary Indicators
N/A Aerial Photographs		NO Inundated
N/A Other		NO Saturated in Upper 12 Inches
VECNUE		NO Water Marks
YES No Recorded Data		NO Drift Lines
		NO Sediment Deposits
Field Observations		NO Drainage Patterns in Wetlands
		Secondary Indicators
Depth of Surface Water:	N/A (in.)	NO Oxidized Root Channels in Upper 12 Inches
	11/4 / 1	NO Water-Stained Leaves
Depth to Free Water in Pit:	N/A (in.)	NO Local Soil Survey Data
Depth to Saturated Soil:	> 13 (in.)	NO FAC-Neutral Test
Deptil to Saturated Soil.	- 13 (111.)	NO Other(Explain in Remarks)

Soils dry from 0-9 inches and slightly moist from 9-12 inches. Soil surface cracked to 1 inch deep.

DATA FORM **ROUTINE WETLAND DETERMINATION**

Project/Si Applicant Investiga	/Owner: -M	kali - 2008 Iontana Department ndrea Pipp		Project N	o;	State:	14-Aug-2008 Pondera Montana Soil Pit 4	
SOILS								
		es and Phase): Drainage Class:	Alkali Lake-not ma	ipped as a sc		oed Hydric Incl	luniano.	
	y (Subgrou	p): unknown	ulkilowii					ped Type? Yes
Taxonom	y (Subgrou		Mottle Color (Munsell Moist)			ervations Conf	firm Mapp	oed Type? Yes (
Taxonom Profile Des Depth	y (Subgrou scription	p): unknown Matrix Color	Mottle Color		Field Obs	ervations Conf	firm Mapp	

Rema	ırks:		
M.	YES Gleyed or Low Chroma Colors	NO Other (Explain in Remarks)	
	NO Reducing Conditions	NO Listed on National Hydric Soils List	
	NO Aquic Moisture Regime	NO Listed on Local Hydric Soils List	
	NO Sulfidic Odor	NO Organic Streaking in Sandy Soils	

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	Yes No Yes No	Is the Sampling Point within the Wetland? Yes No
Remarks: Site is upland.		

Page 1 of 2 Page 2 of 2 WetFormtm WetFormtm

Applicant/Owner: -Montana Department of T nvestigators: Andrea Pipp	oject No:	ct No: Date: 14-Aug-2008 County: Pondera State: Montana Plot ID: Soil Pit 5					
Do Normal Circumstances exist on the site s the site significantly disturbed (Atypical s the area a potential Problem Area? (If needed, explain on the reverse side)		:)? Y	No es No es No	Community ID Transect ID: Field Location On Transect 2.			
EGETATION	(1	USFWS Re	gion No.	9)			
Dominant Plant Species(Latin/Common)	Stratum	Indicator	Plant Spe	ecies(Latin/Con	nmon)		Indicator
Hordeum jubatum	eum jubatum Herb FA			is		Herb	FAC
Barley,Fox-Tail			Sumpwee	ed,Small-Flower			
	5						
							-8
Percent of Dominant Species that are OBL (excluding FAC-) 2/2 = 100.00%	, FACW o	or FAC:			= 0.00% /2 = 3.00		
(excluding FAC-) 2/2 = 100.00% Remarks: Hordeum brachyantherum possibly present. In vic			Nume	ric Index: 6	/2 = 3.00		
(excluding FAC-) 2/2 = 100.00% Remarks: Hordeum brachyantherum possibly present. In vic	inity of plot	there are so	Nume	ric Index: 6	//2 = 3.00 n smithii.		
(excluding FAC-) 2/2 = 100.00% Remarks: Hordeum brachyantherum possibly present. In vice HYDROLOGY NO Recorded Data(Describe in Remark)	inity of plot	there are so	Nume	ric Index: 6 tches of Agropyro	//2 = 3.00 n smithii.		
(excluding FAC-) 2/2 = 100.00% Remarks: Hordeum brachyantherum possibly present. In vice HYDROLOGY NO Recorded Data(Describe in Remark) N/A Stream, Lake or Tide Gauge	inity of plot	there are so	Nume me small pa	ric Index: 6	/2 = 3.00 n smithii.		
(excluding FAC-) 2/2 = 100.00% Remarks: Hordeum brachyantherum possibly present. In vice HYDROLOGY NO Recorded Data(Describe in Remark)	inity of plot	there are so	Nume me small pa	ric Index: 6 tches of Agropyro	/2 = 3.00 n smithii.	es	
(excluding FAC-) 2/2 = 100.00% Remarks: Hordeum brachyantherum possibly present. In vio	inity of plot	there are so	Rland Hydi Primary I NO NO NO NO	ric Index: 6 these of Agropyro rology Indicator indicators inundated Saturated in Up Water Marks Drift Lines	n smithii.	25	
(excluding FAC-) 2/2 = 100.00% Remarks: HORDLOGY NO Recorded Data(Describe in Remar N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other	inity of plot	there are so	Nume me small pa tland Hydi Primary I NO NO NO NO NO NO NO NO	ric Index: 6 titches of Agropyro rology Indicator ndicators lnundated Saturated in Up Water Marks	/2 = 3.00 n smithii.		
(excluding FAC-) 2/2 = 100.00% Remarks: Hordeum brachyantherum possibly present. In vice HYDROLOGY NO Recorded Data(Describe in Remar N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other YES No Recorded Data	inity of plot	Wet	Rume small particular small	rology Indicator indicators inundated Saturated in Up Water Marks Drift Lines Sediment Depo Drainage Patter y Indicators Oxidized Root of	/2 = 3.00 n smithii. rs per 12 Inches sits ms in Wetlar		
(excluding FAC-) 2/2 = 100.00% Remarks: Hordeum brachyantherum possibly present. In vice HYDROLOGY NO Recorded Data(Describe in Remar N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other YES No Recorded Data Field Observations	inity of plot	Wet	Rume small particles and Hydronia representation of the s	rology Indicator ndicators inundated Saturated in Up Water Marks Drift Lines Sediment Depo Drainage Patter ry Indicators	/2 = 3.00 n smithii. rs oper 12 Inches sits ms in Wetlar Channels in Leaves ey Data	nds	

DATA FORM
ROUTINE WETLAND DETERMINATION
(1987 COF Wetlands Delineation Manual)

Applicant	roject/Site: Alkali - 2008 pplicant/Owner: -Montana Department of Transportation- vestigators: Andrea Pipp				Project No	Date: 14-Aug-200 County: Pondera State: Montana Plot ID: Soil Pit 5	8
SOILS							
Map Sym	bol: unk. y (Subgrou	Drainage Class:	Alkali Lake-not ma unknown	pped as a sc	Map	ped Hydric Inclusion? ervations Confirm Mapped Type?	res No
Depth (inches)	Horizon	Matrix Color (Munsell Moist)	Mottle Color (Munsell Moist)		ttle e/Contrast	Texture, Concretions, Structure, etc	
0-7	A	2.5Y5/1	N/A	N/A	N/A	Clay	
7-12	В	2.5Y5/1	2.5YR5/6	Many	Faint	Clay, Oxidized rhizospheres	
Remark	NO Redu YES Gleye	c Moisture Regime icing Conditions ed or Low Chroma		NO Lis	ted on Natio	ıl Hydric Soils List onal Hydric Soils List in Remarks)	
	D DETERMI						
Wetland	ytic Vegetation Hydrology Poils Present?	resent? Yes	No No	Is the San	npling Point	within the Wetland? (Fes) No	
Remarks	:						

Page 1 of 2 WetForm^{im} Page 2 of 2 WetForm^{im}

DATA FORM ROUTINE WETLAND DETERMINATION

(1987 COE Wetlands Delineation Manual)

Do Normal Circumstances exist on the sit Is the site significantly disturbed (Atypica Is the area a potential Problem Area? (If needed, explain on the reverse side)		1:)? Y	es No es No	Community ID Transect ID: Field Location First segment of	:		
VEGETATION	(USFWS R	egion No. !	9)			
Dominant Plant Species(Latin/Common)	Stratum	Indicator	Plant Spe	ecies(Latin/Com	nmon)	Stratum	Indicato
Hordeum jubatum	Herb	FAC+	lva axillar			Herb	FAC
Barley,Fox-Tail	100.00		Sumpwee	d,Small-Flower			
Agropyron smithii	Herb	FACU					
Wheatgrass, Western							
		r FAC:	FAC N		= 0.00%		
(excluding FAC-) 2/3 = 66.67% Remarks:			- Land Co.		- 0.00% /3 = 3.33		
Remarks: HYDROLOGY			Numer	ic Index: 10,	/3 = 3.33		
Remarks:	<s):< td=""><td>Wet</td><td>Numer land Hydro Primary In NO Ir YES S NO W NO D NO S NO D</td><td>ology Indicators dicators undated aturated in Upp Jater Marks rift Lines ediment Depos rainage Pattern</td><td>/3 = 3.33</td><td></td><td></td></s):<>	Wet	Numer land Hydro Primary In NO Ir YES S NO W NO D NO S NO D	ology Indicators dicators undated aturated in Upp Jater Marks rift Lines ediment Depos rainage Pattern	/3 = 3.33		
Remarks: AYDROLOGY NO Recorded Data(Describe in Remark) N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other YES No Recorded Data Field Observations Depth of Surface Water:	x s) : N/A (in.)	Wet	land Hydro Primary In NO In YES S NO W NO D NO S Secondary YES O	ology Indicators dicators aundated aturated in Upp. Vater Marks ediment Depos rainage Pattern y Indicators xidized Root C	oper 12 Inches iits is in Wetlands hannels in Upper	12 Inches	
Remarks: HYDROLOGY NO Recorded Data(Describe in Remar N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other YES No Recorded Data Field Observations		Wet	Numer Primary In NO Ir YES S NO W NO D NO D Secondar YES O NO W	ology Indicators dicators undated aturated in Upp/ Jater Marks rift Lines ediment Depos rainage Patterr y Indicators vidized Root C Jater-Stained L	over 12 Inches itts is in Wetlands hannels in Upper	12 Inches	
Remarks: HYDROLOGY NO Recorded Data(Describe in Remarl N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other YES No Recorded Data Field Observations Depth of Surface Water:	N/A (in.)	Wet	land Hydro Primary In NO In YES S NO W NO D NO S Secondar YES O NO W NO L NO F	ology Indicators dicators aundated aturated in Upp. Vater Marks ediment Depos rainage Patterr y Indicators xidized Root C	oper 12 Inches lits is in Wetlands hannels in Upper eaves y Data t	12 Inches	

DATA FORM ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Delineation Manual)

	oject/Site: Alkali - 2008 plicant/Owner: -Montana Department of Transportation- estigators: Andrea Pipp			Project No:			Date: 14-Aug-2008 County: Pondera State: Montana Plot ID: Soil Pit 6
SOILS							PIOTID: SOILPIEG
Map Sym	y (Subgroup)	Drainage Class:	Alkali Lake-not ma unknown	pped as a so	Мар	ped Hydric Inclu ervations Confir	sion? m Mapped Type? Yes No
Depth (inches)	Horizon (Matrix Color (Munsell Moist)	Mottle Color (Munsell Moist)		Mottle Abundance/Contrast		retions, Structure, etc
0-12	A	2.5Y5/1	2.5Y5/6	Few	Faint	Clay, Oxidized r	hizospheres
Remarks	NO Reducion	Epipedon		NO High NO Org NO List NO List	anic Streak ed on Loca ed on Natic	Content in Surfac king in Sandy So Il Hydric Soils Li onal Hydric Soils in Remarks)	st
VETLAND	DETERMINA	ATION					
Wetland H	ic Vegetation I Hydrology Pres ils Present?) No) No) No	Is the Sam	pling Point v	within the Wetland	d? (Yes) No
Remarks							

Page 1 of 2

WetFormtm

Page 2 of 2

WetForm

Do Normal Circumstances exist on the site Is the site significantly disturbed (Atypical Is the area a potential Problem Area? (If needed, explain on the reverse side)		Yes Yes Yes	No No	Community II Transect ID: Field Location Middle section			i i
VEGETATION	(1	JSFWS Reg	ion No. 9)			
Dominant Plant Species(Latin/Common)	Stratum		lant Spec	cies(Latin/Co	mmon)	Stratum	Indicate
Hordeum jubatum Barley,Fox-Tail	Herb	FAC+					
Barley, P.O Fall							
		39%					
							- 23
Percent of Dominant Species that are OBL (excluding FAC-) 1/1 = 100.00%	, FACW or	r FAC:	FAC Ne		= 0.00% 3/1 = 3.00		
(excluding FAC-) 1/1 = 100.00% Remarks:			Numeri	c Index: 3	3/1 = 3.00		
			Numeri	c Index: 3	3/1 = 3.00		
(excluding FAC-) 1/1 = 100.00% Remarks: Suaeda species is absent, though 2007 stalks are s	still present.	Polygonum n	nd Hydro rimary Ind NO In YES SS NO W NO Dr NO SS NO Dr	logy Indicator dicators undated attrated in Up ater Marks rift Lines ediment Depo rainage Patter	not dominant.		
(excluding FAC-) 1/1 = 100.00% Remarks: Suaeda species is absent, though 2007 stalks are selected by the sele	still present.	Polygonum n	nd Hydro rimary Ind NO In YES Sa NO W NO Dr NO Se condary NO Or	logy Indicator idicators undated aturated in Up ater Marks rift Lines ediment Depo rainage Patter Indicators xidized Root (a	not dominant. rs oper 12 Inches sits ms in Wetlands Channels in Uppe	er 12 Inches	
(excluding FAC-) 1/1 = 100.00% Remarks: Suaeda species is absent, though 2007 stalks are selected by the state of the sta	still present.	Polygonum n	nd Hydro rimary Inc NO In YES Sa NO W NO Dr NO Dr Condary NO Dr NO ON NO ON NO ON NO N	logy Indicator dicators undated atturated in Up atter Marks rift Lines ediment Depo rainage Patter Indicators	not dominant. rs oper 12 Inches sits ms in Wetlands Channels in Uppe	er 12 Inches	

DATA FORM ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Delineation Manual)

Applicant	roject/Site: Alkali - 2008 pplicant/Owner: -Montana Department of Transportation- vestigators: Andrea Pipp			Project N	o: Date: 14-Aug-2008 County: Pondera State: Montana Plot ID: Soil Pit 7
SOILS					
Map Sym	bol: unk. y (Subgroup	Drainage Class:	Alkali Lake-not ma unknown	Mapı	ped Hydric Inclusion? ervations Confirm Mapped Type? Yes No
Depth (inches)	Horizon	Matrix Color (Munsell Moist)	Mottle Color (Munsell Moist)	Mottle Abundance/Contrast	Texture, Concretions, Structure, etc
0-12	A/B	2.5Y5/1	2.5Y5/6	Common Faint	Clay
Remarks	NO Reduc YES Gleye	ic Odor Moisture Regime cing Conditions d or Low Chroma		NO Listed on Loca	king in Sandy Soils Il Hydric Soils List onal Hydric Soils List in Remarks)
WETLANI	DETERMIN	IATION			
Wetland I	### CETLAND DETERMINATION ### Vegetation Present?			Is the Sampling Point	within the Wetland? Yes No
Remarks					

Page 1 of 2 WetForm Page 2 of 2 WetForm Page 2 of 2

Investigators: Andrea Pipp Do Normal Circumstances exist on the site? (Yes) No Community ID; Eme						Montana Soil Pit 8	
Do Normal Circumstances exist on the sit Is the site significantly disturbed (Atypical Is the area a potential Problem Area? (If needed, explain on the reverse side)		17 Y	es No Tra	nmunity ID: nsect ID: d Location: nlet Channel.	Emergent		
/EGETATION	(1	JSFWS Re	gion No. 9)				
Dominant Plant Species(Latin/Common)	Stratum	Indicator	Plant Species	(Latin/Comm	on)	Stratum	Indicate
Scirpus acutus	Herb	OBL	Hordeum juba			Herb	FAC+
Bulrush,Hard-Stem	III. I	OPI	Barley,Fox-Tai				
Scirpus pungens Bulrush,Three-Square	Herb	OBL					
Dullusti, fillee-Square							
						- 19	
							7
Percent of Dominant Species that are OBI	, FACW o	r FAC:	FAC Neutr		= 100.00%		8 116
(excluding FAC-) 3/3 = 100.00% Remarks: Many Scirpus are browsed.	, FACW o	rFAC:	FAC Neutr Numeric In		= 100.00% = 1.67		
(excluding FAC-) 3/3 = 100.00% Remarks: Many Scirpus are browsed. HYDROLOGY			Numeric In	dex: 5/3			
(excluding FAC-) 3/3 = 100.00% Remarks: Many Scirpus are browsed. HYDROLOGY NO Recorded Data(Describe in Remark N/A Stream, Lake or Tide Gauge				y Indicators			
(excluding FAC-) 3/3 = 100.00% Remarks: Many Scirpus are browsed. HYDROLOGY NO Recorded Data(Describe in Remark N/A Stream, Lake or Tide Gauge N/A Aerial Photographs			Numeric In	y Indicators	= 1.67		
(excluding FAC-) 3/3 = 100.00% Remarks: Many Scirpus are browsed. HYDROLOGY NO Recorded Data(Describe in Remark N/A Stream, Lake or Tide Gauge			Numeric In	y Indicators ators lated rated in Upper	= 1.67		
(excluding FAC-) 3/3 = 100.00% Remarks: Many Scirpus are browsed. HYDROLOGY NO Recorded Data(Describe in Remark N/A Stream, Lake or Tide Gauge N/A Aerial Photographs			land Hydrolog Primary Indice YES Satur NO Wate NO Drift I	y Indicators ators lated rated in Upper	= 1.67		
(excluding FAC-) 3/3 = 100.00% Remarks: Many Scirpus are browsed. HYDROLOGY NO Recorded Data(Describe in Remarks: N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other			land Hydrolog Primary Indica YES Inunc NO Drift I NO Sedir NO Drain	y Indicators ators lated r dated in Upper r Marks Lines nent Deposits age Patterns	= 1.67		
(excluding FAC-) 3/3 = 100.00% Remarks: Many Scirpus are browsed. HYDROLOGY NO Recorded Data(Describe in Remark) N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other YES No Recorded Data			land Hydrolog Primary Indica YES Inunc YES Satur NO Drift I NO Prain Secondary Inc NO Oxidi	y Indicators ators dated ated in Upper Arks Lines nent Deposits age Patterns dicators zed Root Cha	r 12 Inches s in Wetlands	or 12 Inches	
(excluding FAC-) 3/3 = 100.00% Remarks: Many Scirpus are browsed. HYDROLOGY NO Recorded Data(Describe in Remark) N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other YES No Recorded Data Field Observations	ks):		land Hydrolog Primary Indica YES Inunc YES Satur NO Wate NO Drift NO Sedin NO Drain Secondary Inc NO Oxidi NO Wate NO U Oxidi	y Indicators ators lated rated in Upper r Marks Lines ment Deposits age Patters dicators zed Root Cha r-Stained Lea Soil Survey	r 12 Inches s in Wetlands annels in Uppe	r 12 Inches	
(excluding FAC-) 3/3 = 100.00% Remarks: Many Scirpus are browsed. HYDROLOGY NO Recorded Data(Describe in Remarks: N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other YES No Recorded Data Field Observations Depth of Surface Water:	ks): = 3.0 (in.)		land Hydrolog Primary Indica YES Inunc YES Satur NO Wate NO Drift NO Sedir NO Drain Secondary Ind NO Wate NO Local YES FAC-	y Indicators ators dated in Upper Amrks Lines ment Deposits age Patterns dicators zed Root Char -Stained Lea I Soil Survey Neutral Test	r 12 Inches s in Wetlands annels in Uppe	or 12 Inches	
(excluding FAC-) 3/3 = 100.00% Remarks: Many Scirpus are browsed. HYDROLOGY NO Recorded Data(Describe in Remarks: N/A Stream, Lake or Tide Gauge N/A Perial Photographs N/A Other YES No Recorded Data Field Observations Depth of Surface Water: Depth to Free Water in Pit:	= 3.0 (in.) N/A (in.)		land Hydrolog Primary Indica YES Inunc YES Satur NO Wate NO Drift NO Sedir NO Drain Secondary Ind NO Wate NO Local YES FAC-	y Indicators ators lated rated in Upper r Marks Lines ment Deposits age Patters dicators zed Root Cha r-Stained Lea Soil Survey	r 12 Inches s in Wetlands annels in Uppe	or 12 Inches	
(excluding FAC-) 3/3 = 100.00% Remarks: Many Scirpus are browsed. HYDROLOGY NO Recorded Data(Describe in Remar N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other YES No Recorded Data Field Observations Depth of Surface Water: Depth to Free Water in Pit: Depth to Saturated Soil:	= 3.0 (in.) N/A (in.)		land Hydrolog Primary Indica YES Inunc YES Satur NO Wate NO Drift NO Sedir NO Drain Secondary Ind NO Wate NO Local YES FAC-	y Indicators ators dated in Upper Amrks Lines ment Deposits age Patterns dicators zed Root Char -Stained Lea I Soil Survey Neutral Test	r 12 Inches s in Wetlands annels in Uppe	r 12 Inches	

DATA FORM

			ROUTINE WET					
		-	1987 COE Wetl	ands Deli				
Project/Si Applicant Investigat	Owner: -M	kali - 2008 Iontana Departmeni ndrea Pipp	t of Transportation-		Project No	o:	State:	15-Aug-2008 Pondera Montana Soil Pit 8
SOILS								
Map Sym	bol: unk. y (Subgrou	ies and Phase): Drainage Class: p): unknown	Alkali Lake-not ma unknown	pped as a so	Мар	ped Hydric Incl ervations Conf		oed Type? Yes
Depth (inches)	Horizon	Matrix Color (Munsell Moist)	Mottle Color (Munsell Moist)	100	ttle e/Contrast	Texture, Cond	cretions,	Structure, etc
0-5	Α	2.5Y5/1	N/A	N/A	N/A	Clay		
5-12+	A/B	2.5Y5/1	2.5Y5/4	N/A	N/A	Clay		
Hydric Sc	NO Sulfic NO Aquic NO Redu	sol c Epipedon		NO Hig NO Org NO List	anic Streak ted on Loca	ing in Sandy S I Hydric Soils I onal Hydric Soi	oils List	r in Sandy Soils

WETLAND DETERMINATION							
Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	Yes Yes Yes	No No No	Is the Sampling Point within the Wetland?	Yes No			
Remarks:							

Page 1 of 2 Page 2 of 2 WetFormtm

Project/Site: Alkali - 2008 Applicant/Owner: -Montana Department of Investigators: Andrea Pipp	Pr	oject No:	County: F	Montana	anua.		
Do Normal Circumstances exist on the sit is the site significantly disturbed (Atypical is the area a potential Problem Area? (If needed, explain on the reverse side))? Y	es No es No es No	Community ID: E Transect ID: Field Location: Northeast area of s			
/EGETATION	(1	JSFWS Re	egion No. 9	9)			
Dominant Plant Species(Latin/Common)	Stratum	Stratum Indicator Plant Species(Latin/Common)				Stratum	Indicat
Puccinellia nuttalliana	Herb	OBL	Hordeum		Herb	FAC+	
Grass,Nuttall's Alkali			Barley,Fo	x-Tail			
		- 1					
		. , , , ,					
Percent of Dominant Species that are OB (excluding FAC-) 2/2 = 100.00% Remarks: Present, but few was Iva axillaris.			Nume	ric Index: 4/2	= 2.00		
HYDROLOGY							
NO Recorded Data(Describe in Reman N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other YES No Recorded Data Field Observations Depth of Surface Water: Depth to Free Water in Pit: Depth to Saturated Soil:			Primary III NO II YES II	nundated saturated in Upper Vater Marks prift Lines sediment Deposits rorainage Patterns ry Indicators Dxidized Root Cha Vater-Stained Lea cocal Soil Survey [FAC-Neutral Test	in Wetlands nnels in Uppe ves oata	r 12 Inches	
			YES	otner(Explain in Re	emarks)		Name of Street
Remarks: Soil very dry from 0-8 inches; pliable at 8 inches, must have been flooded with water. Surface soil frequently ponded for long duration or very long dr	Tall hummic	om 0-2 inch	served on the	Other(Explain in Re e other side of the fend ils meet NRCS Hydric	ce, indicating that	that soils are, "Soils that a	ound Pit

DATA FORM ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Delineation Manual)

	ect/Site: Alkali - 2008 licant/Owner: -Montana Department of Transportation- sstigators: Andrea Pipp				Project No	O: Date: 15-Aug-2008 County: Pondera State: Montana Plot ID: Soil Pit 9		
SOILS					10 A			
Map Sym	bol: unk. y (Subgrou	es and Phase): Drainage Class: p): unknown	Alkali Lake-not ma unknown	pped as a sc	Мар	ped Hydric Inclusion? servations Confirm Mapped Type? Yes No		
Depth (inches)	Horizon	Matrix Color (Munsell Moist)	Mottle Color (Munsell Moist)	Mo Abundanc	ttle e/Contrast	Texture, Concretions, Structure, etc		
0-8	A	2.5Y5/1	N/A	N/A	N/A	Clay		
8-12+	В	2.5Y5/1	N/A	N/A	N/A	Clay		
Remark	NO Redu YES Gleye	dic Odor c Moisture Regime Icing Conditions ed or Low Chroma		NO List	ted on Loca ted on Natio	king in Sandy Soils al Hydric Soils List onal Hydric Soils List in Remarks)		
WETLAN	DETERMI							
Wetland	Hydrophytic Vegetation Present? (Yes) No Wetland Hydrology Present? (Yes) No Hydric Soils Present? (Yes) No			Is the Sampling Point within the Wetland? (Fes.) No				
Remarks								

 Page 1 of 2
 WetForm
 Page 2 of 2
 WetForm

Applicant/Owner: -Montana Department of Investigators: Andrea Pipp	Transporta	ation-		ect No:	County:	Montana	
Do Normal Circumstances exist on the sit s the site significantly disturbed (Atypica s the area a potential Problem Area? (If needed, explain on the reverse side)		1:)?	Yes No T	community ID: ransect ID: ield Location: Vest of T-2 in A			
/EGETATION	(USFWS F	Region No. 9)				
Dominant Plant Species(Latin/Common)	Stratum			ies(Latin/Comr	non)	Stratum	
Agropyron smithii	Herb	FACU	Iva axillaris			Herb	FAC
Wheatgrass, Western			Sumpweed,	Small-Flower			
Percent of Dominant Species that are OBI (excluding FAC-) 1/2 = 50.00%	L, FACW o	or FAC:	FAC Neu Numeric		= 0.00% 2 = 3.50		
(excluding FAC-) 1/2 = 50.00% Remarks: Bare ground accounts for 33% of area.	L, FACW o	or FAC:					
(excluding FAC-) 1/2 = 50.00% Remarks: Bare ground accounts for 33% of area. HYDROLOGY			Numeric	Index: 7/			
(excluding FAC-) 1/2 = 50.00% Remarks: Bare ground accounts for 33% of area. 4YDROLOGY NO Recorded Data(Describe in Remark)	ks):		Numeric	Index: 7/			
(excluding FAC-) 1/2 = 50.00% Remarks: Bare ground accounts for 33% of area. HYDROLOGY	ks):		Numeric Numeric Primary Indi	Index: 7/			
(excluding FAC-) 1/2 = 50.00% Remarks: Bare ground accounts for 33% of area. HYDROLOGY NO Recorded Data(Describe in Remark) N/A Stream, Lake or Tide Gauge	ks):		Numeric etland Hydrold Primary Indi <u>NO</u> Inu	ogy Indicators	2 = 3.50		
(excluding FAC-) 1/2 = 50.00% Remarks: Bare ground accounts for 33% of area. HYDROLOGY NO Recorded Data(Describe in Remar N/A Stream, Lake or Tide Gauge N/A Aerial Photographs	ks):		etland Hydrolo Primary Indi NO Inu NO Sat NO Wa	ogy Indicators icators indated turated in Uppriter Marks ft Lines	2 = 3.50 2 = 12 Inches		
(excluding FAC-) 1/2 = 50.00% Remarks: Bare ground accounts for 33% of area. HYDROLOGY NO Recorded Data(Describe in Remarks) N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other	ks):		etland Hydrold Primary Indi NO Inu NO Sat NO Wa NO Drii	ogy Indicators icators indated turated in Uppeter Marks ft Lines diment Deposi inage Patterns	2 = 3.50 er 12 Inches		
(excluding FAC-) 1/2 = 50.00% Remarks: Bare ground accounts for 33% of area. AYDROLOGY NO Recorded Data(Describe in Remar N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other YES No Recorded Data	ks):	We	etland Hydrold Primary Indi NO Inu NO Sat NO Wa NO Drii NO Sec NO Dra Secondary I	ogy Indicators icators indated indated in Uppiter Marks ft Lines diment Deposi ainage Patterni	2 = 3.50 er 12 Inches	r 12 Inches	
(excluding FAC-) 1/2 = 50.00% Remarks: Bare ground accounts for 33% of area. HYDROLOGY NO Recorded Data(Describe in Remar N/A Stream, Lake or Tide Gauge N/A Aerial Photographs N/A Other YES No Recorded Data Field Observations	ks):	We	etland Hydrold Primary Indi NO Inu NO Sat NO Ori NO Secondary I NO Owa NO Owa NO Loc	ogy Indicators icators indated indated in Uppiter Marks ft Lines diment Deposi ainage Patterni	2 = 3.50 er 12 Inches ts s in Wetlands nannels in Uppe aves Data	r 12 Inches	

DATA FORM **ROUTINE WETLAND DETERMINATION** (1987 COE Wetlands Delineation Manual)

Project/Site:	Alkali - 2008	Project No:	Date: 15-Aug-2008	
Applicant/Owner:	-Montana Department of Transportation-		County: Pondera	
Investigators:	Andrea Pipp		State: Montana	
			Plot ID: Soil Pit 10	

Map Symi	ool: unk. y (Subgrou	es and Phase): Drainage Class: p): unknown	Alkali Lake-not ma unknown		Мар	ped Hydric Inclusion? servations Confirm Mapped Type? Yes
Depth (inches)	Horizon	Matrix Color (Munsell Moist)	Mottle Color (Munsell Moist)	Mottle Abundance/Cor	ntrast	Texture, Concretions, Structure, etc
0-12	Α	2.5Y5/1	N/A	N/A N	I/A	Clay
	NO Sulfin NO Aqui NO Redu YES Gleye	c Epipedon dic Odor c Moisture Regime Icing Conditions ed or Low Chroma		NO Organic NO Listed or NO Listed or	Streal Loca Natio	Content in Surface Layer in Sandy Soils king in Sandy Soils al Hydric Soils List onal Hydric Soils List ı in Remarks)
Remarks						
VETLAND	DETERMI	NATION				
Hydronhyl	ic Vegetatio	on Present? Yes	(No)	Is the Sampling	Point	within the Wetland? Yes (No)

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	Yes No Yes No	Is the Sampling Point within the Wetland?	Yes No	7.6
Remarks: Site is upland.				40.5

Page 1 of 2 Page 2 of 2 WetFormtm

Do Normal Circumstances exist on the Is the site significantly disturbed (Atypi Is the area a potential Problem Area? (If needed, explain on the reverse sid	ical Situation:	13	Yes No Yes No Yes No	Community ID: Transect ID: Field Location: In outlet.			
/EGETATION	(L	JSFWS F	Region No. 9	9)			
Dominant Plant Species(Latin/Common			r Plant Spe	Stratum	Indicate		
Eleocharis palustris Spikerush,Creeping	Herb	OBL	Hordeum Barley,Fo			Herb	FAC+
Spirit con in the control of the con			Barrey, r o.	A-Tall			
		FAC:	FAC N		= 100.00%		
(excluding FAC-) 2/2 = 100.00% Remarks:		FAC:			= 100.00% 2 = 2.00		
Remarks: HYDROLOGY			Numer	ic Index: 4/	2 = 2.00		
(excluding FAC-) 2/2 = 100.00% Remarks:	narks):		etland Hydro Primary In NO Is NO S NO W NO D NO S YES D	ology Indicators dicators undated aturated in Upp fater Marks rift Lines ediment Deposi rainage Pattern	2 = 2.00		
(excluding FAC-) 2/2 = 100.00% Remarks: HYDROLOGY NO Recorded Data(Describe in Rem N/A Stream, Lake or Tide Gaug N/A Aerial Photographs N/A Other YES No Recorded Data	narks):		etland Hydre Primary In NO In NO S NO W NO S Secondary	ology Indicators dicators dicators aundated aturated in Upp /ater Marks rift Lines ediment Deposi rainage Patter / Indicators xidized Root Cl	2 = 2.00 er 12 Inches ts s in Wetlands	· 12 Inches	
(excluding FAC-) 2/2 = 100.00%	narks):		etland Hydro Primary In NO Ir NO S NO W NO D NO S YES D Secondar NO O	ology Indicators dicators undated aturated in Upp later Marks rift Lines ediment Deposi rainage Pattem y Indicators	2 = 2.00 er 12 Inches ts s in Wetlands nannels in Upper	12 Inches	

DATA FORM ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Delineation Manual)

Applican Investiga	t/Owner: -Mo	ali - 2008 ontana Department drea Pipp	of Transportation-		Project N	o:	County: Pondera State: Montana Plot ID: Soil Pit 11
SOILS							
Map Sym	bol: unk. y (Subgroup	Drainage Class:	Alkali Lake-not ma unknown		usion? irm Mapped Type? Yes No		
Depth (inches)	Horizon	Matrix Color (Munsell Moist)	Mottle Color (Munsell Moist)	Motti Abundance/		Texture, Cond	retions, Structure, etc
0-12	A/B	2.5Y4/1	2.5Y5/6	Common	Faint	Clay	
Remarks	NO Reduce			NO Organ NO Listed NO Listed	nic Streak d on Loca d on Natio	Content in Surfa king in Sandy S Il Hydric Solls L onal Hydric Soil in Remarks)	ist
WETLANI	DETERMIN	IATION					
Wetland I	tic Vegetation Hydrology Pre ils Present?) No	Is the Sampli	ing Point	within the Wetlar	nd? (Yes) No
Remarks							

Page 1 of 2

WetFormtm

Page 2 of 2

MDT MONTANA WETLAND ASSESSMENT FORM (revised March 2008)

1.	Project Name: Alkali Lake	2. MDT Project #: STPX-NH-	37(26) 3. Control #: 5000										
3.	Evaluation Date: August 14	4-15, 2008 4. Evaluator(s) : <u>A</u>	ndrea Pipp 5. Wetland/Site	#(s): Entire Alkali Site									
6.	. Wetland Location(s): Township 31 N, Range 6 W, Section 31; Township 30 N, Range 6 W, Section 6												
	Approximate Stationing of	r Roadposts:											
	Watershed: 8 - Marias Co	ounty: Pondera											
7.	Evaluating Agency: MDT Purpose of Evaluation: ☐ Wetland potentially af ☐ Mitigation wetlands; p ☐ Other		9. Assessment Area	e):(visually estimated) 56.76 (measured, e.g. GPS (AA) Size (acre):(visually estimated) termining AA) 186.94 (measured)	ally estimated)								
10	. CLASSIFICATION OF WE	TLAND AND AQUATIC HABI	TATS IN AA (See manual for d	efinitions.)									
	HGM Class (Brinson)	Class (Cowardin)	Modifier (Cowardin)	Water Regime	% OF AA								
	Depressional	Emergent Wetland	Impounded	Seasonal / Intermittent	50								
	Depressional	Unconsolidated Bottom	Impounded	Seasonal / Intermittent	50								
Co	mments:	·	·	·									

11. ESTIMATED RELATIVE ABUNDANCE (of similarly classified sites within the same Major Montana Watershed Basin; see manual.)
rare

12. GENERAL CONDITION OF AA

i. Disturbance: Use matrix below to select the appropriate response; see manual for Montana listed noxious weed and aquatic nuisance vegetation species lists.

	Predominar	nt Conditions Adjacent to (within	500 feet of) AA
Conditions within AA	Managed in predominantly natural state; is not grazed, hayed, logged, or otherwise converted; does not contain roads or buildings; and noxious weed or ANVS cover is ≤15%.	Land cultivated or heavily grazed or logged; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density; or noxious weed or ANVS cover is >30%.	
AA occurs and is managed in predominantly natural state; is not grazed, hayed, logged, or otherwise converted; does not contain roads or occupied buildings; and noxious weed or ANVS cover is ≤15%.		low disturbance	
AA not cultivated, but may be moderately grazed or hayed or selectively logged; or has been subject to relatively minor clearing, fill placement, or hydrological alteration; contains few roads or buildings; noxious weed or ANVS cover is ≤30%.			
AA cultivated or heavily grazed or logged; subject to relatively substantial fill placement, grading, clearing, or hydrological alteration; high road or building density; or noxious weed or ANVS cover is >30%.			

Comments (types of disturbance, intensity, season, etc.):

- ii. Prominent noxious, aquatic nuisance, and other exotic vegetation species: Cirsium arvense and Melilotus spp.
- iii. Provide brief descriptive summary of AA and surrounding land use/habitat: AA is a wetland mitigation site that was impounded and flooded. The surrounding land use is rangeland that is grazed by cattle and agricultural fields where barley/wheat are cultivated.

13. STRUCTURAL DIVERSITY (Based on number of "Cowardin" vegetated classes present [do not include unvegetated classes]; see #10 above.)

Existing # of "Cowardin" Vegetated Classes in AA	Initial Rating	Is current management peristence of additional		Modified Rating
≥3 (or 2 if one is forested) classes		NA	NA	NA
2 (or 1 if forested) classes		NA	NA	NA
1 class, but not a monoculture	mod	←NO	YES→	
1 class, monoculture (1 species comprises ≥90% of total cover)		NA	NA	NA

Comments:	
Comments.	

Wetland/Site #(s): Entire Site

14A. HABITAT FOR FEDER	ALLY	LISTE	D OR	PRO	POSEI	D THE	REATE	NED	OR E	NDAN	GERE	D PL	ANTS.	OR A	NIMA	LS				
Primary or critical habitat (list spe	Rating: Based on the strongest habitat chosen in 14A(i) above, select the corresponding functional point and rating.																			
	_					_					_									_
Highest Habitat Level	Doc/F	rimar	y S	us/P	rimary	Do	c/Sec	onda	ry S	us/Se	conda	ry	Doc/Ir	nciden	tal	Sus	Incide	ntal	None	9
Functional Point/Rating				-			.8N			-										
	ources for documented use (e.g. observations, records): Piping Plovers were observed in the project area on May 7, 2007 (1 bird), May 15, 2007 (2 bird), and May 16, 2008 (1 bird); nesting was not documented. Nesting by Piping Plovers was documented along the North Lake in 1990 and 1992. 4B. HABITAT FOR PLANTS OR ANIMALS RATED S1, S2, OR S3 BY THE MONTANA NATURAL HERITAGE PROGRAM																			
4B. HABITAT FOR PLANTS OR ANIMALS RATED S1, S2, OR S3 BY THE MONTANA NATURAL HERITAGE PROGRAM Do not include species listed in 14A above. AA is Documented (D) or Suspected (S) to contain: Check box based on definitions in manual.																				
AA is Documented (D) or Suspected (S) to contain: Check box based on definitions in manual. Primary or critical habitat (list species) Secondary habitat (list species) Incidental habitat (list species) No usable habitat D S Trumpeter Swan American White Pelican																				
ii. Rating: Based on the stro			_									_	al point	and ra						_
Highest Habitat Level	Doc/F	rimar	y S	us/P	rimary	Do	c/Sec	onda	ry S	us/Se	conda	ry	Doc/Ir	nciden	tal	Sus/	Incide	ntal	None	
S1 Species Functional Point/Rating										-										
S2 and S3 Species Functional Point/Rating										.5	5M									
Sources for documented us Trumpeter Swan was observed						Amer	ican W	hite I	Pelica	ns nes	in the	Nort	h Lake	and w	vere s	ited a	t Alkali	Lake	in 2006	5-2007
14C. GENERAL WILDLIFE I	HARIT	ΔΤ RΔ	TING																	
i. Evidence of Overall Wildl				Cho	ak aub	otontic	al maa	loroto	orlo	w book	nd on a	unna	rtina o	vidono						
 Substantial: Based on an	ant wild such as limiting ogist w of the fo	life #s s scat, habita rith kno ollowin life gro	or hig tracks at feato wledo g [che ups o	h spe , nes ures i je of eck]. r indi	ecies di t struct not ava the AA viduals	ures, ailable or rel	game in the	trails, surro	, etc. oundin specie	g area	□ □ □	few little spar inter	or no v to no v se adja view w	vildlife wildlife acent u	obser sign upland	vatio	source	ng pea es	eck]. ak use dge of <i>l</i>	
□ adequate adjacent upla □ interview with local biol	and foo	d sour	ces				si sirui	Juies	s, yan	ie trans	, 610.									
ii. Wildlife Habitat Features																				
For class cover to be consider																		er in te	erms of	their
percent composition of the AA S/I = seasonal/intermittent; T/																	ı,			
Structural Diversity (see #13)		iporar	угорис		ligh	<u> </u>	500111		TidiTide				derate		tonne	<u>,1.</u>		□ L	.ow	
Class Cover Distribution (all vegetated classes)		□ Ev	/en		[☐ Un	even			⊠E	ven	1		□ Un	even			□E	ven	
Duration of Surface Water in ≥ 10% of AA	P/P	S/I	T/E	Α	P/P	S/I	T/E	Α	P/P	S/I	T/E	Α	P/P	S/I	T/E	Α	P/P	S/I	T/E	Α
									E											
☐ Moderate Disturbance										ļ						 				
at AA (see #12i)																				
☐ High Disturbance at AA (see #12i)																				
iii. Rating: Use the conclusion	ons fro	m i and	d ii ab	ove a	ind the	matri	x belov	v to s	select	the fun	ctional	poin	t and ra	ating.						
Evidence of Wildlife Use										s Ratir										
(i)		⊠ Exc		nal			High			☐ Mc	derate	9	1	☐ Lo	w					
Substantial ☐ Moderate			1E						-	-	· 					\dashv				

Comments: Numerous shorebirds and waterfowl used the site in Fall 2005 and Spring through Fall of 2006 through 2008.

☐ Minimal

AA contains unrestricted outlet

						٧	Vetlar	nd/Sit	e #(s): <u> </u>	Entire	Site							
14D. GENERAL FISH HABIT If the AA is not used by entrapped in a canal], the	fish, fis	sh use is	not rest		ue to h		consti	raints,	or is n	ot desi	red fro	om a r	nanage	ement	perspe	ective	[such a	as fish
Assess this function if the precluded by perched co				the exis	ting si	tuation	is "co	rrecta	ble" su	ch that	the A	A cou	ld be u	ised by	/ fish [i	.e., fis	h use	is
Type of Fishery: ☐ C	old Wa	ater (CW)	□W	arm Wa	ter (W	W) Us	se the	CW o	r WW	guideli	nes in	the m	anual t	o comp	lete th	e matr	ix.	
i. Habitat Quality and Know	n / Sus	spected I	ish Sp	ecies in	AA:	Use ma	trix to	sele	ct the fu	unction	al poir	nt and	rating					
Duration of Surface Water in AA	□ P	ermanen	t / Pere	nnial		☐ Se	ason	nal / Ir	ntermit	tent		□т	empo	rary / E	Ephem	neral		İ
Aquatic Hiding / Resting / Escape Cover	Opt	imal A	deguat	e P	oor	Optir	nal	Ade	guate	Po		Opt] timal	Adec	uate	Po	oor	Ì
Thermal Cover:	0		0 8		s	0	S	0	S	0	s	0	S	0	S	0	s	1
optimal / suboptimal					1											•		1
FWP Tier I fish species																		1
FWP Tier II or Native Game fish species				-														1
FWP Tier III or Introduced		l		-	 													1
Game fish FWP Non-Game Tier IV or																		1
No fish species																		1
Sources used for identifying	fish s	spp. pote	ntially 1	ound in	AA:													
ii. Modified Rating: NOTE: N	Modifie	ed score o	annot e	xceed 1	.0 or b	e less t	han C).1.										
a) Is fish use of the AA signific MDEQ list of waterbodies in no support, or do aquatic nuisand	eed of	TMDL de	velopm	ent with	listed	"Probal	ole Im	paire	d Uses	" includ	ding co	old or	warm ı	vater f	ishery	or aqı	ıatic lif	e
b) Does the AA contain a docu	•		•	•		•									•			
native fish or introduced game	fish?	☐ YES,	add to	score in	i or iia	0.1 =	or	r 🔲 N	10	.01.01.7	μου.,	а,р 11 с	g u.	ou, op	y		,	
iii. Final Score and Rating:	Con	nments:																
14E. FLOOD ATTENUATION Applies only to wetlands If wetlands in AA are no	that a	are subjec	t to floo	eed to 14 ding via el or ove	in-cha	nnel or flow, c	overl	bank t	flow. A box a	ınd pro	ceed t	to 14F	·.					
Entrenchment Ratio (ER) Es Flood-prone width = estimated																	e of the	e stream.
	=														×	STAKE .		
flood prone width / bankfull wid	dth = e	ntrenchm	ent ratio)				Contract of the Contract of th	Marking &	4). E	۷.	_, -		J	- Æ	lood-p	rone W	idth
					2 :	k Bankfu	ıll De	pth 🦠	*******	بريوس	***************************************			e de la composition della comp	Bank	full W	idth	
									В	ankfull	Depth	Source Source						
Slightly Entr	enche	ed.		Mod	derate	ly Entre	ench	ed				Fnt	renche	he			1	
ER ≥ 2	.2				ER =	1.41 –	2.2	-				ER =	1.0 –	1.4	_			
C stream type D stream t	-		m type	-	B str	eam typ	oe .		A stre	am typ	e	Fstr	eam ty	/pe	G str	ream t	ype	
			_		7							Ę			7	—		
i Dating, Working from to a to	hotte	m usa ti-	o motel:	holow t	0.0015	ot the f	ınotic	nol n	int on-	rotin				<u> </u>				
i. Rating: Working from top to Estimated or Calculated				Slightly	Entrer	nched		Mod	erately	Entren				Entrend				
(Rosgen 1994, 1996) Percent of Flooded Wetland	d Clas	eified co		D, E st		ypes	-	_	stream	type		ŕ	A, F, G	strear	n type:	s		
Forested and/or Scrub/Sh		Silled as	75%		_ 75%	□ <25%		∐ 5%	∐ 25-75	% <	□ 25%	75	_	니 25-75	% <	□ 25%		
AA contains no outlet or re	stricte	ed outlet											-					

ii. Are ≥10 acres of wetland in the AA subject to fl	ooding AND are man-made features which may be significantly damaged by floods located
within 0.5 mile downstream of the AA? YES	

Wetland/Site #(s): Entire Site												
14F. SHORT AND LONG TERM SURFAC Applies to wetlands that flood or pond If no wetlands in the AA are subject to	from overbank	or in-chan	nel flow, p		on, uplano			groundwa	ater flow			
 Rating: Working from top to bottom, use follows: P/P = permanent/perennial; S/I = 												
Estimated Maximum Acre Feet of W in Wetlands within the AA that are s Periodic Flooding or Ponding			>5 acre f	eet	□ 1.1	to 5 ac	re feet	☐ ≤1 acre foot				
Duration of Surface Water at Wetlands	within the AA	□ P/P	⊠ S/I	□ T/E	□ P/P	□ S/I	□ T/E	□ P/P	□ S/I	□ T/E		
Wetlands in AA flood or pond ≥ 5 out of	10 years		.9H									
Wetlands in AA flood or pond < 5 out of	10 years										i	
Comments: Duration of surface water depe											however	
surface water management allows for wate	r to draw-down a	and enviro	nmental c	<u>onditions</u>	may prev	ent surf	ace water	from bei	ng perm	anent.		
If no wetlands in the AA are subject t	A receives or surrounding land use has potential to deliver sediments, or compounds at levels such that other functions are not substantially impaired. Minor sedimentation, sources of nutrients or toxicants, or compounds at levels or surgards of nutrients, or compounds at levels and to the functions are not substantially impaired. Minor sedimentation, sources of nutrients or toxicants, or signs of eutrophication										s,	
	present.				sedimentation, sources of nutrients or toxicants, or signs of eutrophication present.							
% Cover of Wetland Vegetation in AA	<u></u> ≥ 70%	6	⊠<7	70%		□ ≥ 70)%		□<	70%		
Evidence of Flooding / Ponding in AA	☐ Yes	□No	⊠ Yes	☐ No	Y	es	☐ No		Yes	☐ No)	
AA contains no or restricted outlet			.7M									
AA contains unrestricted outlet												
Comments:												
Applies only if AA occurs on or within body which is subject to wave action. If 14H does not apply, check the NA	the banks of a	river, strea	proceed to am, or othe		or man-n	nade dra	ainage, or	on the sl	noreline	of a stan	ding wate	
% Cover of Wetland Streambank or	D	uration o	f Surface	Water Ad	djacent t	Roote	d Vegeta	tion				

% Cover of Wetland Streambank or Shoreline by Species with Stability	Duration of S	urface Water Adjacent to Roo	ted Vegetation
Ratings of ≥6 (see Appendix F).	☐ Permanent / Perennial	Seasonal / Intermittent	☐ Temporary / Ephemeral
□ ≥ 65%			
□ 35-64%			
⊠ < 35%		.2L	

Comments: Shoreline species are Puccinelia nuttalliana & Hordeum jubatum which probably would rates as a 3-4. Scirpus are present, but low in abundance and not along the shoreline.

14I. PRODUCTION EXPORT / FOOD CHAIN SUPPORT

i. Level of Biological Activity: Synthesis of wildlife and fish habitat rates (select).

General Fish Habitat Rating	Genera	I Wildlife Habitat Rati	ng (14Ciii)
(14Diii)	⊠ E/H		□L
☐ E/H			
■ M			
L			
⊠ NA	Н		

ii. Rating: Working from top to bottom, use the matrix below to select the functional point and rating. Factor A = acreage of vegetated wetland component in the AA; Factor B = level of biological activity rating from above (14li); Factor C = whether or not the AA contains a surface or subsurface outlet; the final three rows pertain to the duration of surface water in the AA, where P/P, S/I, and T/E were previously defined, and A = "absent" [see manual for further definitions of these terms].

Α	☑ Vegetated Component >5 acres							☐ Vegetated Component 1-5 acres							res				
В	⊠ High		M			☐ Low		☐ High ☐		oderate		☐ Low		☐ High		☐ Moderate ☐ Low		.ow	
С	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	
P/P																			
S/I		.6M																	
T/E/A																			

15. GENERAL SITE NOTES: _____

Wetland/Site #(s): Entire Site

			vvctiai	Id/Oilo #	3). Entire Oile				
14I. PRODUCTION EXPORT / FOOD	CHAIN S	SUPPORT (con	ntinued)						
iii. Modified Rating: Note: Modified so	ore can	not exceed 1.0	or be less that	n 0.1.					
Vegetated Upland Buffer: Area wi mowing or clearing (unless for weed Is there an average ≥ 50-foot wide w	control)). •							
iv. Final Score and Rating: <u>.7M</u> Cor	nments:	! <u></u>							
14J. GROUNDWATER DISCHARGE / Check the appropriate indicators									
i. Discharge Indicators The AA is a slope wetland. Springs or seeps are know Vegetation growing during Wetland occurs at the toe of Seeps are present at the wetland contains an outlet. Shallow water table and the	dormant of a natu etland e Iring dro but no i	season/drougl ral slope. dge. ught periods. inlet.	ht.	☐ Pe ☐ W ☐ St	etland contain	rs trate present v s inlet but no d wn 'losing' stre	outlet.	, , ,	3 ,
iii. Rating: Use the information from i	and ii ab	ove and the tal	ble below to se	lect the f	unctional poin	t and rating.			=
Criteria		Duration of \$ <u>WITH W</u> □ P/P	Saturation at <i>i</i> <u>/ATER THAT I</u> □ S	ROUNDWAT GROUNDWA	TER SYS				
☐ Groundwater Discharge or Rech	arge	<u> </u>	<u></u>	/1	<u> </u>		None .1L		
☐ Insufficient Data/Information	u. 90		I	I					1
Comments: Site is maintained strictly b 14K. UNIQUENESS i. Rating: Working from top to bottom,	-				-	-	er are pre	<u> </u>	
Replacement Potential	spring forest	ontains fen, bo gs or mature (; ed wetland Of iation listed a TNHP	>80 yr-old) R plant	cited ra diversi contail	es not contain are types ANI ty (#13) is hig as plant asso as "S2" by the	Structural gh OR ciation			
Estimated Relative Abundance (#11)	□ Rare	e ☐ Common	□ Abundant	□ Rare	☐ Common	☐ Abundant	☑ Rare	□ Common	□ Abundant
∠ Low Disturbance at AA (#12i)							.5M		
■ Moderate Disturbance at AA (#12i)									
High Disturbance at AA (#12i)									
Comments: 14L. RECREATION / EDUCATION PO Affords 'bonus' points if AA provide i. Is the AA a known or potential recr ii. Check categories that apply to the	es a recreational	eational or edu l or education Educational/S Other:	al site? ⊠ YE Scientific Study	tunity. ES , go to	ii. 🔲 NO , cl	neck the NA bo	ox.	sumptive recr	eational
iii. Rating: Use the matrix below to sele		V 10	Detaut'-	╗					
		I Recreationa					Known	Potential	<u>-</u>
Public ownership or public easeme					n required)				\dashv
Private ownership with general pub					alam fan med l		414		-
Private or public ownership without							.1M		
Comments: Mitigation site occurs on tri	<u>bai prop</u>	erty that could	serve as an ar	ea tor ed	ucational/scie	ntific study, bir	<u>a nuntınç</u>	g, and birdwat	cning.

Wetland/Site #(s): Entire Alkali Site

Function & Value Variables	Rating – Actual Functional Points	Possible Functional Points	Functional Units: Actual Points x Estimated AA Acreage	Indicate the Four Most Prominent Functions with an Asterisk
A. Listed / Proposed T&E Species Habitat	mod 0.80	1.00		
B. MT Natural Heritage Program Species Habitat	mod 0.50	1.00		
C. General Wildlife Habitat	exc 1.00	1.00		
D. General Fish Habitat	NA	NA		
E. Flood Attenuation	NA	NA		
F. Short and Long Term Surface Water Storage	high 0.90	1.00		
G. Sediment / Nutrient / Toxicant Removal	mod 0.70	1.00		
H. Sediment / Shoreline Stabilization	low 0.20	1.00		
I. Production Export / Food Chain Support	mod 0.70	1.00		
J. Groundwater Discharge / Recharge	low 0.10	1.00		
K. Uniqueness	mod 0.50	1.00		
L. Recreation / Education Potential (bonus point)	mod 0.10			
Total Points	5.55	9	Total	Functional Units
Percent of Possibl	e Score 62% (round	to nearest whol	e number)	

Category I Wetland: (must satisfy one of the following criteria; otherwise go to Category II) ☐ Score of 1 functional point for Listed/Proposed Threatened or Endangered Species; or ☐ Score of 1 functional point for Uniqueness; or ☐ Score of 1 functional point for Flood Attenuation and answer to Question 14E.ii is "yes"; or ☐ Percent of possible score > 80% (round to nearest whole #).
Category II Wetland: (Criteria for Category I not satisfied and meets any one of the following criteria; otherwise go to Category IV) Score of 1 functional point for MT Natural Heritage Program Species Habitat; or Score of .9 or 1 functional point for General Wildlife Habitat; or Score of .9 or 1 functional point for General Fish Habitat; or "High" to "Exceptional" ratings for both General Wildlife Habitat and General Fish/Aquatic Habitat; or Score of .9 functional point for Uniqueness; or Percent of possible score > 65% (round to nearest whole #).
☐ Category III Wetland: (Criteria for Categories I, II, or IV not satisfied)
Category IV Wetland: (Criteria for Categories I or II are not satisfied and all of the following criteria are met; if not go to Category III) "Low" rating for Uniqueness; and Vegetated wetland component < 1 acre (do not include upland vegetated buffer); and Percent of possible score < 35% (round to nearest whole #).
OVERALL ANALYSIS AREA (AA) RATING: Check the appropriate category based on the criteria outlined above.

Appendix C

2008 REPRESENTATIVE PHOTOGRAPHS

MDT Wetland Mitigation Monitoring Alkali Lake Pondera County, Montana

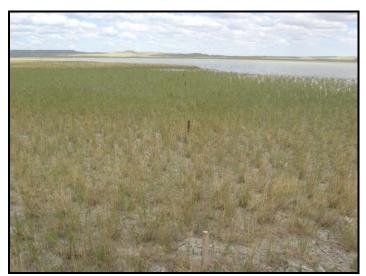

Photo 1: Photo Point 1 taken at inlet. View is north.

Photo 2: Photo Point 2 taken from the east side of Alkali Lake. View is west.

Photo 4: Photo Point 3 taken from the northwest corner of Alkali Lake. View is southeast.

Photo 4: View is northwest (311°) from Transect 1 start.

Photo 6: View is southeast (297°) from Transect 2 start.

Photo 8: View is northeast from Transect 3 end.

Photo 5: View is southeast (131°) from Transect 1 end. Photo's center marks macroinvertebrate sampling site.

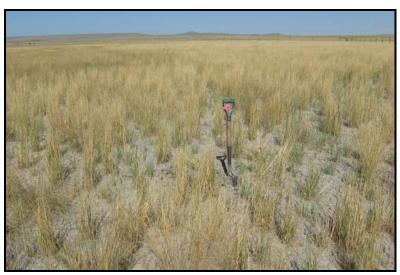

Photo 7: View is northwest (316°) from Transect 2 end.

Photo 9: View is southwest from Transect 3 end. Dead (2007) stalks of *Suaeda* in foreground.

Photo 10: View is southwest of Type 3-*Hordeum* Wetland at Soil Pit 1. Upland (*Agropyron*) on photo left.

Photo 11: View is north at Type 3-*Hordeum* Wetland with *Puccinellia nuttalliana* at Soil Pit 9.

Photo 12: Type 6-Aquatic Wetland (primarily *Eleocharis acicularis*) on Transect 1.

Photo 13: Type 6-Aquatic Wetland within northeast side of site.

Photo 14: View is northwest at Soil Pit 8 within the large Type 4-*Scirpus* Wetland near inlet.

Photo 15: View is southwest at a typical Type 4-*Scirpus* Wetland. *Scirpus* stalks are alive, but battered.

SHEET 4

Photo 16: View is south at a green algal bloom. This is a new phenomenon at Alkali Lake.

Photo 17: View is northeast at a green algal bloom. Algal bloom was found primarily on the northeast half of Alkali Lake.

Photo 18: *Chenopodium* and *Suaeda* seedlings germinating within Type 3-*Hordeum* Wetland.

Photo 19: Dead (2007) stalks of *Suaeda* within Open Water. One green stem of *Scirpus* is present in photo.

Photo 20: View is southwest at the outlet and Soil Pit 11. *Eleocharis palustris* dominates.

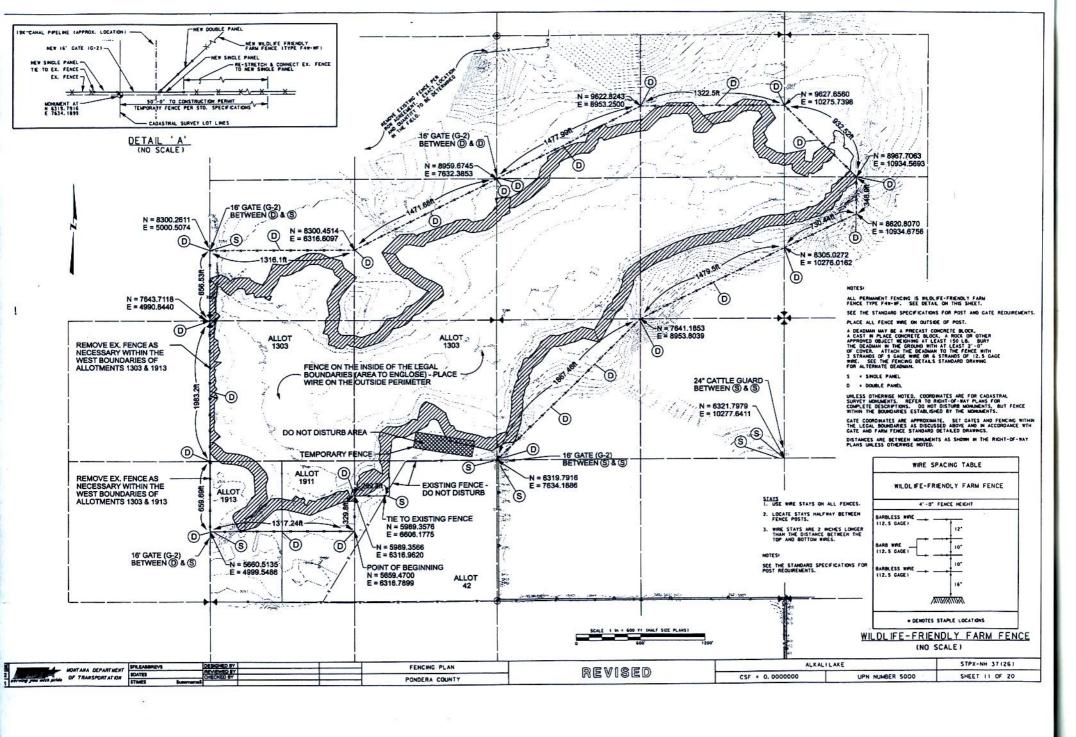


Photo 21: View is north at a dead calf.

Appendix D

PROJECT PLAN SHEET

MDT Wetland Mitigation Monitoring Alkali Lake Pondera County, Montana

Appendix E

BIRD SURVEY PROTOCOL GPS PROTOCOL

MDT Wetland Mitigation Monitoring Alkali Lake Pondera County, Montana

BIRD SURVEY PROTOCOL

This protocol was developed by the Montana Department of Transportation (MDT) to monitor bird use within their Wetland Mitigation Sites. Though each wetland mitigation site is vastly different, the bird survey data collection methods were standardized to order to increase repeatability. The protocol uses an "area search within a restricted time frame" to collect data on bird species, density, behavior, and habitat-type use.

Survey Area

Sites that can be entirely walked: Sites where the entire perimeter or area can be walked include, but are not limited to: small ponds, enhanced historic river channels, and wet meadows. If the wetland is not uncomfortably inundated, walk several meandering transects to sufficiently cover the wetland. Meandering transects can be used, even if a small portion of the area is inaccessible (e.g. cannot cross due to inundation). Use binoculars to identify the bird species, to count the number of individuals, and to identify their behavior and habitat type. Data can be recorded directly onto the bird survey form or into a field notebook. The number of meandering transects and their direction (or location) should be recorded in the field notebook and/or drawn onto the aerial photograph or topographic map. Meandering transects are not formal and should not be staked. Each site should be walked and surveyed to the fullest extent within the set time limit.

Sites than cannot be entirely walked: Sites where the entire perimeter or area cannot be walked include, but are not limited to: very large sites (i.e. perimeter of 2-3 miles), and large-bodied waters (i.e. reservoirs), where deep water habitat (> 6 feet) is close to shore. For large-bodied waters where only one area was graded to create or enhance the development of wetland, bird surveys should be walked along meandering transects within or around the graded area (see above.). For sites that cannot be walked, bird surveys should be conducted from many lookout posts, established at key vantage points. The general location of lookout posts should be recorded in the field notebook or drawn onto the aerial photograph or topographic map. Lookout post locations do not need to be staked. Both binoculars and spotting scopes may be used in order to accurately identify and count the birds. Depending upon the size of the open water, more time may be spent viewing the mitigation area from lookout posts than is spent traveling between posts.

Survey Time

Ideally, bird surveys should be conducted in the morning hours when bird activity is often greatest (i.e. sunrise to no later than 11:00 am). Surveys can be completed before 11am if all transects have been walked or all lookout posts have been viewed with no new bird activity observed. For some sites bird surveys may need to be performed in the late afternoon or evening due to traveling constraints or weather. The overall limiting time factor will be the number of budgeted hours for the project.

Data Recording

Bird Species List: Record each bird species observed onto the Bird Survey-Field Data Sheet (or field notebook). Record the bird's common name using the appropriate 4-letter code. The 4-letter code uses the first two letters of the first two word's of the bird's common name or if one name, the first four letters. For example, Mourning Dove is coded as MODO while Mallard is coded as MALL. If an unknown individual is observed, use the 4-letter protocol, but define your

PBS

BIRD SURVEY PROTOCOL (continued)

abbreviation at the bottom of the field data sheet. For example, unknown shorebird is UNSB; unknown brown bird is UNBR; unknown warbler is UNWA; and unknown waterfowl is UNWF. For a flyover of a flock of unknown species, use a term that describes the birds' general characteristics and include the approximate flock size in parenthesis; do not fill in the habitat column. For example, a flock of black, medium-sized birds could be coded as UNBB / FO (25).

Bird Density: For each observation record the actual or estimated number of individuals observed per species and per behavior. Totals can be tallied in the office and entered onto the Bird Survey-Field Data Sheet.

Bird Behavior: Bird behavior must be identified by what is known. When a species is observed, the behavior that is immediately exhibited is recorded. Only behaviors that have discreet descriptive terms should be used. The following terms are recommended: breeding pair (BP); foraging (F); flyover (FO); loafing (L), which is defined as sleeping, roosting, or floating with head tucked under wing; and nesting (N). If other behaviors that have a specific descriptive word are observed then it can be used and should later be added to the protocol. Descriptive words or phrases such as "migrating" or "living on site" are unknown behaviors.

Bird Species Habitat Use: When a species is observed, the habitat is also recorded. The following broad habitat categories are used:

- aquatic bed (AB), defined as rooted-floating, floating-leaved, or submergent vegetation.
- marsh (MA), defined as emergent (e.g. cattail, bulrush) vegetation with surface water.
- wet meadow (WM), defined as grasses, sedges, or rushes with little to no surface water.
- scrub-shrub (SS), defined as shrub covered wetland.
- forested (FO), defined as tree covered wetland.
- open water (OW), defined as unvegetated surface water.
- upland (UP), defined as the upland buffer.

Other categories can be used and defined on the data sheet and should later be added to the protocol.

Other Fields

Bird Visit: Each bird survey (i.e. spring, fall, and mid-season) should be completed on separate Bird Survey-Field Data Sheets.

Time: Record the start time and end time on the Bird Survey-Field Data Sheet.

Date: Record the date of the bird survey.

Weather: Record the weather conditions (i.e. temperature, wind, condition).

Notes: Note if a particular individual bird is using a constructed nest box and note the condition of constructed nest box(es). Also record any comments about the site, wildlife, wetland conditions, etc.

GPS MAPPING AND AERIAL PHOTO REFERENCING PROCEDURE

From 2001 through 2006, PBS&J mapped the vegetation community boundaries, photograph points, and other sampling locations in the field using the resource-grade Trimble GEO III GPS (Global Positioning System) unit. The data were collected with a minimum of three positions per feature using Course/Acquisition code. The collected data were then transferred to a personal computer (PC) and differentially corrected to the nearest operating Community Base Station. The corrected data were then exported to ACAD drawings in Montana State Plain Coordinates NAD 83 international feet. The Trimble GEO III GPS unit was also used for some sites in 2007.

The collected and processed Trimble Geo III GPS positions had a 68% accuracy of 7 feet except in isolated areas where accuracy fell to 12 feet. This is within the 1 to 5 meter range listed as the expected accuracy of the mapping grade Trimble GPS.

In 2007 and 2008 sites were mapped using the resource-grade Magellan MobileMapper Office GPS unit. The Magellan GPS unit has a comparable accuracy level to the Trimble Geo III unit.

Each year, MDT photographs each mitigation site from the air. These aerial photographs are not geo-referenced, but serve as a visual aid to map wetland development and vegetation communities, and to show approximate locations for various monitoring activities (i.e. photograph points, transects, or macroinvertebrate sampling). Reference points that are observable on the aerial photo (i.e. road, stream channel, or fence) were also marked with the GPS unit in order to better position the aerial photograph. This positioning did not remove any of the distortion inherent to all photos. All mapped features and community boundaries were reviewed by the wetland biologist, to increase the figure's accuracy.

Any relationship of features located to easement or property lines are not to be construed from these figures. These relationships can only be determined with a survey by a licensed surveyor.

Appendix F

2008 MACROINVERTEBRATE SAMPLING PROTOCOL AND DATA

MDT Wetland Mitigation Monitoring Alkali Lake Pondera County, Montana

AQUATIC INVERTEBRATE SAMPLING PROTOCOL

Equipment List

- D-frame sampling net with 1 mm mesh.
- 1-liter, wide-mouth, plastic sample jars provided by Rhithron Associates, Inc. (Quart sized, wide-mouthed canning jars can be substituted.)
- 95% ethanol (alternatively isopropyl alcohol).
- Pre-printed sample labels (printed on rite-in-the-rain paper); two labels per sample.
- Pencil.
- Clear packaging tape.
- 3-5 gallon plastic pail.
- Large tea strainer or framed screen.
- Cooler with ice for storing sample.

Site Selection

Select a site that is accessible with hip waders or rubber boots. If the substrate is too soft, place a wide board down to walk on. Choose a site that is representative of the overall condition of the wetland. Annual sampling should occur at the same site within the wetland.

Sampling Procedure

Wetland invertebrates (macroinvertebrates) inhabit the substrate, the water column, the stems and leaves of aquatic vegetation, and the water surface. At the given location, each habitat type is sampled and combined into a single 1-liter sample jar. Pre-cautions are made to minimize disturbing the sample site in order to maximize the number of animals collected.

Fill the pail with approximately 1 gallon of wetland water. Ideally, sample the water column from near-shore outward to a depth of 3 feet. Sample the water column using a long sweep of the net, keeping the net at about half the depth of the water. Sample the water surface with a long sweep of the net. Aquatic vegetation is sampled by pulling the net beneath the water surface, for at least a meter in distance. The substrate is sampled by pulling the net along the bottom, bumping it against the substrate several times as you pull. Be sure to place some muck, mud, and/or vegetation into the jar. After sampling a habitat, rinse the net in the bucket and look for insects, crustaceans, and other aquatic invertebrates. It is not necessary to sample habitats in any specific order, but all habitats, if present, are to be sampled. Habitats can be sampled more than once.

Fill about 1 cup of ethanol into the sample jar. Sieve the contents of the bucket through the straining device and pour or carefully scrape the contents of the strainer into the sample jar. Top off the jar with enough ethanol to cover all the material and leave as little headroom as possible. Alternatively, sampled materials can be lifted out of the net and put directly into the jar. Be sure to include some muck, mud, and/or vegetation into the jar. Each macroinvertebrate sampling site should have only one sampling jar.

Using pencil, complete two labels with the required information: project name, project number, date, collector's name, and habitats sampled. Do not complete the label with ink as it will dissolve in ethanol. For wetlands with at least two macroinvertebrate sampling sites, number the site consecutively followed by the total number of sites (e.g. Sample 2 of 3 sites). Place one label into the jar and seal the jar. Dry the jar off, if necessary, and tape the second label to the outside of the jar.

Photograph each macroinvertebrate sampling site.

Sample Handling/Delivery

In the field, keep sample jars cool by placing in a cooler with a small amount of ice. Deliver samples to the PBS&J office in Missoula, where they will be inventoried and delivered to Rhithron Associates, Inc.

MDT Mitigated Wetland Monitoring Project: Aquatic Invertebrate Monitoring Summary 2001 – 2008

Prepared for Post, Buckley, Schuh, and Jernigan (PBS&J) Prepared by W. Bollman, Rhithron Associates, Inc.

INTRODUCTION

This report summarizes data generated from eight years of mitigated wetland monitoring from sites throughout the State of Montana. Over all years of sampling, a total of 210 invertebrate samples have been collected. Table 1 lists the currently monitored sites at which aquatic invertebrates were collected in 2008, and summarizes the sampling history of each.

METHODS

Sample processing

Aquatic invertebrate samples were collected at mitigated wetland sites in the summer months of 2001, 2002, 2003, 2004, 2005, 2006, 2007, and 2008 by personnel of PBS&J (Table 1). Sampling procedures were based on the protocols developed by the Montana Department of Environmental Quality (MDEQ) for wetland sampling. Sampling consisted of D-frame net sweeps through emergent vegetation (when present), the water column, and over the water surface, and included disturbing and scraping substrates at each sampled site. These sample components were composited and preserved in ethanol at each wetland site. Samples were delivered to Rhithron Associates, Inc. for processing, taxonomic determinations, and data analysis.

Standard sorting protocols were applied to achieve representative subsamples of a minimum of 100 organisms. Caton sub-sampling devices (Caton 1991), divided into 30 grids, each approximately 5 cm by 6 cm, were used. Grid contents were examined under stereoscopic microscopes using 10x-30x magnification. All aquatic invertebrates from each selected grid were sorted from the substrate, and placed in 95% ethanol for subsequent identification. Grid selection, examination, and sorting continued until at least 100 organisms were sorted. A large/rare search was conducted to collect any taxa not found in the subsampling procedure.

Organisms were individually examined using 10x - 80x stereoscopic dissecting scopes (Leica S8E and S6E) and identified to the lowest practical taxonomic levels using appropriate published taxonomic references. Identification, counts, life stages, and information about the condition of specimens were recorded on bench sheets. To obtain accuracy in richness measures, organisms that could not be identified to the target level specified in MDEQ protocols were designated as "not unique" if other specimens from the same group could be taken to target levels. Organisms designated as "unique" were those that could be definitively distinguished from other organisms in the sample. Identified organisms were preserved in 95% ethanol in labeled vials, and archived at the Rhithron laboratory. Midges were morphotyped using 10x - 80x stereoscopic dissecting microscopes (Leica S8E and S6E) and representative specimens were slide mounted and examined at 200x - 1000x magnification using an Olympus BX 51 compound microscope. Slide mounted organisms were also archived at the Rhithron laboratory.

Assessment

The method employed to assess these wetlands is based on an index incorporating a battery of 12 bioassessment metrics or attributes (Table 2) tested and recommended by Stribling et al. (1995) in a report to the Montana Department of Health and Environmental Science. In that study, it was determined that some of the metrics were of limited use in some geographic regions, and for some wetland types. Despite that finding, all 12 metrics are used in this evaluation of mitigated wetlands, since detailed geographic information and wetland classifications were unavailable. Scoring criteria for the 12 metrics were developed specifically for this project, since mitigated wetlands were not included in original criteria development.

Scoring criteria for wetland metrics were developed by generally following the tactic used by Stribling et al. (1995). Boxplots were generated using a statistical software package (StatisticaTM), and distributions, median values, ranges, and quartiles for each metric were examined. For the wetland sites, "good" scores were generally

those that fell above the 75th percentile (for those metrics that decrease in value in response to stress) or below the 25th percentile (for metrics that respond to stress by an increase in value) of all scores. Additional scoring ranges were established by bisecting the range below the 75th percentile for decreasing scores (or above the 25th percentile for increasing scores) into "sub-optimal" and "poor" assessment categories. A score of 5, 3, or 1 was assigned to good, sub-optimal, and poor metric performance, respectively. In this way, metric values were translated into normalized metric scores, and scores for all metrics were summed to produce a total bioassessment score, which is expressed as a percentage of the maximum possible score (60). Total bioassessment scores were classified according to a similar process, using the ranges and distributions of total scores for all sites studied in all years. Data from a total of 167 samples were used to develop criteria.

Six sites in this study supported aquatic fauna characteristic of lotic habitats rather than lentic wetland habitats; these sites were excluded from mitigated wetland scoring criteria development, and were evaluated with a metric battery specific to flowing water habitats. In 2008, the lotic sites were Camp Creek (2 sites), Cloud Ranch stream, Jack Creek – McKee Spring, and Jocko Spring Creek (2 sites). Invertebrate assemblages at these sites were generally characteristic of montane or foothill stream conditions and were assessed using the tested metric battery developed for montane streams of Western Montana (MVFP index: Bollman 1998).

The purpose of constructing an index from biological attributes or metrics is to provide a means of integrating information to facilitate the determination of whether management action is needed. However, the nature of the action needed is not determined solely by the index score or impairment classification, but by consideration of an analysis of the component metrics, the taxonomic composition of the assemblages, and other issues. The diagnostic functions of the metrics and taxonomic data need more study since our understanding of the interrelationships of natural environmental factors and anthropogenic disturbances is tentative. Thus, the further interpretive remarks accompanying the raw taxonomic and metric data in this summary are offered cautiously. Year-to-year comparisons depend on an assumption that specific sites were revisited in each year, and that equivalent sampling methods were utilized at each site revisit.

Bioassessment metrics – wetlands

An index based on the performance of 12 metrics was constructed, as described above. Table 2 lists those metrics, describes their calculation and the expected response of each to increased degradation or impairment of the wetland.

In addition to the summed scores of each metric and the associated impairment classification described above, each individual metric informs the bioassessment to some degree. The four richness metrics (Total taxa, POET, Chironomidae taxa, and Crustacea taxa + Mollusca taxa) can be interpreted to express habitat complexity as well as water quality. Complex, diverse habitats consist of variable substrates, emergent vegetation, variable water depths and other factors, and are potential features of long-established stable wetlands with minimal human disturbance. In the study conducted by Stribling et al. (1995), all four richness metrics were found to be significantly associated with water quality parameters including conductance, salinity, and total dissolved solids.

Four composition metrics (%Chironomidae, %Orthocladiinae of Chironomidae, %Crustacea + %Mollusca, and %Amphipoda) measure the relative contributions of certain taxonomic groups that may have significant responses to habitat and/or water quality impacts. For example, amphipods have been demonstrated to increase in abundance in alkaline conditions. Short-lived, relatively mobile taxa such as chironomids dominate ephemeral environments; many are hemoglobin-bearers capable of tolerating de-oxygenated conditions.

Two tolerance metrics (Hilsenhoff Biotic Index and %Dominant taxon) were included in the bioassessment battery. The HBI indicates the overall invertebrate assemblage tolerance to nutrient enrichment, warm water, and/or low dissolved oxygen conditions. The percent abundance of the dominant taxon has been demonstrated to be strongly associated with pH, conductance, salinity, total organic carbon, and total dissolved solids.

Two trophic measures (%Collector-gatherers and %Filterers) may be helpful in expressing functional integrity of the invertebrate assemblage, which can be impacted by poor water quality or habitat degradation. High proportions of filtering organisms suggest nutrient and/or organic enrichment, while abundant collectors suggest

more positive functional conditions and well-developed wetland morphology. These organisms graze periphyton growing on stable surfaces such as macrophytes.

Summary metric values and scores for the 2008 samples are given in Tables 4a-4c and 5. Thermal preference of invertebrate assemblages was calculated using Brandt 2001.

Bioassessment metrics – lotic habitats

For sites supporting rheophilic invertebrate assemblages, bioassessment was based on a metric battery and scoring criteria developed for montane regions of Montana (MVFP index: Bollman 1998). The six metrics constituting the bioassessment index used for MVFP sites in this study were selected because, both individually and as an integrated metric battery, they are robust at distinguishing impaired sites from relatively unimpaired sites (Bollman 1998). They have been demonstrated to be more variable with anthropogenic disturbance than with natural environmental gradients (Bollman 1998). Each of the six metrics, and their expected responses to various stressors is described below.

- 1. Ephemeroptera (mayfly) taxa richness. The number of mayfly taxa declines as water quality diminishes. Impairments to water quality which have been demonstrated to adversely affect the ability of mayflies to flourish include elevated water temperatures, heavy metal contamination, increased turbidity, low or high pH, elevated specific conductance and toxic chemicals. Few mayfly species are able to tolerate certain disturbances to instream habitat, such as excessive sediment deposition.
- 2. Plecoptera (stonefly) taxa richness. Stoneflies are particularly susceptible to impairments that affect a stream on a reach-level scale, such as loss of riparian canopy, streambank instability, channelization, and alteration of morphological features such as pool frequency and function, riffle development and sinuosity. Just as all benthic organisms, they are also susceptible to smaller scale habitat loss, such as by sediment deposition, loss of interstitial spaces between substrate particles, or unstable substrate.
- 3. Trichoptera (caddisfly) taxa richness. Caddisfly taxa richness has been shown to decline when sediment deposition affects habitat. In addition, the presence of certain case-building caddisflies can indicate good retention of woody debris and lack of scouring flow conditions.
- 4. Number of sensitive taxa. Sensitive taxa are generally the first to disappear as anthropogenic disturbances increase. The list of sensitive taxa used here includes organisms sensitive to a wide range of disturbances, including warmer water temperatures, organic or nutrient pollution, toxic pollution, sediment deposition, substrate instability and others. Unimpaired streams of western Montana typically support at least four sensitive taxa (Bollman 1998).
- 5. Percent filter feeders. Filter-feeding organisms are a diverse group; they capture small particles of organic matter, or organically enriched sediment material, from the water column by means of a variety of adaptations, such as silken nets or hairy appendages. In forested montane streams, filterers are expected to occur in insignificant numbers. Their abundance increases when canopy cover is lost and when water temperatures increase and the accompanying growth of filamentous algae occurs. Some filtering organisms, specifically the Arctopsychid caddisflies (*Arctopsyche* spp. and *Parapsyche* spp.) build silken nets with large mesh sizes that capture small organisms such as chironomids and early-instar mayflies. Here they are considered predators, and, in this study, their abundance does not contribute to the percent filter feeders metric.
- 6. Percent tolerant taxa. Tolerant taxa are ubiquitous in stream sites, but when disturbance increases, their abundance increases proportionately. The list of taxa used here includes organisms tolerant of a wide range of disturbances, including warmer water temperatures, organic or nutrient pollution, toxic pollution, sediment deposition, substrate instability and others.

Table 1. Montana Department of Transportation Mitigated Wetlands Monitoring Project sites: sampling history. Only those sites sampled in 2008 are included. An asterisk indicates lotic sites.

Site Identifier	2001	2002	2003	2004	2005	2006	2007	2008
Roundup	+	+	+	+	+	+	+	+
Hoskins Landing MS-1	·	+	+	+	+	+	+	+
Peterson Ranch Pond 2		+		+	+	+	+	+
Peterson Ranch Pond 4		+	+	+	+	+	+	+
Perry Ranch		+			+			+
Camp Creek MS-1*		+	+	+	+	+	+	+
Camp Creek MS-2*						+	+	+
Cloud Ranch Pond				+	+		+	+
Cloud Ranch Stream*				+			+	+
Jack Creek – Pond				+	+	+	+	+
Jack Creek – McKee*							+	+
Norem				+	+	+	+	+
Rock Creek Ranch					+	+	+	+
Wagner Marsh					+	+	+	+
Alkali Lake 1						+	+	+
West Fork of Charley Creek							+	+
Woodson Pond MI 1							+	+
Woodson Stream MI 2*							+	+
Little Muddy Creek							+	+
Selkirk Ranch							+	+
DH Ranch							+	+
Jocko Spring Creek MS-1								+
Jocko Spring Creek MS-2								+
Sportsman's Campground Site #1								+
Sportsman's Campground Site #2								+
Sportsman's Campground Site #3								+
Lonepine #1								+
Lonepine #2								+

Table 2. Aquatic invertebrate metrics employed for wetland (lentic) invertebrate assemblages in the MDT mitigated wetlands study, 2001 - 2008.

Metric	Metric Calculation	Expected response to degradation or impairment
Total taxa	Count of unique taxa identified to lowest recommended taxonomic level	Decrease
POET	Count of unique Plecoptera, Trichoptera, Ephemeroptera, and Odonata taxa identified to lowest recommended taxonomic level	Decrease
Chironomidae taxa	Count of unique midge taxa identified to lowest recommended taxonomic level	Decrease
Crustacea taxa + Mollusca taxa	Count of unique Crustacea taxa and Mollusca taxa identified to lowest recommended taxonomic level	Decrease
% Chironomidae	Percent abundance of midges in the subsample	Increase
Orthocladiinae / Chironomidae	Number of individual midges in the sub-family Orthocladiinae / total number of midges in the subsample.	Decrease
% Amphipoda	Percent abundance of amphipods in the subsample	Increase
% Crustacea + % Mollusca	Percent abundance of crustaceans in the subsample plus percent abundance of molluscs in the subsample	Increase
нві	Relative abundance of each taxon multiplied by that taxon's modified Hilsenhoff Biotic Index (tolerance) value. These numbers are summed over all taxa in the subsample.	Increase
%Dominant taxon	Percent abundance of the most abundant taxon in the subsample	Increase
%Collector- Gatherers	Percent abundance of organisms in the collector-gatherer functional group	Decrease
%Filterers	Percent abundance of organisms in the filterer functional group	Increase

RESULTS

(Note: Individual site discussions were removed from this report by PBS&J and are included in the macroinvertebrate sections of individual monitoring reports. Summary tables for lentic (4a-4c) and lotic (5) sites and project specific taxa listing(s) and metrics report(s) are provided on the following pages.)

Table 4a. Metric values and scores for wetland (lentic) sites in the MDT mitigated wetland study – 2008 sampling.

METRIC	Roundup	Hoskins Landing MS 1	Peterson Ranch Pond 2	Peterson Ranch Pond 4	Perry Ranch	Cloud Ranch Pond	Jack Creek Pond	Norem
Total taxa	9	18	13	25	11	27	21	14
POET	0	2	1	3	0	5	2	0
Chironomidae taxa	4	5	3	6	5	14	7	6
Crustacea + Mollusca	3	6	3	5	2	4	6	2
% Chironomidae	80.37%	17.00%	3.70%	13.21%	88.79%	49.53%	42.86%	34.69%
Orthocladiinae/Chir	0.63	0.18	1.50	0.21	0.82	0.66	0.40	0.53
% Amphipoda	0.00%	8.00%	0.00%	0.00%	0.00%	6.54%	15.24%	0.00%
% Crustacea + % Mollusca	15.89%	48.00%	86.11%	43.40%	6.54%	10.28%	30.48%	26.53%
HBI	8.01	7.62	7.85	7.40	7.37	5.94	8.17	7.61
% Dominant taxon	50.47%	27.00%	84.26%	25.47%	62.62%	13.08%	19.05%	26.53%
% Collector-Gatherers	31.78%	54.00%	87.96%	20.75%	20.56%	56.07%	65.71%	44.90%
% Filterers	2.80%	10.00%	0.00%	1.89%	0.00%	3.74%	1.90%	0.00%
Total taxa	1	3	1	5	1	5	5	1
POET	1	1	1	3	1	5	1	1
Chironomidae taxa	3	3	3	3	3	5	5	3
Crustacea + Mollusca	1	5	1	3	1	3	5	1
% Chironomidae	1	5	5	5	1	1	1	3
Orthocladiinae/Chir	5	1	5	3	5	5	3	5
% Amphipoda	5	3	5	5	5	3	3	5
% Crustacea + % Mollusca	5	3	1	3	5	5	5	5
HBI	1	1	1	3	3	5	1	1
% Dominant taxon	1	5	1	5	1	5	5	5
% Collector-Gatherers	1	3	5	1	1	3	3	1
% Filterers	3	1	3	3	3	3	3	3
Total Score	28	34	32	42	30	48	40	34
Percent of Maximum Score	46.67%	56.67%	53.33%	70.00%	50.00%	80.00%	66.67%	56.67%
Impairment Classification	poor	sub- optimal	sub- optimal	good	poor	good	sub- optimal	sub- optimal

Table 4b. Metric values and scores for wetland (lentic) sites in the MDT mitigated wetland study – 2008 sampling.

METRIC	Rock Creek Ranch	Wagner Marsh	Alkali Lake	West Fork of Charley Creek	Woodson Pond	Woodson Stream	Little Muddy Creek	Selkirk Ranch
Total taxa	23	11	10	9	13	7	14	17
POET	1	4	0	0	1	3	1	1
Chironomidae taxa	5	2	2	1	7	0	2	8
Crustacea + Mollusca	5	2	3	3	2	2	3	5
% Chironomidae	28.97%	2.83%	5.41%	0.91%	60.00%	0.00%	55.00%	23.38%
Orthocladiinae/Chir	0.97	0.00	0.00	0.00	0.52	0	0.64	0.33
% Amphipoda	0.00%	0.00%	0.00%	67.27%	0.00%	7.69%	0.00%	5.19%
% Crustacea + % Mollusca	28.97%	39.62%	32.43%	70.91%	25.45%	15.38%	17.00%	48.05%
НВІ	6.91	7.45	8.57	8.19	8.14	4.62	6.97	7.76
% Dominant taxon	22.43%	48.11%	48.65%	67.27%	25.45%	30.77%	35.00%	32.47%
% Collector-Gatherers	30.84%	52.83%	21.62%	68.18%	86.36%	23.08%	29.00%	16.88%
% Filterers	1.87%	0.00%	0.00%	0.00%	0.00%	30.77%	0.00%	32.47%
Total taxa	5	1	1	1	1	1	1	3
POET	1	5	1	1	1	3	1	1
Chironomidae taxa	3	1	1	1	5	1	1	5
Crustacea + Mollusca	3	1	1	1	1	1	1	3
% Chironomidae	3	5	5	5	1	5	1	3
Orthocladiinae/Chir	5	1	1	1	5	Not Scored	5	3
% Amphipoda	5	5	5	1	5	3	5	3
% Crustacea + % Mollusca	5	3	5	1	5	5	5	3
HBI	3	3	1	1	1	5	3	1
% Dominant taxon	5	3	3	1	5	5	3	5
% Collector-Gatherers	1	3	1	3	5	1	1	1
% Filterers	3	3	3	3	3	1	3	1
Total Score	42	34	28	20	38	31	30	32
Percent of Maximum Score	70.00%	56.67%	46.67%	33.33%	63.33%	56.36%	50.00%	53.33%
Impairment Classification	good	sub- optimal	poor	poor	sub- optimal	sub- optimal	poor	sub- optimal

Table 4c. Metric values and scores for wetland (lentic) sites in the MDT mitigated wetland study -2008 sampling.

METRIC	DH Ranch	Sportsman's Campground Site # 1	Sportsman's Campground Site # 2	Sportsman's Campground Site # 3	Lonepine # 1	Lonepine # 2
Total taxa	15	16	9	12	18	4
POET	1	1	0	0	2	0
Chironomidae taxa	6	6	3	7	12	3
Crustacea + Mollusca	2	5	3	4	1	1
% Chironomidae	52.29%	10.91%	41.18%	69.09%	81.82%	57.14%
Orthocladiinae/Chir	0.09	0.17	0.00	0.25	0.13	0.00
% Amphipoda	0.00%	24.55%	5.88%	27.27%	0.00%	0.00%
% Crustacea + % Mollusca	30.28%	83.64%	23.53%	29.09%	7.27%	42.86%
HBI	7.33	7.55	8.76	7.55	7.60	8.14
% Dominant taxon	33.03%	56.36%	29.41%	25.45%	25.45%	42.86%
% Collector-Gatherers	49.54%	20.91%	11.76%	57.27%	55.45%	28.57%
% Filterers	0.92%	63.64%	11.76%	25.45%	22.73%	42.86%
Total taxa	3	3	1	1	3	1
POET	1	1	1	1	1	1
Chironomidae taxa	3	3	3	5	5	3
Crustacea + Mollusca	1	3	1	3	1	1
% Chironomidae	1	5	3	1	1	1
Orthocladiinae/Chir	1	1	1	3	1	1
% Amphipoda	5	1	3	1	5	5
% Crustacea + % Mollusca	5	1	5	5	5	3
HBI	3	3	1	3	3	1
% Dominant taxon	5	1	5	5	5	3
% Collector-Gatherers	3	1	1	3	3	1
% Filterers	3	1	1	1	1	1
Total Score	34	24	26	32	34	22
Percent of Maximum Score	56.67%	40.00%	43.33%	53.33%	56.67%	36.67%
Impairment Classification	sub- optimal	poor	poor	sub- optimal	sub- optimal	poor

Table 5. Metric values and scores for stream (lotic) sites in the MDT mitigated wetland study – 2008 sampling.

METRIC	Camp Creek MS-1	Camp Creek MS-2	Cloud Ranch Stream	Jack Creek – McKee Spring	Jocko Spring Creek MS-1	Jocko Spring Creek MS-2
E Richness	7	5	4	1	0	1
P Richness	2	2	0	0	0	1
T Richness	4	6	5	3	2	5
Pollution Sensitive Richness	0	1	0	0	0	0
Filterer Percent	29.00%	37.00%	5.00%	40.00%	15.00%	11.00%
Pollution Tolerant Percent	5.00%	3.00%	28.00%	1.00%	62.00%	15.00%
E Richness	3	2	2	0	0	0
P Richness	2	2	0	0	0	1
T Richness	2	3	3	2	1	3
Pollution Sensitive Richness	0	1	0	0	0	0
Filterer Percent	1	0	3	0	1	1
Pollution Tolerant Percent	3	3	0	3	0	1
Total score	11	11	8	5	2	6
Percent of maximum score	61%	61%	44%	28%	11%	33%
Impairment classification	slight	slight	modera te	moderate	severe	moderate

LITERATURE CITED

Bollman, W. 1998. Montana Valleys and Foothill Prairies Ecoregion. Master's Thesis. (M.S.) University of Montana, Missoula, Montana.

Brandt, D. 2001. Temperature Preferences and Tolerances for 137 Common Idaho Macroinvertebrate Taxa. Report to the Idaho Department of Environmental Quality, Coeur d' Alene, Idaho.

Caton, L. W. 1991. Improving subsampling methods for the EPA's "Rapid Bioassessment" benthic protocols. Bulletin of the North American Benthological Society, 8(3): 317-319.

Stribling, J.B., J. Lathrop-Davis, M.T. Barbour, J.S. White, and E.W. Leppo. 1995. Evaluation of environmental indicators for the wetlands of Montana: the multimetric approach using benthic macroinvertebrates. Report to the Montana Department of Health and Environmental Science, Helena, Montana.

Taxa Listing

Project ID: MDT08PBSJ

RAI No.: MDT08PBSJ006

RAI No.: MDT08PBSJ006 Sta. Name: Alkali WL Mit.

Client ID:

Date Coll.: 8/14/2008 **No. Jars:** 1 **STORET ID:**

Taxonomic Name		Count	PRA	Unique	Stage	Qualifier	ВІ	Function
Non-Insect								
Nematoda		1	2.70%	Yes	Unknown		5	PA
Ostracoda		6	16.22%	Yes	Unknown		8	CG
Lymnaeidae								
Lymnaeidae		1	2.70%	Yes	Immature		6	SC
Physidae								
Physidae		5	13.51%	Yes	Unknown		8	SC
Heteroptera								
Corixidae								
Corixidae		18	48.65%	Yes	Larva		10	PH
Coleoptera								
Hydrophilidae								
Berosus sp.		2	5.41%	Yes	Larva		5	PR
Diptera								
Ceratopogonidae								
Ceratopogoninae		1	2.70%	Yes	Larva		6	PR
Ephydridae								
Ephydridae		1	2.70%	Yes	Larva		6	CG
Chironomidae								
Chironomidae								
Cryptotendipes sp.		1	2.70%	Yes	Larva		6	CG
Tanypus sp.		1	2.70%	Yes	Larva		10	PR
	Sample Count	37						

Metrics Report

Project ID: MDT08PBSJ RAI No.: MDT08PBSJ006 Sta. Name: Alkali WL Mit.

Client ID: STORET ID: Coll. Date: 8/14/2008

Abundance Measures

Sample Count: 37

37.00 100.00% of sample used Sample Abundance:

Coll. Procedure: Sample Notes:

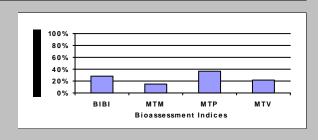
Taxonomic Composition

Category	R	Α	PRA
Non-Insect	4	13	35.14%
Odonata			
Ephemeroptera			
Plecoptera			
Heteroptera	1	18	48.65%
Megaloptera			
Trichoptera			
Lepidoptera			
Coleoptera	1	2	5.41%
Diptera	2	2	5.41%
Chironomidae	2	2	5.41%

Dominant Taxa

Category	Α	PRA
Corixidae	18	48.65%
Ostracoda	6	16.22%
Physidae	5	13.51%
Berosus	2	5.41%
Tanypus	1	2.70%
Nematoda	1	2.70%
Lymnaeidae	1	2.70%
Ephydridae	1	2.70%
Cryptotendipes	1	2.70%
Ceratopogoninae	1	2.70%

Functional Composition


Category	R	Α	PRA
Predator	3	4	10.81%
Parasite	1	1	2.70%
Collector Gatherer	3	8	21.62%
Collector Filterer			
Macrophyte Herbivore			
Piercer Herbivore	1	18	48.65%
Xylophage			
Scraper	2	6	16.22%
Shredder			
Omivore			
Unknown			

Metric Values and Scores					
Metric	Value	BIBI	MTP	MTV	мтм
Composition					
Taxa Richness Non-Insect Percent E Richness P Richness	10 35.14% 0 0	1 1 1	0	0	0
T Richness EPT Richness EPT Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera	0 0 0.00% 0.000 0.000	1	0	0	0
Dominance					
Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent	48.65% 64.86% 78.38% 100.00%	1	1		0
Diversity					
Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness	1.659 2.394 2.492 0.269 0.121		1		
Function					
Predator Richness Predator Percent Filterer Richness Filterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer	3 10.81% 0 0.00% 21.62% 16.22% 0.000 0.000	3	1 3 2	3	3 0
Habit	0.000				
Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent	1 2.70% 2 54.05% 0 0.00%	1			
Characteristics					
Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent Voltinism	0 0.00% 2 5.41% 1 5.41%				
Univoltine Richness Semivoltine Richness Multivoltine Percent	5 1 24.32%	1	3		
Tolerance					
Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent	1 2.70% 0 0.00% 4.500 0 27.03% 8.568 0.00%	1 3	0	0 1	0
Supertolerant Percent CTQa	81.08% 103.500				

Bioassessment Indices

BioIndex	Description	Score	Pct	Rating
BIBI	B-IBI (Karr et al.)	14	28.00%	
MTP	Montana DEQ Plains (Bukantis 1998)	11	36.67%	Moderate
MTV	Montana Revised Valleys/Foothills (Bollman 1998)	4	22.22%	Moderate
MTM	Montana DEQ Mountains (Bukantis 1998)	3	14.29%	Severe

Appendix G

FIGURE 4 2004 - 2008 SOILS METALS DATA

MDT Wetland Mitigation Monitoring Alkali Lake Pondera County, Montana

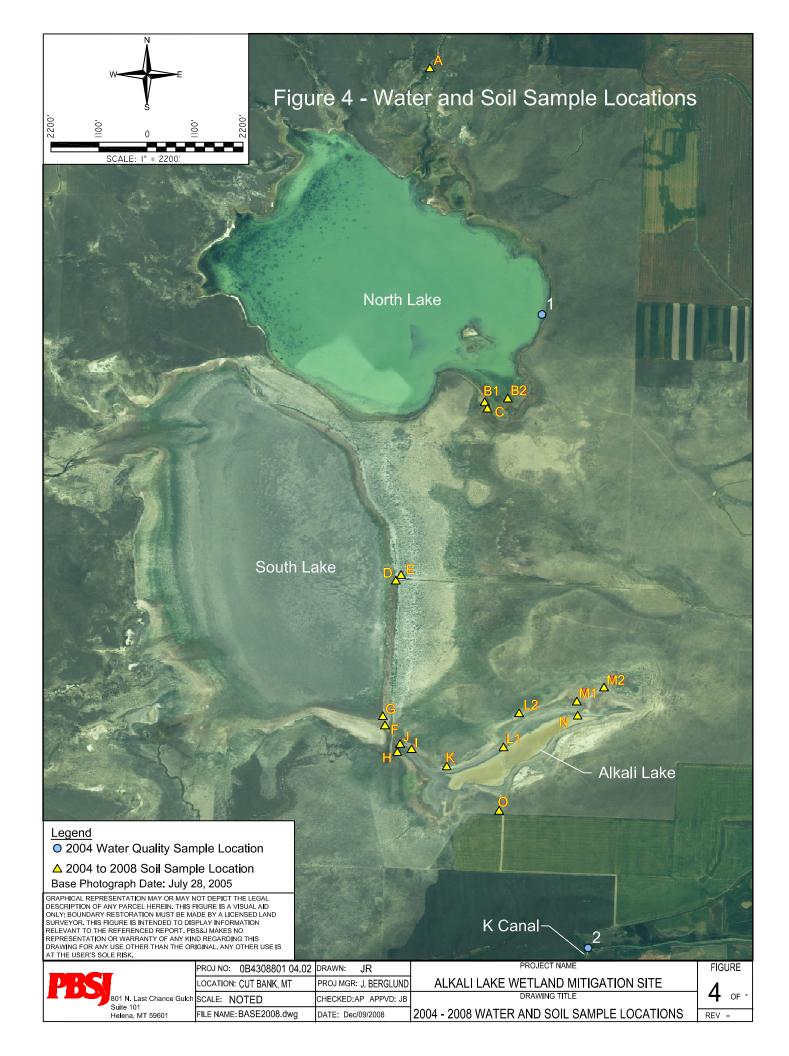
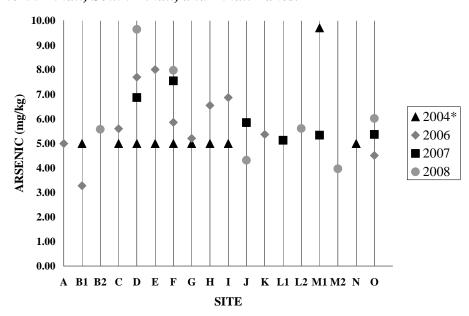



Table 12. Years sampled for each water (1-2) and soil (A-O) sample location at North Alkali, South Alkali, and Alkali Lakes.

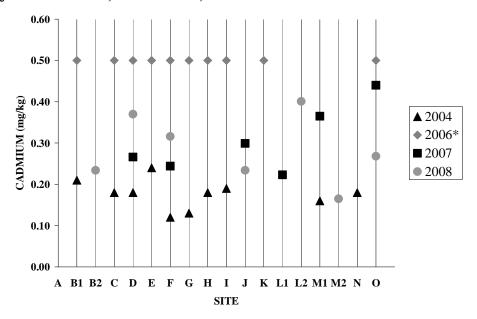

YEAR						SAMPLING SITE														
ILAK	1	2	A	B1	B2	C	D	E	F	G	H	Ι	J	K	L1	L2	M1	M2	N	0
2004	\checkmark	✓		✓		✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					✓		✓	
2006			✓	✓		√	√	✓	✓	✓	✓	✓		✓						✓
2007							✓		✓				✓		✓		✓			✓
2008					✓		✓		✓				✓			✓		✓		✓

Chart 8: Arsenic metal levels in soil samples collected in 2004 (baseline) and 2006 to 2008 for North Alkali, South Alkali, and Alkali Lakes.

^{*2004} data measured arsenic levels <5.00 mg/kg for Sites A to I, K, and O.

Chart 9: Cadmium metal levels in soil samples collected in 2004 (baseline) and 2006 to 2008 for North Alkali, South Alkali, and Alkali lakes.

^{*2006} data measured cadmium levels <1.00 mg/kg for Site A and <0.50 mg/kg for Sites B1 to I, K, and O.

Chart 10: Nickel metal levels in soil samples collected in 2004 (baseline) and 2006 to 2008 for North Alkali, South Alkali, and Alkali lakes.

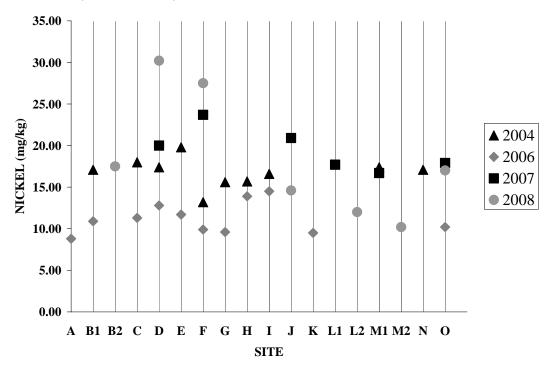
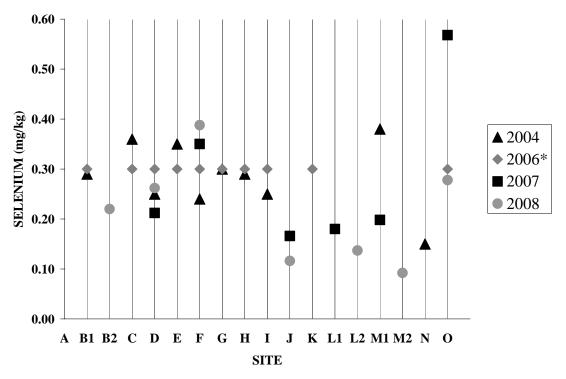



Chart 11: Selenium metal levels in soil samples collected in 2004 (baseline) and 2006 to 2008 for North Alkali, South Alkali, and Alkali lakes.

^{*2006} data measured selenium levels <5.00 for Site A and <0.30 for Sites B to I, K, and O.

QA/QC Summary Report

Client: PBS and J

Project: Alkali Wetland Monitoring 0B4308801-04.02.01

Report Date: 09/12/08

Work Order: H08080382

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020								Batch	B_3442
Sample ID:	MB-34425	Method Blar	nk			Run: SUB-	2440070			
Arsenic		0.05		0.002		Rull. SUB-	3116872		09/04	1/08 04:1:
Cadmium		0.07	33	0.0002						
Nickel		0.02	3 3	0.0002						
Selenium		0.002	33	0.0004						
Sample ID:	LCS1-34425	Laboratory C	Control Sample			Run: SUB-E	2116972		00/04	(0.0.0.1.7.1
Arsenic		86.3	mg/kg	5.0	95	70			09/04	/08 04:50
Cadmium		69.7	mg/kg	1.0	97	70	130			
Nickel		87.1	mg/kg	5.0	100	70	130			
Selenium		120	mg/kg	5.0	93	70	130 130			
Sample ID:	H08080382-001A	Serial Dilutio	n			Run: SUB-B	116070			
Arsenic		4.75	mg/kg	5.0		0		0.0		/08 05:17
Cadmium		0.241	mg/kg	1.0			0	0.0	10	
Nickel		15.6	mg/kg	5.0		0	0	0.0	10	
Selenium		0.145	mg/kg	5.0		0	0	7.0 0.0	10 10	
Sample ID:	B08082478-002AMS3	Committee Mark						0.0	10	
Arsenic	D00002476-002AW33	Sample Matri				Run: SUB-B	116872		09/04/	08 06:40
Cadmium			mg/kg-dry	5.0	92	75	125			
Nickel		26.6	mg/kg-dry	1.0	94	75	125			
Selenium		82.7	mg/kg-dry	5.0	97	75	125			
Selemum		50.2	mg/kg-dry	5.0	88	75	125			
	B08082478-002AMSD3	Sample Matrix	x Spike Duplicate			Run: SUB-B	116872		09/04/	08 06:46
Arsenic		62.6	mg/kg-dry	5.0	93	75	125	1.2	20	00.10
Cadmium		27.0	mg/kg-dry	1.0	95	75	125	1.2	20	
Vickel		84.7	mg/kg-dry	5.0	100	75	125	2.4	20	
Selenium		49.5	mg/kg-dry	5.0	87	75	125	1.3	20	
Sample ID: I	MB-34425	Method Blank			F	Run: SUB-B1	16932		09/04/0	08 13:44
Arsenic		0.03	mg/kg	0.002					05/04/0	70 13.44
Cadmium		0.03	mg/kg	0.0002						
lickel		0.01	mg/kg	0.0004						
Selenium		0.003	mg/kg	0.0003						
	108080382-002A	Serial Dilution			F	Run: SUB-B1	16932		00/04/0	0 12.50
rsenic		4.16	mg/kg	5.0		0	0	0.0		8 13:58
admium		0.225	mg/kg	1.0		0	0		10	
ickel		10.5	mg/kg	5.0		0	0	0.0 2.4	10	
elenium		0.122	mg/kg	5.0		U	U	2.4	10	

QA/QC Summary Report

Client: PBS and J

Project: Alkali Wetland Monitoring 0B4308801-04.02.01

Report Date: 09/12/08

Work Order: H08080382

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit Qual
Method:	SW6020							Analytical Run: SUB-B11687
Sample ID:	QCS-ME080514B,080514	Initial Calibrati	on Verification	on Standard				09/03/08 22:2
Selenium		0.050	mg/L	0.0010	100	90	110	
Arsenic		0.048	mg/L	0.0010	96	90	110	
Cadmium		0.026	mg/L	0.0010	104	90	110	
Nickel		0.051	mg/L	0.0010	102	90	110	
Sample ID:	ICSA	Interference C	heck Sample	e A				09/03/08 22:4
Selenium		8.8E-05	mg/L	0.0010				
Arsenic		7.9E-05	mg/L	0.0010				
Cadmium		0.00045	mg/L	0.0010				
Nickel		0.00069	mg/L	0.0010				
Sample ID:	ICSAB	Interference C	heck Sample	e AB				09/03/08 22:5
Selenium		0.0100	mg/L	0.0010	100	70	130	
Arsenic		0.010	mg/L	0.0010	104	70	130	
Cadmium		0.011	mg/L	0.0010	107	70	130	
Nickel		0.022	mg/L	0.0010	109	70	130	
Method:	SW6020							Analytical Run: SUB-B11693
Sample ID:	QCS-ME080514B,080514	Initial Calibrat	ion Verification	on Standard				09/04/08 12:4
Cadmium		0.026	mg/L	0.0010	104	90	110	
Sample ID:	ICSA	Interference C	heck Sample	e A				09/04/08 13:0
Cadmium		0.00040	mg/L	0.0010				
Sample ID:	ICSAB	Interference C	heck Sample	e AB				09/04/08 13:0
Cadmium		0.011	mg/L	0.0010	109	70	130	

ENERGY LABORATORIES, INC. * 3161 E Lyndale (59604) * PO Box 5688 * Helena, MT 59601 Toll Free 877.472.0711 * 406.442.0711 * FAX 406.442.0712 * helena@energylab.com

LABORATORY ANALYTICAL REPORT

Client:

PBS and J

Report Date: 09/12/08

Project:

Alkali Wetland Monitoring 0B4308801-04.02.01

Date Received: 08/22/08

Workorder:

H08080382

	Analysis	As-T	Cd-T	Ni-T	Se-T	
	Units	mg/kg	mg/kg	mg/kg	mg/kg	
Sample ID	Client Sample 1D	Results	Results	Results	Results	
H08080382-001	Soil H/I-Alkali = 5	4.31	0.234	14.6	0.116	
H08080382-002	Soil M/N - Alkali = M Z	3.96	0.165	10.2	0.092	
H08080382-003	Soil O- Alkali = 0	6.01	0.268	17.0	0.278	
H08080382-004	Soil P - Alkali - L 2	5.60	0.401	12.0	0.137	
108080382-005	Soil B/C - N. Alkali = B2	5.57	0.234	17.5	0.220	
108080382-006	Soil F/G - S. Alkali = F	7.97	0.316	27.5	0.388	
108080382-007	Soil D - S. Alkali	9.64	0.370	30.2	0.262	