MONTANA DEPARTMENT OF TRANSPORTATION WETLAND MITIGATION MONITORING REPORT: YEAR 2005

Peterson Ranch Hall, Montana

Prepared for:

MONTANA DEPARTMENT OF TRANSPORTATION 2701 Prospect Ave Helena, MT 59620-1001 Prepared by:

LAND & WATER CONSULTING ~ A DIVISION OF PBS&J P.O. Box 239 Helena, MT 59624

December 2005

Project No: B43054.00 - 0118

MONTANA DEPARTMENT OF TRANSPORTATION

WETLAND MITIGATION MONITORING REPORT:

YEAR 2005

Peterson Ranch Hall, Montana

Prepared for:

MONTANA DEPARTMENT OF TRANSPORTATION 2701 Prospect Ave Helena, MT 59620-1001

Prepared by:

LAND & WATER CONSULTING A DIVISION OF PBS&J P.O. Box 239 Helena, MT 59624

December 2005

Project No: B43054.00 - 0118

TABLE OF CONTENTS

1.0	INTRODUCTION1
2.0	METHODS
	2.1 Monitoring Dates and Activities
	2.2 Hydrology
	2.3 Vegetation
	2.4 Soils
	2.5 Wetland Delineation
	2.6 Mammals, Reptiles, and Amphibians
	2.7 Birds
	2.8 Macroinvertebrates
	2.9 Functional Assessment
	2.10 Photographs
	2.11 GPS Data
	2.12 Maintenance Needs
3.0	RESULTS
	3.1 Hydrology
	3.2 Vegetation
	3.3 Soils
	3.4 Wetland Delineation
	3.5 Wildlife
	3.6 Macroinvertebrates
	3.7 Functional Assessment
	3.8 Photographs16
	3.9 Revegetation Efforts
	3.10 Maintenance Needs/Recommendations
	3.11 Current Credit Summary
4.0	REFERENCES19

TABLES

- Table 1Approximate percentage of open water (OW)/ponds observed in 2005.
- Table 22002 to 2005 Peterson Ranch vegetation species list.
- Table 3Transect 1 data summary.
- Table 4Transect 2 data summary.
- Table 5Wetland conditions found during monitoring from 2002 to 2005.
- Table 6Wildlife species observed at the Peterson Ranch mitigation site during 2002 to 2005.
- Table 7Summary of 1998 (baseline), 2002, 2003, 2004 and 2005 wetland function/value
ratings and functional points at the Peterson Ranch Mitigation Project.

FIGURES

- Figure 1 Project Site Location Map
- Figure 2 Monitoring Activity Locations 2005
- Figure 3 Mapped Site Features 2005
- Figure 4 Pre-Developed Wetland 1998

CHARTS

- Chart 1 Transect maps showing vegetation type from the start (0 feet) to the end of transect (222 feet) for each year monitored.
- Chart 2 Length of vegetation communities along Transect 1.
- Chart 3 Transect maps showing vegetation type from the start (0 feet) to the end of transect (195 feet) for each year monitored.
- Chart 4 Length of vegetation communities along Transect 2.
- Chart 5 Bioassessment scores for the Peterson Ranch.

APPENDICES

Appendix A	Figures 2, 3 and 4
Appendix B	Completed 2005 Wetland Mitigation Site Monitoring Form
	Completed 2005 Bird Survey Form
	Completed 2005 Wetland Delineation Forms
	Completed 2005 Functional Assessment Forms
Appendix C	Representative Photographs
Appendix D	Original Site Plan
Appendix E	Bird Survey Protocol
	GPS Protocol
Appendix F	Macroinvertebrate Sampling Protocol and Data
Appendix G	Revegetation

1.0 INTRODUCTION

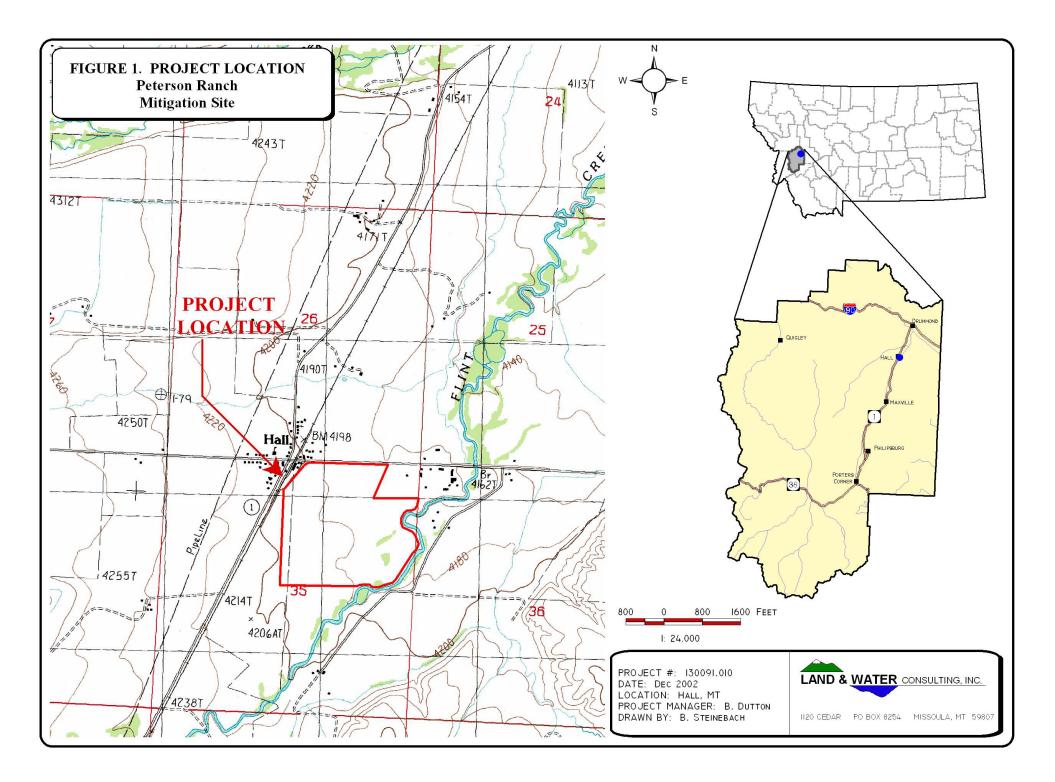
The Peterson Ranch Wetland Mitigation Site was developed to mitigate wetland impacts associated with the Montana Department of Transportation (MDT) reconstruction of Highway 1 between Maxville and Drummond and as a potential reserve for future highway projects in Watershed # 2. This report documents the fourth year of monitoring at the site.

The Peterson Ranch is located in Granite County, Watershed # 2, in the Upper Clark Fork region. The mitigation site is located south and east of Hall, Montana (**Figure 1**). Elevation is approximately 4,200 feet with slight topographic variation throughout the project site. Turnstone Biological conducted the original wetland delineation for the Peterson Ranch proposed mitigation site in 1998.

The approximate mitigation boundary is illustrated on **Figure 2** (**Appendix A**), and the original site plans are included in **Appendix D**. The mitigation site boundary starts along the southern edge of Montana Highway 512. Fence lines are located on both the west and east sides of the mitigation site, running south. On the west side of the site, an older fence line is still in place, preventing livestock from grazing within the project boundary. On the east side, the fence line follows the parcel boundary that is adjacent to an active timber mill. The fence lines form a distinct perimeter, encompassing the newly created/enhanced wetlands. Electric fence is used to close off the southern most boundary of the mitigation site near the southern end of pond #1.

Seasonal flooding of Flint Creek and a shallow groundwater table influenced by the Flint Creek Canal and irrigation provide the primary wetland hydrology. The local groundwater systems are also influenced by the adjacent Flint Creek and the movement of subsurface flow though the highly permeable alluvium substrate located within the floodplain of the Flint Creek Valley.

Project goals for the Peterson Ranch wetland mitigation site include the following:


- Creation of a protective easement.
- Creation of 17.5 acres of wetlands.
- Grazing management plan developed to enhance 80.6 acres.
- Enhancement of riparian vegetation through plantings and seeding.
- Creation of new wetlands with open water habitat.
- Improved functions and values ratings.

Construction was completed in the spring of 2002; diagrams are presented in **Appendix D**. Revegetation work was also completed in the spring of 2002; planting specifications are presented in **Appendix E**. The primary components of construction include:

- Construction of existing uplands into 8.2 acres of four shallow water pools and adjoining emergent wetlands.
- Construction of degraded wet meadow into 9.4 acres of shallow open water and emergent/scrub-shrub wetlands.

The site was designed to mitigate for specific wetland functions and values impacted by MDT roadway projects. These include riparian, wet meadow, emergent and open water wetland areas lost to MDT construction. Impacted functions include sediment and nutrient retention, water quality, groundwater recharge, and waterfowl/wildlife habitat.

2.0 METHODS

2.1 Monitoring Dates and Activities

The site was visited on June 14th (spring season) and August 11th (mid-season), 2005. The spring was conducted to sample seasonal bird and other wildlife use. The mid-season visit was conducted to document vegetation, soil, and hydrologic conditions used to map jurisdictional wetlands. All information contained on the Wetland Mitigation Site Monitoring Form (**Appendix B**) was collected at this time. Activities and information conducted/collected included: wetland delineation; wetland/open water aquatic habitat boundary mapping; vegetation community mapping; vegetation transect; soils data; hydrology data; bird and general wildlife use; photograph points; macroinvertebrate sampling; GPS data points; functional assessment; and (non-engineering) examination of topographic features. Fall visits were conducted during previous monitoring years, but were deemed unproductive and were discontinued at this site as of 2005.

2.2 Hydrology

Wetland hydrology indicators were recorded during the mid-season visit using procedures outlined in the COE 1987 Wetland Delineation Manual (Environmental Laboratory 1987). Hydrology data were recorded on COE Routine Wetland Delineation Data Forms (**Appendix B**). Additional hydrologic data were recorded on the mitigation site monitoring form (**Appendix B**). No groundwater monitoring wells were installed at the site

2.3 Vegetation

General dominant species-based vegetation community types (e.g., *Eleocharis/Carex*) were delineated on an aerial photograph during the mid-season visit. Standardized community mapping was not employed as many of these systems are geared towards climax vegetation and do not reflect yearly changes. Estimated percent cover of the dominant species in each community type was listed on the site monitoring form (**Appendix B**).

Two 10-foot wide belt transects were established during the mid-season monitoring event to represent the range of current vegetation conditions. Percent cover was estimated for each vegetative species within each successive vegetative community encountered within the "belt" using the following values: T (few plants); P (1-5%); 1 (5-15%); 2 (15-25%); 3 (25-35%); 4 (35-45%); 5 (45-55%) and so on to 9 (85-95%). The transect locations are illustrated on **Figure 2** (**Appendix A**). The transects will be used to evaluate changes over time, especially the establishment and increase of hydrophytic vegetation. The transect locations were marked on the air photo and all data were recorded on the mitigation site monitoring form. Transect endpoint

locations were recorded with the GPS unit in 2002. A photograph was taken from both ends of each transect looking along the transect path.

A comprehensive plant species list for the site was compiled and will be updated as new species are encountered. Ultimately, observations from past years will be compared with new data to document vegetation changes over time.

2.4 Soils

Soils were evaluated during the mid-season site visit using the hydric soils determination procedures outlined in the COE 1987 Wetland Delineation Manual. Soil data were recorded for each wetland determination point on the COE Routine Wetland Delineation Data Forms (**Appendix B**). The most current NRCS terminology was used to describe hydric soils (USDA 1998).

2.5 Wetland Delineation

Wetland delineation was conducted during the mid-season visit according to the 1987 COE Wetland Delineation Manual. Wetland and upland areas within the monitoring area were investigated for the presence of wetland hydrology, hydrophytic vegetation and hydric soils. The information was recorded on COE Routine Wetland Delineation Data Forms (**Appendix B**). The wetland/upland boundary was originally delineated on the air photo and recorded with a resource grade GPS unit using the procedures outlined in **Appendix E**. Modifications to these boundaries in 2005 were accomplished by hand-mapping onto the 2002 aerial photograph. The wetland/upland boundary in combination with the wetland/open water boundary was used to calculate the final wetland acreage.

2.6 Mammals, Reptiles, and Amphibians

Mammal, reptile, and amphibian species observations and other positive indicators of use, such as vocalizations, were recorded on the wetland monitoring form during site visits. Indirect use indicators, including tracks, scat, burrows, eggshells, skins, bones, etc. were also recorded. Observations were recorded as the observer traversed the site while conducting other required activities. Direct sampling methods, such as snap traps, live traps, and pitfall traps, were not used.

2.7 Birds

Bird observations were also recorded during both site visits. No formal census plots, spot mapping, point counts, or strip transects were conducted. Observations were generally recorded incidental to other monitoring activities and were categorized by species, activity code, and general habitat association.

2.8 Macroinvertebrates

Macroinvertebrate samples were collected during the mid-season site visit at four separate locations (**Figure 2**). Macroinvertebrate sampling procedures are provided in **Appendix F**. Samples were preserved as outlined in the sampling procedure and sent to Rhithron Associates for analysis.

2.9 Functional Assessment

Functional assessment forms were completed using the 1999 MDT Montana Wetland Assessment Method (**Appendix B**). Field data necessary for this assessment were collected during the mid-season visit. Turnstone Biological completed baseline functional assessment during the initial wetland delineation using the 1996 MDT Montana Wetland Field Evaluation Form.

2.10 Photographs

Photographs were taken illustrating current land uses surrounding the site, the upland buffer, the monitored area and the vegetation transects. Each photograph point location was recorded with a resource grade GPS in 2002. The location of photo points is shown on **Figure 2**, **Appendix A**. All photographs were taken using a digital camera.

2.11 GPS Data

During the 2002 monitoring season, point data were collected with a resource grade GPS unit at the vegetation transect beginning and ending locations and at all photograph locations. Wetland boundaries were also recorded with a resource grade GPS unit in 2002, but were modified via hand mapping onto aerial photographs in 2005. The method used to collect these points is described in the GPS protocol in **Appendix E**.

2.12 Maintenance Needs

Observations were made of existing structures and of erosion/sediment problems to identify maintenance needs. This did not constitute an engineering-level structural inspection, but rather a cursory examination. Current/future potential problems were documented on the monitoring form.

3.0 RESULTS

3.1 Hydrology

The main source of hydrology is seasonal flooding by Flint Creek. This mitigation site occurs in Flint Creek Valley floodplain consisting of areas of low topography, small side channels (irrigation ditches) and ponds. Another primary source of hydrology is the high groundwater

table influenced by irrigation ditches and persistent upwelling and lateral movement of groundwater through the alluvial materials located throughout the floodplain.

Open water (OW) occurred across approximately 0.61 acre or 1% of the 48-acre mitigation site during the mid-season visit (**Figure 3**). Shallow OW/ponds # 1, 2, 3, 4 and 5 (**Figure 3**) were constructed to depths of less than 6.6 feet. Shallow OW/ponds # 1 and 2 were mapped as wetland areas instead of open water during 2004. During the 2005 monitoring similar conditions were observed, with an additional decrease in open water. Water levels within the OW/ponds # 1 and 2 decreased to a level suitable for emergent and aquatic vegetation to dominate throughout the entirety of both ponds. The outer fringes of OW/ponds # 3, 4, and 5 were inundated and surrounded by more extensive emergent vegetation. The outer pond fringes are developing into emergent vegetation types. Open water habitat was dominated by non-rooted aquatic vegetation and algae.

Approximate percentages of inundation at OW/ponds 1-5 were observed during spring and summer visits (**Table 1**).

Tuble I. Approx											
Visit	OW/Pond #1	OW/Pond#2	OW/Pond#3	OW/Pond#4	OW/Pond#5						
Spring	70%	70%	60%	80%	80%						
Summer	50%	50%	100%	100%	100%						

 Table 1: Approximate percentage of open water (OW)/ponds observed in 2005.

Large excavated (proposed) wetland cells west of the main ditch bisecting the property do not appear to be receiving water as originally intended. With the exception of the small ponds, most of these areas were completely dry during both site visits. This is apparently due to the unavailability of directly applied irrigation water as originally proposed. The use of irrigation water for these sites was denied by the DNRC as a result of the water rights permitting process. The landowners are attempting to address this issue.

3.2 Vegetation

Seventy-four plant species were identified at the site and are listed in **Table 2**. The majority of these species are herbaceous. Two general wetland types were identified; these include emergent and scrub-shrub/emergent wetlands. A few small shrub communities exist along an active side channel/irrigation ditch. Several mature black cottonwood (*Populus trichocarpa*) and aspen (*Populus tremuloides*) were also observed along the same side channel and its associated wet fringes. Most the site consists of open wet meadows and emergent wetland vegetation.

Ten wetland types and one upland community type were identified at the mitigation site (**Figure 3**, **Appendix A**). The ten wetland community types include Type 1: *Agrostis*, Type 3: *Salix*, Type 4: *Eleocharis/Carex*, Type 5: *Carex/Typha*, Type 6: *Agrostis/Juncus*, Type 7: *Carex/Alopecurus*, Type 8: *Phleum/Agrostis*, Type 9: *Typha/Eleocharis*, Type 10: *Agrostis/Veronica* and Type 11: *Veronica/Myriophyllum*. The one upland community observed, Type 2: *Agropyron* covers a vast majority of the mitigation site. Plant species observed within each of these communities are listed on the attached data form (**Appendix B**).

Type 4, 9, 10 and 11 are the wettest communities and occurred as aquatic bed/emergent wetlands in the shallow waters of the created wetlands ponds # 1, 2, 3, 4 and 5 (**Figure 3**).

Scientific Name	Common Name	Region 9 (Northwest) Wetland Indicator
Achillea millefolium	common yarrow	FACU
Agropyron repens	quack grass	FACU
Agropyron smithii	western wheatgrass	FACU
Agropyron trachycaulum	slender wheatgrass	FAC
Agrostis alba	Redtop	FAC+
Alopecurus pratensis	meadow foxtail	FACW
Amaranthus retroflexus	red-root amaranth	FACU+
Beckmannia syzigachne	American sloughgrass	OBL
Betula occidentalis	birch	FACW
Bidens cernua	Nodding beggar-ticks	FACW+
Bromus inermis	smooth brome	
Bromus tectorum	cheatgrass	
Carduus nutans	musk thistle	
Carex microptera	small winged sedge	FAC
Carex nebrascensis	Nebraska sedge	OBL
Carex utriculata	beaked sedge	OBL
Centaurea maculosa	spotted knapweed	
Chenopodium album	white goosefoot	FAC
Cirsium arvense	Canada thistle	FACU+
Cornus stolonifera	red-osier dogwood	FACW
Crataegus douglasii	Douglas hawthorn	FAC
Cynoglossum officinale	hounds tongue	FACU
Dactylis glomerata	orchardgrass	FACU
Descurainia sophia	tansy mustard	
Elaeagnus commutata	silverberry	NI
Eleocharis palustris	creeping spike rush	OBL
Elymus cinereus	big basin wildrye	FACU
Elymus triticoides	creeping wildrye	FAC
Epilobium ciliatum	Hairy willow-herb	FACW-
Equisetum arvense	field horsetail	FAC
Festuca pratensis	meadow fescue	FACU+
Glyceria striata	fowl mannagrass	OBL
Helianthus annuus	common sunflower	FACU+
Hordeum jubatum	barley fox-tail	FAC+
Iris missouriensis	rocky mountain iris	OBL
Juncus balticus	Baltic rush	
		FACW+
Juncus confusus	Colorado rush	FAC
Juncus ensifolius	three-stamen rush	FACW
Juncus mertensianus	Mertens's rush	OBL
Juncus nodosus	knotted rush	OBL
Kochia scoparia	summer-cypress	FAC
Lepidium perfoliatum	clasping pepper-grass	FACU+
Lomatium spp.	biscuit root	
Lychnis alba	white campion	
Malva neglecta	mallow	
Medicago sativa	alfalfa	
Mentha arvensis	mint	FAC
Myriophyllum spicatum	Eurasian water-milfoil	OBL

Table 2: 2002 to 2005 Peterson Ranch vegetation species list.

Phalaris arundinaceaecanary reed grassFACWPhleum pratenseTimothyFAC-Plantago majorcommon plantainFAC+Poa amplabig bluegrassPolygonum amphibiumwater smartweedOBLPolygonum aviculareprostrate knotweedFACW+Populus tremuloidesaspenFAC+Populus trichocarpablack cottonwoodFACPotentilla anserinasilverweedOBLPotentilla gracilisnorthwest cinquefoilFACPrunus virginianaserviceberryFACURibes aureumswamp currentFAC+Rosa woodsiiwoods roseFACURumex crispuscurly dockFACWSalix bebianaBebbs willowFACW+Salix geyerianaGeyer willowOBLSalix seiguasandbar willowOBLSisymbrium altissimumtall tumble mustardFACU-Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUTrifolium pratensered cloverFACUTrifolium pratensered cloverFACUTyrbak attributOBLTrifolium pratenseTrifolium pratensered cloverFACUTyrbak attributOBLTrifolium pratenseTorbak attributCoBLTrifolium pratenseTorbak attributCoBLCommon cattailTyrbak attributCOBLTrifolium pratenseTorbak attributCOBLTrifolium pratense <td< th=""><th>Scientific Name</th><th>Common Name</th><th>Region 9 (Northwest) Wetland Indicator</th></td<>	Scientific Name	Common Name	Region 9 (Northwest) Wetland Indicator
Plantago majorcommon plantainFAC+Poa amplabig bluegrassPolygonum amphibiumwater smartweedOBLPolygonum aviculareprostrate knotweedFACW+Populus tremuloidesaspenFAC+Populus trichocarpablack cottonwoodFACPotentilla anserinasilverweedOBLPotentilla gracilisnorthwest cinquefoilFACPotentilla gracilisnorthwest cinquefoilFACPrunus virginianaserviceberryFACURibes aureumswamp currentFAC+Rosa woodsiiwoods roseFACURumex crispuscurly dockFACWSalix bebbianaBebbs willowFACW+Salix geyerianaGeyer willowOBLSalix guerianafacey willowFACU-Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUThilaspi arvensispennycressNITriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Phalaris arundinaceae	canary reed grass	FACW
Plantago majorcommon plantainFAC+Poa amplabig bluegrassPolygonum amphibiumwater smartweedOBLPolygonum aviculareprostrate knotweedFACW+Populus tremuloidesaspenFAC+Populus trichocarpablack cottonwoodFACPotentilla anserinasilverweedOBLPotentilla gracilisnorthwest cinquefoilFACPrunus virginianaserviceberryFACURibes aureumswamp currentFAC+Rosa woodsiiwoods roseFACURumex crispuscurly dockFACWSalix bebbianaBebbs willowFACW+Salix geyerianaGeyer willowFACW+Scirpus acutushard stem bulrushOBLSisymbrium altissimumtall tumble mustardFACU-Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUThilaspi arvensispennycressNITriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Phleum pratense	Timothy	FAC-
Poa amplabig bluegrassPolygonum amphibiumwater smartweedOBLPolygonum aviculareprostrate knotweedFACW+Populus tremuloidesaspenFAC+Populus trichocarpablack cottonwoodFACPotentilla anserinasilverweedOBLPotentilla gracilisnorthwest cinquefoilFACPrunus virginianaserviceberryFACURibes aureumswamp currentFAC+Rosa woodsiiwoods roseFACURumex crispuscurly dockFACWSalix bebbianaBebbs willowFACWSalix geyerianaGeyer willowOBLSalix geyerianaGeyer willowFACU-Sisymbrium altissimumtall tumble mustardFACU-Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUTriglochin maritimumseaside arrowgrassOBLTriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU		common plantain	FAC+
Polygonum aviculareprostrate knotweedFACW+Populus tremuloidesaspenFAC+Populus trichocarpablack cottonwoodFACPotentilla anserinasilverweedOBLPotentilla gracilisnorthwest cinquefoilFACPrunus virginianaserviceberryFACURibes aureumswamp currentFAC+Rosa woodsiiwoods roseFACURumex crispuscurly dockFACWSalix bebbianaBebbs willowFACWSalix geyerianaGeyer willowOBLSalix geyerianaGeyer willowFACW+Scirpus acutushard stem bulrushOBLSisymbrium altissimumtall tumble mustardFACU-Solidago missouriensisMissouri goldenrodTraaxacum officinalecommon dandelionFACUTriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Poa ampla	big bluegrass	
Populus tremuloidesaspenFAC+Populus trichocarpablack cottonwoodFACPotentilla anserinasilverweedOBLPotentilla gracilisnorthwest cinquefoilFACPrunus virginianaserviceberryFACURibes aureumswamp currentFAC+Rosa woodsiiwoods roseFACURumex crispuscurly dockFACWSalix bebbianaBebbs willowFACWSalix geyerianaGeyer willowOBLSalix geyerianaGeyer willowFACW+Scirpus acutushard stem bulrushOBLSisymbrium altissimumtall tumble mustardFACU-Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUTriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Polygonum amphibium	water smartweed	OBL
Populus trichocarpablack cottonwoodFACPotentilla anserinasilverweedOBLPotentilla gracilisnorthwest cinquefoilFACPrunus virginianaserviceberryFACURibes aureumswamp currentFAC++Rosa woodsiiwoods roseFACURumex crispuscurly dockFACWSalix bebbianaBebbs willowFACWSalix geyerianaGeyer willowOBLSalix geyerianaGeyer willowFACW+Scirpus acutushard stem bulrushOBLSisymbrium altissimumtall tumble mustardFACU-Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUThlaspi arvensispennycressNITriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Polygonum aviculare	prostrate knotweed	FACW+
Potentilla anserinasilverweedOBLPotentilla gracilisnorthwest cinquefoilFACPrunus virginianaserviceberryFACURibes aureumswamp currentFAC+Rosa woodsiiwoods roseFACURumex crispuscurly dockFACWSalix bebbianaBebbs willowFACWSalix exiguasandbar willowOBLSalix geyerianaGeyer willowFACW+Scirpus acutushard stem bulrushOBLSisymbrium altissimumtall tumble mustardFACU-Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUThlaspi arvensispennycressNITriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Populus tremuloides	aspen	FAC+
Potentilla gracilisnorthwest cinquefoilFACPrunus virginianaserviceberryFACURibes aureumswamp currentFAC+Rosa woodsiiwoods roseFACURumex crispuscurly dockFACWSalix bebbianaBebbs willowFACWSalix exiguasandbar willowOBLSalix geyerianaGeyer willowFACW+Scirpus acutushard stem bulrushOBLSisymbrium altissimumtall tumble mustardFACU-Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUTriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Populus trichocarpa	black cottonwood	FAC
Prunus virginianaserviceberryFACURibes aureumswamp currentFAC+Rosa woodsiiwoods roseFACURumex crispuscurly dockFACWSalix bebbianaBebbs willowFACWSalix exiguasandbar willowOBLSalix geyerianaGeyer willowFACW+Scirpus acutushard stem bulrushOBLSisymbrium altissimumtall tumble mustardFACU-Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUTriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Potentilla anserina	silverweed	OBL
Ribes aureumswamp currentFAC+Rosa woodsiiwoods roseFACURumex crispuscurly dockFACWSalix bebbianaBebbs willowFACWSalix exiguasandbar willowOBLSalix geyerianaGeyer willowFACW+Scirpus acutushard stem bulrushOBLSisymbrium altissimumtall tumble mustardFACU-Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUTriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Potentilla gracilis	northwest cinquefoil	FAC
Rosa woodsiiwoods roseFACURumex crispuscurly dockFACWSalix bebbianaBebbs willowFACWSalix exiguasandbar willowOBLSalix geyerianaGeyer willowFACW+Scirpus acutushard stem bulrushOBLSisymbrium altissimumtall tumble mustardFACU-Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUThlaspi arvensispennycressNITriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Prunus virginiana	serviceberry	FACU
Rumex crispuscurly dockFACWSalix bebbianaBebbs willowFACWSalix exiguasandbar willowOBLSalix geyerianaGeyer willowFACW+Scirpus acutushard stem bulrushOBLSisymbrium altissimumtall tumble mustardFACU-Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUThlaspi arvensispennycressNITriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Ribes aureum	swamp current	FAC+
Salix bebbianaBebbs willowFACWSalix exiguasandbar willowOBLSalix geyerianaGeyer willowFACW+Scirpus acutushard stem bulrushOBLSisymbrium altissimumtall tumble mustardFACU-Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUThlaspi arvensispennycressNITriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Rosa woodsii	woods rose	FACU
Salix exiguasandbar willowOBLSalix geyerianaGeyer willowFACW+Scirpus acutushard stem bulrushOBLSisymbrium altissimumtall tumble mustardFACU-Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUThlaspi arvensispennycressNITriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Rumex crispus	curly dock	FACW
Salix geyerianaGeyer willowFACW+Scirpus acutushard stem bulrushOBLSisymbrium altissimumtall tumble mustardFACU-Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUThlaspi arvensispennycressNITriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Salix bebbiana	Bebbs willow	FACW
Scirpus acutushard stem bulrushOBLSisymbrium altissimumtall tumble mustardFACU-Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUThlaspi arvensispennycressNITriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Salix exigua	sandbar willow	OBL
Sisymbrium altissimumtall tumble mustardFACU-Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUThlaspi arvensispennycressNITriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Salix geyeriana	Geyer willow	FACW+
Solidago missouriensisMissouri goldenrodTaraxacum officinalecommon dandelionFACUThlaspi arvensispennycressNITriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Scirpus acutus	hard stem bulrush	OBL
Taraxacum officinalecommon dandelionFACUThlaspi arvensispennycressNITriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Sisymbrium altissimum	tall tumble mustard	FACU-
Thlaspi arvensispennycressNITriglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Solidago missouriensis	Missouri goldenrod	
Triglochin maritimumseaside arrowgrassOBLTrifolium pratensered cloverFACU	Taraxacum officinale	common dandelion	FACU
Trifolium pratense red clover FACU	Thlaspi arvensis	pennycress	NI
Trifolium pratense red clover FACU	Triglochin maritimum	seaside arrowgrass	OBL
Typha latifolia common cattail ORI	Trifolium pratense		FACU
<i>Typha angona</i> Common Catan ODL	Typha latifolia	common cattail	OBL
Veronica americana American speedwell OBL		American speedwell	OBL

 Table 2 (continued): 2002 to 2005 Peterson Ranch vegetation species list.

¹**Bolded** species indicate those documented in the analysis area for the first time in 2005.

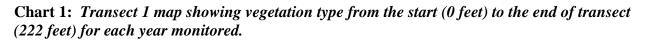
Type 4 is dominated by creeping spike rush (*Eleocharis palustris*), Nebraska sedge (*Carex nebrascensis*) and common cattail (*Typha latifolia*). Type 9 is also dominated by cattail, creeping spike rush and American sloughgrass (*Beckmannia syzigachne*). Type 10 is dominated by redtop (*Agrostis alba*) and American speedwell (*Veronica americana*). During previous monitoring the Type 11 areas were recorded as open water within the constructed ponds # 1 and 2. During the 2004 monitoring, Type 11 was dominated by American speedwell and Eurasian milfoil (*Myriophyllum spicatum*). Water levels in the constructed ponds # 1 and 2 decreased to a level suitable for emergent and aquatic vegetation to flourish. Similar conditions were present during 2005 monitoring with less vegetative cover and standing water. Type 5 and 7 are the next wettest areas, consisting of emergent vegetation occurring in depressions and side channels throughout the wet meadow complexes. Type 5 and 7 are dominated by Nebraska sedge, broadleaf cattail, and meadow foxtail (*Alopecurus pratensis*).

Type 3 is the next wettest wetland type and is classified as scrub-shrub wetland. This area has mature shrub communities growing adjacent to the active side channel (irrigation ditch). Type 3 vegetation is dominated by Bebbs willow (*Salix bebbiana*), black cottonwood, Geyer willow (*Salix geyeriana*), and swamp current (*Ribes aureum*). The remaining Types 1, 6, and 8 are the least wet areas. These areas function as the transitional zone between the wettest areas and drier upland vegetation boundary. These types are dominated by mostly wetter species, but also

include a minor component of upland species. Types 1, 6, and 8 combined make up most of the wet meadows located within the mitigation site.

At this site only one upland type is present. The Type 2 upland area is dominated by slender wheatgrass (*Agropyron trachycaulum*) and quackgrass (*Agropyron repens*). The Type 2 community was mapped in areas of degraded pasture, as well as on upland slopes created around the pond excavations and spoil piles.

Several noxious weeds were observed throughout the Peterson Ranch site including spotted knapweed (*Centaurea maculosa*), Canada thistle (*Cirsium arvense*), and hound's-tongue (*Cynoglossum officinale*). Other weedy species associated with disturbance include common dandelion (*Taraxacum officinalis*), lambs quarters (*Chenopodium album*), pepper-grass (*Lepidium perfoliatum*), tumbleweed (*Sisymbrium altissimum*), quackgrass and pennycress (*Thlaspi arvensis*).


Vegetation transect results are detailed in the attached data forms (**Appendix B**) and are summarized in **Tables 3** and **4** and in **Charts 1** to **4**. Vegetation transect results show no change in vegetation types for both transect # 1 and 2. Wetland areas for transect # 1 remained similar to the 2004 monitoring results, although the site was slightly drier and grazed in 2005, resulting in less vegetative cover. Transect # 2 during 2002 monitoring was mapped as exclusively upland vegetation; wetland vegetation was first noted in 2003. Transect # 2 remained similar to 2004 wetland composition during the 2005 monitoring. However, percent vegetative cover decreased in 2005 due to lower water levels and substantial grazing in community type 10.

Monitoring Year	2002	2003	2004	2005
Transect Length (feet)	222	222	222	222
# Vegetation Community Transitions along Transect	1	1	1	1
# Vegetation Communities along Transect	2	2	2	2
# Hydrophytic Vegetation Communities along Transect	1	1	1	1
Total Vegetative Species	14	15	15	17
Total Hydrophytic Species	9	11	10	11
Total Upland Species	4	3	3	6
Estimated % Total Vegetative Cover	85	95	67.5	60
% Transect Length Comprised of Hydrophytic Vegetation Communities	49	38	38	38
% Transect Length Comprised of Upland Vegetation Communities	51	62	62	62
% Transect Length Comprised of Unvegetated Open Water	0	0	0	0
% Transect Length Comprised of Bare Substrate	0	0	0	0

Table 3: Transect 1 data summary.

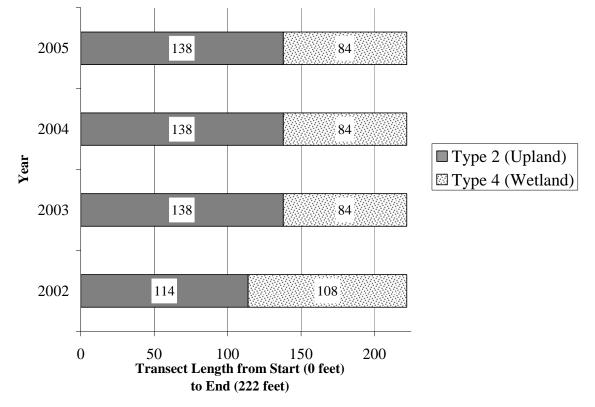
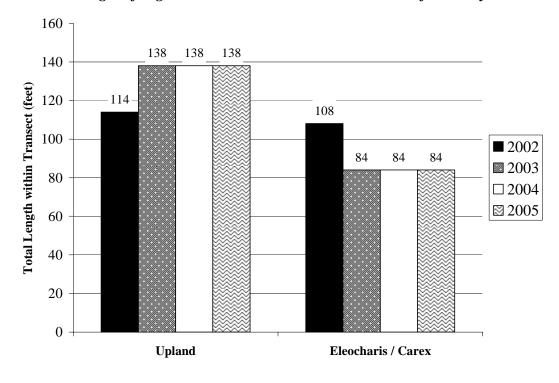



Chart 2: Length of vegetation communities within Transect 1 for each year monitored.

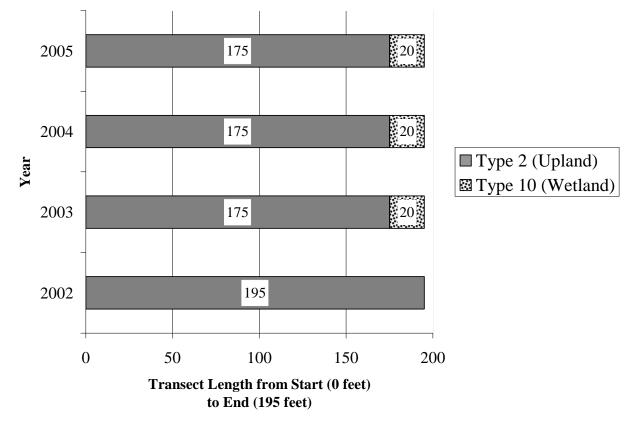


Table 4: Transcer 2 data summary.				
Monitoring Year	2002	2003	2004	2005
Transect Length (feet)	195	195	195	195
# Vegetation Community Transitions along Transect	0	1	1	1
# Vegetation Communities along Transect	1	2	2	2
# Hydrophytic Vegetation Communities along Transect	0	1	1	1
Total Vegetative Species	15	13	13	9
Total Hydrophytic Species	6	6	7	3
Total Upland Species	6	7	5	6
Estimated % Total Vegetative Cover	85	95	85	50
% Transect Length Comprised of Hydrophytic Vegetation Communities	0	10	10	10
% Transect Length Comprised of Upland Vegetation Communities	100	90	90	90
% Transect Length Comprised of Unvegetated Open Water	0	0	0	0
% Transect Length Comprised of Bare Substrate	0	0	0	0

 Table 4: Transect 2 data summary.

Chart 3: Transect 2 map showing vegetation type from the start (0 feet) to the end of transect (195 feet) for each year monitored.

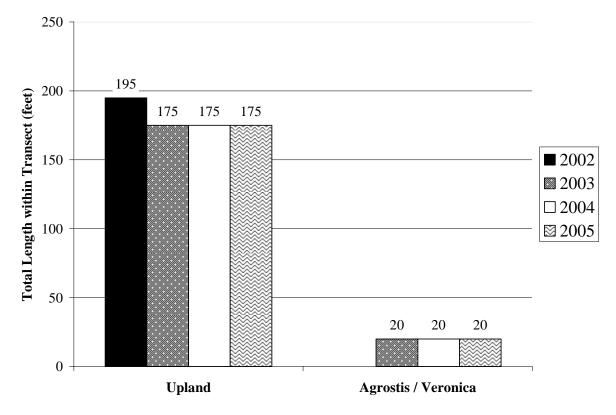


Chart 4: Length of vegetation communities within Transect 2 for each year monitored.

3.3 Soils

Soils are mapped in the Granite County Soil Survey as Nirling cobbly loam, Blossberg loam and Nythar-Flintcreek Complex. Blossberg loam and Nythar-Flintcreek Complex are both listed as hydric soils for Granite County (NRCS 2003). Wetland soils observed during monitoring and documented on the Routine Wetland Determination form were mostly sandy clay, clay loams, sandy clay loams and minor components of peat with very low chromas (1 or 2) within 6 inches of the surface. Mottles (redoximorphic features) were present in one profile sampled along transect # 2. Several soil profiles described on the Routine Wetland Determination forms were mapped as upland sampling points, having no soil moisture or distinct hydric characteristics within 18 inches of the surface.

3.4 Wetland Delineation

Delineated wetland boundaries are illustrated on **Figure 3** in **Appendix A**. Completed wetland delineation forms are included in **Appendix B**. Soils, vegetation, and hydrology are discussed in preceding sections. Wetland conditions during the 2005 monitoring are identified in **Table 5**.

Condition	Monitoring Area 2002 (acres)	Monitoring Area 2003 (acres)	Monitoring Area 2004 (acres)	Monitoring Area 2005 (acres)
Gross Wetland Area	25.98	26.23	26.23	26.23
Open Water Area	(1.90)	(1.90)	(0.61)	(0.61)
Upland "Islands"	(1.63)	(2.72)	(2.85)	(3.03)
Net Wetland Area	22.45	21.61	22.77	22.59

 Table 5: Wetland conditions found during monitoring from 2002 to 2005.

Approximately 22.59 wetland acres and 0.61 open water acre are currently within the monitoring area (**Figure 3**), for a total of 23.20 acres of aquatic habitat. The pre-construction wetland delineation reported 90 acres of wetland and no open water acres throughout the entire 135-acre conservation easement. The mitigation site encompasses only 48 acres of this larger total. Turnstone Biological mapped 22.6 acres of wetlands within the current mitigation site boundary. A pre-project delineation map is provided in **Appendix A** in **Figure 4**. The net increase in aquatic habitat to date is 23.20 - 22.6 = 0.6 acres.

Pre-project and post-project delineation boundaries were observed to be fairly consistent. However, during the 2002, 2003, 2004 and 2005 monitoring some differences were observed between pre-project and post-project wetland boundaries. A few such areas of note occur northeast of OW/Pond #2, where mapped pre-project wetlands were apparently disturbed by construction and did not exhibit wetland characteristics during the 2002, 2003, 2004 and 2005 monitoring efforts. Given adequate hydrology, these areas may revert back to wetlands over time. The general timing of site visits and different evaluators also had a minor influence on wetland boundaries.

Minor changes in aquatic habitat were observed between 2004 and 2005 monitoring. A slight decrease in wetland area was observed within the previously-mapped OW/ponds # 1 and 2. During 2004 monitoring, OW/ponds # 1 and 2 were mapped as wetland areas. During 2005 monitoring, community type 11, which had replaced the open water at these areas, had decreased in size since 2004. The decrease in hydrology and additional grazing within these areas likely contributed to the reduction in wetlands at this site. This decrease in wetlands acres was also affected by a small increase in upland area within community type 6.

3.5 Wildlife

Wildlife species, or evidence of wildlife, observed on the site during 2002, 2003, 2004 and 2005 monitoring efforts are listed in **Table 6**. Specific evidence observed, as well as activity codes pertaining to birds, is provided on the completed monitoring form in **Appendix B**.

This site provides habitat for a variety of wildlife species. One mammal, one amphibian and fifteen bird species were noted at the mitigation site during the 2005 site visits.

o 2005.	
FISH	
None	
AMPHIBIANS	
Columbia spotted frog (Rana luteiventris)	
REPTILES	
None	
BIRDS	
American Coot (<i>Fulica americana</i>)	Great Blue Heron (<i>Ardea herodias</i>)
American Crow (<i>Corvus brachyrhynchos</i>)	Lesser Scaup (Aythya affinis)
American Robin (<i>Turdus migratorius</i>)	Killdeer (Charadrius vociferous)
Bald Eagle (<i>Haliaeetus leucocephalus</i>)	Mallard (Anas platyrhynchos)
Black-billed magpie (<i>Pica pica</i>)	Marsh Wren (Cistothorus palustris)
Brewer's Blackbird (<i>Euphagus cyanocephalus</i>)	Mourning Doves (Zenaida macroura)
Bobolink (Dolichonyx oryzivorus)	Northern Flicker (<i>Colaptes auratus</i>)
Bohemian Waxwing (Bombycilla garrulus)	Red-Winged Blackbird (Agelaius phoeniceus)
Brown-Headed Cowbird (<i>Molothrus ater</i>)	Song Sparrow (Melospiza melodia)
Cedar Waxwing (<i>Bombycilla cedrorum</i>)	Spotted Sandpiper (<i>Actitis macularia</i>)
Cliff Swallow (<i>Petrochelidon pyrrhonota</i>)	Tree Swallow (Iridoprocne bicolor)
Common Merganser (Mergus merganser)	Vesper Sparrow (<i>Pooecetes gramineus</i>)
Common Raven (Corvus corax)	Western Meadowlark (Sturnella neglecta)
Common Snipe (<i>Capella gallinago</i>)	Willow Flycatcher (<i>Empidonax traillii</i>)
Eastern Kingbird (<i>Tyrannus tyrannus</i>)	Wilson's Phalarope (Steganopus tricolor) Yellow-Headed Blackbird
Golden Eagle (Aquila chrysaetos)	
Gray Catbird (Dumetella carolinensis)	(Xanthocephalus xanthocephalus)
MAMMALS	
Coyote (Canis latrans)	
Deer (Odocoileus spp.)	
Red Fox (Vulpes vulpes)	
	toring. All other species were observed during one or more o

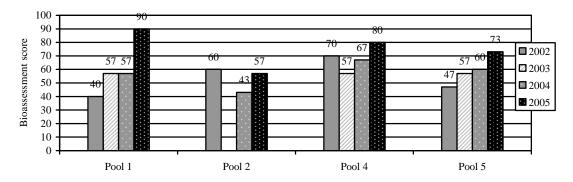
Table 6: Fish and wildlife species observed at the Peterson Ranch Mitigation Site from 2002to 2005.

Bolded species were observed during 2005 monitoring. All other species were observed during one or more of the previous monitoring years, but not during 2005.

3.6 Macroinvertebrates

Complete results from the macroinvertebrate sampling locations (**Figure 2**) are presented in **Appendix F.** Sampling points for the Peterson Ranch were located at OW/ponds # 4, 5 and previously mapped OW/pond # 1 and 2. Four locations were sampled during the 2005 monitoring. The following analysis was provided by Rhithron Associates (Bollman 2005).

OW/Pool # 1. Bioassessment index scores suggest a dramatic improvement in conditions at this site in 2005, compared to 2004. Significant increases in taxa richness, POET taxa richness, and especially in midge taxa richness drove the index score upward; it is the highest score for any site in any year of this study. Faunal components were well-distributed; no single taxa overwhelmed the assemblage. The dominant taxon was the naidid worm Nais sp., suggesting ample macrophyte surfaces for colonization, and bacteria as a dominant energy source.



Hemoglobin-bearers were not abundant, implying that substrates were well-oxygenated. The biotic index value was well below the median value for studied sites, implying good water quality. Optimal conditions are indicated.

OW/Pool # 2. Sub-optimal conditions are indicated by bioassessment index performance at this site. Small decreases in taxa richness and POET taxa richness since 2004 were offset by improvement in the biotic index value and better balance among taxonomic elements. Cladocera were the dominant taxon in 2005, suggesting that the water column was a major source of habitat space at this site. Snails were abundant, implying the presence of macrophytes. Midge taxa appeared at the site; none were collected in 2004.

OW/Pool # 4. *High taxa richness and diversity in the POET group of taxa suggest that water quality was good and habitat complexity ample at this site in 2005. Functional components included all expected groups, with gatherers dominant. Both Caenis sp. and Callibaetis sp. were present, thus, mayfly taxa were well-represented. Habitats apparently included filamentous algae, macrophyte surfaces, substrates, and the water column. Optimal conditions are indicated by index performance.*

OW/Pool # 5. Scores also implied optimal conditions at this site, even though taxa richness was lower than expected and the biotic index value was high, suggesting a very tolerant assemblage. Still, both mayfly taxa were collected, and the number of midge taxa present at the site increased between 2004 and 2005. A large number of tubificid worms were collected, suggesting that substrates were hypoxic, and that bacteria was a dominant energy source for invertebrates here. Filamentous algae, macrophytes, and benthic substrates apparently comprised available habitats.

Chart 5: Bioassessment scores for the Peterson Ranch.

3.7 Functional Assessment

Completed 2005 functional assessment forms are included in **Appendix B**. The Peterson Ranch was separated into three assessment areas (AAs) for purposes of functional assessment. These areas included the created wetland OW/pond # 1, 2 and associated emergent wet meadow west of the irrigation ditch (AA 1), scrub-shrub emergent wetlands along the irrigation ditch (AA 2), and the created wetland OW/ponds #3, 4 and 5 with associated emergent vegetation east of the

irrigation ditch (AA 3). A complete breakdown of ratings for each assessment area and preproject assessment areas is presented in **Table 7**.

The wetlands on the Peterson Ranch mitigation site are currently rated as Category II (AA 2 and 3) and III (AA 1) (moderate value). These ratings are primarily due to the moderate ratings for MNHP species habitat, general wildlife, flood attenuation and sediment/nutrient/toxicant removal variables. Other factors contributing to this score were low ratings for TE species, uniqueness and recreation/education ratings. These areas received a high rating for surface water storage due to the potential acre-feet of water contained within the wetlands during seasonal high flows. The variable for sediment/shoreline stabilization rated high due the increase in emergent type wetland species with deep binding roots along the outer fringes of most the open water. The variable for production export/food chain support also rated high due to the overall vegetated acres, outlet presence, and perennial water regime.

The AA's received a low to moderate flood attenuation rating due to the presence of an inflow channel into the wetland and restricted nature of the outlet. The AA's also received a low recreation/education rating since the site is moderately disturbed and is privately owned. During the 2005 monitoring, AA's 2 and 3 rating for the category MNHP species habitat increased due to the presences of bobolink (*Dolichonyx oryzivorus*) within the assessment areas. The bobolink is rated as S2 category by the MNHP. AA 2 and AA 3 also both received a higher rating for sediment/shoreline stability due to the presence of mature shrubs, and respectfully emergent wetland type with deep binding root systems.

Based on functional assessment results, approximately 160.21 functional units occur at the Peterson Ranch mitigation site (**Table 7**). Baseline functional assessment results are also provided in **Table 7** for general comparative purposes. However, it should be noted that direct comparison between the baseline and 2005 functional assessments are not possible, as they were completed using different versions of the MDT functional assessment method; assessments can still be compared qualitatively.

3.8 Photographs

Representative photographs taken from photo-points and transect ends are presented in **Appendix C**.

3.9 Revegetation Efforts

Upon completion of the project construction, revegetation efforts were conducted to enhance riparian and wetland habitat surrounding the created ponds. Riparian shrub cuttings collected from surrounding Flint Creek areas were sprigged along the margins of created ponds. Further enhancement included plantings of containerized stock of several native shrubs found within the area. These species included woods rose (*Rosa woodsii*), golden current (*Ribes aureum*), chokecherry (*Prunus virginiana*), silverberry (*Elaeagnus commutata*), and red-osier dogwood (*Cornus stolonifera*). The adjacent wetland slopes of the created wetland ponds were seeded

Function and Value Parameters From the 1999 MDT Montana Wetland Assessment Method	1998 ¹ Baseline	2002 AA 1 ¹	2002 AA 2 ¹	2002 AA 3 ¹	2003 AA 1 ¹	2003 AA 2 ¹	2003 AA 3 ^{1, 2}	2004 AA 1 ^{1, 2}	2004 AA 2 ^{1, 2}	2004 AA 3 ^{1, 2}	2005 AA 1 ^{1, 2}	2005 AA 2 ^{1, 2}	2005 AA 3 ^{1, 2}
Listed/Proposed T&E Species Habitat	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.5)	Low (0.5)
MNHP Species Habitat	Low (0.1)	Low (0.0)	Low (0.1)	Low (0.0)	Low (0.0)	Low (0.1)	Low (0.0)	Low (0.0)	Low (0.1)	Low (0.0)	Low (0.0)	Mod (0.7)	Mod (0.7)
General Wildlife Habitat	Low (0.1)	Mod (0.5)	Mod (0.7)	Mod (0.7)	Mod (0.5)	Mod (0.7)	Mod (0.7)	Mod (0.5)	Mod (0.7)				
General Fish/Aquatic Habitat	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Flood Attenuation	NA	Mod (0.5)	Low (0.2)	Mod (0.5)	Mod (0.5)	Low (0.2)	Mod (0.5)	Mod (0.5)	Low (0.2)	Mod (0.5)	Mod (0.5)	Low (0.3)	Mod (0.5)
Short and Long Term Surface Water Storage	High (1.0)	High (0.8)	High (0.8)	High (0.8)	High (0.8)	High (0.8)	High (0.8)	High (0.8)	High (0.8)	High (0.8)	High (0.8)	High (0.8)	High (0.8)
Sediment, Nutrient, Toxicant Removal	Mod (0.5)	Mod (0.7)	High (0.9)	Mod (0.7)	Mod (0.7)	High (0.9)	Mod (0.7)	Mod (0.7)	High (0.9)	Mod (0.7)	Mod (0.7)	High (1.0)	Mod (0.7)
Sediment/Shoreline Stabilization	NA	Low (0.3)	High (1.0)	Mod (0.7)	Low (0.3)	High (1.0)	Mod (0.7)	Low (0.3)	High (1.0)	Mod (0.7)	Low (0.3)	High (1.0)	High (1.0)
Production Export/Food Chain Support	Mod (0.7)	High (0.8)	High (0.8)	High (0.8)	High (0.9)	High (0.8)	High (0.9)	High (0.9)	High (0.8)	High (0.9)	High (0.9)	High (0.8)	High (0.9)
Groundwater Discharge/Recharge	UNK	High (1.0)	High (1.0)	High (1.0)	High (1.0)	High (1.0)	High (1.0)	High (1.0)	High (1.0)	High (1.0)	High (1.0)	High (1.0)	High (1.0)
Uniqueness	Low (0.2)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)
Recreation/Education Potential	Low (0.1)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)	Low (0.3)
Actual Points / Possible Points	3.0 / 8	5.5 / 11	6.4 / 11	6.1 / 11	5.6 / 11	6.4 / 11	6.2 / 11	5.6/11	6.4 / 11	6.2 / 11	5.8 / 11	7.4 / 11	7.4 / 11
% Of Possible Score Achieved	38%	50%	58%	55%	51%	58%	56%	51%	58%	56%	53%	67%	67%
Overall Category	III (borderline IV)	III	III	III	III	III	III	III	III	III	III	II	II
Total Acreage of Assessed Wetlands and Open Water within Easement by AA	22.60	7.00	3.00	13.80	7.35	3.00	13.16	7.35	3.00	13.03	7.17	3.0	13.03
Functional Units (acreage x actual points) by AA	67.80	38.50	19.20	84.18	41.16	19.20	81.59	41.16	19.20	80.78	41.59	22.20	96.42
Total Acreage of Assessed Wetlands and Open Water on Site (acre)	22.60	24.35 tota	al – 0.55 Pond i	#2 = 23.8		23.51			23.38			23.20	
Total Functional Units on Site	67.80		141.88			141.95			141.14			160.21	
Net Acreage Gain (assessed wetlands and open water only) (acre)	NA		1.20			0.91			0.78			0.60	
Net Functional Unit Gain	NA		74.08			74.15			73.34			92.41	

Table 7: Summary of 1998 (baseline)	e), 2002, 2003, 2004 and 2005 wetland	function/value ratings and functional	l points ¹ at the Peterson	Ranch Mitigation Project.
-------------------------------------	---------------------------------------	---------------------------------------	---------------------------------------	---------------------------

¹The baseline assessment was performed using the 1996 MDT Assessment Method. The 2002 to 2005 assessments used the 1999 MDT Assessment Method. Several parameters were substantially revised in the 1999 MDT assessment method, therefore direct comparison of pre- and post-project functions is not possible, but some general trends can be noted.

² See completed 2005 MDT functional assessment forms **Appendix B** for further detail.

with a wet mix consisting of slender wheatgrass (*Agropyron trachycaulum*), western wheatgrass (*Agropyron smithii*), creeping wildrye (*Elymus triticoides*), American sloughgrass (*Beckmannia syzigachne*), western mannagrass (*Glyceria occidentalis*), Baltic rush (*Juncus balticus*), and bluejoint reedgrass (*Calamagrostis canadensis*). Drier upland slopes disturbed during construction efforts were seeded with a dry mix consisting of slender wheatgrass (*Agropyron trachycaulum*), western wheatgrass (*Agropyron smithii*), big basin wildrye (*Elymus cinereus*), green needlegrass (*Stipa viridula*), and big bluegrass (*Poa ampla*). Planting specifications are presented in **Appendix G.**

Woody species survival data were collected for the Peterson Ranch. Plantings were difficult to find during the both the 2004 and 2005 monitoring, respectfully due to extensive herbaceous cover of upland grass species and heavy browse by livestock. The pond # 1 & 2 areas west of the irrigation ditch experienced the heaviest grazing this summer. Most or all plantings observed in this area prior to 2005 have been removed by livestock. Willow species within this area, also had a low survival rate due to either grazing effects or low water levels. OW/ponds # 3, 4 & 5 showed the best survival with higher rates. OW/pond # 3 had the majority of the willows that showed vigorous growth and spread.

In the past, prior to the 2005 monitoring, species survival was good. Two species including silverberry and red osier dogwood exhibited low survival rates. The following species had higher survival rates: woods rose, golden current, and chokecherry. In general most of the observed sprigs were alive and exhibited good survival except for areas grazed by livestock. The high mortality of red osier dogwood likely can attributed to heavy browse. Survival data are presented in **Appendix B**.

3.10 Maintenance Needs/Recommendations

Weed control and revegetation of disturbed sites is needed to prevent further weed spread, reduce the risk of new weeds invading, reduce wind and water erosion, and reduce sediment input to surface waters. Several noxious weeds are present including Canada thistle, hound's tongue and spotted knapweed.

The general lack of water at the majority of this site continues preclude wetland development in many areas. Continued livestock grazing within the pond # 1 & 2 areas also continue to slow development of wetlands.

3.11 Current Credit Summary

At this time approximately 22.59 acres of wetland and 0.61 acres of open water occur on the mitigation site, for a total of 23.20 acres of aquatic habitat. Subtracting the original 22.6 acres of pre-project wetlands from this total yields a current net of approximately 0.6 wetland/open water acres. It is likely that additional acreage will form with additional time and more normal precipitation, and if the irrigation issue is rectified. The site has gained approximately 92.41 functional units to date.

4.0 REFERENCES

- Bollman, W. 2005. MDT Mitigated Wetland Monitoring Project Aquatic Invertebrate Monitoring Summary 2001-2005. Rhithron Associates Inc. Missoula, MT.
- Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*. U.S. Army Corps of Engineers, Washington, DC.
- Ralph, C.J., Geupel, G.R., Pyle, P., Martin, T.E., and D.F. DeSante. 1993. *Handbook of field methods for monitoring landbirds*. Gen. Tech. Rep. PSW-GTR-144. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. of Agriculture. 41 p.
- USDA Natural Resource Conservation Service (NRCS). 2003. Hydric Soils List for MT621, Granite County, Montana Soil Survey [On-line]. Available at <u>http://www.mt.nrcs.usda.gov/soils/mtsoils/hydric/mt621hyd.html</u> (verified 22 Nov. 2005).
- USDA Natural Resources Conservation Service (NRCS). 1998. *Field Indicators of Hydric Soils in the United States*, Version 4. G. Hurt, P. Whited and R. Pringle (eds.). USDA, NRCS Fort Worth, TX.

Appendix A

FIGURES 2, 3, & 4

MDT Wetland Mitigation Monitoring Peterson Ranch Hall, Montana

Figure 2-Monitoring Activity Locations

PP4

Monitoring Area Li

Scale 1"= 200ft

LEGEND Monitoring Area Limits Photograph Point Aerial Reference Point Vegetation Transect Bird Box Soil Sample Point Macro Invertebrate Sample Base Photograph Date: July 7, 2005

€ SS

Figure 3-Mapped Site Features

Monitoring Area Limita

2

 \overline{O}

9

OW#5

0

Upland

ONSA

(4)

Upland

2

2

Ø

6

0

(5)

Scale 1"- 200ft

LEGEND

Monitoring Area Limits Wetland Boundary Open Water Boundary Vegetation Community Boundary Base Photograph Date: July 7, 2005

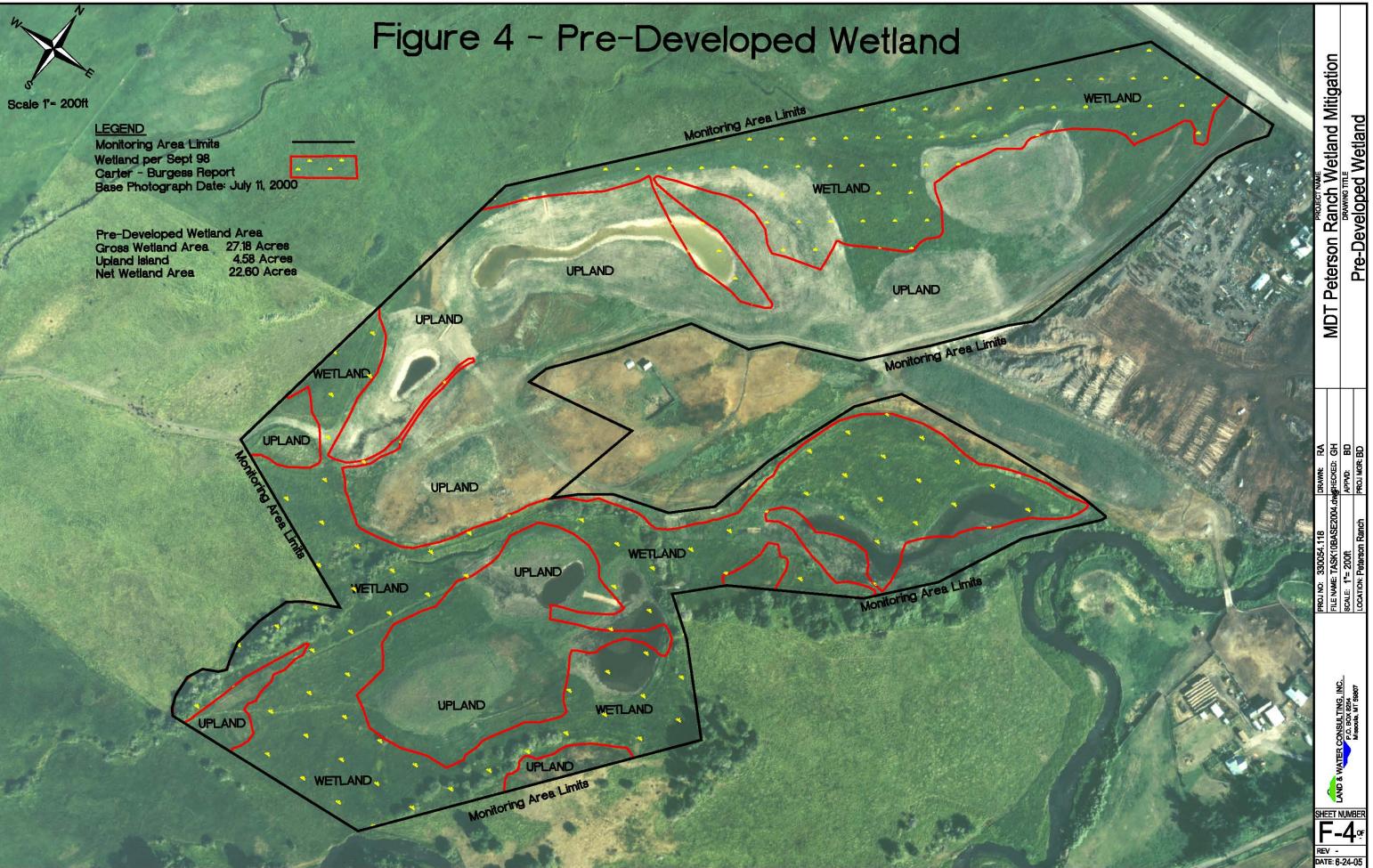
26.23 Acres -0.61 Acres -3.03 Acres

22.59 Acres

6

 \bigcirc


(3)


1

Wetland Area Gross Wetland Open Water 3,4,5 Upland Island Net Wetland Area

Vegetation Types:

grostis ropyron Eleocharis / Carex Carex / Typha Agrostis / Juncus Carex / Alopecurus Phleum / Agrostis $\overline{7}$ (3) ypha/Eleocharis (9) 10 grostis/Veronica Veronica/Myriophyllum 1

Appendix B

2005 WETLAND MITIGATION SITE MONITORING FORM 2005 BIRD SURVEY FORM 2005 WETLAND DELINEATION FORMS 2005 FUNCTIONAL ASSESSMENT FORM

MDT Wetland Mitigation Monitoring Peterson Ranch Hall, Montana

LWC / MDT WETLAND MITIGATION SITE MONITORING FORM

Project Name: <u>Peterson Ranch</u> Project Number: <u>330054.00 0118</u> Assessment Date: <u>8/11/05</u> Location: <u>E. of Hall</u> MDT District: <u>Upper Clark Fork</u> Milepost: _____ Legal description: T<u>10 N R13 W</u> Section <u>35</u> Time of Day: <u>Morning to Afternoon</u> Weather Conditions: <u>Clear & sunny</u> Person(s) conducting the assessment: <u>Greg Howard</u> Initial Evaluation Date: <u>7/31/02</u> Visit #: <u>1</u> Monitoring Year: <u>4</u> Size of evaluation area: <u>93 acres</u> Land use surrounding wetland: <u>Agriculture & forestry</u> <u>products</u>

HYDROLOGY

Surface Water

Source:

Inundation: Present <u>x</u> Absent <u>Average depths: 1 ft</u> Range of depths: <u>0-4 ft</u> Assessment area under inundation: <u>20-25 %</u>

Depth at emergent vegetation-open water boundary: <u>1.0 ft</u>

If assessment area is not inundated are the soils saturated w/in 12" of surface: Yes<u>x</u> No_ Other evidence of hydrology on site (drift lines, erosion, stained vegetation etc.): Additional hydrology source from irrigation ditch to the E. of OW/pond # 3. Standing water backing up along ditch and draining into C.T. 9.

Groundwater

Monitoring wells: Present_____ Absent__x Record depth of water below ground surface

Well #	Depth	Well #	Depth	Well #	Depth

Additional Activities Checklist:

<u>x</u> Map emergent vegetation-open water boundary on air photo

 \underline{x} Observe extent of surface water during each site visit and look for evidence of past surface water elevations (drift lines, erosion, vegetation staining etc.)

____GPS survey groundwater monitoring wells locations if present

COMMENTS/PROBLEMS: <u>Heavy disturbance near ponds 1 & 2 (Community Types 10 & 11) from livestock grazing</u>. Low water levels and most wetland vegetation that existed during 2004 monitoring in this area has been removed from grazing. Canada thistle (Cirsium arvense) located along N. boundary, not inside easement, but potential for seed dispersal.</u>

VEGETATION COMMUNITIES

Community No.: 1	Community	Title (main s	pecies)	: Agrostis
	000000000000000000000000000000000000000	(p • • • • • • • • •	. 1 1 91 0 0 010

Dominant Species	% Cover	Dominant Species	% Cover
Agrostis alba	50	Typha latifolia	Т
Carex nebrascensis	10	Scirpus acutus	Т
Agropyron trachycaulum	Р	Hordeum jubatum	Р
Potentilla anserina	Р	Festuca pratensis	10
Trifolium pratense	Р	Juncus balticus	Р

COMMENTS/PROBLEMS: Emergent vegetation type dominated by grasses and sedges.

Community No.: 2 Community Title (main species): Agropyron

Dominant Species	% Cover	Dominant Species	% Cover
Agropyron trachycaulum	50	Malva neglecta	Р
Agrostis alba	20	Thlaspi arvensis	Т
Potentilla anserina	Р	Achillea millefolium	Т
Helianthus annuus	Т	Alopecurus pratensis	Т
Cirsium arvense	Т	Taraxacum officinale	Р

COMMENTS/PROBLEMS: Dry slopes surrounding created ponds. Area dominated by upland grasses and some invasive species present. Areas heavily grazed during 2005, west side irrigation ditch.

Community No.: <u>3</u> Community Title (main species): <u>Salix</u>

Dominant Species	% Cover	Dominant Species	% Cover
Salix bebbiana	50	Geum macrophyllum	Т
Crataegus douglasii	50	Cornus stolonifera	Р
Ribes americanum	Р	Salix geyeriana	10
Salix exigua	10	Agrostis alba	10
Carex utriculata	20	Populus trichocarpa	10

COMMENTS/PROBLEMS: <u>Scrub-shrub vegetation type located along existing side</u> <u>channel/irrigation ditch.</u>

Additional Activities Checklist:

<u>X</u> Record and map vegetative communities on air photo

VEGETATION COMMUNITIES (continued)

Community No.: 4 Community Title (main species): Eleocharis/Carex

Dominant Species	% Cover	Dominant Species	% Cover
Eleocharis palustris	40	Agrostis alba	20
Carex nebrascensis	Р	Juncus ensifolius	Р
Typha latifolia	20	Potentilla anserina	Т
Alopecurus pratensis	10	Beckmannia syzigachne	Р
Polygonum amphibium	Т	Glyceria striata	Т
Juncus confusus	Р	Juncus nodosus	Р

COMMENTS/PROBLEMS: Emergent vegetation type surrounding created OW/ponds # 4 & <u>5.</u>

Community No.: 5 Community Title (main species): Carex/Typha

Dominant Species	% Cover	Dominant Species	% Cover
Carex nebrascensis	40		
Typha latifolia	20		
Alopecurus pratensis	30		

COMMENTS/PROBLEMS: Depressional wetlands found within areas of lower topography running across northwest corner of mitigation site. Hydrology source is groundwater & surface flow from irrigation water.

Community No.: 6 Community Title (main species): Agrostis/Juncus

Dominant Species	% Cover	Dominant Species	% Cover
Agrostis alba	30	Alopecurus pratensis	Р
Juncus balticus	40	Carex nebrascensis	Р
Phleum pratense	10	Rumex crispus	Т
Trifolium pratense	Р		
Agropyron repens	Р		

COMMENTS/PROBLEMS: <u>Wetland meadow complex, located between drier upland slopes</u> and emergent wetlands listed in Community Type 5. Vegetation fringe between upland and wetland areas, community type considered wetland.

VEGETATION COMMUNITIES (continued)

Community 110:. 7 Community The (main species): Carex/Atopeedrus					
Dominant Species	% Cover	Dominant Species	% Cover		
Carex utriculata	50	Juncus balticus	Р		
Alopecurus pratensis	20	<i>Poa</i> spp.	Т		
Veronica americana	Р				

Community No.: 7 Community Title (main species): Carex/Alopecurus

COMMENTS/PROBLEMS: <u>Vegetation along irrigation ditch, emergent wetlands with no</u> shrub coverage. Ditch and surrounding bottoms inundated, low flow present.

Community No. <u>8</u> Community	i ille (main spe	cies). <u>Filleulii/Agrosus</u>	
Dominant Species	% Cover	Dominant Species	% Cover
Phleum pratense	10	Typha latifolia	Р
Agrostis alba	30	Scirpus acutus	Т
Veronica americana	Р	Hordeum jubatum	Р
Alopecurus pratensis	20	Glyceria striata	10
Juncus balticus	Т	Willow sprigs	Т
Carex nebrascensis	Р	Juncus mertensianus	Р
Beckmannia syzigachne	Р	Eleocharis palustris	40

Community No.: 8 Community Title (main species): Phleum/Agrostis

COMMENTS/PROBLEMS: Upper basin dominated by emergent wetlands with intermittent drainage into pond # 1. Wetland areas inundated. Hydrology source comes from irrigation ditch. Increase in emergent vegetation cover. Willow cuttings heavily browsed.

Community No.: 9 Community Title (main species): Typha / Eleocharis

Dominant Species	% Cover	Dominant Species	% Cover
Typha latifolia	70	Potentilla anserina	Р
Eleocharis palustris	30	Carex nebrascensis	10
Beckmannia syzigachne	10	Alopecurus pratensis	Р
Agrostis alba	Р	Glyceria striata	Р
Veronica americana	Т	Scirpus acutus	Р
			OUU/ 1//

COMMENTS/PROBLEMS: Emergent vegetation type located along the fringe of OW/pond # <u>3's open water.</u>

Community No.: 10 Community Title (main species): Agrostis / Veronica

<u> </u>	(P	<u> </u>	
Dominant Species	% Cover	Dominant Species	% Cover
Juncus mertensianus	Т	Eleocharis palustris	Р
Agrostis alba	10	Trifolium pratense	Т
Veronica americana	Т	Phleum pratense	Т
Agropyron trachycaulum	10	Epilobium ciliatum	Т
Potentilla anserina	Т	Hordeum jubatum	Т

COMMENTS/PROBLEMS: Emergent wetland type located along the fringe of pond # 2's standing water. Water levels extremely low, inundation ranging from 0.5 to 1.5 ft. Area heavily impacted from grazing. Large decrease in overall vegetation coverage and development of wetland area.

VEGETATION COMMUNITIES (continued)

Community No <u>11</u> Community I	inc (main s	species). <u>veronica / wrynopnynum</u>	<u>spicaium</u>
Dominant Species	% Cover	Dominant Species	% Cover
Veronica americana	Р	Scirpus spp.	Т
Typha latifolia	Р		
Myriophyllum spicatum	60		
Eleocharis palustris	Т		

Community No.: 11 Community Title (main species): Veronica / Myriophyllum spicatum

COMMENTS/PROBLEMS: <u>Area heavily grazed along shoreline, vegetation cover mostly</u> removed. Dirty water mostly dominated by Eurasian water-milfoil. Evidence of severe trampling and compaction along shoreline.

Community No.: Community Title (main species):

Dominant Species	% Cover	Dominant Species	% Cover

COMMENTS/PROBLEMS:

Community No.: Community Title (main species):

Dominant Species	% Cover	Dominant Species % Co	

COMMENTS/PROBLEMS:

Comprehensive Vegetation List

Species	Vegetation Community Number(s)	Species	Vegetation Community Number(s)
Achillea millefolium	2	Juncus ensifolius	4
Agropyron repens	2,6	Juncus mertensianus	10
Agropyron smithii	2	Juncus nodosus	4
Agropyron trachycaulum	2,6,10	Kochia scoparia	2
Agrostis alba	1,2,3,4,6,8,9,10	Lepidium perfoliatum	2
Alopecurus pratensis	2,4,5,7,8,9	Lomatium spp.	2
Amaranthus retroflexus	2	Lychnis alba	2
Beckmannia syzigachne	5,7,9	Malva neglecta	2
Betula occidentalis	3	Medicago sativa	2
Bidens cernua	4,6,8	Mentha arvensis	4,7
Bromus inermis	2	Myriophyllum spicatum	OW
Bromus tectorum	2	Phalaris arundinaceae	6,7,8
Carduus nutans	2	Phleum pratense	6,8,10
Carex microptera	6	Plantago major	2
Carex nebrascensis	1,4,5,8,9	Poa ampla	2
Carex utriculata	1,3,7	Polygonum amphibium	4
Centaurea maculosa	2	Polygonum aviculare	4
Chenopodium album	2	Populus tremuloides	3
Cirsium arvense	2	Populus trichocarpa	3
Cornus stolonifera	3	Potentilla anserina	4,9,10
Crataegus douglasii	3	Potentilla gracilis	2
Cynoglossum officinale	2	Prunus virginiana	2
Dactylis glomerata	2	Ribes aureum	2
Descurainia sophia	2	Rosa woodsii	2,3
Elaeagnus commutata	2	Rumex crispus	2
Eleocharis palustris	4,9	Salix bebbiana	3
Elymus cinereus	2	Salix exigua	3
Elymus triticoides	2	Salix geyeriana	3
Epilobium ciliatum	10	Scirpus acutus	1
Equisetum arvense	2,4	Sisymbrium altissimum	2
Festuca pratensis	2	Solidago missouriensis	2
Glyceria striata	7,9	Taraxacum officinale	2,6
Helianthus annuus	2	Thlaspi arvensis	2
Hordeum jubatum	2	Triglochin maritimum	1,6,7
Iris missouriensis	4,7	Trifolium pratense	2
Juncus balticus	6,7	Typha latifolia	1,4,5,9,10
Juncus confusus	4	Veronica americana	

COMMENTS/PROBLEMS: No new species identified during 2005.

PLANTED WOODY VEGETATION SURVIVAL

Species	Number Originally	Number	Mortality Causes
	Planted	Observed	
Prunus virginiana		5	
Salix spp.		650	
Rosa woodsii		-	
Elaeagnus commutata		-	
Ribes aureum		-	
Cornus stolonifera		-	

COMMENTS/PROBLEMS: Evidence of heavy browse observed on plantings in pond # 1 & 2 areas west of irrigation ditch. Willows counted along pond # 3 (600) and pond # 5 (50).

WILDLIFE / BIRDS

(Attach Bird Survey Field Forms)

Were man made nesting structures installed? Yes \underline{x} No____Type: <u>Boxes</u> How many?<u>10</u> Are the nesting structures being utilized? Yes \underline{x} No____ Do the nesting structures need repairs? Yes ____ No \underline{x}

Species	Number	Indirect indication of use				
_	Observed	Tracks	Scat	Burrows	Other	
Deer		Х				
Coyote						
Frogs	5					

MAMMALS AND HERPTILES

Additional Activities Checklist:

<u>X</u> Macroinvertebrate sampling (if required)

COMMENTS/PROBLEMS: Four macro invertebrate samples were collected; OW/pond #'s 1, 2, 4 & 5.

PHOTOGRAPHS

Using a camera with a 50 mm lenses and color film take photographs of the following permanent reference points listed in the checklist below. Record the direction of the photograph using a compass. (The first time at each site establish a permanent reference point by setting a ½ inch rebar or fencepost extending 2-3' above ground, survey the location with a resource grade GPS and mark the location on the air photo.) Checklist

- X One photo for each of the 4 cardinal directions surrounding wetland
- X At least one photo showing upland use surrounding wetland if more than one upland use exists, take additional photos
- X At least one photo showing buffer surrounding wetland
- X One photo from each end of vegetation transect showing transect

Location	Photo	Photograph Description	Compass
	Frame #		Reading
1	1-3	Panoramic looking from south to north across the western half of the site.	$180^{\circ} - 0^{\circ}$
1	5	Looking northeast towards parcel boundary, lumber mill in background	90°
2	6	Looking southwest along vegetation transect no. 2.	225 °
3	7 - 8	Looking north at the southern end of created wetland pond no.2.	0 °
3	9 - 10	Looking west at emergent wetlands along fence line and beyond.	270°
3	11 - 12	Looking southeast at created wetland pond no. 1.	135°
4	13	Looking south across created wetland pond no 4.	180 °
5	14	Looking north along vegetation transect no. 2 and created wetland no. 5.	0 °
5	15	Looking north along vegetation transect no. 2 and created wetland no. 5.	0 °
5	16	Looking northeast at created wetland no. 4	45 °
5	17	Looking south at the top of upland spoil pile, view opposite of transect.	0°

COMMENTS/PROBLEMS:

GPS SURVEYING

Using a resource grade GPS survey the items on the checklist below. Collect at least 3 location points with the GPS unit set at 5 second recording rate. Record file numbers fore site in designated GPS field notebook

Checklist:

- x Jurisdictional wetland boundary
- \underline{x} 4-6 landmarks recognizable on the air photo
- <u>x</u> Start and end points of vegetation transect(s)
- <u>x</u> Photo reference points
- ____ Groundwater monitoring well locations

COMMENTS/PROBLEMS:

WETLAND DELINEATION

(Attach Corps of Engineers delineation forms)

At each site conduct the items on the checklist below:

- <u>x</u> Delineate wetlands according to the 1987 Army Corps manual.
- <u>x</u> Delineate wetland-upland boundary on the air photo
- _____ Survey wetland-upland boundary with a resource grade GPS survey

COMMENTS/PROBLEMS:

FUNCTIONAL ASSESSMENT

(Complete and attach full MDT Montana Wetland Assessment Method field forms; also attach abbreviated field forms, if used)

COMMENTS/PROBLEMS: <u>Three distinct areas were evaluated separately; these assessment areas include ponds 1 & 2, scrub-shrub / emergent wetland types and OW/ponds 3, 4&5.</u>

MAINTENANCE

Were man-made nesting structures installed at this site? YES <u>x</u> NO_____ If yes, do they need to be repaired? YES____NO_<u>x</u> If yes, describe problems below and indicate if any actions were taken to remedy the problems.

Were man-made structures build or installed to impound water or control water flow into or out of the wetland? YES_____NO <u>x</u> If yes, are the structures working properly and in good working order? YES_____NO____ If no, describe the problems below.

COMMENTS/PROBLEMS:

MDT WETLAND M	ONITORIN	G – VEGETATION TRANSECT (continued)	
Site: Ponds no. 4 Date:	8/11/05	Examiner: Greg Howard Transect # 1	
Approx. transect length: 222 ft.			
Vegetation type 1: Agropyron (Community		Vegetation type 2: Eleocharis/Carex (Community No. 4)	
Length of transect in this type: 138 ft.	feet	Length of transect in this type: 84 ft.	feet
Species:	Cover:	Species:	Cover:
Agropyron trachycaulum	10	Carex nebrascensis	Р
Bromus inermis	Р	Eleocharis palustris	40
Poa pratensis	20	Potentilla anserina	Т
Trifolium pratense	Т	Alopecurus pratensis	10
Agrostis alba	Р	Polygonum amphibium	Т
Agropyron repens	10	Agrostis alba	Р
Taraxacum officinale	Р	Glyceria striata	Р
Juncus balticus	Р	Beckmannia syzigachne	10
		Typha latifolia	Р
		Juncus ensifolius	Р
Total Vegetative Cover:	50%	Total Vegetative Cover:	70%
Vegetation type 3:	P	Vegetation type 4:	
Length of transect in this type:	feet	Length of transect in this type:	feet
Species:	Cover:	Species:	Cover:
Total Vegetative Cover:		Total Vegetative Cover:	

MDT WETLAND MONITORING – VEGETATION TRANSECT

Site: Pond no. 2 Date:	8/11/05	Examiner: Greg Howard Transect # 2	
Approx. transect length: 195 ft.	Compass Dir	ection from Start (Upland): 270	
Vegetation type 1: Agropyron (Community No. 1)		Vegetation type 2: Agrostis / Veronica (Community No. 1)	
Length of transect in this type: 175 ft.	feet	Length of transect in this type: 20 ft.	feet
Species:	Cover:	Species:	Cover:
Agropyron trachycaulum	30	Agrostis alba	Р
Agropyron repens	10	Agropyron trachycaulum	10
Agrostis alba	30	Hordeum jubatum	Т
Potentilla anserina	Р		
Trifolium pratense	Р		
Chrysanthemum leucanthemum	Т		
Cirsium arvense	Т		
Phleum pratense	10		
Total Vegetative Cover:	85%	Total Vegetative Cover:	15%
Vegetation type 3:		Vegetation type 4:	
Length of transect in this type:	feet	Length of transect in this type:	feet
Species:	Cover:	Species:	Cover:
Total Vegetative Cover:		Total Vegetative Cover:	

MDT WETLAND MONITORING – VEGETATION TRANSECT (back of form)

Cover Estim	ate	Indicator Class:	Source:
+ = <1% 1 = 1-5% 2 = 6-10%	3 = 11-20% 4 = 21-50% 5 = >50%	+ = Obligate - = Facultative/Wet 0 = Facultative	P = Planted V = Volunteer

Percent of perimeter ______% developing wetland vegetation – excluding dam/berm structures.

Establish transects perpendicular to the shoreline (or saturated perimeter). The transect should begin in the upland area. Permanently mark this location with a standard metal fencepost. Extend the imaginary transect line towards the center of the wetland, ending at the 3 food depth (in open water), or at a point where water depths or saturation are maximized. Mark this location with another metal fencepost.

Estimate cover within a 10 ft wide "belt" along the transect length. At a minimum, establish a transect at the windward and leeward sides of the wetland. Remember that the purpose of this sampling is to monitor, not inventory, representative portions of the wetland site.

Notes:

Notes:		

BIRD SURVEY – FIELD DATA SHEET

SITE: Peterson Ranch

Page_1_of_1_ Date: 6/14/05 Survey Time: 1:00-4:30

Bird Species	#	Behavior	Habitat	Bird Species	#	Behavior	Habitat
mallard	2	BP	OW, WM				
marsh wren	2	BD	SS				
gray catbird	1	L	SS				
Bohemian waxwing	1	L	SS				
yellow-headed	1	L	UP				
blackbird							
brown-headed cowbird	2	L	UP				
killdeer	4	F	OW				
bobolink	3	FO, L	SS, UP				
black-billed magpie	1	FO	WM				
mourning doves	2	L	UP				
red-winged blackbird	4	L	MA, UP				
western meadowlark	1	L	SS				
Wilson's phalarope	4	F	OW				
song sparrow							
tree swallow	13	F, FO	MA, OW				
Notes: Pond 1 & 2 = 70% inund							

notes.
Pond 1 & $2 = 70\%$ inundated; Pond $3 = 60\%$ inundated, Ponds 4 and $5 = 80\%$ inundated.
No herps. observed
Tree swallows are using bird boxes.
Deer tracks

Behavior: BP - one of a breeding pair; BD - breeding display; F - foraging; FO - flyover; L - loafing; N - nesting

 $\label{eq:habitat: AB-aquatic bed; FO-forested; I-island; MA-marsh; MF-mud flat; OW-open water; SS-scrub/shrub; UP-upland buffer; WM-wet meadow, US-unconsolidated shoreline$

BIRD SURVEY – FIELD DATA SHEET

SITE: Peterson Ranch

Page_1_of_1_ Date: 8/11/05 Survey Time: 8:30-3:00

Bird Species	#	Behavior	Habitat	Bird Species	#	Behavior	Habitat
killdeer	2	F	US				
mallard	4	F	MA				
tree swallow	15	N, F	MA				
Notes:							

Notes:
Pond 2 heavily grazed, low water levels.
Pond $2 = 50\%$ inundated; Pond $1 = 50\%$ inundated; Ponds 3, 4 and $5 = 100\%$ inundated.
No observation of any birds using boxes.
Bird activity low around pond 1 & 2.
Tree swallows near pond 3.

Behavior: BP – one of a breeding pair; BD – breeding display; F – foraging; FO – flyover; L – loafing; N – nesting

 $\label{eq:habitat: AB-aquatic bed; FO-forested; I-island; MA-marsh; MF-mud flat; OW-open water; SS-scrub/shrub; UP-upland buffer; WM-wet meadow, US-unconsolidated shoreline$

DATA FORM ROUTINE WETLAND DETERMINATION

(1987 COE Wetlands Delineation Manual)

Pr	Project/Site: Peterson Ranch						Date:	8/11/05	
A	Applicant/Owner: MDT						County:	Granite	
In	vestigator:	Greg Ho	ward				State:	MT	
	Do Normal Circumstances	exist on the sit	e:	Х	Yes	No	Community ID:	Upla	and
1	s the site significantly disturbed	(Atypical Situ	uation)?		Yes	No	Transect ID:	1 - OW/r	pool # 4
	Is the area a potential Pro	oblem Area?:			Yes	No	Plot ID:	1	
	(If neede	d, explain on	reverse.)						
			V	EGE	TATIO	N			
	Dominant Plant Species	Stratum	Indicato	r		Dominant	t Plant Species	Stratum	Indicator
1	Agropyron trachycaulum	Н	FAC		9				
2	Agropyron repens	Н	FACU		10				
3	Trifolium pratense	Н	FACU		11				
4	Taraxacum officinale	Н	FACU		12				
5	Bromus inermis	Н			13				
6	Agrostis alba	Н	FAC+		14				
7	Potentilla anserina	Н	OBL		15				
8					16				
Per	Percent of Dominant Species that are OBL, FACW, or FAC (excludi				uding FA	C-).	3/7 =	43%	
Are	Area dominated by upland vegetation.								

HYDROLOGY

Recorded Data (Describe in Remarks):	Wetland Hydrology Indicators:			
Stream, Lake, or Tide Gauge	Primary Indicators:			
Aerial Photographs	Inundated			
Other	Saturated in Upper 12 Inches			
x No Recorded Data Available	Water Marks			
	Drift Lines			
Field Observations:	Sediment Deposits			
	Drainage Patterns in Wetlands			
Depth of Surface Water: - (in.)	Secondary Indicators (2 or more required):			
	Oxidized Root Channels in Upper 12 Inches			
Depth to Free Water in Pit: - (in.)	Water-Stained Leaves			
	Local Soil Survey Data			
Depth to Saturated Soil: - (in.)	FAC-Neutral Test			
<u> </u>	Other (Explain in Remarks)			

No hydrology indicators present at this sampling point.

SOILS									
Map Unit	Map Unit Name Blossberg loam, 0 to 4 percent slopes		0 to 4 percent slopes	Drainage Class:	Poorly drained				
(Series an	(Series and Phase):			Field Observations					
Taxonom	y (Subgroup):		Confirm Mapped Typ	e? Yes x No				
Profile De	escription:								
Depth		Matrix Color	Mottle Colors	Mottle	Texture, Concretions,				
inches	Horizon	(Munsell Moist)	(Munsell Moist)	Abundance/Contrast	Structure, etc.				
0 - 8+	А	10 YR 2/1			Sandy clay, fine to medium				
0-01	Л	10 1 K 2/1			gravels, large cobbles				
Hydric Sc	oil Indicators	:							
	Н	istosol		Concretions					
	Н	istic Epipedon		High Organic Content in sur	rface Layer in Sandy Soils				
		ulfidic Odor		Organic Streaking in Sandy	Soils				
	A	quic Moisture Regime		Listed on Local Hydric Soil	s List				
	R	educing Conditions		Listed on National Hydric S					
	x G	leyed or Low-Chroma (Colors	Other (Explain in Remarks)					
Low-chro	Low-chroma color is present, but not considered wetland soils.								

WETLAND DETERMINATION

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	Yes Yes Yes	X No X No X No	Is this Sampling Point Within a Wetland?	Yes	X	No
Remarks: Sampling point is considered within u	ıpland.					

Approved by HQUSACE 2/92

DATA FORM **ROUTINE WETLAND DETERMINATION**

(1987 COE Wetlands Delineation Manual)

Project/Site: Peterson Ranch		Date:	8/11/05	_					
Applicant/Owner: MDT				County:	Granite				
Investigator: Greg Howard		State:	MT	_					
						-			
Do Normal Circumstances exist on the site:	Х	Yes	No	Communit	y ID:				
Is the site significantly disturbed (Atypical Situation)?		Yes	No	Transect II	D: 1– OW/pool # 4				
Is the area a potential Problem Area?:		Yes	No	Plot ID:	2	-			
(If needed, explain on reverse.)				_					
	VEGE	ΓΑΤΙΟ	N						

					Dominant Plant Species	Stratum	Indicator
1	Carex nebrascensis	Н	OBL	9			
2	Eleocharis palustris	Н	OBL	10			
3	Typha latifolia	Н	OBL	11			
4	Potentilla anserina	Н	OBL	12			
5	Alopecurus pratensis	Н	FACW	13			
6	Juncus ensifolius	Н	FACW	14			
7	Agrostis alba	Н	FAC+	15			
8	Beckmannia syzigachne	Н	OBL	16			
Per	cent of Dominant Species that are	OBL, FA	CW, or FAC (exclu	ding F	FAC-). $8/8 = 100\%$		
Are	a dominated by hydrophytic vege	ation.					

HYDROLOGY										
Recorded Data (Describe in Remarks):	Wetland Hydrology Indicators:									
Stream, Lake, or Tide Gauge	Primary Indicators:									
Aerial Photographs	Inundated									
Other	x Saturated in Upper 12 Inches									
x No Recorded Data Available	Water Marks									
	Drift Lines									
Field Observations:	Sediment Deposits									
	Drainage Patterns in Wetlands									
Depth of Surface Water: (in.)	Secondary Indicators (2 or more required):									
	Oxidized Root Channels in Upper 12 Inches									
Depth to Free Water in Pit: (in.)	Water-Stained Leaves									
	Local Soil Survey Data									
Depth to Saturated Soil: 0 (in.)	FAC-Neutral Test									
	Other (Explain in Remarks)									
Domorlag:										

Remarks: Hydrologic indicator present with saturated soils to ground surface.

	SOILS								
Map Unit	Map Unit Name Blossberg loam, 0 to 4 percent slopes			Drainage Class: Poorly drained					
(Series and Phase):			Field Observations						
Taxonom	y (Subgroup):		Confirm Mapped Type	e? <u>x</u> Yes No				
	escription:								
Depth		Matrix Color	Mottle Colors	Mottle	Texture, Concretions,				
inches	Horizon	(Munsell Moist)	(Munsell Moist)	Abundance/Contrast	Structure, etc.				
0-6	A1	10 YR 2/1	-	-	Clay loam				
6-12+	A2	10 YR 2/1	2.5 YR 3/6-	Few / Faint-	Clay				
			_ I						
Hydric So	il Indicators	3:							
		listosol		Concretions					
		listic Epipedon		High Organic Content in sur					
	S	ulfidic Odor		Organic Streaking in Sandy S					
	A	quic Moisture Regime	X	Listed on Local Hydric Soils	List				
	R	educing Conditions		Listed on National Hydric So	oils List				
	X G	leyed or Low-Chroma Co	olors	Other (Explain in Remarks)					
Hydric so	il indicators	present with low-chroma	colors and mottles. Map	ped soils listed as hydric in C	Granite County Soil survey.				

WETLAND DETERMINATION

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	X Yes X Yes X Yes	No	Is this Sampling Point Within a Wetland?	X Yes No
Remarks:			·	
Sampling point considered within a	a wetland.			

Approved by HQUSACE 2/92

DATA FORM **ROUTINE WETLAND DETERMINATION**

(1987 COE Wetlands Delineation Manual)

Pro	ject/Site: Peterson Ranch						Date:	8/11/05		
Ap	plicant/Owner: MDT						County:	Granite		
Inv	estigator: Greg Howard						State:	MT		
							-			
Do	Normal Circumstances exist o	n the site:		Х	Yes	No	Community	ID:		
Is t	he site significantly disturbed ((Atypical Situa	tion)?		Yes	No	Transect ID	2 - 1	Pool # 2	2
Is t	he area a potential Problem Ar	ea?:			Yes	No	Plot ID:	1		
(If needed, explain on reverse.)	1								
			V	EGE	TATI	ON				
	Dominant Plant Species	Stratum	Indicator			Dominant P	lant Species	Stratu	m	Indicator
1	Agropyron trachycaulum	Н	FAC		9	Festuca pra	tensis	Н	Ι	FACU+
2	Agrostis alba	Н	FAC+		10					
3	Potentilla anserina	Н	OBL		11					
4	Agropyron repens	Н	FACU		12					
5	Phleum pratense	Н	FAC-		13					
6	Cirsium arvense	Н	FACU+		14					
7	Trifolium pratense		FACU		15					
8					16					
Per	cent of Dominant Species that	are OBL, FAC	W, or FAC	(excl	uding I	FAC-).	3/7 = 43%	6		
Are	ea dominated by mostly upland	grasses and a	few invasive	e spec	eies.					

HYDROLOGY

Recorded Data (Describe in Remarks):	Wetland Hydrology Indicators:		
Stream, Lake, or Tide Gauge	Primary Indicators:		
Aerial Photographs	Inundated		
Other	Saturated in Upper 12 Inches		
x No Recorded Data Available	Water Marks		
	Drift Lines		
Field Observations:	Sediment Deposits		
	Drainage Patterns in Wetlands		
Depth of Surface Water: (in.)	Secondary Indicators (2 or more required):		
	Oxidized Root Channels in Upper 12 Inches		
Depth to Free Water in Pit: (in.)	Water-Stained Leaves		
	Local Soil Survey Data		
Depth to Saturated Soil: (in.)	FAC-Neutral Test		
	Other (Explain in Remarks)		
Remarks:			
No hydrology indicator present.			

			SOILS					
Map Unit Name Nythar-Flintcreek Complex, 0 to 4 slopes		c Complex, 0 to 4 percent	Drainage Class:	Very poorly drained				
(Series and Taxonomy	Phase): (Subgroup):			Field Observations	De? Yes x No			
ranonomy	(SubBroup).							
Profile Des	cription:	1						
Depth inches	Horizon	Matrix Color (Munsell Moist)	Mottle Colors (Munsell Moist)	Mottle Abundance/Contrast	Texture, Concretions, Structure, etc.			
0-2.5	0	10 YR 3/2	-	-	Roots & organic w/loam			
2.5 - 10+	А	10 YR 3/1	-	-	Clay			
	les 4-6 inches	s in wide.						
Hydric Soil	Indicators:							
		tosol		Concretions				
		tic Epipedon		High Organic Content in surface Layer in Sandy Soils				
		fidic Odor		Organic Streaking in Sandy Soils				
		uic Moisture Regime		Listed on Local Hydric Soils List				
		yed or Low-Chroma C		Listed on National Hydric Soils List Other (Explain in Remarks)				
	<u> </u>				!			
				his area listed as hydric, bu	t characteristics in sampling pit do			
not reflect 1	napped type.	Likely, alteration due	e to construction efforts.					

WETLAND DETERMINATION

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	 Yes Yes Yes	X X X	No No No	Is this Sampling Point Within a Wetland?	 Yes	X	No

Remarks:

Sampling point considered within an upland area.

Approved by HQUSACE 2/92

DATA FORM ROUTINE WETLAND DETERMINATION

(1987 COE Wetlands Delineation Manual)

Project/Site: Peterson Ranch		Date: 8/11/05
Applicant/Owner: MDT		County: Granite
Investigator: Greg Howard		State: MT
Do Normal Circumstances exist on the site:	x Yes No	Community ID:
Is the site significantly disturbed (Atypical Situation)?	Yes No	Transect ID: $2 - \text{Pool} \# 2$
Is the area a potential Problem Area?:	Yes No	Plot ID: 2
(If needed, explain on reverse.)		
VI	EGETATION	
Dominant Plant Species Stratum Indicator	Dominant P	lant Species Stratum Indicator
1 Agropyron trachycaulum H FAC	9	
2 Agrostis alba H FAC+	10	
3 Hordeum jubatum H FAC+	11	
4	12	
5	13	
6	14	
7	15	
8	16	

Percent of Dominant Species that are OBL, FACW, or FAC (excluding FAC-).

Area dominated by marginal wetland vegetation. Site heavily impacted from livestock grazing.

HYDROLOGY

3/3 = 100%

Recorded Data (Describe in Remarks):	Wetland Hydrology Indicators:
Stream, Lake, or Tide Gauge	Primary Indicators:
Aerial Photographs	Inundated
Other	x Saturated in Upper 12 Inches
x No Recorded Data Available	Water Marks
	Drift Lines
Field Observations:	Sediment Deposits
	Drainage Patterns in Wetlands
Depth of Surface Water: (in.)	Secondary Indicators (2 or more required):
	Oxidized Root Channels in Upper 12 Inches
Depth to Free Water in Pit: (in.)	Water-Stained Leaves
	Local Soil Survey Data
Depth to Saturated Soil: 5 (in.)	FAC-Neutral Test
	Other (Explain in Remarks)
Hydrology indicator present with saturated soils to ground surface	

			SOILS		
Map Unit	Name	•	Complex, 0 to 4 percent	Drainage Class:	Very poorly drained
		slopes			
``````````````````````````````````````	slopes         Series and Phase):         Gaxonomy (Subgroup):         Profile Description:         Depth         Horizon         Matrix Color         Mottle Color         (Munsell Moist)         (Misture Regime			Field Observations	
Taxonom	y (Subgroup	):		Confirm Mapped Typ	e? Yes x No
Profile De	escription:				
Depth		Matrix Color	Mottle Colors	Mottle	Texture, Concretions,
inches	Horizon	(Munsell Moist)	(Munsell Moist)	Abundance/Contrast	Structure, etc.
0-6	А	10 YR 3/2	-	-	Clay loam
6-12+	В	10 YR 4/2	-	-	Sandy clay
Hydric So					
				Concretions	
				High Organic Content in sur	
				Organic Streaking in Sandy	
		educing Conditions		Listed on Local Hydric Soil Listed on National Hydric S	
		leyed or Low-Chroma C		Other (Explain in Remarks)	
	<u></u> 0				
Some evid	dence of hyd	ric soil conditions with l	ow-chroma colors. Soils li	sted as hydric on the local	NRCS Soil survey.
	2			5	5

## WETLAND DETERMINATION

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	X X X	Yes Yes Yes	 No No No	Is this Sampling Point Within a Wetland?	 Yes	X	No
Remarks:							

Sampling point considered within a wetland area. The sampling area is located near the fringe of standing water and shoreline. Observations made during 2005 monitoring, show area heavily impacted from livestock grazing.

Approved by HQUSACE 2/92



#### MDT MONTANA WETLAND ASSESSMENT FORM (revised May 25, 1999)

1.	Project Name: Peterson Ranch		2. Project #: <u>B4305</u>	4.00-0118	Control #:				
3.	Evaluation Date: 8/11/2005	4. Evaluator(s)	: <u>G. Howard</u>	5. Wet	Vetland / Site #(s): <u>AA-1</u>				
6.	Wetland Location(s) i. T: <u>10 N</u>	<b>R</b> : <u>13 W</u> <b>S</b> : <u>3</u>	<u>5</u> ,	T: <u>N</u> R: _	<u>E</u> S:				
	ii. Approx. Stationing / Mileposts:								
	iii. Watershed: <u>2 - Upper Clark Fork</u>	GPS R	eference No. (if applies):						
	Other Location Information:	-							
7.	A. Evaluating Agency <u>MDT</u>		8. Wetland Size (total act	/	(visually estimated) measured, e.g. GPS)				
	B. Purpose of Evaluation:			、					
	Wetlands potentially affected b	. 1 .	9. Assessment Area (tota	l acres):	(visually est	,			
	Mitigation wetlands; pre-const				7.17 (measured, e.	g. GPS)			
	Mitigation wetlands; post-cons	struction	Comments:						
	Other								

#### 10. CLASSIFICATION OF WETLAND AND AQUATIC HABITATS IN AA

HGM CLASS ¹	SYSTEM ²	SUBSYSTEM ²	CLASS ²	WATER REGIME ²	MODIFIER ²	% OF AA
Riverine	Palustrine	None	Emergent Wetland	Seasonally Flooded	Artifical	60
Riverine	Palustrine	None	Unconsolidated Bottom	Permanently Flooded	Excavated	35
Riverine	Palustrine	None	Aquatic Bed	Permanently Flooded	Excavated	5

 1  = Smith et al. 1995.  2  = Cowardin et al. 1979.

#### Comments:

11. ESTIMATED RELATIVE ABUNDANCE (of similarly classified sites within the same Major Montana Watershed Basin) Common Comments: _____

#### 12. GENERAL CONDITION OF AA

**i. Regarding Disturbance:** (Use matrix below to select appropriate response.)

	Predo	minant Conditions Adjacent (within 500 Fee	et) To AA
	Land managed in predominantly natural	Land not cultivated, but moderately	Land cultivated or heavily grazed or logged;
	state; is not grazed, hayed, logged, or	grazed or hayed or selectively logged or	subject to substantial fill placement, grading,
Conditions Within AA	otherwise converted; does not contain	has been subject to minor clearing;	clearing, or hydrological alteration; high
	roads or buildings.	contains few roads or buildings.	road or building density.
AA occurs and is managed in predominantly			
a natural state; is not grazed, hayed, logged,			
or otherwise converted; does not contain			
roads or occupied buildings.			
AA not cultivated, but moderately grazed or			
hayed or selectively logged or has been			
subject to relatively minor clearing, or fill		moderate disturbance	
placement, or hydrological alteration;			
contains few roads or buildings.			
AA cultivated or heavily grazed or logged;			
subject to relatively substantial fill			
placement, grading, clearing, or hydrological			
alteration; high road or building density.			

Comments: (types of disturbance, intensity, season, etc.) Livestock grazing.

ii. Prominent weedy, alien, & introduced species: Spotted knapweed, Canada thistle, hound's tongue, and oxeye daisy.

iii. Briefly describe AA and surrounding land use / habitat: Hydrology influenced by irrigation ditches and groundwater. Area consists of two ponds with emergent wetlands and wet medow. Surrounding land use includes livestock grazing to the west and timber mill towards the east.

#### 13. STRUCTURAL DIVERSITY (Based on 'Class' column of #10 above.)

	ent in AA ≥ 2 if one class is forested		≤1 Vegetated Class		
Select Rating		Moderate			

Comments: The number of vegetated classes increased during the 2003 assessment with the addition of aquatic bed class. No new classes found during the 2005 monitoring.

#### 14A. HABITAT FOR FEDERALLY LISTED OR PROPOSED THREATENED OR ENDANGERED PLANTS AND ANIMALS

i. AA is Documented (D) or Suspected (S) to contain (check box):

Primary or Critical habitat (list species) Secondary habitat (list species)		
Incidental habitat (list species)	$\square D \boxtimes S$	Bald Eagle
No usable habitat	$\Box D \Box S$	

#### ii. Rating (Based on the strongest habitat chosen in 14A(i) above, find the corresponding rating of High (H), Moderate (M), or Low (L) for this function.

Highest Habitat Level	doc/primary	sus/primary	doc/secondary	sus/secondary	doc/incidental	sus/incidental	none
Functional Point & Rating						.3 (L)	

If documented, list the source (e.g., observations, records, etc.):

#### 14B. HABITAT FOR PLANTS AND ANIMALS RATED AS S1, S2, OR S3 BY THE MONTANA NATURAL HERITAGE PROGRAM. Do not include species listed in 14A(i).

i. AA is Documented (D) or Suspected (S) to contain (check box):

Primary or Critical habitat (list species) Secondary habitat (list species)		
Incidental habitat (list species) No usable habitat	$\Box D \Box S$ $\Box D \boxtimes S$	

ii. Rating: Based on the strongest habitat chosen in 14B(i) above, find the corresponding rating of High (H), Moderate (M), or Low (L) for this function.

Highest Habitat Level	doc/primary	sus/primary	doc/secondary	sus/secondary	doc/incidental	sus/incidental	none
Functional Point & Rating							0 (L)

If documented, list the source (e.g., observations, records, etc.):

#### 14C. GENERAL WILDLIFE HABITAT RATING

i. Evidence of overall wildlife use in the AA: Check either substantial, moderate, or low.

**Substantial** (based on any of the following)

beservations of abundant wildlife #s or high species diversity (during any period)

- abundant wildlife sign such as scat, tracks, nest structures, game trails, etc. Π
- presence of extremely limiting habitat reasons not as a second presence of the AA
   interviews with local biologists with knowledge of the AA presence of extremely limiting habitat features not available in the surrounding area

- **Low** (based on any of the following)
- few or no wildlife observations during peak use periods
   little to no wildlife sign
   sparse adjacent upland food sources
   interviews with local biologists with knowledge of A A

**Moderate** (based on any of the following)

observations of scattered wildlife groups or individuals or relatively few species during peak periods

common occurrence of wildlife sign such as scat, tracks, nest structures, game trails, etc.

adequate adjacent upland food sources 

interviews with local biologists with knowledge of the AA

ii. Wildlife Habitat Features: Working from top to bottom, select the AA attribute to determine the exceptional (E), high (H), moderate (M), or low (L) rating. Structural diversity is from 13. For class cover to be considered evenly distributed, vegetated classes must be within 20% of each other in terms of their percent composition in the AA (see 10). Duration of Surface Water: P/P = permanent/perennial; S/I = seasonal/intermittent; T/E = temporary/ephemeral; A= absent.

Structural Diversity (from 13)		High							Moderate							Low				
Class Cover Distribution (all vegetated classes)		Even				UU	neven	n 🗌 Even			⊠Uneven			Even						
Duration of Surface Water in ≥ 10% of AA	P/P	S/I	T/E	A	P/P	S/I	T/E	A	P/P	S/I	T/E	A	P/P	S/I	T/E	A	P/P	S/I	T/E	A
Low disturbance at AA (see 12)																				
Moderate disturbance at AA (see 12)													Н							
High disturbance at AA (see 12)		-												-				-		

iii. Rating: Use 14C(i) and 14C(ii) above and the matrix below to arrive at the functional point and rating of exceptional (E), high (H), moderate (M), or low (L) for this function.

Evidence of Wildlife Use	W	Wildlife Habitat Features Rating from 14C(ii)									
from 14C(i)	Exceptional	🖂 High	Moderate	Low							
Substantial											
Moderate		.7 (M)									
Low											

Comments: ____

#### 14D. GENERAL FISH / AQUATIC HABITAT RATING $\boxtimes$ NA (proceed to 14E)

If the AA is not or was not historically used by fish due to lack of habitat or excessive gradient, then check the NA box above.

Assess if the AA is used by fish or the existing situation is "correctable" such that the AA could be used by fish [e.g. fish use is precluded by perched culvert or other barrier, etc.]. If fish use occurs in the AA but is not desired from a resource management perspective (e.g. fish use within an irrigation canal], then Habitat Quality [14D(i)] below should be marked as "Low", applied accordingly in 14D(ii) below, and noted in the comments.

	i. Habitat (	<b>Duality:</b> Pick the appropriate	AA attributes in matrix to determine	e the quality rating of exce	eptional (E), high (H), modera	te (M), or low (L).
--	--------------	--------------------------------------	--------------------------------------	------------------------------	--------------------------------	---------------------

Duration of Surface Water in AA		Permanent/Perennial			sonal / Inte	rmittent	Temporary / Ephemeral		
<b>Cover</b> - % of waterbody in AA containing cover objects ( <i>e.g.</i> submerged logs, large rocks & boulders, overhanging banks, floating-leaved vegetation)	>25%	10-25%	<10%	>25%	10-25%	<10%	>25%	10-25%	<10%
Shading - >75% of streambank or shoreline of AA contains riparian or wetland scrub-shrub or forested communities									
<b>Shading – 50 to 75</b> % of streambank or shoreline of AA contains riparian or wetland scrub-shrub or forested communities.									
<b>Shading - &lt; 50%</b> of streambank or shoreline of AA contains riparian or wetland scrub-shrub or forested communities.									

ii. Modified Habitat Quality: Is fish use of the AA precluded or significantly reduced by a culvert, dike, other man-made structure or activity or is the waterbody included on the 'MDEQ list of waterbodies in need of TMDL development' with 'Probable Impaired Uses' listed as cold or warm water fishery or aquatic life support? If yes, reduce the rating from 14D(i) by one level and check the modified habitat quality rating:  $\square$  N 

iii. Rating: Use the conclusions from 14D(i) and 14D(ii) above and the matrix below to arrive at the functional point and rating of exceptional (E), high (H), moderate (M), or low (L).

Types of Fish Known or		Modified Habitat Quality from 14D(ii)										
Suspected within AA	Exceptional	🗌 High	Moderate									
Native game fish												
Introduced game fish		-										
Non-game fish		-										
No fish												

Comments:

#### **14E. FLOOD ATTENUATION NA** (proceed to 14G)

Applies only to wetlands subject to flooding via in-channel or overbank flow. If wetlands in AA do not flood from in-channel or overbank flow, then check NA.

i. Rating: Working from top to bottom, mark the appropriate attributes to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function.

Estimated wetland area in AA subject to periodic flooding	[	<b>⊇</b> ≥ 10 acre	s	$\boxtimes$	<b>&lt;</b> 10, >2 acı	res	<b>□</b> ≤2 acres		
% of flooded wetland classified as forested, scrub/shrub, or both	75%	25-75%	<25%	75%	25-75%	<25%	75%	25-75%	<25%
AA contains no outlet or restricted outlet						.5 (M)			
AA contains unrestricted outlet									

ii. Are residences, businesses, or other features which may be significantly damaged by floods located within 0.5 miles downstream of the AA? (check)  $\Box Y$ ΜN **Comments:** Low percent of scrub-shrub class. AA does not containa restricted outlet.

#### 14F. SHORT AND LONG TERM SURFACE WATER STORAGE **NA** (proceed to 14G)

Applies to wetlands that flood or pond from overbank or in-channel flow, precipitation, upland surface flow, or groundwater flow. If no wetlands in the AA are subject to flooding or ponding, then check NA above.

i. Rating: Working from top to bottom, use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function. P/P = permanent/perennial; S/I = seasonal/intermittent; T/E = temporary/ephemeral.

Estimated maximum acre feet of water contained in wetlands within the AA that are subject to periodic flooding or ponding.	Γ	>5 acre fe	et		<5, >1 acre	feet	□ ≤1 acre foot		
Duration of surface water at wetlands within the AA	P/P	S/I	T/E	P/P	S/I	T/E	P/P	S/I	T/E
Wetlands in AA flood or pond ≥ 5 out of 10 years				.8 (H)					
Wetlands in AA flood or pond < 5 out of 10 years									
	1.	a 1. ar	1. 0 1						

Comments: Ponds with a high capacity to contain flood waters during seasonal flooding of Flint Creek.

#### 14G. SEDIMENT/NUTRIENT/TOXICANT RETENTION AND REMOVAL

**NA** (proceed to 14H) Applies to wetlands with the potential to receive excess sediments, nutrients, or toxicants through influx of surface or ground water or direct input. If no wetlands in the AA are subject to such input, check NA above.

#### i. Rating Working from top to bottom, use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function.

Sediment, Nutrient, and Toxicant Input Levels Within AA	to moderate le other function	s are not substanti , sources of nutrie	, nutrients, or co ially impaired.	mpounds such that Minor	Waterbody on MDEQ list of waterbodies in need of TMDL development for "probable causes" related to sediment, nutrients, or toxicants <b>or</b> AA receives or surrounding land use has potential to deliver high levels of sediments, nutrients, or compounds such that other functions are substantially impaired. Major sedimentation, sources of nutrients or toxicants, or signs of eutrophication present.					
% cover of wetland vegetation in AA	□ ≥ 70 % ⊠ < 70 %				□ ≥ 70%					
Evidence of flooding or ponding in AA	Series Ves	🗌 No	🛛 Yes	🗌 No	☐ Yes	🗌 No	🗌 Yes	🗌 No		
AA contains no or restricted outlet			.7 (M)							
AA contains unrestricted outlet										

Comments: Low percent of vegetative cover around ponds.

#### 14H. SEDIMENT/SHORELINE STABILIZATION

#### **NA** (proceed to 14I)

Applies only if AA occurs on or within the banks of a river, stream, or other natural or man-made drainage, or on the shoreline of a standing water body that is subject to wave action. If this does not apply, then check NA above.

i. Rating: Working from top to bottom, use the matrix below to arrive at the functional point and rating exceptional (E), high (H), moderate (M), or low (L) for this function.

% Cover of wetland streambank or	Duration of	Duration of Surface Water Adjacent to Rooted Vegetati									
shoreline by species with deep, binding rootmasses.	⊠Permanent / Perennial	Seasonal / Intermittent	Temporary / Ephemeral								
≥65 %											
35-64 %											
< 35 %	.3 (L)										

Comments: Low vegetative cover along shoreline.

#### 14I. PRODUCTION EXPORT / FOOD CHAIN SUPPORT

i. Rating: Working from top to bottom, use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function. A = acreage of vegetated component in the AA. B = structural diversity rating from #13. C = Yes (Y) or No (N) as to whether or not the AA contains a surface or subsurface outlet. P/P = permanent/perennial; S/I = seasonal/intermittent; T/E/A = temporary/ephemeral/absent.

A		🛛 Veget	ated con	iponent	>5 acres	5	Vegetated component 1-5 acres					Vegetated component <1 acre						
B	🗌 🗌 I	High	🛛 Mo	derate		Low	[ ] I	High		derate		Low		High		derate		Low
С		□N	⊠Y	□N		□N	ΠY	□N		□N	ΠY	□N	ΠY	□N		□N	ΠY	□N
P/P			.9H															
S/I							-											
T/E/A																		

Comments:

14J. GROUNDWATER DISCHARGE / RECHARGE (DR) (Check the indicators in i & ii below that apply to the AA.) ii. 🛛 Recharge Indicators

i. 🛛 Discharge Indicators

Springs are known or observed.

Vegetation growing during dormant season / drought.

Wetland occurs at the toe of a natural slope.

Π Seeps are present at the wetland edge.

AA permanently flooded during drought periods.

Wetland contains an outlet, but no inlet.

Other

iii. Rating: Use information from 14J(i) and 14J(ii) above and the table below to arrive at the functional point and rating of high (H) or low (L) for this function.

Other

Permeable substrate presents without underlying impeding layer.

Wetland contains inlet but not outlet.

Criteria	Functional Point and Rating
AA has known Discharge/Recharge area or one or more indicators of D/R present	1 (H)
No Discharge/Recharge indicators present	
Available Discharge/Recharge information inadequate to rate AA D/R potential	

Comments: High groundwater table; irrigation influenced and subsurface flow through alluvial materials.

#### 14K. UNIQUENESS

i. Rating: Working from top to bottom, use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function.

Replacement Potential	AA contains fen, mature (>80 yr-ol association listed	rare types a is high or c	ot contain previo and structural d ontains plant as: 2" by the MTNI	iversity (#13) sociation	AA does not contain previously cited rare types or associations and structural diversity (#13) is low-moderate.				
Estimated Relative Abundance from 11	rare	Common	abundant	rare	Common	abundant	rare	Common	abundant
Low disturbance at AA (12i)									
Moderate disturbance at AA (12i)								.3L	
High disturbance at AA (12i)									

Comments:

#### 14L. RECREATION / EDUCATION POTENTIAL

i. Is the AA a known recreational or educational site? **Yes** [Rate **High** (1.0), then proceed to 14L(ii) only] **No** [Proceed to 14L(iii)]

ii. Check categories that apply to the AA: 🛛 Educational / scientific study Consumptive rec. Non-consumptive rec. Other

iii. Based on the location, diversity, size, and other site attributes, is there a strong potential for recreational or educational use?  $\bigvee$  Yes [Proceed to 14L (ii) and then 14L(iv)]  $\square$  No [Rate as low in 14L(iv)]

iv. Rating Use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function.

	Disturbance at AA from 12(i)										
Ownership	Low	Moderate	High								
Public ownership											
Private ownership		.3(L)									

Comments:

Function and Value Variables	Rating	Actual Functional Points	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage)
A. Listed/Proposed T&E Species Habitat	low	0.30	1	
B. MT Natural Heritage Program Species Habitat	low	0.00	1	
C. General Wildlife Habitat	moderate	0.70	1	
D. General Fish/Aquatic Habitat	N/A			
E. Flood Attenuation	moderate	0.50	1	
F. Short and Long Term Surface Water Storage	high	0.80	1	
G. Sediment/Nutrient/Toxicant Removal	moderate	0.70	1	
H. Sediment/Shoreline Stabilization	low	0.30	1	
I. Production Export/Food Chain Support	high	0.90	1	
J. Groundwater Discharge/Recharge	high	1.00	1	
K. Uniqueness	low	0.30	1	
L. Recreation/Education Potential	low	0.30	1	
	Total:	<u>5.80</u>	<u>11.00</u>	
	Percent of	Total Possible Points:	53% (Actual / Possil	ble) x 100 [rd to nearest whole #]

### FUNCTION, VALUE SUMMARY, AND OVERALL RATING

Category I Wetland: (Must satisfy one of the following criteria. If not satisfied, proceed to Category II.)

Score of 1 functional point for Listed/Proposed Threatened or Endangered Species; or

Score of 1 functional point for Uniqueness; or

Score of 1 functional point for Flood Attenuation and answer to Question 14E(ii) is "yes"; or

 $\Box$  Percent of total Possible Points is > 80%.

Category II Wetland: (Criteria for Category I not satisfied and meets any one of the following Category II criteria. If not satisfied, proceed to Category IV.)
Score of 1 functional point for Species Rated S1, S2, or S3 by the MT Natural Heritage Program; or

Score of .9 or 1 functional point for General Wildlife Habitat; or

Score of .9 or 1 functional point for General Fish/Aquatic Habitat; or

"High" to "Exceptional" ratings for both General Wildlife Habitat and General Fish / Aquatic Habitat; or

Score of .9 functional point for Uniqueness; or

Percent of total possible points is > 65%.

Category III Wetland: (Criteria for Categories I, II, or IV not satisfied.)

Category IV Wetland: (Criteria for Categories I or II are not satisfied and <u>all</u> of the following criteria are met; If not satisfied, return to Category III.)

"Low" rating for Production Export / Food Chain Support; and

Percent of total possible points is < 30%.

## OVERALL ANALYSIS AREA (AA) RATING: (Check appropriate category based on the criteria outlined above.)

I





MDT MONTANA V	VETLAND ASSESSMENT FORM (revised May 25, 1999)
1. Project Name: Peterson Ranch	<b>2. Project #:</b> <u>B43054.00-0118</u> <b>Control #:</b>
<b>3. Evaluation Date:</b> 8/11/2005 <b>4. Evaluato</b>	r(s): <u>G. Howard</u> 5. Wetland / Site #(s): <u>AA-2</u>
6. Wetland Location(s) i. T: $\underline{10}$ N R: $\underline{13}$ W S	$\mathbf{S}: \underline{35} \qquad \qquad \mathbf{T}: \underline{\mathbf{N}}  \mathbf{R}: \underline{\mathbf{E}}  \mathbf{S}: \underline{\mathbf{M}}$
ii. Approx. Stationing / Mileposts:	
iii. Watershed: <u>2 - Upper Clark Fork</u> GP	S Reference No. (if applies):
Other Location Information: Mature scrub-shrub t	ype vegetation class along irrigation ditch.
7. A. Evaluating Agency <u>MDT</u>	8. Wetland Size (total acres): (visually estimated) 22.20 (measured, e.g. GPS)
B. Purpose of Evaluation: ☐ Wetlands potentially affected by MDT project ☐ Mitigation wetlands; pre-construction ⊠ Mitigation wetlands; post-construction ☐ Other	

### 10. CLASSIFICATION OF WETLAND AND AQUATIC HABITATS IN AA

HGM CLASS ¹	SYSTEM ²	SUBSYSTEM ²	CLASS ²	WATER REGIME ²	MODIFIER ²	% OF AA
Riverine	Palustrine	None	Scrub-Shrub Wetland	Seasonally Flooded	Artifical	80
Riverine	Palustrine	None	Emergent Wetland	Seasonally Flooded	Artifical	15
Riverine	Palustrine	None	Rock Bottom	Seasonally Flooded	Artifical	5

 1  = Smith et al. 1995.  2  = Cowardin et al. 1979.

#### Comments:

11. ESTIMATED RELATIVE ABUNDANCE (of similarly classified sites within the same Major Montana Watershed Basin) Common Comments: _____

#### 12. GENERAL CONDITION OF AA

**i. Regarding Disturbance:** (Use matrix below to select appropriate response.)

	Predo	minant Conditions Adjacent (within 500 Fee	et) To AA
	Land managed in predominantly natural	Land not cultivated, but moderately	Land cultivated or heavily grazed or logged;
	state; is not grazed, hayed, logged, or	grazed or hayed or selectively logged or	subject to substantial fill placement, grading,
Conditions Within AA	otherwise converted; does not contain roads or buildings.	has been subject to minor clearing; contains few roads or buildings.	clearing, or hydrological alteration; high road or building density.
AA occurs and is managed in predominantly a natural state; is not grazed, hayed, logged, or otherwise converted; does not contain roads or occupied buildings.			
AA not cultivated, but moderately grazed or hayed or selectively logged or has been subject to relatively minor clearing, or fill placement, or hydrological alteration; contains few roads or buildings.		moderate disturbance	
AA cultivated or heavily grazed or logged; subject to relatively substantial fill placement, grading, clearing, or hydrological alteration; high road or building density.			

Comments: (types of disturbance, intensity, season, etc.) Livestock grazing.

### ii. Prominent weedy, alien, & introduced species: ____

iii. Briefly describe AA and surrounding land use / habitat: <u>Mature scrub-shrub located along an irrigation ditch</u>. Several small pockets of cottonwoods and aspen also present along ditch. Open areas dominated by emergent vegetation.

#### 13. STRUCTURAL DIVERSITY (Based on 'Class' column of #10 above.)

Number of 'Cowardin' Vegetated	≥3 Vegetated Classes or	2 Vegetated Classes or	≤ 1 Vegetated Class
Classes Present in AA	≥ 2 if one class is forested	1 if forested	
Select Rating		Moderate	

Comments:

#### 14A. HABITAT FOR FEDERALLY LISTED OR PROPOSED THREATENED OR ENDANGERED PLANTS AND ANIMALS

i. AA is Documented (D) or Suspected (S) to contain (check box):

Primary or Critical habitat (list species)	$\square D \square S$	
Secondary habitat (list species)	$\Box$ D $\Box$ S	
Incidental habitat (list species)	🖾 D 🗌 S	Bald Eagle
No usable habitat	$\Box D \Box S$	

#### ii. Rating (Based on the strongest habitat chosen in 14A(i) above, find the corresponding rating of High (H), Moderate (M), or Low (L) for this function.

Highest Habitat Level	doc/primary	sus/primary	doc/secondary	sus/secondary	doc/incidental	sus/incidental	none
Functional Point & Rating					.5 (L)		

If documented, list the source (e.g., observations, records, etc.): Bald Eagle observed on site during 2004 spring monitoring.

#### 14B. HABITAT FOR PLANTS AND ANIMALS RATED AS S1, S2, OR S3 BY THE MONTANA NATURAL HERITAGE PROGRAM. Do not include species listed in 14A(i).

i. AA is Documented (D) or Suspected (S) to contain (check box):

Primary or Critical habitat (list species)	$\square D \square S$	
Secondary habitat (list species)	🖾 D 🗌 S	<u>Bobolink</u>
Incidental habitat (list species)	🗌 D 🛛 S	Olive-sided flycatcher
No usable habitat	🗌 D 🗌 S	

ii. Rating: Based on the strongest habitat chosen in 14B(i) above, find the corresponding rating of High (H), Moderate (M), or Low (L) for this function.

Highest Habitat Level	doc/primary	sus/primary	doc/secondary	sus/secondary	doc/incidental	sus/incidental	none
Functional Point & Rating			.7 (M)				

If documented, list the source (e.g., observations, records, etc.): Bobolink identified during spring birding trip.

#### 14C. GENERAL WILDLIFE HABITAT RATING

i. Evidence of overall wildlife use in the AA: Check either substantial, moderate, or low.

**Substantial** (based on any of the following)

beservations of abundant wildlife #s or high species diversity (during any period)

abundant wildlife sign such as scat, tracks, nest structures, game trails, etc. Π 

presence of extremely limiting habitat features not available in the surrounding area

interviews with local biologists with knowledge of the AA

- **Low** (based on any of the following) few or no wildlife observations during peak use periods
   little to no wildlife sign
   sparse adjacent upland food sources
   interviews with local biologists with knowledge of A A

**Moderate** (based on any of the following)

observations of scattered wildlife groups or individuals or relatively few species during peak periods

common occurrence of wildlife sign such as scat, tracks, nest structures, game trails, etc.

adequate adjacent upland food sources 

interviews with local biologists with knowledge of the AA

ii. Wildlife Habitat Features: Working from top to bottom, select the AA attribute to determine the exceptional (E), high (H), moderate (M), or low (L) rating. Structural diversity is from 13. For class cover to be considered evenly distributed, vegetated classes must be within 20% of each other in terms of their percent composition in the AA (see 10). Duration of Surface Water: P/P = permanent/perennial; S/I = seasonal/intermittent; T/E = temporary/ephemeral; A= absent.

Structural Diversity (from 13)		High						Moderate						Low						
Class Cover Distribution (all vegetated classes)		Ē	lven			UU	neven			□F	lven			⊠U	neven			Ē	lven	
Duration of Surface Water in ≥ 10% of AA	P/P	S/I	T/E	A	P/P	S/I	T/E	A	P/P	S/I	T/E	A	P/P	S/I	T/E	A	P/P	S/I	T/E	A
Low disturbance at AA (see 12)																				
Moderate disturbance at AA (see 12)													Н							
High disturbance at AA (see 12)		-												-				-		

iii. Rating: Use 14C(i) and 14C(ii) above and the matrix below to arrive at the functional point and rating of exceptional (E), high (H), moderate (M), or low (L) for this function.

Evidence of Wildlife Use	W	Wildlife Habitat Features Rating from 14C(ii)											
from 14C(i)	Exceptional	🖂 High	Moderate	Low									
Substantial													
Moderate		.7 (M)											
Low													

Comments:

#### 14D. GENERAL FISH / AQUATIC HABITAT RATING XA (proceed to 14E)

If the AA is not or was not historically used by fish due to lack of habitat or excessive gradient, then check the NA box above.

Assess if the AA is used by fish or the existing situation is "correctable" such that the AA could be used by fish [*e.g.* fish use is precluded by perched culvert or other barrier, etc.]. If fish use occurs in the AA but is not desired from a resource management perspective (*e.g.* fish use within an irrigation canal], then Habitat Quality [14D(i)] below should be marked as "Low", applied accordingly in 14D(ii) below, and noted in the comments.

#### i. Habitat Quality: Pick the appropriate AA attributes in matrix to determine the quality rating of exceptional (E), high (H), moderate (M), or low (L).

Duration of Surface Water in AA	Per	manent/Per	ennial		sonal / Inte	rmittent	Temporary / Ephemeral			
<b>Cover</b> - % of waterbody in AA containing cover objects ( <i>e.g.</i> submerged logs, large rocks & boulders, overhanging banks, floating-leaved vegetation)	>25%	10-25%	<10%	>25%	10-25%	<10%	>25%	10-25%	<10%	
Shading - >75% of streambank or shoreline of AA contains riparian or wetland scrub-shrub or forested communities										
<b>Shading – 50 to 75%</b> of streambank or shoreline of AA contains riparian or wetland scrub-shrub or forested communities.										
<b>Shading - &lt; 50%</b> of streambank or shoreline of AA contains riparian or wetland scrub-shrub or forested communities.										

ii. Modified Habitat Quality: Is fish use of the AA precluded or significantly reduced by a culvert, dike, other man-made structure or activity or is the waterbody included on the 'MDEQ list of waterbodies in need of TMDL development' with 'Probable Impaired Uses' listed as cold or warm water fishery or aquatic life support?  $Y \square N$  If yes, reduce the rating from 14D(i) by one level and check the modified habitat quality rating:  $\square E \square H \square M \square L$ 

iii. Rating: Use the conclusions from 14D(i) and 14D(ii) above and the matrix below to arrive at the functional point and rating of exceptional (E), high (H), moderate (M), or low (L).

Types of Fish Known or	Modified Habitat Quality from 14D(ii)									
Suspected within AA	Exceptional	🗌 High	Moderate							
Native game fish										
Introduced game fish		-								
Non-game fish		-								
No fish										

Comments:

#### **14E. FLOOD ATTENUATION** IN (proceed to 14G)

Applies only to wetlands subject to flooding via in-channel or overbank flow. If wetlands in AA do not flood from in-channel or overbank flow, then check NA.

i. Rating: Working from top to bottom, mark the appropriate attributes to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function.

Estimated wetland area in AA subject to periodic flooding		□ ≥ 10 acres			<b>&lt;</b> 10, >2 acı	res	⊠ ≤2 acres		
% of flooded wetland classified as forested, scrub/shrub, or both	75%	25-75%	<25%	75%	25-75%	<25%	75%	25-75%	<25%
AA contains no outlet or restricted outlet								.3 (L)	
AA contains unrestricted outlet									

ii. Are residences, businesses, or other features which may be significantly damaged by floods located within 0.5 miles downstream of the AA? (check)

 Y
 N
 Comments:
 Channel is restricted due to several beaver dams and accumulated debris.

#### **14F. SHORT AND LONG TERM SURFACE WATER STORAGE I NA** (proceed to 14G)

Applies to wetlands that flood or pond from overbank or in-channel flow, precipitation, upland surface flow, or groundwater flow. If no wetlands in the AA are subject to flooding or ponding, then check NA above.

i. Rating: Working from top to bottom, use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function. P/P = permanent/perennial; S/I = seasonal/intermittent; T/E = temporary/ephemeral.

<b>Estimated maximum acre feet of water</b> contained in wetlands within the AA that are subject to periodic flooding or ponding.	□ >5 acre feet		$\boxtimes$	<5, >1 acre	feet	□ ≤1 acre foot			
Duration of surface water at wetlands within the AA	P/P	S/I	T/E	P/P	S/I	T/E	P/P	S/I	T/E
Wetlands in AA flood or pond ≥ 5 out of 10 years				.8 (H)					
Wetlands in AA flood or pond < 5 out of 10 years									

Comments:

#### 14G. SEDIMENT/NUTRIENT/TOXICANT RETENTION AND REMOVAL

**NA** (proceed to 14H)

Applies to wetlands with the potential to receive excess sediments, nutrients, or toxicants through influx of surface or ground water or direct input. If no wetlands in the AA are subject to such input, check NA above.

#### i. Rating Working from top to bottom, use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function.

Sediment, Nutrient, and Toxicant Input Levels Within AA	to moderate le other function	vels of sediments s are not substanti , sources of nutrie	, nutrients, or co ially impaired.		Waterbody on MDEQ list of waterbodies in need of TMDL development for "probable causes" related to sediment, nutrients, or toxicants or AA receives or surrounding land use has potential to deliver high levels of sediments, nutrients, or compounds such that other functions are substantially impaired. Major sedimentation, sources of nutrients or toxicants, or signs of eutrophication present.				
% cover of wetland vegetation in AA	⊠≥	270%		< 70%	□ ≥ 70 %		□ < 70%		
Evidence of flooding or ponding in AA	🛛 Yes	🗌 No	Ses 20	□ No	☐ Yes	🗌 No	□ Yes □ N		
AA contains no or restricted outlet	1 (H)	1 (H)							
AA contains unrestricted outlet									

Comments: High percentage of vegetative cover from mature willow community.

#### 14H. SEDIMENT/SHORELINE STABILIZATION

#### **NA** (proceed to 14I)

Applies only if AA occurs on or within the banks of a river, stream, or other natural or man-made drainage, or on the shoreline of a standing water body that is subject to wave action. If this does not apply, then check NA above.

i. Rating: Working from top to bottom, use the matrix below to arrive at the functional point and rating exceptional (E), high (H), moderate (M), or low (L) for this function.

% Cover of wetland streambank or	Duration of Surface Water Adjacent to Rooted Vegetation						
shoreline by species with deep, binding rootmasses.	Permanent / Perennial	Seasonal / Intermittent	Temporary / Ephemeral				
≥65 %	1 (H)						
35-64 %							
< 35 %							

Comments: Mature willows with deep binding root system along irrigation ditch.

#### 14I. PRODUCTION EXPORT / FOOD CHAIN SUPPORT

i. Rating: Working from top to bottom, use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function. A = acreage of vegetated component in the AA. B = structural diversity rating from #13. C = Yes (Y) or No (N) as to whether or not the AA contains a surface or subsurface outlet. P/P = permanent/perennial; S/I = seasonal/intermittent; T/E/A = temporary/ephemeral/absent.

A		] Veget	ated com	nponent	>5 acres	5		Vegetated component 1-5 acres				□ Vegetated component <1 acre						
B	- I	ligh	🗌 Mo	derate		Low		High	Mo Mo	derate		Jow		ligh		derate		Low
С		□N		□N		□N	ΠY	□N	⊠Y	□N	ΠY	□N		□N		□N	ΠY	□N
P/P									.8H									
S/I							-											
T/E/A																		

Comments:

14J. GROUNDWATER DISCHARGE / RECHARGE (DR) (Check the indicators in i & ii below that apply to the AA.) ii. 🛛 Recharge Indicators

i. Discharge Indicators

Springs are known or observed.

Vegetation growing during dormant season / drought.

Wetland occurs at the toe of a natural slope.

Π Seeps are present at the wetland edge.

AA permanently flooded during drought periods.

Wetland contains an outlet, but no inlet.

Other

iii. Rating: Use information from 14J(i) and 14J(ii) above and the table below to arrive at the functional point and rating of high (H) or low (L) for this function.

Other

Permeable substrate presents without underlying impeding layer.

Wetland contains inlet but not outlet.

Criteria	Functional Point and Rating
AA has known Discharge/Recharge area or one or more indicators of D/R present	1 (H)
No Discharge/Recharge indicators present	
Available Discharge/Recharge information inadequate to rate AA D/R potential	

Comments: High groundwater table; irrigation influenced and subsurface flow through alluvial materials.

#### 14K. UNIQUENESS

i. Rating: Working from top to bottom, use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function.

Replacement Potential	AA contains fen, mature (>80 yr-ol association listed	AA does not contain previously cited rare types and structural diversity (#13) is high or contains plant association listed as "S2" by the MTNHP.			AA does no rare types diversity (#	nd structural			
Estimated Relative Abundance from 11	rare	Common	abundant	rare	Common	abundant	rare	Common	abundant
Low disturbance at AA (12i)									
Moderate disturbance at AA (12i)								.3L	
High disturbance at AA (12i)									

Comments:

#### 14L. RECREATION / EDUCATION POTENTIAL

i. Is the AA a known recreational or educational site? **Yes** [Rate **High** (1.0), then proceed to 14L(ii) only] **No** [Proceed to 14L(iii)]

ii. Check categories that apply to the AA: 🛛 Educational / scientific study Consumptive rec. Non-consumptive rec. Other

iii. Based on the location, diversity, size, and other site attributes, is there a strong potential for recreational or educational use?  $\bigvee$  Yes [Proceed to 14L (ii) and then 14L(iv)]  $\square$  No [Rate as low in 14L(iv)]

iv. Rating Use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function.

	I	Disturbance at AA from 12(i)								
Ownership	Low	🛛 Moderate	High							
Public ownership										
Private ownership		.3(L)								

Comments:

Function and Value Variables	Rating	Actual Functional Points	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage)
A. Listed/Proposed T&E Species Habitat	low	0.50	1	
B. MT Natural Heritage Program Species Habitat	moderate	0.70	1	
C. General Wildlife Habitat	moderate	0.70	1	
D. General Fish/Aquatic Habitat	N/A			
E. Flood Attenuation	low	0.30	1	
F. Short and Long Term Surface Water Storage	high	0.80	1	
G. Sediment/Nutrient/Toxicant Removal	high	1.00	1	
H. Sediment/Shoreline Stabilization	high	1.00	1	
I. Production Export/Food Chain Support	high	0.80	1	
J. Groundwater Discharge/Recharge	high	1.00	1	
K. Uniqueness	low	0.30	1	
L. Recreation/Education Potential	low	0.30	1	
	Total:	<u>7.40</u>	<u>11.00</u>	
	Percent of	Total Possible Points:	67% (Actual / Possil	ble) x 100 [rd to nearest whole #]

### FUNCTION, VALUE SUMMARY, AND OVERALL RATING

Category I Wetland: (Must satisfy one of the following criteria. If not satisfied, proceed to Category II.)

Score of 1 functional point for Listed/Proposed Threatened or Endangered Species; or

Score of 1 functional point for Uniqueness; or

Score of 1 functional point for Flood Attenuation and answer to Question 14E(ii) is "yes"; or

 $\Box$  Percent of total Possible Points is > 80%.

Category II Wetland: (Criteria for Category I not satisfied and meets any one of the following Category II criteria. If not satisfied, proceed to Category IV.)
Score of 1 functional point for Species Rated S1, S2, or S3 by the MT Natural Heritage Program; or

Score of .9 or 1 functional point for General Wildlife Habitat; or

Score of .9 or 1 functional point for General Fish/Aquatic Habitat; or

"High" to "Exceptional" ratings for both General Wildlife Habitat and General Fish / Aquatic Habitat; or

Score of .9 functional point for Uniqueness; or

Percent of total possible points is > 65%.

**Category III Wetland:** (Criteria for Categories I, II, or IV not satisfied.)

Category IV Wetland: (Criteria for Categories I or II are not satisfied and <u>all</u> of the following criteria are met; If not satisfied, return to Category III.)

Low" rating for Production Export / Food Chain Support; and

 $\Box$  Percent of total possible points is < 30%.

OVERALL ANALYSIS AREA (AA) RATING: (Check appropriate category based on the criteria outlined above.)

I



MDT MONTANA WE	TLAND ASSESSMENT FORM (revised May 25, 1999)
1. Project Name: Peterson Ranch	<b>2. Project #:</b> <u>B43054.00-0118</u> Control #:
3. Evaluation Date: 8/11/2005       4. Evaluator(s)	<u>G. Howard</u> <b>5. Wetland / Site #(s):</b> <u>AA-3</u>
6. Wetland Location(s) i. T: $\underline{10}$ N R: $\underline{13}$ W S: $\underline{3}$	$\mathbf{T:} \underline{\mathbf{N}}  \mathbf{R:} \underline{\mathbf{E}}  \mathbf{S:} \underline{\mathbf{I}}$
ii. Approx. Stationing / Mileposts:	
iii. Watershed: <u>2 - Upper Clark Fork</u> GPS F	Reference No. (if applies):
Other Location Information: Pond numbers 2, 4, and	<u>5.</u>
7. A. Evaluating Agency <u>MDT</u>	8. Wetland Size (total acres): (visually estimated) 22.20 (measured, e.g. GPS)
<ul> <li>B. Purpose of Evaluation:</li> <li>Wetlands potentially affected by MDT project</li> <li>Mitigation wetlands; pre-construction</li> <li>Mitigation wetlands; post-construction</li> <li>Other</li> </ul>	9. Assessment Area (total acres): (visually estimated) Comments: (visually estimated)

#### 10. CLASSIFICATION OF WETLAND AND AQUATIC HABITATS IN AA

HGM CLASS ¹	SYSTEM ²	SUBSYSTEM ²	CLASS ²	WATER REGIME ²	MODIFIER ²	% OF AA
Riverine	Palustrine	None	Emergent Wetland	Permanently Flooded	Excavated	70
Riverine	Palustrine	None	Unconsolidated Bottom	Permanently Flooded	Excavated	25
Riverine	Palustrine	None	Aquatic Bed	Permanently Flooded	Excavated	5

 1  = Smith et al. 1995.  2  = Cowardin et al. 1979.

#### Comments: ____

11. ESTIMATED RELATIVE ABUNDANCE (of similarly classified sites within the same Major Montana Watershed Basin) Common Comments: _____

#### 12. GENERAL CONDITION OF AA

**i. Regarding Disturbance:** (Use matrix below to select appropriate response.)

	Predo	minant Conditions Adjacent (within 500 Fee	et) To AA
	Land managed in predominantly natural	Land not cultivated, but moderately	Land cultivated or heavily grazed or logged;
	state; is not grazed, hayed, logged, or	grazed or hayed or selectively logged or	subject to substantial fill placement, grading,
Conditions Within AA	otherwise converted; does not contain	has been subject to minor clearing;	clearing, or hydrological alteration; high
Conditions within AA	roads or buildings.	contains few roads or buildings.	road or building density.
AA occurs and is managed in predominantly			
a natural state; is not grazed, hayed, logged,			
or otherwise converted; does not contain			
roads or occupied buildings.			
AA not cultivated, but moderately grazed or			
hayed or selectively logged or has been			
subject to relatively minor clearing, or fill		moderate disturbance	
placement, or hydrological alteration;			
contains few roads or buildings.			
AA cultivated or heavily grazed or logged;			
subject to relatively substantial fill			
placement, grading, clearing, or hydrological			
alteration; high road or building density.			

Comments: (types of disturbance, intensity, season, etc.) Livestock grazing.

ii. Prominent weedy, alien, & introduced species: Spotted knapweed, Canada thistle, and hound's tongue.

iii. Briefly describe AA and surrounding land use / habitat: Hydrology influenced by groundwater and seasonal flooding of adjacent irrigation ditch. Area has three created wetland ponds. Surrounding land uses include grazing and timber mill.

### 13. STRUCTURAL DIVERSITY (Based on 'Class' column of #10 above.)

0	≥3 Vegetated Classes or ≥ 2 if one class is forested	2 Vegetated Classes or 1 if forested	$\leq$ 1 Vegetated Class
Select Rating		Moderate	

Comments: The number of vegetated classes increased in 2003 with the addition of the aquatic bed class. No new classes were found during 2005 monitoring.

#### 14A. HABITAT FOR FEDERALLY LISTED OR PROPOSED THREATENED OR ENDANGERED PLANTS AND ANIMALS

i. AA is Documented (D) or Suspected (S) to contain (check box):

Primary or Critical habitat (list species)		
Secondary habitat (list species)	$\square D \square S$ $\square D \square S$	
Incidental habitat ( <b>list species</b> ) No usable habitat		Bald Eagle
i to usuble nubliut		

#### ii. Rating (Based on the strongest habitat chosen in 14A(i) above, find the corresponding rating of High (H), Moderate (M), or Low (L) for this function.

Highest Habitat Level	doc/primary	sus/primary	doc/secondary	sus/secondary	doc/incidental	sus/incidental	none
<b>Functional Point &amp; Rating</b>					.5 (L)		

If documented, list the source (e.g., observations, records, etc.): Bald Eagle observed on site during 2004 spring monitoring.

#### 14B. HABITAT FOR PLANTS AND ANIMALS RATED AS S1, S2, OR S3 BY THE MONTANA NATURAL HERITAGE PROGRAM. Do not include species listed in 14A(i).

i. AA is Documented (D) or Suspected (S) to contain (check box):

Primary or Critical habitat (list species)	$\square D \square S$	
Secondary habitat (list species)	🖾 D 🗌 S	<b>Bobolink</b>
Incidental habitat (list species)	🗌 D 🗌 S	
No usable habitat	$\Box D \Box S$	

ii. Rating: Based on the strongest habitat chosen in 14B(i) above, find the corresponding rating of High (H), Moderate (M), or Low (L) for this function.

Highest Habitat Level	doc/primary	sus/primary	doc/secondary	sus/secondary	doc/incidental	sus/incidental	none
Functional Point & Rating			.7 (M)				

If documented, list the source (e.g., observations, records, etc.): Bobolink identified during 2005 spring birding visit.

#### 14C. GENERAL WILDLIFE HABITAT RATING

i. Evidence of overall wildlife use in the AA: Check either substantial, moderate, or low.

**Substantial** (based on any of the following)

beservations of abundant wildlife #s or high species diversity (during any period)

abundant wildlife sign such as scat, tracks, nest structures, game trails, etc. Π

 presence of extremely limiting habitat reasons not as a second presence of the AA
 interviews with local biologists with knowledge of the AA presence of extremely limiting habitat features not available in the surrounding area

- **Low** (based on any of the following)
  - few or no wildlife observations during peak use periods
     little to no wildlife sign
     sparse adjacent upland food sources
     interviews with local biologists with knowledge of A A

**Moderate** (based on any of the following)

observations of scattered wildlife groups or individuals or relatively few species during peak periods

common occurrence of wildlife sign such as scat, tracks, nest structures, game trails, etc.

adequate adjacent upland food sources 

interviews with local biologists with knowledge of the AA

ii. Wildlife Habitat Features: Working from top to bottom, select the AA attribute to determine the exceptional (E), high (H), moderate (M), or low (L) rating. Structural diversity is from 13. For class cover to be considered evenly distributed, vegetated classes must be within 20% of each other in terms of their percent composition in the AA (see 10). Duration of Surface Water: P/P = permanent/perennial; S/I = seasonal/intermittent; T/E = temporary/ephemeral; A= absent.

Structural Diversity (from 13)		High						⊠Moderate						Low						
Class Cover Distribution (all vegetated classes)		□F	Even			UU	neven			□F	lven			⊠Uı	neven			□F	lven	
Duration of Surface Water in $\geq 10\%$ of AA	P/P	S/I	T/E	A	P/P	S/I	T/E	A	P/P	S/I	T/E	A	P/P	S/I	T/E	A	P/P	S/I	T/E	A
Low disturbance at AA (see 12)																				
Moderate disturbance at AA (see 12)													Н							
High disturbance at AA (see 12)																				

iii. Rating: Use 14C(i) and 14C(ii) above and the matrix below to arrive at the functional point and rating of exceptional (E), high (H), moderate (M), or low (L) for this function.

Evidence of Wildlife Use	W	Wildlife Habitat Features Rating from 14C(ii)										
from 14C(i)	Exceptional	🖂 High	Moderate	Low								
Substantial												
Moderate		.7 (M)										
Low												

Comments: ____

#### 14D. GENERAL FISH / AQUATIC HABITAT RATING $\boxtimes$ NA (proceed to 14E)

If the AA is not or was not historically used by fish due to lack of habitat or excessive gradient, then check the NA box above.

Assess if the AA is used by fish or the existing situation is "correctable" such that the AA could be used by fish [e.g. fish use is precluded by perched culvert or other barrier, etc.]. If fish use occurs in the AA but is not desired from a resource management perspective (e.g. fish use within an irrigation canal], then Habitat Quality [14D(i)] below should be marked as "Low", applied accordingly in 14D(ii) below, and noted in the comments.

#### i. Habitat Ouality: Pick the appropriate AA attributes in matrix to determine the quality rating of exceptional (E), high (H), moderate (M), or low (L),

Duration of Surface Water in AA	Per	manent/Per	ennial		sonal / Inter	rmittent	Temporary / Ephemeral			
<b>Cover</b> - % of waterbody in AA containing cover objects ( <i>e.g.</i> submerged logs, large rocks & boulders, overhanging banks, floating-leaved vegetation)	>25%	10-25%	<10%	>25%	10-25%	<10%	>25%	10-25%	<10%	
Shading - >75% of streambank or shoreline of AA contains riparian or wetland scrub-shrub or forested communities										
<b>Shading – 50 to 75%</b> of streambank or shoreline of AA contains riparian or wetland scrub-shrub or forested communities.										
<b>Shading - &lt; 50%</b> of streambank or shoreline of AA contains riparian or wetland scrub-shrub or forested communities.										

ii. Modified Habitat Quality: Is fish use of the AA precluded or significantly reduced by a culvert, dike, other man-made structure or activity or is the waterbody included on the 'MDEQ list of waterbodies in need of TMDL development' with 'Probable Impaired Uses' listed as cold or warm water fishery or aquatic life support? If yes, reduce the rating from 14D(i) by one level and check the modified habitat quality rating:  $\square$  N 

iii. Rating: Use the conclusions from 14D(i) and 14D(ii) above and the matrix below to arrive at the functional point and rating of exceptional (E), high (H), moderate (M), or low (L).

Types of Fish Known or		Modified Habitat Quality from 14D(ii)										
Suspected within AA	Exceptional	🗌 High	Moderate									
Native game fish												
Introduced game fish												
Non-game fish												
No fish												

Comments:

#### **14E. FLOOD ATTENUATION NA** (proceed to 14G)

Applies only to wetlands subject to flooding via in-channel or overbank flow. If wetlands in AA do not flood from in-channel or overbank flow, then check NA.

i. Rating: Working from top to bottom, mark the appropriate attributes to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function.

Estimated wetland area in AA subject to periodic flooding	[	<b>⊇</b> ≥ 10 acre	s	$\boxtimes$	<b>&lt;</b> 10, >2 acı	res	<b>□</b> ≤2 acres		
% of flooded wetland classified as forested, scrub/shrub, or both	75%	25-75%	<25%	75%	25-75%	<25%	75%	25-75%	<25%
AA contains no outlet or restricted outlet						.5 (M)			
AA contains unrestricted outlet									

ii. Are residences, businesses, or other features which may be significantly damaged by floods located within 0.5 miles downstream of the AA? (check)  $\Box Y$ ΜN **Comments:** Irrigation ditch with outlet into Flint Creek and lack of scrub-shrub/forested vegetation communities.

#### 14F. SHORT AND LONG TERM SURFACE WATER STORAGE **NA** (proceed to 14G)

Applies to wetlands that flood or pond from overbank or in-channel flow, precipitation, upland surface flow, or groundwater flow. If no wetlands in the AA are subject to flooding or ponding, then check NA above.

i. Rating: Working from top to bottom, use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function. P/P = permanent/perennial; S/I = seasonal/intermittent; T/E = temporary/ephemeral.

<b>Estimated maximum acre feet of water</b> contained in wetlands within the AA that are subject to periodic flooding or ponding.	□ >5 acre feet				<5, >1 acre	feet	□ ≤1 acre foot		
Duration of surface water at wetlands within the AA		S/I	T/E	P/P	S/I	T/E	P/P	S/I	T/E
Wetlands in AA flood or pond ≥ 5 out of 10 years				.8 (H)					
Wetlands in AA flood or pond < 5 out of 10 years									

Comments: Moderate capacity to contain waters within the wetland areas.

#### 14G. SEDIMENT/NUTRIENT/TOXICANT RETENTION AND REMOVAL **NA** (proceed to 14H)

Applies to wetlands with the potential to receive excess sediments, nutrients, or toxicants through influx of surface or ground water or direct input. If no wetlands in the AA are subject to such input, check NA above.

#### i. Rating Working from top to bottom, use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function.

Sediment, Nutrient, and Toxicant Input Levels Within AA	to moderate le other function	s are not substant , sources of nutrie	, nutrients, or co ially impaired.	ompounds such that Minor	Waterbody on MDEQ list of waterbodies in need of TMDL development for "probable causes" related to sediment, nutrients, or toxicants or AA receives or surrounding land use has potential to deliver high levels of sediments, nutrients, or compounds such that other functions are substantially impaired. Major sedimentation, sources of nutrients or toxicants, or signs of eutrophication present.				
% cover of wetland vegetation in AA		≥70%	$\square$	< 70%	□ ≥ 70%				
Evidence of flooding or ponding in AA	☐ Yes ☐ No 🛛 Yes ☐ No		Sea Yes	🗆 No	Series Ves	🗌 No			
AA contains no or restricted outlet	7 (M)								
AA contains unrestricted outlet									

Comments: Moderate percentage of vegetative cover.

#### 14H. SEDIMENT/SHORELINE STABILIZATION

#### **NA** (proceed to 14I)

Applies only if AA occurs on or within the banks of a river, stream, or other natural or man-made drainage, or on the shoreline of a standing water body that is subject to wave action. If this does not apply, then check NA above.

i. Rating: Working from top to bottom, use the matrix below to arrive at the functional point and rating exceptional (E), high (H), moderate (M), or low (L) for this function.

% Cover of wetland streambank or	Duration of Surface Water Adjacent to Rooted Vegetation							
shoreline by species with deep, binding rootmasses.	⊠Permanent / Perennial	Seasonal / Intermittent	Temporary / Ephemeral					
≥65 %	1 (H)							
35-64 %								
< 35 %								

Comments: Area dominated by emergent vegetation.

#### 14I. PRODUCTION EXPORT / FOOD CHAIN SUPPORT

i. Rating: Working from top to bottom, use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function. A = acreage of vegetated component in the AA. B = structural diversity rating from #13. C = Yes (Y) or No (N) as to whether or not the AA contains a surface or subsurface outlet. P/P = permanent/perennial; S/I = seasonal/intermittent; T/E/A = temporary/ephemeral/absent.

A		🛛 Veget	ated con	nponent	>5 acres	5	Vegetated component 1-5 acres					□ Vegetated component <1 acre						
В	- I	ligh	🛛 Mo	derate		Low		High		derate		Low		ligh		derate		Low
С		□N	⊠Y	□N		□N		□N		□N		□N	ΠY	□N		□N	ΠY	□N
P/P			.9H															
S/I																		
T/E/A																		

Comments:

14J. GROUNDWATER DISCHARGE / RECHARGE (DR) (Check the indicators in i & ii below that apply to the AA.) ii. 🛛 Recharge Indicators

i. Discharge Indicators

Springs are known or observed.

Vegetation growing during dormant season / drought.

Wetland occurs at the toe of a natural slope.

Π Seeps are present at the wetland edge.

AA permanently flooded during drought periods.

Wetland contains an outlet, but no inlet.

Other

iii. Rating: Use information from 14J(i) and 14J(ii) above and the table below to arrive at the functional point and rating of high (H) or low (L) for this function.

Other

Permeable substrate presents without underlying impeding layer.

Wetland contains inlet but not outlet.

Functional Point and Rating
1 (H)

Comments: Groundwater subsurface flow. Highly permeable alluvial substrate.

#### 14K. UNIQUENESS

i. Rating: Working from top to bottom, use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function.

Replacement Potential	AA contains fen, l mature (>80 yr-ol association listed a	rare types a is high or c	ot contain previo and structural d ontains plant as 2" by the MTNI	iversity (#13) sociation	AA does not contain previously cited rare types or associations and structural diversity (#13) is low-moderate.				
Estimated Relative Abundance from 11	abundant		rare	Common	abundant	rare	Common	abundant	
Low disturbance at AA (12i)									
Moderate disturbance at AA (12i)								.3L	
High disturbance at AA (12i)									

Comments:

#### 14L. RECREATION / EDUCATION POTENTIAL

i. Is the AA a known recreational or educational site? **Yes** [Rate **High** (1.0), then proceed to 14L(ii) only] **No** [Proceed to 14L(iii)]

ii. Check categories that apply to the AA: 🛛 Educational / scientific study Consumptive rec. Non-consumptive rec. Other

iii. Based on the location, diversity, size, and other site attributes, is there a strong potential for recreational or educational use?  $\bigvee$  Yes [Proceed to 14L (ii) and then 14L(iv)]  $\square$  No [Rate as low in 14L(iv)]

iv. Rating Use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function.

	Disturbance at AA from 12(i)									
Ownership	Low	🛛 Moderate	🗌 High							
Public ownership										
Private ownership		.3(L)								

Comments:

Function and Value Variables	Rating	Actual Functional Points	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage)	
A. Listed/Proposed T&E Species Habitat	low	0.50	1		
B. MT Natural Heritage Program Species Habitat	moderate	0.70	1		
C. General Wildlife Habitat	moderate	0.70	1		
D. General Fish/Aquatic Habitat	N/A				
E. Flood Attenuation	moderate	0.50	1		
F. Short and Long Term Surface Water Storage	high	0.80	1		
G. Sediment/Nutrient/Toxicant Removal	moderate	0.70	1		
H. Sediment/Shoreline Stabilization	high	1.00	1		
I. Production Export/Food Chain Support	high	0.90	1		
J. Groundwater Discharge/Recharge	high	1.00	1		
K. Uniqueness	low	0.30	1		
L. Recreation/Education Potential	low	0.30	1		
	Total:	<u>7.40</u>	<u>11.00</u>		
	Percent of Total Possible Points:				

### FUNCTION, VALUE SUMMARY, AND OVERALL RATING

Category I Wetland: (Must satisfy one of the following criteria. If not satisfied, proceed to Category II.)

Score of 1 functional point for Listed/Proposed Threatened or Endangered Species; or

Score of 1 functional point for Uniqueness; or

Score of 1 functional point for Flood Attenuation and answer to Question 14E(ii) is "yes"; or

 $\Box$  Percent of total Possible Points is > 80%.

Category II Wetland: (Criteria for Category I not satisfied and meets any one of the following Category II criteria. If not satisfied, proceed to Category IV.)
Score of 1 functional point for Species Rated S1, S2, or S3 by the MT Natural Heritage Program; or

Score of .9 or 1 functional point for General Wildlife Habitat; or

Score of .9 or 1 functional point for General Fish/Aquatic Habitat; or

"High" to "Exceptional" ratings for both General Wildlife Habitat and General Fish / Aquatic Habitat; or

Score of .9 functional point for Uniqueness; or

Percent of total possible points is > 65%.

**Category III Wetland:** (Criteria for Categories I, II, or IV not satisfied.)

Category IV Wetland: (Criteria for Categories I or II are not satisfied and <u>all</u> of the following criteria are met; If not satisfied, return to Category III.)

Low" rating for Production Export / Food Chain Support; and

 $\Box$  Percent of total possible points is < 30%.

OVERALL ANALYSIS AREA (AA) RATING: (Check appropriate category based on the criteria outlined above.)

I



# Appendix C

# **REPRESENTATIVE PHOTOGRAPHS**

MDT Wetland Mitigation Monitoring Peterson Ranch Hall, Montana

# **PETERSON RANCH MITIGATION SITE 2005**



Photo Point No. 1: View looking west across mitigation site. Upland vegetation in foreground.



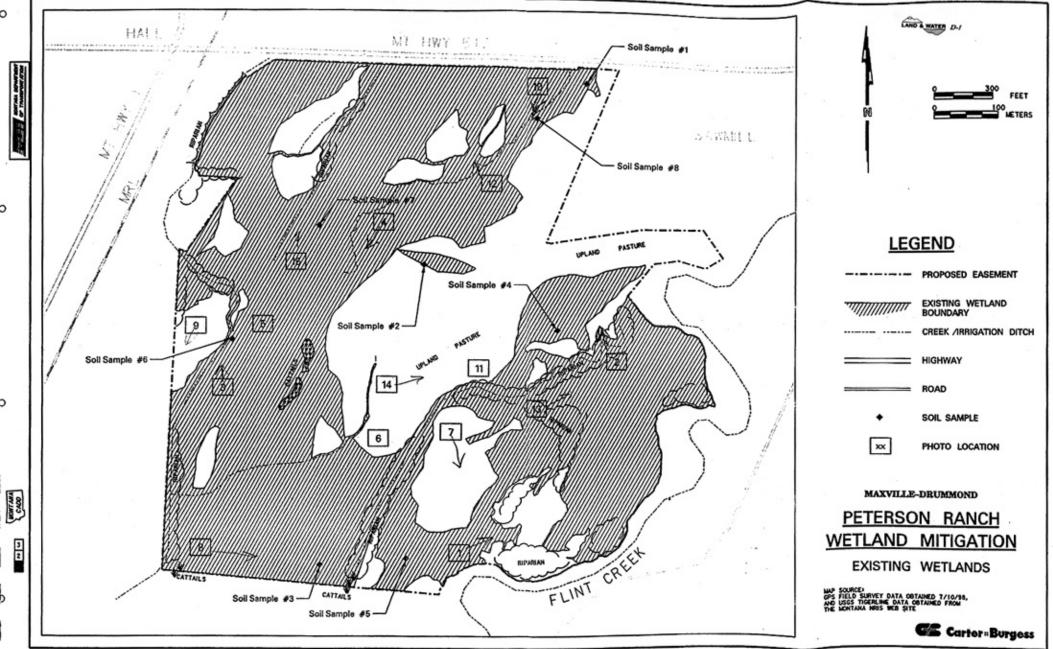
Photo Point No. 2: View looking west along vegetation transect No. 2. Upland community type in foreground, created wetland pond No. 2 in background.

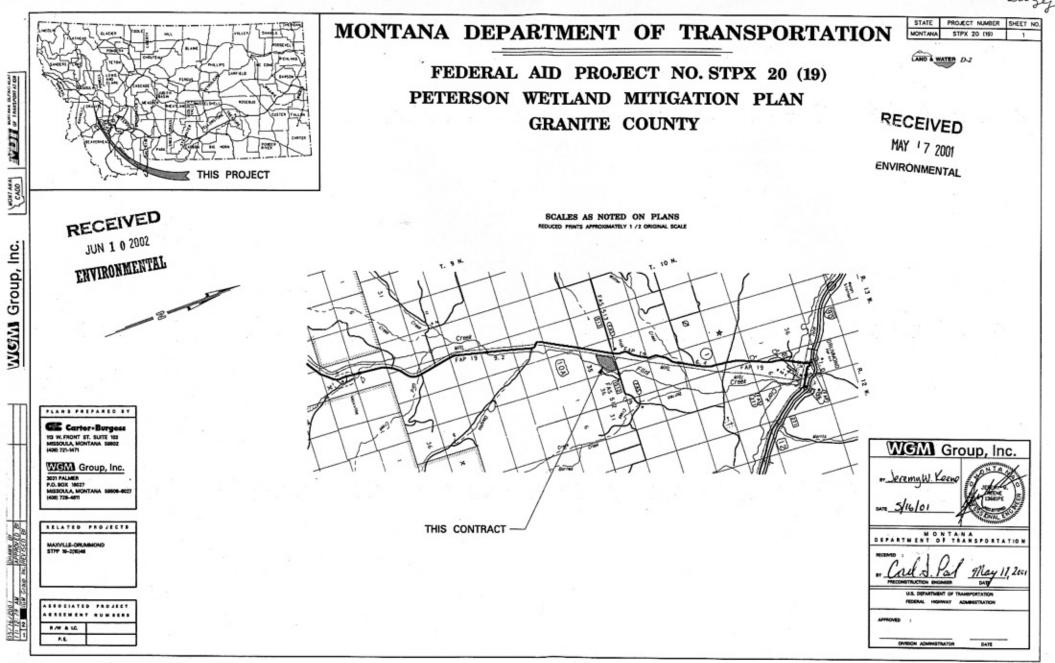


Photo Point No. 3: View looking north at southern end of created wetland pond No.2.



Photo Point No. 4: View looking southwest across pond No. 4. Emergent wetlands developing around pond fringe.





Photo Point No. 5: View looking north toward pond No. 5. Emergent vegetation developing around pond fringe.

# Appendix D

# **ORIGINAL SITE PLAN**

MDT Wetland Mitigation Monitoring Peterson Ranch Hall, Montana





### TABLE OF CONTENTS

PLANS	SHEET NO.
TITLE SHEET	1
TABLE OF CONTENTS	2
NOTES	2
LINEAR & LEVEL DATA	3
CONTROL TRAVERSE DIAGRAM	4-5

SUMMARIES

まい

2

2222

5

APPROVED BY

15

GRADING FENCING TOPSOL & SEEDING PLANTING MATERIAL IRRIGATION DIVISION BOX CULVERTS BANK PROTECTION STOCK WATER LINE

7-18 DETAILS TYPICAL WETLAND SECTION TYPICAL OITCH SECTION **PRICATION DIVISON BOX** BANK PROTECTION STOCK WATER LINE DETAILS ... SITE PLAN CRADING PLAN - POOL 1 GRADING PLAN - POOL 2 13 GRADING PLAN - POOL 3 14 CRADING PLAN - POOL 4/5 15 GRADING PLAN - POOL 6 16-17 PLANTING PLAN

#### STATE PROJECT NUMBER SHEET NO. MONTANA STPX 20 (19) 2

LAND & WATER D.J

PROTECTION OF EXISTING WETLANDS ENCLOSE DESIGNATED CONSTRUCTION AREAS WITH TEMPORARY FENCING. CONSTRUCTION VENCIES ARE NOT PERMITTED OUTSIDE OF THE CONSTRUCTION AREAS, EXCEPT ON DESIGNATED CONSTRUCTION ACCESS ROADS. MANITAN ALL FENCING UNTE. THE COMPLETION OF CONSTRUCTION.

### CONSTRUCTION ACCESS AND STAGING

AN EXISTING APPROACH ON HIGHWAY SIZ MAY BE USED TO ACCESS THE MAIN WRIGATION OTCH ON THE WEST SIDE OF THE PROPERTY. A TEMPORARY APPROACH MAY BE CONSTRUCTED TO GAIN ACCESS TO THE SITE FROM HIGHWAY SIZ AT THE NORTHEAST COMPRER OF THE PROPERTY, ADJACENT TO THE SAMMLL. THE CONTRACTOR IS RESPONSIBLE FOR REMOVING THE APPROACH FOLLOWING COMPLETION OF CONSTRUCTION.

STORE ALL EQUIPMENT AND MATERIALS WITHIN THE DESIGNATED STAGING AREA PROVIDED SOUTH OF THE CORRAL. CONSTRUCTION ACCESS TO THE STAGING AREA IS SHOWN ON THE PLANS, THE CONTRACTOR IS RESPONSIBLE FOR REVIGETATING ALL DISTURBED ACCESS AND STACING AREAS.

### WETLAND TOPSOIL

WEILAND IOFSOIL EXCAVATE WEILAND TOPSOIL FROM WITHIN CONSTRUCTION LIMIT AREAS AND STOCKPILE TOPSOL IN THE AREAS DESIGNATED ON THE PLANS. PLACE TOPSOL TO A MEMADIA DEPTH OF IOOMN ON BERMS AND SPOL PLES, AND AT VARIABLE DEPTHS RANGING FROM IOOMN TO 400MM WITHIN "SHALLOW BATER AREAS" TO CREATE AN UNEVEN NATURAL BOTTOM. DO NOT PLACE TOPSOL IN "DEEP MATER AREAS". FINISHED GRADE LEEVATIONS DO NOT INCLOE TOPSOL.

### GRADING

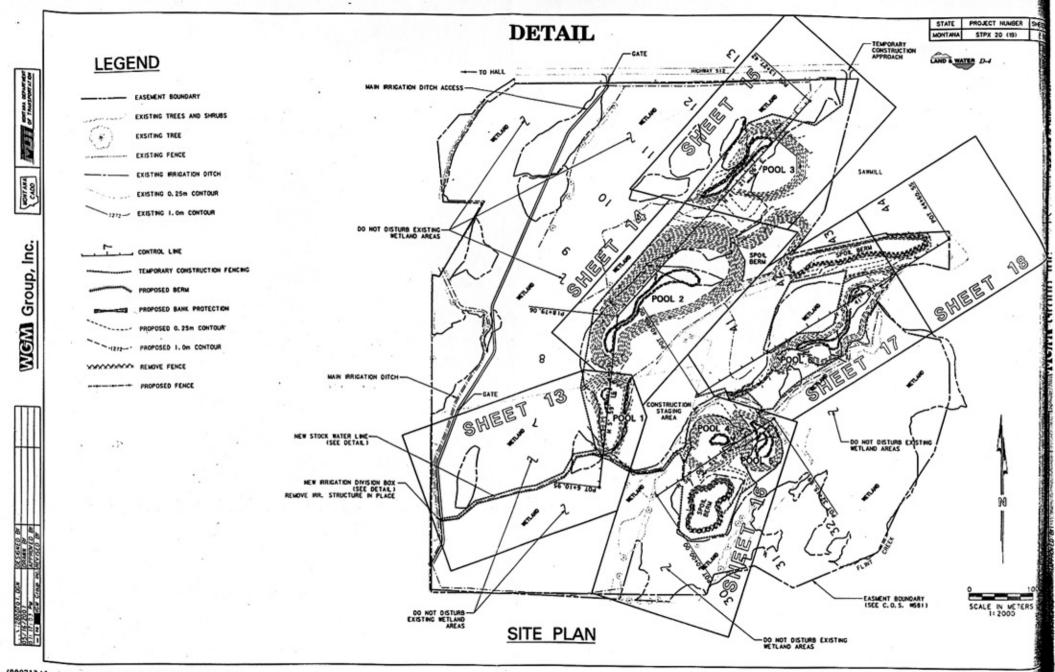
GRADING PERFORM ALL EXCAVATION AND EMBANKMENT BY THE METHODS DESCRIBED IN SECTION 203 OF THE STANDARD SPECFICATIONS. ALL EXCAVATION, INCLUDING MIXE EXCAVATION, AND DITCH IXCAVATION MELL BE PARID FOR AS "UNCLASSIFE DE SECAVATION". EXCAVATION OF SATURATED AND UNSTABLE MATERIAL IS ANTICIPATED IN SOME AREAS, HOMEVER, NO PAYMENT WILL BE MADE FOR "MIXE EXCAVATION". TOPSOL EXCAVATION IS DEDUCTED FROM THE CRADING QUANTIT.

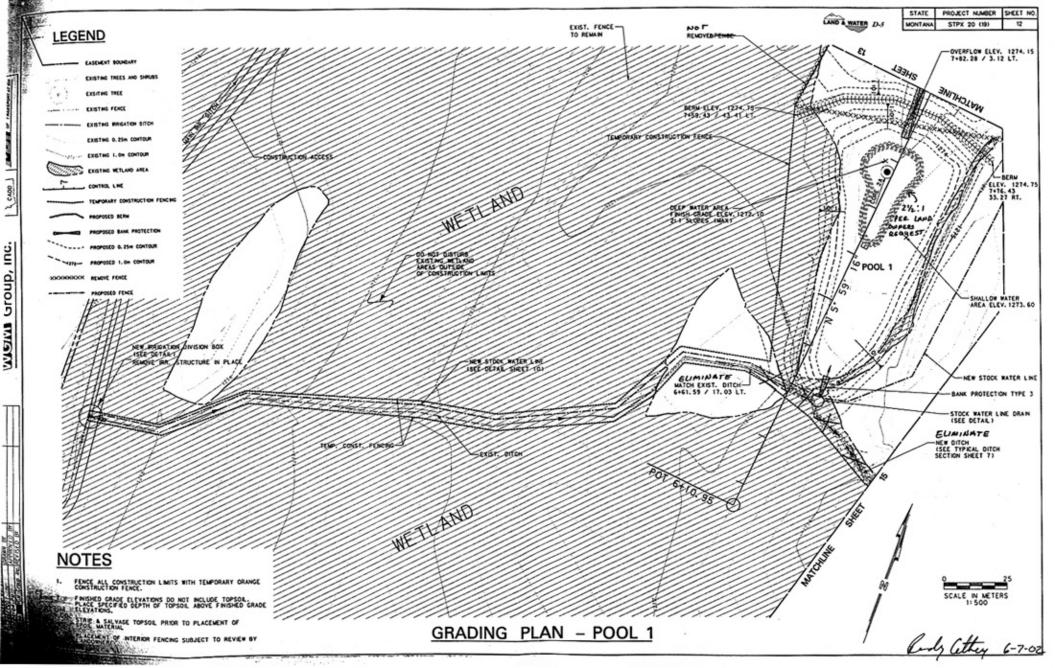
### SEEDING

SEED AREAS SHOWN ON THE PLANS AND OTHER AREAS DISTURBED DURING CONSTRUCTION. SEEDING AREA NO. I IS A NATIVE SEED HIX TO BE USED IN ALL NON-WETLAND (ORY) AREAS, SEEDING AREA NO. 2 IS A TRANSITIONAL SEED NIX TO BE USED IN WET AND SEMI-WET AREAS. SEE SPECIAL PROVINCIONS.

### PLANTING

COLLECT AND PLANT LIVE CUTTINGS FROM SUITABLE WILLOW SPECIES RESIDENT WITHIN THE FLINT CREEK FLOODPLAN. OBTAIN BAREROUT STOCK FROM A QUAL WED NURSERY. SUPPLIER OR INSTALLATION CONTRACTOR IS TO HAVE NOT LESS THAN THREE (3) YEARS OF EXPERIENCE IN SUCCESSFILLY COLLECTING AND PLANTING WETLAND PLANT MATERIAL. SEE SPECIAL PROVISIONS.


PLANT WELOW CUTTINGS AND BAREROOT STOCK AS DIRECTED BY THE ENGINEER IN THE APPROXIMATE LOCATIONS SHOWN ON THE PLANTING PLAN.


### FENCING

PERMETER FENCING IS STANDARD NOT BARBED 5-WIRE FENCE WITH WOODEN POSTS (TYPE FSW), PLACE PERMETER FENCING ON THE EASEMENT BOUNDARY OFFINED BY THE CERTIFICATE OF SURVEY IC. O.S. SHIL, INTERNO FENCING IS STANDARD NOT BARBED 4-WIRE FENCE WITH WOODEN POSTS (TYPE F4W), FINAL PLACEMENT OF INTERNOR FENCING IS SUBJECT TO REVEN BY THE LANDAWAR.

CROSS SECTIONS

18





## Appendix E

## **BIRD SURVEY PROTOCOL GPS PROTOCOL**

MDT Wetland Mitigation Monitoring Peterson Ranch Hall, Montana

### **BIRD SURVEY PROTOCOL**

The following is an outline of the MDT Wetland Mitigation Site Monitoring Bird Survey Protocol. Though each site is vastly different, the bird survey data collection methods must be standardized to a certain degree to increase repeatability. An Area Search within a restricted time frame will be used to collect the following data: a bird species list, density, behavior, and habitat-type use. There will be some decisions that team members must make to fit the protocol to their particular site. Each of the following sections and the desired result describes the protocol established to reflect bird species use over time.

### Species Use within the Mitigation Wetland: Survey Method

Result: To conduct a bird survey of the wetland mitigation site within a restricted period of time and the budget allotment.

### Sites that can be circumambulated or walked throughout.

These types of sites will include ponds, enhanced historic river channels, wet meadows, and any area that can be surveyed from the entirety of its perimeter or walked throughout. If the wetland is not uncomfortably inundated, conduct several "meandering" transects through the site in an orderly fashion (record the number and approximate location/direction of the transects in the field notebook; they do not have to be formalized or staked). If a very small portion of the site cannot be crossed due to inundation, this method will also apply. Though the sizes of the site vary, each site will require surveying to the fullest extent possible within a set time limit. The optimum times to conduct the survey are in the morning hours. Conduct the survey from sunrise to no later than 11:00 AM. (Note: some sites may have to be surveyed in the late afternoon or evening due to time constraints or weather; if this is the case, record the time of day and include this information in your report discussion.) If the survey is completed before 11:00 AM and no additions are being made to the list, then the task is complete. The overall limiting factor regarding the number of hours that are spent conducting this survey is the number of budgeted hours; this determination must be made by site by each individual.

In many cases, binoculars will be the only instrument that is needed to identify and count the birds using the wetland. If the wetland includes deep water habitat that can not be assessed with binoculars, then a scope and tripod are necessary. If this is the case, establish as many lookout posts as necessary from key vantage points to collect the data. Depending on the size of the open water, more time may be spent viewing the mitigation area from these vantage points than is spent walking the peripheries of more shallow-water wetlands.

### Sites that cannot be circumambulated.

These types of sites will include large-bodied waters, such as reservoirs, particularly those with deep water habitat (>6 ft) close to the shore and no wetland development in that area of the shoreline. If one area of the reservoir was graded in such a way to create or enhance the development of a wetland, then that will be the area in which the ambulatory bird survey is conducted. The team member must then determine the length of the shoreline that will be surveyed during each visit.

As stated above in the ambulatory site section, these large sites most likely will have to be surveyed from established vantage points.

### Species Use within the Mitigation Wetland: Data Recording

Result: A complete list of bird species using the site, an estimate of bird densities and associated behaviors, and identification of habitat use.

### 1. Bird Species List

Record the bird species on the Bird Survey - Field Data Sheet using the appropriate 4-letter code of the common name. The coding uses the first two letters of the first two words of the birds' common name or if one name, the first four (4) letters. For example, mourning dove is coded MODO and mallard is MALL. If an unknown individual is observed, use the following protocol and define your abbreviation at the bottom of the field data sheet: unknown shorebird: UNSB; unknown brown bird (UNBR); unknown warbler (UNWA); unknown waterfowl (UNWF). For a flyover of a flock of unknown species, use a term that describes the birds' general characteristics and include the approximate flock size in parentheses; do not fill in the habitat column. For example, a flock of black, medium-sized birds could be coded: UNBB / FO (25). You may also note on the data sheet if that particular individual is using a constructed nest box.

### 2. Bird Density

In the office, sum the Bird Survey – Field Data Sheet data by species and by behavior. Record this data in the Bird Summary Table.

### 3. Bird Behavior

Bird behavior must be identified by what is known. When a species is simply observed, the behavior that it is immediately exhibiting is what is recorded. Only behaviors that have discreet descriptive terms should be used. The following terms are recommended: breeding pair individual (BP); foraging (F); flyover (FO); loafing (L; e.g. sleeping, roosting, floating with head tucked under wing are loafing behaviors); and, nesting (N). If more behaviors are observed that do have a specific descriptive word, use them and we will add it to the protocol; descriptive words or phrases such as "migrating" or "living on site" are unknown behaviors.

### 4. Bird Species Habitat Use

We are interested in what bird species are using which particular habitat within the mitigation wetlands. This data is easily collected by simply recording what habitat the species was initially observed. Use the following broad category habitat classifications: aquatic bed (AB - rooted floating, floating-leaved, or submergent vegetation); forested (FO); marsh (MA – cattail, bulrush, emergent vegetation, etc. with surface water); open water (OW – primarily unvegetated); scrub-shrub (SS); and upland buffer (UP); wet meadow (WM – sedges, rushes, grasses with little to no surface water). If other categories are observed onsite that are not suggested here, we will make a new category next year.

## **GPS Mapping and Aerial Photo Referencing Procedure**

The wetland boundaries, photograph location points and sampling locations were field located with mapping grade Trimble Geo III GPS units. The data was collected with a minimum of three positions per feature using Course/Acquisition code. The collected data was then transferred to a PC and differentially corrected to the nearest operating Community Base Station. The corrected data was then exported to ACAD drawings in Montana State Plain Coordinates NAD 83 international feet.

The GPS positions collected and processed had a 68% accuracy of 7 feet except in isolated areas of Tasks .008 and .011, where it went to 12 feet. This is within the 1 to 5 meter range listed as the expected accuracy of the mapping grade Trimble GPS.

Aerial reference points were used to position the aerial photographs. This positioning did not remove the distortion inherent in all photos; this imagery is to be used as a visual aide only. The located wetland boundaries were given a final review by the wetland biologist and adjustments were made if necessary.

Any relationship of features located to easement or property lines are not to be construed from these figures. These relationships can only be determined with a survey by a licensed surveyor.

## Appendix F

## MACROINVERTEBRATE SAMPLING PROTOCOL AND DATA

MDT Wetland Mitigation Monitoring Peterson Ranch Hall, Montana

## AQUATIC INVERTEBRATE SAMPLING PROTOCOL

### **Equipment List**

- D-frame sampling net with 1 mm mesh. Wildco is a good source of these.
- Spare net.
- 1-liter plastic sample jars, wide-mouth. VWR has these: catalog #36319-707.
- 95% ethanol: Northwest Scientific in Billings carries this.

All these other things are generally available at hardware or sporting goods stores. Make the labels on an ink jet printer preferably.

- hip waders.
- pre-printed sample labels (printed on Rite-in-the-Rain or other coated paper, two labels per sample).
- pencil.
- plastic pail (3 or 5 gallon).
- large tea strainer or framed screen.
- towel.
- tape for affixing label to jar.
- cooler with ice for sample storage.

### **Site Selection**

Select the sampling site with these considerations in mind:

- Select a site accessible with hip waders. If substrates are too soft, lay a wide board down to walk on.
- Determine a location that is representative of the overall condition of the wetland.

### Sampling

Wetland invertebrates inhabit the substrate, the water column, the stems and leaves of aquatic vegetation, and the water surface. Your goal is to sweep the collecting net through each of these habitat types, and then to combine the resulting samples into the 1-liter sample jar.

Dip out about a gallon of water into the pail. Pour about a cup of ethanol into the sample jar. Fill out the top half of the sample labels, using pencil, since ink will dissolve in the ethanol.

Ideally, you can sample a swath of water column from near-shore outward to a depth of approximately 3 feet with a long sweep of the net, keeping the net at about half the depth of the water throughout the sweep. Sweep the water surface as well. Pull the net through a vegetated area, beneath the water surface, for at least a meter of distance.

Sample the substrate by pulling the net along the bottom, bumping it against the substrate several times as you pull.

This step is optional, but it gives you a chance to <u>see</u> that you've collected some invertebrates. Rinse the net out into the bucket, and look for insects, crustaceans, etc. If necessary, repeat the sampling process in a nearby location, and add the net contents to the bucket. Remember to sample all four environments.

Sieve the contents of the bucket through the straining device and pour or carefully scrape the contents of the strainer into the sample jar.

If you skip the bucket-and-sieve steps, simply lift handfuls of material out of the sampling net into the jars. In either case, please include some muck or mud and some vegetation in the jar. Often, you will have collected a large amount of vegetable material. If this is the case, lift out handfuls of material from the sieve into the jar, until the jar is about half full. Please limit material you include in the sample, so that there is only a single jar for each sample.

Top off the sample jar with enough ethanol to cover all the material in the jar. Leave as little headroom as possible.

It is not necessary to sample habitats in any specified order. Keep in mind that disturbing the habitats prior to sampling will chase off the animals you are trying to capture.

Complete the sample labels. Place one label inside the sample jar and tape the other label securely to the outside of the jar. Dry the jar before attaching the outer label if necessary. In some situations, it may be necessary to collect more than one sample at a site. If you take multiple samples from the same site, clearly indicate this by using individual sample numbers, along with the total number of samples collected at the site (e.g. Sample #3 of 5 total samples).

Photograph the sampled site.

### Sample Handling/Shipping

- In the field, keep collected samples cool by storing them in a cooler. Only a small amount of ice is necessary.
- Inventory all samples, preparing a list of all sites and enumerating all samples, before shipping or delivering to the laboratory.
- Deliver samples to Rhithron.

### **MDT Mitigated Wetland Monitoring Project**

### Aquatic Invertebrate Monitoring Summary 2001 - 2005

### **METHODS**

Among other monitoring activities, aquatic invertebrate assemblages were collected at a number of mitigated wetlands throughout Montana. This report summarizes data generated from five years of collection. In 2001, 29 sites were sampled statewide. Nineteen of these sites were revisited in 2002, and 13 new sites were sampled. In 2003, 17 sites that had been visited in both 2001 and 2002 were re-sampled, and 11 sites sampled for the first time in 2001 were re-visited. In addition, 2 new sites were sampled. In 2004, 25 sites were re-visited, and 6 new sites were sampled. In 2005, an additional 2 sites were added. Over all years of sampling, a total of 151 sites were sampled for invertebrates. Table 2 summarizes sites and sampling years.

The method employed to assess these wetlands is based on an index incorporating a battery of 12 bioassessment metrics or attributes (Table 1) tested and recommended by Stribling et al. (1995) in a report to the Montana Department of Health and Environmental Science. In that study, it was determined that some of the metrics were of limited use in some geographic regions, and for some wetland types. Despite that finding, all 12 metrics are used in this evaluation of mitigated wetlands, since detailed geographic information and wetland classifications were unavailable.

Scoring criteria for metrics were developed by generally following the tactic used by Stribling et al. Boxplots were generated using a statistical software package (Statistica), and distributions, median values, ranges, and quartiles for each metric were examined. All sites in all years of sampling were used. Camp Creek, which was sampled in 2002, 2003, 2004, and 2005, and Kleinschmidt Creek, sampled in 2003, 2004, and 2005, were assessed using the tested metric battery developed for montane streams of Western Montana (Bollman 1998). Invertebrate assemblages at these sites were different from that of the other sites, and suggested montane or foothill stream conditions rather than wetland conditions. For the wetland sites, "optimal" scores were generally those that fell above the 75th percentile (for those metrics that decrease in value in response to stress) or below the 25th percentile (for metrics that respond to stress by an increase in value) of all scores. Additional scoring ranges were established by bisecting the range below the 75th percentile for decreasing scores (or above the 25th percentile for increasing scores) into "suboptimal" and "poor" assessment categories. A score of 5, 3, or 1 was assigned to optimal, sub-optimal, and poor metric performance, respectively. In this way, metric values were translated into normalized metric scores, and scores for all metrics were summed to produce a total bioassessment score. Total bioassessment scores were classified according to a similar process, using the ranges and distributions of total scores for all sites studied in all years.

The purpose of constructing an index from biological attributes or metrics is to provide a means of integrating information to facilitate the determination of whether management action is needed. The nature of the action needed is not determined solely by the index score, however, but by consideration of an analysis of the component metrics, the taxonomic composition of the assemblages, and other issues. The diagnostic functions of the metrics and taxonomic data need more study; our understanding of the interrelationships of natural environmental factors and anthropogenic disturbances are tentative. Thus, the further interpretive remarks accompanying the raw taxonomic and metric data are offered cautiously.

2005. 2001	2002	2003	2004	2005
Beaverhead 1	Beaverhead 1	Beaverhead 1	Beaverhead 1	Beaverhead 1
Beaverhead 2	Beaverhead 2	Deavenieau 1	Deaveniead 1	Beavernead 1
Beaverhead 3	Beaverhead 3		Beaverhead 3	Beaverhead 3
Beaverhead 4	Beaverhead 4	Beaverhead 4	Beavernead 5	Beavement 5
Beaverhead 5	Beaverhead 5	Beaverhead 5	Beaverhead 5	Beaverhead 5
Beaverhead 6	Beaverhead 6	Beaverhead 6	Beaverhead 6	Beaverhead 6
Big Sandy 1	Deavenieau 0	Deavenieau 0	Deavenieau 0	Deavenneau 0
Big Sandy 2				
Big Sandy 3				
Big Sandy 4				
Johnson-Valier				
VIDA				
Cow Coulee	Cow Coulee	Cow Coulee		
Fourchette – Puffin	Fourchette - Puffin	Fourchette - Puffin	Fourchette - Puffin	
Fourchette – Flashlight	Fourchette – Flashlight	Fourchette – Flashlight	Fourchette – Flashlight	
Fourchette – Penguin	Fourchette – Penguin	Fourchette – Penguin	Fourchette – Plasninght Fourchette – Penguin	
Fourchette – Penguin Fourchette – Albatross				
				Dia Spring
Big Spring Vince Ames	Big Spring	Big Spring	Big Spring	Big Spring
Ryegate				
Lavinia	C4:11	C4:11	C4:11	Stillwater
Stillwater	Stillwater	Stillwater	Stillwater	
Roundup	Roundup	Roundup	Roundup	Roundup
Wigeon	Wigeon	Wigeon	Wigeon	Wigeon
Ridgeway	Ridgeway	Ridgeway	Ridgeway	Ridgeway
Musgrave – Rest. 1	Musgrave – Rest. 1			
Musgrave – Rest. 2	Musgrave – Rest. 2			
Musgrave – Enh. 1	Musgrave - Enh. 1	Musgrave - Enh. 1	Musgrave – Enh. 1	Musgrave – Enh. 1
Musgrave – Enh. 2	TT 1' T 1'	TT 1' T 1'	TT 1' T 1'	TT 1' T 1'
	Hoskins Landing	Hoskins Landing	Hoskins Landing	Hoskins Landing
	Peterson - 1	Peterson – 1	Peterson – 1	Peterson – 1
	Peterson – 2	D. (	Peterson – 2	Peterson – 2
	Peterson – 4	Peterson – 4	Peterson – 4	Peterson – 4
	Peterson – 5	Peterson – 5	Peterson – 5	Peterson – 5
	Jack Johnson - main	Jack Johnson - main		
	Jack Johnson - SW	Jack Johnson - SW	<b>G</b>	
	Creston	Creston	Creston	Creston
	Lawrence Park			
	Perry Ranch			Perry Ranch
	SF Smith River	SF Smith River	SF Smith River	SF Smith River
	Camp Creek	Camp Creek	Camp Creek	Camp Creek
	Kleinschmidt	Kleinschmidt – pond	Kleinschmidt – pond	Kleinschmidt – pond
		Kleinschmidt – stream Ringling - Galt	Kleinschmidt – stream	Kleinschmidt – stream
		Kinging - Oait	Circle	
			Cloud Ranch Pond	Cloud Ranch Pond
	İ		Cloud Ranch Stream	
			Colloid	Colloid
			Jack Creek	Jack Creek
			Norem	Norem
			1.510111	Rock Creek Ranch
				Wagner Marsh
	I			The second secon

**Table 1.** Montana Department of Transportation Mitigated Wetlands Monitoring Project sites, 2001 – 2005.

### **Sample Processing**

Aquatic invertebrate samples were collected at mitigation wetland sites in the summer months of 2001, 2002, 2003, 2004, and 2005 by personnel of Land and Water Consulting, Inc. Sampling procedures utilized were based on the protocols developed by the Montana Department of Environmental Quality (MT DEQ). Sampling consisted of D-frame net sweeps through emergent vegetation (when present), the water column, over the water surface, and included disturbing and scraping substrates at each sampled sites. Samples were preserved in ethanol at each wetland site and subsequently delivered to Rhithron Associates, Inc. for processing, taxonomic determinations, and data analysis.

At Rhithron's laboratory, Caton subsamplers and stereomicroscopes with 10X magnification were used to randomly select a minimum of 100 organisms, when possible, from each sample. In some cases, the entire sample contained fewer than 100 organisms; in these cases, all organisms from the sample were taken. Taxa were identified in general accordance with the taxonomic resolution standards set out in the MT DEQ Standard Operating Procedures for Sampling and Sample Analysis (Bukantis 1998). All samples were re-identified by a second taxonomist for quality assurance purposes. The identified samples have been archived at Rhithron's laboratory. Taxonomic data and organism counts were entered into an Excel 2000 spreadsheet, and metrics were calculated and scored using spreadsheet formulae.

### **Bioassessment Metrics**

An index based on the performance of 12 metrics was constructed, as described above. Table 2 lists those metrics, describes their calculation and the expected response of each to increased degradation or impairment of the wetland.

In addition to the summed scores of each metric and the associated impairment classification described above, each individual metric informs the bioassessment to some degree. The four richness metrics (Total taxa, POET, Chironomidae taxa, and Crustacea taxa + Mollusca taxa) can be interpreted to express habitat complexity as well as water quality. Complex, diverse habitats consist of variable substrates, emergent vegetation, variable water depths and other factors, and are potential features of long-established stable wetlands with minimal human disturbance. In the study conducted by Stribling et al. (1995), all four richness metrics were found to be significantly associated with water quality parameters including conductance, salinity, and total dissolved solids.

Four composition metrics (%Chironomidae, %Orthocladiinae of Chironomidae, %Crustacea + %Mollusca, and %Amphipoda) measure the relative contributions of certain taxonomic groups that may have significant responses to habitat and/or water quality impacts. For example, amphipods have been demonstrated to increase in abundance in alkaline conditions. Short-lived, relatively mobile taxa such as chironomids dominate ephemeral environments; many are hemoglobin-bearers capable of tolerating de-oxygenated conditions.

Two tolerance metrics (the Hilsenhoff Biotic Index and %Dominant taxon) were included in the bioassessment battery. The HBI indicates the overall invertebrate assemblage tolerance to nutrient enrichment, warm water, and/or low dissolved oxygen conditions. The percent abundance of the dominant taxon has been demonstrated to be strongly associated with pH, conductance, salinity, total organic carbon, and total dissolved solids.

Two trophic measures (%Collector-gatherers and %Filterers) may be helpful in expressing functional integrity of the invertebrate assemblage, which can be impacted by poor water quality or habitat degradation. High proportions of filtering organisms suggest nutrient and/or organic enrichment, while abundant collectors suggest more positive functional conditions and well-developed wetland morphology. These organisms graze periphyton growing on stable surfaces such as macrophytes.

Metric scoring criteria were re-examined each year as new data was added. For 2005, all 151 records were utilized. Ranges of individual metrics, as well as median metric values remained remarkably consistent over all 5 years of analysis. Since metric value distributions changed insignificantly with the addition of the 2005 data, no changes were made to scoring criteria this year. Summary metric values and scores for the 2005 samples are given in Tables 3a-3d.

Metric	Metric calculation	Expected response to degradation or impairment
Total taxa	Count of unique taxa identified to lowest recommended taxonomic level	Decrease
POET	Count of unique Plecoptera, Trichoptera, Ephemeroptera, and Odonata taxa identified to lowest recommended taxonomic level	Decrease
Chironomidae taxa	Count of unique midge taxa identified to lowest recommended taxonomic level	Decrease
Crustacea taxa + Mollusca taxa	Count of unique Crustacea taxa and Mollusca taxa identified to lowest recommended taxonomic level	Decrease
% Chironomidae	Percent abundance of midges in the subsample	Increase
Orthocladiinae/Chironomidae	Number of individual midges in the sub-family Orthocladiinae / total number of midges in the subsample.	Decrease
%Amphipoda	Percent abundance of amphipods in the subsample	Increase
%Crustacea + %Mollusca	Percent abundance of crustaceans in the subsample plus percent abundance of molluscs in the subsample	Increase
HBI	Relative abundance of each taxon multiplied times that taxon's modified Hilsenhoff Biotic Index value. These numbers are summed over all taxa in the subsample.	Increase
%Dominant taxon	Percent abundance of the most abundant taxon in the subsample	Increase
%Collector-Gatherers	Percent abundance of organisms in the collector- gatherer functional group	Decrease
%Filterers	Percent abundance of organisms in the filterer functional group	Increase

**Table 2.** Aquatic invertebrate metrics employed in the MTDT mitigation wetland monitoring study, 2001-2005.

### RESULTS

(Note: Individual site discussions were removed from this report by Land &Water Consulting / PBS&J and are included in the Macro-Invertebrate sections of individual reports. Summary tables are provided on the following pages.)

	BEAVERHEAD #1	BEAVERHEAD #3	BEAVERHEAD #5	BEAVERHEAD #6	BIG SPRING CREEK	STILLWATER	ROUNDUP	WIDGEON
Total taxa	22	9	14	18	28	17	7	19
POET	2	0	0	2	4	4	0	0
Chironomidae taxa	7	4	4	4	9	5	3	11
Crustacea + Mollusca	4	3	1	4	7	5	2	4
% Chironomidae	59.80%	7.55%	50.00%	16.67%	33.65%	9.43%	22.22%	76.47%
Orthocladiinae/Chir	0.197	0.625	0.059	0.067	0.457	0.500	0.000	0.205
%Amphipoda	1.96%	0.94%	0.00%	1.11%	18.27%	7.55%	0.00%	10.78%
%Crustacea + %Mollusca	10.78%	90.57%	2.94%	55.56%	33.65%	53.77%	72.65%	15.69%
HBI	7.71	7.88	7.88	7.98	7.55	7.28	8.33	8.25
%Dominant taxon	34.31%	76.42%	35.29%	25.56%	18.27%	33.02%	71.79%	44.12%
%Collector-Gatherers	56.86%	93.40%	47.06%	21.11%	70.19%	64.15%	82.05%	26.47%
%Filterers	0.00%	0.00%	0.00%	0.00%	0.96%	3.77%	0.00%	6.86%
Total taxa	5	1	1	3	5	3	1	3
POET	1	1	1	1	5	5	1	1
Chironomidae taxa	5	3	3	3	5	3	3	5
Crustacea + Mollusca	3	1	1	3	5	3	1	3
% Chironomidae	1	5	1	5	3	5	3	1
Orthocladiinae/Chir	3	5	1	1	5	5	1	3
%Amphipoda	5	5	5	5	3	3	5	3
%Crustacea + %Mollusca	5	1	5	3	3	3	1	5
HBI	1	1	1	1	3	3	1	1
%Dominant taxon	3	1	3	5	5	5	1	3
%Collector-Gatherers	3	5	3	1	3	3	5	1
%Filterers	3	3	3	3	3	3	3	1
Total score	38	32	28	34	48	44	26	30
Percent of maximum score	0.633333	0.533333	0.466667	0.566667	0.8	0.733333	0.433333	0.5
Impairment classification	sub-optimal	poor	poor	sub-optimal	optimal	optimal	poor	poor

**Table 3a.** Metric values and scores for Montana Department of Transportation mitigated wetland sites in 2005.

	RIDGEWAY	MUSGRAVE REST. 1	MUSGRAVE REST. 2	MUSGRAVE ENH. 1	HOSKINS LANDING	PETERSON RANCH 1	PETERSON RANCH 2	PETERSON RANCH 4	PETERSON RANCH 5
Total taxa	19	19	23	19	27	29	16	25	16
POET	3	1	3	1	5	4	2	4	4
Chironomidae taxa	6	6	8	3	6	11	6	8	7
Crustacea + Mollusca	5	5	3	7	6	6	5	6	2
% Chironomidae	9.26%	14.55%	22.00%	2.80%	17.58%	17.48%	13.91%	24.55%	16.96%
Orthocladiinae/Chir	0.600	0.750	0.136	0.667	0.188	0.556	0.563	0.630	0.632
%Amphipoda	6.48%	3.64%	0.00%	0.93%	0.00%	0.97%	7.83%	1.82%	8.04%
%Crustacea + %Mollusca	22.22%	30.91%	38.00%	58.88%	27.47%	31.07%	72.17%	20.00%	8.93%
HBI	7.71	7.22	7.77	7.16	6.81	7.16	7.43	7.65	8.08
%Dominant taxon	53.70%	21.82%	35.00%	28.04%	14.29%	26.21%	33.04%	18.18%	31.25%
%Collector-Gatherers	68.52%	40.00%	15.00%	11.21%	31.87%	59.22%	28.70%	43.64%	68.75%
%Filterers	0.00%	0.00%	0.00%	2.80%	0.00%	4.85%	33.91%	5.45%	1.79%
Total taxa	3	3	5	3	5	5	3	5	3
POET	3	1	3	1	5	5	1	5	5
Chironomidae taxa	3	3	5	3	3	5	3	5	5
Crustacea + Mollusca	3	3	1	5	5	5	3	5	1
% Chironomidae	5	5	3	5	5	5	5	3	5
Orthocladiinae/Chir	5	5	1	5	3	5	5	5	5
%Amphipoda	3	5	5	5	5	5	3	5	3
%Crustacea + %Mollusca	5	5	3	3	5	5	1	5	5
HBI	1	3	1	3	5	3	3	1	1
%Dominant taxon	1	5	3	5	5	5	5	5	5
%Collector-Gatherers	3	1	1	1	1	3	1	1	3
%Filterers	3	3	3	3	3	3	1	3	3
Total score	38	42	34	42	50	54	34	48	44
Percent of maximum score	0.633333	0.7	0.566667	0.7	0.833333	0.9	0.566667	0.8	0.733333
Impairment classification	sub-optimal	optimal	sub-optimal	optimal	optimal	optimal	sub-optimal	optimal	optimal

Table 3b. Metric values and scores for Montana Department of Transportation mitigated wetland sites in 2005.

	CRESTON	PERRY RANCH	SOUTH FORK SMITH RIVER	CAMP CREEK	KLEINSCH MIDT POND	KLEINSCH MIDT STREAM	CLOUD RANCH POND	COLLOID	JACK CREEK
Total taxa	16	18	19	36	27	23	22	9	16
POET	0	0	4	14	6	5	2	1	1
Chironomidae taxa	4	8	6	13	6	9	11	4	9
Crustacea + Mollusca	6	4	5	0	2	3	3	1	4
% Chironomidae	27.62%	43.69%	21.67%	45.54%	8.85%	45.08%	37.50%	25.83%	29.41%
Orthocladiinae/Chir	0.931	0.622	0.192	0.804	0.200	0.473	0.256	0.000	0.467
%Amphipoda	0.00%	0.00%	29.17%	0.00%	5.31%	0.82%	0.00%	0.00%	0.98%
%Crustacea + %Mollusca	52.38%	38.83%	62.50%	0.00%	7.96%	3.28%	7.69%	67.50%	41.18%
HBI	7.52	7.31	7.54	5.06	7.40	5.83	6.96	8.53	7.39
%Dominant taxon	25.71%	25.24%	29.17%	18.81%	30.09%	32.79%	41.35%	67.50%	35.29%
%Collector-Gatherers	64.76%	47.57%	65.00%	47.52%	37.17%	50.82%	75.96%	88.33%	91.18%
%Filterers	6.67%	27.18%	8.33%	5.94%	0.88%	2.46%	2.88%	0.00%	2.94%
Total taxa	3	3	3	5	5	5	5	1	3
POET	1	1	5	5	5	5	1	1	1
Chironomidae taxa	3	5	3	5	3	5	5	3	5
Crustacea + Mollusca	5	3	3	1	1	1	1	1	3
% Chironomidae	3	1	3	1	5	1	3	3	3
Orthocladiinae/Chir	5	5	3	5	3	5	3	1	1
%Amphipoda	5	5	1	5	3	5	5	5	5
%Crustacea + %Mollusca	3	3	3	5	5	5	5	1	3
HBI	3	3	3	5	3	5	3	1	3
%Dominant taxon	5	5	5	5	5	5	3	1	3
%Collector-Gatherers	3	3	3	3	1	3	3	5	5
%Filterers	1	1	1	3	3	3	3	3	3
Total score Percent of maximum score	40 0.666667	38 0.633333	36 0.6	<u>48</u> 0.8	42	48	40 0.666667	26 0.433333	38 0.633333
Impairment classification	0.666667 sub-optimal	0.633333 sub-optimal	0.6 sub-optimal	0.8 optimal	0.7 optimal	0.8 optimal	0.666667 sub-optimal	0.433333 poor	0.633333 sub-optimal

Table 3c. Metric values and scores for Montana Department of Transportation mitigated wetland sites in 2005.

	NOREM	ROCK CREEK RANCH	WAGNER MARSH
Total taxa	4	24	23
POET	0	2	5
Chironomidae taxa	2	8	8
Crustacea + Mollusca	2	4	5
% Chironomidae	37.50%	22.00%	24.00%
Orthocladiinae/Chir	0.000	0.318	0.167
%Amphipoda	0.00%	3.00%	7.00%
%Crustacea + %Mollusca	62.50%	40.00%	19.00%
HBI	7.50	7.61	8.58
%Dominant taxon	56.25%	18.00%	38.00%
%Collector-Gatherers	6.25%	57.00%	40.00%
%Filterers	0.00%	0.00%	3.00%
Total taxa	1	5	5
POET	1	1	5
Chironomidae taxa	1	5	5
Crustacea + Mollusca	1	3	3
% Chironomidae	3	3	3
Orthocladiinae/Chir	1	3	1
%Amphipoda	5	5	3
%Crustacea + %Mollusca	3	3	5
HBI	3	1	1
%Dominant taxon	1	5	3
%Collector-Gatherers	1	3	1
%Filterers	3	3	3
Total score	24	40	38
Percent of maximum score	0.4	0.666667	0.633333
Impairment classification	poor	sub-optimal	sub-optimal

Table 3d. Metric values and scores for Montana Department of Transportation mitigated wetland sites in 2005.

### Literature Cited

Bollman, W. 1998. Montana Valleys and Foothill Prairies Ecoregion. Master's Thesis. (M.S.) University of Montana. Missoula, Montana.

Bukantis, R. 1998. Rapid bioassessment macroinvertebrate protocols: Sampling and sample analysis SOP's. Working draft. Montana Department of Environmental Quality. Planning Prevention and Assistance Division. Helena, Montana.

McCune, B. and J.B. Grace. 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, Oregon, USA.

McCune, B. and M.J. Mefford. 2002. PC-ORD. Multivariate Analysis of Ecological Data, Version 4. MjM Software Design, Gleneden Beach, Oregon, USA.

Stribling, J.B., J. Lathrop-Davis, M.T. Barbour, J.S. White, and E.W. Leppo. 1995. Evaluation of environmental indicators for the wetlands of Montana: the multimetric approach using benthic macroinvertebrates. Report to the Montana Department of Health and Environmental Science. Helena, Montana.

# Taxa Listing

## Project ID: MDT05LW RAI No.: MDT05LW017

RAI No.: MDT05LW017

Client ID:

Sta. Name: PETERSON RANCH MS-1

Date Coll.:	8/11/2005	<b>No. Jars:</b> 1	5	STORET	D:			
Taxonomic Nam	e	Count	PRA	Unique	Stage	Qualifier	BI	Function
Non-Insect								
Acari		1	0.98%	Yes	Unknown		5	PR
Cladoc	era	3	2.94%	Yes	Unknown		8	CF
Copepo	oda	1	0.98%	Yes	Unknown		8	CG
Nemate	oda	1	0.98%	Yes	Unknown		5	PA
Ostrace	oda	16	15.69%	Yes	Unknown		8	CG
Lymnaeidae	e							
Lymna	eidae	4	3.92%	Yes	Unknown	Immature	6	SC
Naididae								
Naidida	ae	27	26.47%	Yes	Unknown		8	CG
Physidae								
Physida	ae	7	6.86%	Yes	Unknown		8	SC
Talitridae								
Hyalell	a sp.	1	0.98%	Yes	Unknown		8	CG
Odonata								
Coenagrion	idae							
Amphia	<i>agrion</i> sp.	2	1.96%	Yes	Larva		7	PR
Coena	grionidae	5	4.90%	No	Larva	Early Instar	7	PR
Enallag	gma sp.	9	8.82%	Yes	Larva		7	PR
Libellulidae								
Libellul	idae	3	2.94%	Yes	Larva	Early Instar	9	PR
Heteroptera								
Corixidae								
Corixid	ae	1	0.98%	Yes	Larva	Larva	10	PH
Coleoptera								
Dytiscidae								
Dytisci	dae	1	0.98%	No	Larva	Larva	5	PR
Liodes	s <i>us</i> sp.	1	0.98%	Yes	Adult		5	PR
Haliplidae								
Peltody	ytes sp.	1	0.98%	Yes	Larva		5	SH
Diptera								
Psychodida	e							
Psycho	odidae	1	0.98%	Yes	Larva	Larva	4	CG
Chironomidae								
Chironomida	ae							
Acricot	<i>topus</i> sp.	3	2.94%	Yes	Larva		10	CG
Chiron	omidae	1	0.98%	No	Larva	Early Instar	10	CG
Cladota	anytarsus sp.	2	1.96%	Yes	Larva		7	CG
Orthoc	<i>ladius</i> sp.	3	2.94%	Yes	Larva		6	CG
Parakie	<i>efferiella</i> sp.	1	0.98%	Yes	Larva		6	CG
Parata	<i>nytarsus</i> sp.	1	0.98%	Yes	Larva		6	CG
Pseudo	ochironomus sp.	1	0.98%	Yes	Larva		5	CG
Stilocla	adius sp.	2	1.96%	Yes	Larva		3	CG
Tanypo	odinae	1	0.98%	Yes	Larva	Early Instar	7	PR
Tanvta	rsus sp.	2	1.96%	Yes	Larva		6	CF

Таха	Listing			Project II RAI No.:	D: MDT05LW MDT05LW017		
RAI No.: Client ID:	MDT05LW017		Sta	a. Name:	PETERSON RANCH MS-1		
Date Coll.:	8/11/2005	No. Jars: 1	ST	ORET ID:			
Taxonomic Name		Count	PRA	Unique Stag	ge Qualifier	BI	Function
	<b>0</b>						

Sample Count 102

## **Metrics Report**

Project ID: MDT05LW RAI No.: MDT05LW017 Sta. Name: PETERSON RANCH MS-1 Client ID: STORET ID Coll. Date: 8/11/2005

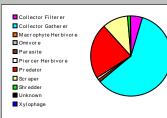
### Abundance Measures

Sample Count:	102	
Sample Abundance:	188.89	54.00% of sa
Total Abundance:	254.06	
Coll. Procedure:		
Sample Notes:		

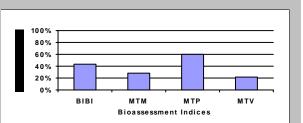
ample used

### Taxonomic Composition

Category	R	Α	PRA
Non-Insect	9	61	59.80%
Odonata	3	19	18.63%
Ephemeroptera			
Plecoptera			
Heteroptera	1	1	0.98%
Megaloptera			
Trichoptera			
Lepidoptera			
Coleoptera	2	3	2.94%
Diptera	1	1	0.98%
Chironomidae	9	17	16.67%


Chironomidae Coleoptera Diptera Ephemeroptera Heteroptera	
Lepidopter a Megalopter a Non-Insect	
Odonata	
Plecopter a	
Trichoptera	

### Dominant Taxa


Category	Α	PRA
Naididae	27	26.47%
Ostracoda	16	15.69%
Enallagma	9	8.82%
Physidae	7	6.86%
Coenagrionidae	5	4.90%
Lymnaeidae	4	3.92%
Orthocladius	3	2.94%
Libellulidae	3	2.94%
Cladocera	3	2.94%
Acricotopus	3	2.94%
Tanytarsus	2	1.96%
Stilocladius	2	1.96%
Cladotanytarsus	2	1.96%
Amphiagrion	2	1.96%
Tanypodinae	1	0.98%

### Functional Composition

Category	R	A	PRA
Predator	6	23	22.55%
Parasite	1	1	0.98%
Collector Gatherer	12	60	58.82%
Collector Filterer	2	5	4.90%
Macrophyte Herbivore			
Piercer Herbivore	1	1	0.98%
Xylophage			
Scraper	2	11	10.78%
Shredder	1	1	0.98%
Omivore			
Unknown			



#### Metric Values and Scores Metric BIBI MTP MTV MTM Value Composition Taxa Richness 25 3 3 2 Non-Insect Percent 59.80% E Richness 1 0 0 P Richness 0 0 1 T Richness 0 0 1 EPT Richness 0 0 0 **FPT** Percent 0.00% 0 0 Oligochaeta+Hirudinea Percent 26.47% Baetidae/Ephemeroptera 0.000 Hydropsychidae/Trichoptera 0.000 Dominance Dominant Taxon Percent 26.47% 2 3 Dominant Taxa (2) Percent 42.16% Dominant Taxa (3) Percent 50.98% 3 Dominant Taxa (10) Percent 78.43% Diversity Shannon H (loge) 2.543 Shannon H (log2) 3.669 3 Margalef D 5.270 Simpson D 0.123 Evenness 0.068 Function Predator Richness 6 3 22.55% 5 Predator Percent Filterer Richness 2 Filterer Percent 4.90% 3 Collector Percent 63.73% 2 2 0 Scraper+Shredder Percent 11.76% 1 Scraper/Filterer 2.200 Scraper/Scraper+Filterer 0.688 Habit **Burrower Richness** Burrower Percent 0.98% Swimmer Richness 3 Swimmer Percent 2.94% **Clinger Richness** 1 1 **Clinger Percent** 1.96% Characteristics Cold Stenotherm Richness 0 0.00% Cold Stenotherm Percent Hemoglobin Bearer Richness 1 0.98% Hemoglobin Bearer Percent Air Breather Richness 2 2.94% Air Breather Percent Voltinism Univoltine Richness 8 Semivoltine Richness 3 3 Multivoltine Percent 38.24% 3 Tolerance Sediment Tolerant Richness 1 Sediment Tolerant Percent 3.92% Sediment Sensitive Richness 0 Sediment Sensitive Percent 0.00% Metals Tolerance Index 4.061 Pollution Sensitive Richness 0 1 0 Pollution Tolerant Percent 24.51% 3 1 Hilsenhoff Biotic Index 7.412 0 0



0.00%

61.76%

108.000

Intolerant Percent

CTQa

Supertolerant Percent

### **Bioassessment Indices**

BioIndex	Description	Score	Pct	Rating
BIBI	B-IBI (Karr et al.)	22	44.00%	
MTP	Montana DEQ Plains (Bukantis 1998)	18	60.00%	Slight
MTV	Montana Revised Valleys/Foothills (Bollman 1998)	4	22.22%	Moderate
MTM	Montana DEQ Mountains (Bukantis 1998)	6	28.57%	Moderate

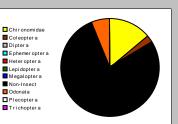
# Taxa Listing

## Project ID: MDT05LW RAI No.: MDT05LW018

RAI No.:	MDT05LW018		\$	Sta. Name	: PETE	RSON RANCH MS-2	2	
Client ID:								
Date Coll.:	8/11/2005	<b>No. Jars:</b> 1	No. Jars: 1 STORET ID:					
Taxonomic Nan	ne	Count	PRA	Unique	Stage	Qualifier	ВІ	Function
Non-Insect								
Clado	ocera	38	33.04%	Yes	Unknown		8	CF
Coper	poda	8	6.96%	Yes	Unknown		8	CG
Lymnaeida	ae							
Stagn	nicola sp.	20	17.39%	Yes	Unknown		6	SC
Naididae								
Naidio	dae	6	5.22%	Yes	Unknown		8	CG
Physidae								
Physic	dae	8	6.96%	Yes	Unknown		8	SC
Talitridae								
Hyale	ella sp.	9	7.83%	Yes	Unknown		8	CG
Odonata								
Coenagrio								
	agrionidae	4	3.48%	No	Larva	Early Instar	7	PR
	<i>agma</i> sp.	3	2.61%	Yes	Larva		7	PR
Coleoptera								
Dytiscidae								
Dytisc	cidae	1	0.87%	Yes	Larva	Larva	5	PR
Haliplidae								
Halipl	lus sp.	2	1.74%	Yes	Larva		5	PH
Chironomidae								
Chironomi								
	otopus sp.	7	6.09%	Yes	Larva		10	CG
	cladius sp.	1	0.87%	Yes	Larva		3	CG
	cladiinae	1	0.87%	No	Larva	Damaged	6	CG
	<i>merina</i> sp.	5	4.35%	Yes	Larva		6	PR
	tanytarsus sp.	1	0.87%	Yes	Larva		6	CF
Stem	<i>pellinella</i> sp.	1	0.87%	Yes	Larva		4	CG

Sample Count 115

## **Metrics Report**


Project ID: MDT05LW RAI No.: MDT05LW018 Sta. Name: PETERSON RANCH MS-2 Client ID: STORET ID Coll. Date: 8/11/2005

### Abundance Measures

Sample Count:	115
Sample Abundance:	1,725.00
Total Abundance:	2,320.13
Coll. Procedure:	
Sample Notes:	

### **Taxonomic Composition**

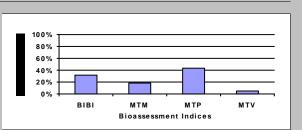
Category	R	A	PRA	
Non-Insect	6	89	77.39%	Г
Odonata	1	7	6.09%	
Ephemeroptera				
Plecoptera				
Heteroptera				
Megaloptera				
Trichoptera				
Lepidoptera				
Coleoptera	2	3	2.61%	
Diptera				
Chironomidae	5	16	13.91%	



6.67% of sample used

### Dominant Taxa

Category	Α	PRA
Cladocera	38	33.04%
Stagnicola	20	17.39%
Hyalella	9	7.83%
Physidae	8	6.96%
Copepoda	8	6.96%
Acricotopus	7	6.09%
Naididae	6	5.22%
Paramerina	5	4.35%
Coenagrionidae	4	3.48%
Enallagma	3	2.61%
Haliplus	2	1.74%
Rheotanytarsus	1	0.87%
Orthocladiinae	1	0.87%
Nanocladius	1	0.87%
Dytiscidae	1	0.87%


### Functional Composition

Category	R	Α	PRA
Predator	3	13	11.30%
Parasite			
Collector Gatherer	6	33	28.70%
Collector Filterer	2	39	33.91%
Macrophyte Herbivore			
Piercer Herbivore	1	2	1.74%
Xylophage			
Scraper	2	28	24.35%
Shredder			
Omivore			
Unknown			



### Metric Values and Scores Metric BIBI MTP MTV MTM Value Composition Taxa Richness 14 1 1 0 Non-Insect Percent 77.39% E Richness 1 0 0 P Richness 0 0 1 T Richness 0 0 1 EPT Richness 0 0 0 **FPT** Percent 0.00% 0 0 Oligochaeta+Hirudinea Percent 5.22% Baetidae/Ephemeroptera 0.000 Hydropsychidae/Trichoptera 0.000 Dominance Dominant Taxon Percent 33.04% 2 2 Dominant Taxa (2) Percent 50.43% Dominant Taxa (3) Percent 58.26% 3 Dominant Taxa (10) Percent 93.91% Diversity Shannon H (loge) 2.080 Shannon H (log2) 3.000 3 Margalef D 2.766 Simpson D 0.173 Evenness 0.098 Function Predator Richness 3 1 Predator Percent 11.30% 3 Filterer Richness 2 Filterer Percent 33.91% 0 Collector Percent 62.61% 2 2 0 Scraper+Shredder Percent 24.35% 2 Scraper/Filterer 0.718 Scraper/Scraper+Filterer 0.418 Habit **Burrower Richness** 0 Burrower Percent 0.00% Swimmer Richness 1 Swimmer Percent 1.74% **Clinger Richness** 1 1 **Clinger Percent** 0.87% Characteristics Cold Stenotherm Richness 0 0.00% Cold Stenotherm Percent Hemoglobin Bearer Richness 1 4.35% Hemoglobin Bearer Percent Air Breather Richness 1 0.87% Air Breather Percent Voltinism Univoltine Richness 5 Semivoltine Richness 2 1 Multivoltine Percent 53.91% 2 Tolerance

Sediment Tolerant Richness 1 Sediment Tolerant Percent 17.39% Sediment Sensitive Richness 0 Sediment Sensitive Percent 0.00% Metals Tolerance Index 3.283 Pollution Sensitive Richness 0 1 Pollution Tolerant Percent 30.43% 3 Hilsenhoff Biotic Index 7.435 0 Intolerant Percent 0.00% Supertolerant Percent 66.09% CTQa 98.000



0

1

0

### **Bioassessment Indices**

BioIndex	Description	Score	Pct	Rating
BIBI	B-IBI (Karr et al.)	16	32.00%	
MTP	Montana DEQ Plains (Bukantis 1998)	13	43.33%	Moderate
MTV	Montana Revised Valleys/Foothills (Bollman 1998)	1	5.56%	Severe
MTM	Montana DEQ Mountains (Bukantis 1998)	4	19.05%	Severe

# Taxa Listing

## Project ID: MDT05LW RAI No.: MDT05LW019

Sta. Name: PETERSON RANCH MS-4

Date Coll 8/11/2003	NO. Jais.	STORET ID.					
Taxonomic Name	Count	PRA	Unique	Stage	Qualifier	BI	Function
Non-Insect							
Cladocera	4	3.64%	Yes	Unknown		8	CF
Ostracoda	1	0.91%	Yes	Unknown		8	CG
Lymnaeidae							
Stagnicola sp.	2	1.82%	Yes	Unknown		6	SC
Naididae							
Naididae	17	15.45%	Yes	Unknown		8	CG
Physidae							
Physidae	8	7.27%	Yes	Unknown		8	SC
Planorbidae							
<i>Gyraulus</i> sp.	5	4.55%	Yes	Unknown		8	SC
Talitridae							
<i>Hyalella</i> sp.	2	1.82%	Yes	Unknown		8	CG
Ddonata							
Coenagrionidae							
Enallagma sp.	20	18.18%	Yes	Larva		7	PR
phemeroptera							
Baetidae							
Callibaetis sp.	2	1.82%	Yes	Larva		9	CG
Caenidae	-			24.74		Ũ	
Caenis sp.	10	9.09%	Yes	Larva		7	CG
leteroptera		0.0070	100	Laiva			00
Corixidae							
Hesperocorixa sp.	1	0.91%	Yes	Adult		10	PH
Nepidae		0.0170		, louit			
Ranatra sp.	2	1.82%	Yes	Larva		11	PR
Notonectidae	-	1.0270	100	Laiva			
Notonecta sp.	4	3.64%	Yes	Adult		5	PR
<b>Frichoptera</b>	т	0.0470	100	Addit		0	110
Leptoceridae							
Leptoceridae	1	0.91%	Yes	Pupa	Pupa	4	CG
Coleoptera	I	0.0170	103	Гира	Гара	-	00
Dytiscidae							
Laccophilus sp.	1	0.019/	Vee	Adult		F	PR
Haliplidae	I	0.91%	Yes	Adult		5	FK
Halipildae Haliplus sp.	4	0.019/	Vee	Adult		F	PH
	1	0.91%	Yes	Adult		5	ΡĦ
Diptera							
Ceratopogonidae Ceratopogoninae	4	0.040/	N I -	Dunc	Dura	<u>^</u>	
Ceratopogoninae	1	0.91%	No	Pupa	Pupa	6	PR
Ceratopogoninae	1	0.91%	Yes	Larva	Larva	6	PR

# Taxa Listing

## Project ID: MDT05LW RAI No.: MDT05LW019

RAI No.:MDT05LW019Sta. Name:PETERSON RANCH MS-4								
Client ID: Date Coll.:	8/11/2005	No. Jars: 1	:	STORET	D:			
Taxonomic Nan	ne	Count	PRA	Unique	Stage	Qualifier	BI	Function
Chironomidae								
Chironomic	dae							
Acrico	<i>otopus</i> sp.	11	10.00%	Yes	Larva		10	CG
Cricot	topus (Cricotopus) sp.	3	2.73%	Yes	Larva		7	SH
Dicrot	<i>tendipes</i> sp.	1	0.91%	Yes	Larva		8	CG
Endoo	chironomus sp.	7	6.36%	Yes	Larva		10	SH
Ortho	<i>cladius</i> sp.	1	0.91%	Yes	Larva		6	CG
Parak	<i>iefferiella</i> sp.	1	0.91%	Yes	Larva		6	CG
Psect	rocladius sp.	1	0.91%	Yes	Larva		8	CG
Tanyt	arsus sp.	2	1.82%	Yes	Larva		6	CF
	Sample C	Count 110						

# **Metrics Report**

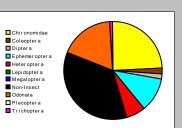
 Project ID:
 MDT05LW

 RAI No.:
 MDT05LW019

 Sta. Name:
 PETERSON RANCH MS-4

 Client ID:
 STORET ID

 Stoll. Date:
 8/11/2005


### Abundance Measures

Sample Count: Sample Abundance: Total Abundance: Coll. Procedure: Sample Notes:

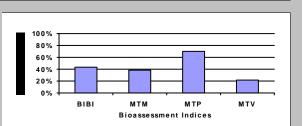
110 1,100.00 10.00% of sample used 1,479.50

### **Taxonomic Composition**

Category	R	Α	PRA	
Non-Insect	7	39	35.45%	
Odonata	1	20	18.18%	
Ephemeroptera	2	12	10.91%	
Plecoptera				
Heteroptera	3	7	6.36%	
Megaloptera				
Trichoptera	1	1	0.91%	
Lepidoptera				
Coleoptera	2	2	1.82%	
Diptera	1	2	1.82%	
Chironomidae	8	27	24.55%	



### Dominant Taxa


Category	A	PRA
Enallagma	20	18.18%
Naididae	17	15.45%
Acricotopus	11	10.00%
Caenis	10	9.09%
Physidae	8	7.27%
Endochironomus	7	6.36%
Gyraulus	5	4.55%
Notonecta	4	3.64%
Cladocera	4	3.64%
Cricotopus (Cricotopus)	3	2.73%
Tanytarsus	2	1.82%
Stagnicola	2	1.82%
Hyalella	2	1.82%
Ceratopogoninae	2	1.82%
Callibaetis	2	1.82%

### Functional Composition

Category	R	A	PRA
Predator	5	29	26.36%
Parasite			
Collector Gatherer	11	48	43.64%
Collector Filterer	2	6	5.45%
Macrophyte Herbivore			
Piercer Herbivore	2	2	1.82%
Xylophage			
Scraper	3	15	13.64%
Shredder	2	10	9.09%
Omivore			
Unknown			



Metric Values and Scores						
Metric	Value	BIBI	MTP	MTV	мтм	
Composition						
Taxa Richness Non-Insect Percent E Richness P Richness T Richness	25 35.45% 2 0 1	3 1 1 1	3	1 0 0	2	
EPT Richness EPT Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera Dominance	3 11.82% 15.45% 0.167 0.000	·	1 1		0 0	
Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent	18.18% 33.64% 43.64% 80.91%	5	3		3	
Diversity Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness Function	2.700 3.895 5.116 0.086 0.062		3			
Predator Richness Predator Percent Filterer Richness Filterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer Scraper/Filterer	5 26.36% 2 5.45% 49.09% 22.73% 2.500 0.714	5	2 3 2	2	3 0	
Habit Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent Characteristics	2 2.73% 5 8.18% 2 4.55%	1				
Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent Voltinism	0 0.00% 4 15.45% 2 2.73%					
Univoltine Richness Semivoltine Richness Multivoltine Percent	11 2 30.91%	1	3			
Tolerance						
Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent	2 6.36% 0 0.00% 3.687 0 33.64%	1 3		0		
Hilsenhoff Biotic Index	7.713		0		0	



0.00% 54.55%

99.000

Intolerant Percent Supertolerant Percent

CTQa

### **Bioassessment Indices**

BioIndex	Description	Score	Pct	Rating
BIBI	B-IBI (Karr et al.)	22	44.00%	
MTP	Montana DEQ Plains (Bukantis 1998)	21	70.00%	Slight
MTV	Montana Revised Valleys/Foothills (Bollman 1998)	4	22.22%	Moderate
MTM	Montana DEQ Mountains (Bukantis 1998)	8	38.10%	Moderate

# Taxa Listing

## Project ID: MDT05LW RAI No.: MDT05LW020

RAI No.:	MDT05LW020		ę	Sta. Name	: PETE	RSON RANCH MS-5		
Client ID:					_			
Date Coll.:	8/11/2005	<b>No. Jars:</b> 1	ę	STORET I	D:			
Taxonomic Nan	ne	Count	PRA	Unique	Stage	Qualifier	BI	Function
Non-Insect								
Ostrac	coda	1	0.89%	Yes	Unknown		8	CG
Naididae								
Naidic	lae	10	8.93%	Yes	Unknown		8	CG
Talitridae								
Hyale	<i>lla</i> sp.	9	8.04%	Yes	Unknown		8	CG
Tubificidae								
Tubific	cidae	35	31.25%	Yes	Unknown		10	CG
Odonata								
Coenagrio								
Enalla	<i>igma</i> sp.	30	26.79%	Yes	Larva		7	PR
Libellulidae								
Libellu		1	0.89%	Yes	Larva	Larva	9	PR
Ephemeroptera								
Baetidae								
	<i>aetis</i> sp.	5	4.46%	Yes	Larva		9	CG
Caenidae								
Caeni	s sp.	1	0.89%	Yes	Larva		7	CG
Diptera								
Ceratopog								
	opogoninae	1	0.89%	Yes	Larva	Larva	6	PR
Chironomidae								
Chironomic								
	<i>otopus</i> sp.	4	3.57%	Yes	Larva		10	CG
	<i>iefferiella</i> sp.	4	3.57%	Yes	Larva		6	CG
	anytarsus sp.	2	1.79%	Yes	Larva		6	CG
	rocladius sp.	4	3.57%	Yes	Larva		8	CG
	lochironomus sp.	2	1.79%	Yes	Larva		5	CG
	odinae	1	0.89%	No	Larva	Early Instar	7	PR
Tanyta	arsus sp.	2	1.79%	Yes	Larva		6	CF

# **Metrics Report**

Project ID: MDT05LW RAI No.: MDT05LW020 Sta. Name: PETERSON RANCH MS-5 Client ID: STORET ID Coll. Date: 8/11/2005

### Abundance Measures

Sample Count: Sample Abundance: Total Abundance: Coll. Procedure: Sample Notes:

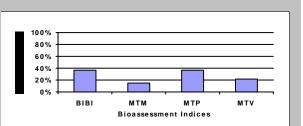
112 3,360.00 3.33% of sample used 4,519.20

### Taxonomic Composition


Category	R	A	PRA	
Non-Insect	4	55	49.11%	
Odonata	2	31	27.68%	Chiron
Ephemeroptera	2	6	5.36%	Col eopt
Plecoptera				Dipter a
Heteroptera				Epheme
Megaloptera				Heter op
Trichoptera				Megal o
Lepidoptera				Non-Ins
Coleoptera				Plecopt
Diptera	1	1	0.89%	Trichop
Chironomidae	6	19	16.96%	

### Dominant Taxa

Category	Α	PRA
Tubificidae	35	31.25%
Enallagma	30	26.79%
Naididae	10	8.93%
Hyalella	9	8.04%
Callibaetis	5	4.46%
Psectrocladius	4	3.57%
Parakiefferiella	4	3.57%
Acricotopus	4	3.57%
Tanytarsus	2	1.79%
Pseudochironomus	2	1.79%
Paratanytarsus	2	1.79%
Tanypodinae	1	0.89%
Ostracoda	1	0.89%
Libellulidae	1	0.89%
Ceratopogoninae	1	0.89%


### **Functional Composition**

Category	R	Α	PRA
Predator	3	33	29.46%
Parasite			
Collector Gatherer	11	77	68.75%
Collector Filterer	1	2	1.79%
Macrophyte Herbivore			
Piercer Herbivore			
Xylophage			
Scraper			
Shredder			
Omivore			
Unknown			



Metric Values and Scores					
Metric	Value	BIBI	MTP	MTV	МТМ
Composition					
Taxa Richness Non-Insect Percent E Richness P Richness T Richness EPT Richness EPT Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera	15 49.11% 2 0 0 2 5.36% 40.18% 0.833 0.000	1 1 1	1 0 0	1 0 0	0 0 0
Dominance					
Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent	31.25% 58.04% 66.96% 93.75%	3	2		2
Diversity					
Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness	2.024 2.920 2.973 0.187 0.100		2		
Function					
Predator Richness Predator Percent Filterer Richness Filterer Percent Collector Percent Scraper/Shredder Percent Scraper/Filterer Scraper/Scrapet+Filterer	3 29.46% 1 1.79% 70.54% 0.00% 0.000 0.000	5	1 2 0	3	1 0
Habit					
Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent	2 2.68% 1 4.46% 1 1.79%	1			
Characteristics					
Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent	0 0.00% 2 33.04% 0 0.00%				
Voltinism					
Univoltine Richness Semivoltine Richness Multivoltine Percent <i>Tolerance</i>	6 1 22.32%	1	3		
Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index	1 31.25% 0 0.00% 4.196 0 41.07% 8.250	1 3	0	0 0	0
Intolerant Percent Supertolerant Percent	0.00% 61.61%				

CTQa



101.455

### **Bioassessment Indices**

BioIndex	Description	Score	Pct	Rating
BIBI	B-IBI (Karr et al.)	18	36.00%	
MTP	Montana DEQ Plains (Bukantis 1998)	11	36.67%	Moderate
MTV	Montana Revised Valleys/Foothills (Bollman 1998)	4	22.22%	Moderate
MTM	Montana DEQ Mountains (Bukantis 1998)	3	14.29%	Severe

## Appendix G

## REVEGETATION

MDT Wetland Mitigation Monitoring Peterson Ranch Hall, Montana

### 24. SEEDING

A. <u>Description</u>

This work consists of revegetating areas shown on the plans and other areas disturbed during construction. Seeding Area No. 1 is a native seed mix to be used in all non-wetland (dry) areas. Seeding Area No. 2 is a transitional seed mix to be used in wet and semi-wet areas. All work is to be conducted in accordance with Section 610 of the Standard Specifications.

### B. <u>Construction Requirements</u>

<u>Schedule</u>. Drill seed only between October 1 and May
 Broadcast seeding is acceptable between April 1 and May 15.
 Double seeding rate for broadcast seeding.

### C. <u>Materials</u>

1. Seeding Area No. 1

### Species

Revenue slender wheatgrass Rosana western wheatgrass Lodorm green needlegrass Sherman big bluegrass Magnar Great Basin wildrye

2. <u>Seeding Area No. 2</u> <u>Species</u> Revenue slender wheatgrass Rosana western wheatgrass

### Kgs(lbs) per Hectare (Acre)

1.0	(1.0)
6.5	(6.0)
3.5	(3.0)
2.0	(2.0)
4.5	(4.0)

Kgs(lbs) per Hectare (Acre) 1.0 (1.0)

7.5 (7.0)

January 1999

LAND & WATER F-1

11

## LAND & WATER F-2

### Project No. 1280

### SPECIAL PROVISIONS

Shoshone creeping wildrye Western mannagrass American sloughgrass Blatic rush Bluejoint reedgrass

4.5	(4.0)
1.0	(1.0)
1.0	(1.0)
0.1	(0.1)
0.1	(0.1)

### 25. PLANTING

A. Description

1.

4.

5.

This work includes collecting, preparing, and planting live cuttings from suitable willow species resident within the Flint Creek floodplain.

B. <u>Construction Requirements</u>

Schedule

Collect and plant cuttings when the ground is ice-free and while the whole plants are dormant. This will typically be in late fall after leaf-drop (October-November), or early spring before bud-break (March-May).

2. <u>Ouality Assurance</u>

Supplier or installation contractor is to have not less than three years of experience in successfully collecting and installing wetland plant material.

3. Selection

Select cuttings from the list of suitable species provided below. Identification of willow species is to be made by a qualified agronomist or biologist supervising the project. Select young, green wood (1-3 years). Do not use suckers (<1 year). Choose branches that are 13-25 millimeters (0.5-1.0 inches) in diameter and 900-1800 millimeters (3-6 feet) in length. Select branches that will not overly affect the health and appearance of the parent plant when removed. Do not remove more than 25% of the branches from any given individual.

Preparation

Trim all side branches of the cutting to a single stem. Cut the tip where the cutting becomes less than 13 millimeters (0.5 inches). Cut the bottom of the cutting at a 45 degree angle to assist in planting and identification of the bottom end. Label each cutting with color-coded flagging or paint to identify species. Soak cuttings in water for at least 24 hours prior to planting.

Storage

Cuttings may be stored up to two weeks wrapped in burlap and bailing twine and soaked in water. Store vertically and soak the lower 450-600 millimeters (18-24 inches) of the stems. Do not submerge the entire cutting. If it is necessary to store cuttings for longer periods, store vertically in a dry, well ventilated, dark, and cool (35-50 deg. F) without freezing. Keep cuttings in moist (not soaked), fungus-free sawdust. At no time should the cuttings be spread out on the ground or exposed to sun and/or wind.

6. Planting

Plant cuttings in small colonies of 8-10 plants each in the locations shown on the plans. Space colonies at 8-10 meters (26-33 feet) apart. Space individual cuttings at 300-900 millimeters (1-3 feet) apart.

### SPECIAL PROVISIONS

LAND & WATER F-3

### Project No. 1280

Insert cuttings in the ground so that the bottom is between 50 and 150 millimeters (2-6 inches) below the water table throughout the growing season. Insert cuttings by hand or with a rubber mallet where possible. If the soil is rocky or gravelly, use a rod or rebar stake to create a hole. The use of a shovel or other large tools should be avoided. If shoveling is necessary, the soil should be well tamped to insure good contact between the cutting and the soil.

Cleanly clip the top of the cutting so that at least 3/4 of the length of the stem is below ground, and 3-4 healthy buds are above ground. A minimum of 200 millimeters (8 inches) should remain above ground. Clip any portion of the top end that is deformed by installation with a rubber mallet.

C. <u>Materials</u>

The following species are suitable for cuttings and can be found within the project site. Obtain cuttings on-site or from other off-site locations within the Flint Creek floodplain. Obtain permission from landowners prior to collecting cuttings on private property.

> Suitable Cutting Species Peach-Leaved Willow Sandbar Willow Bebb's Willow Drummond Wilow Yellow Willow

Salix amygdaloides Salix exigua Salix bebbiana Salix drummondiana Salix lutea

Other willow species native to the Flint Creek floodplain may be substituted upon approval.

D. <u>Method of Measurement</u>

Willow cuttings will be measured as each, including collection, storage, planting, and installation in place.

E. Basis of Payment

Payment for the completed and accepted quantities will be made under the following:

Pay Item	Pay Unit
Bareroot Stock	Each
Willow Cuttings	Each

Such price and payment constitutes full compensation for all labor, equipment, tools, materials and incidentals necessary to complete the item.