MONTANA DEPARTMENT OF TRANSPORTATION WETLAND MITIGATION MONITORING REPORT: YEAR 2003

Beaverhead Gateway Dillon, Montana

Prepared for:

MONTANA DEPARTMENT OF TRANSPORTATION 2701 Prospect Ave Helena, MT 59620-1001

March 2004

Project No: 130091.011

Prepared by:

LAND & WATER CONSULTING, INC. P.O. Box 8254 Missoula, MT 59807

MONTANA DEPARTMENT OF TRANSPORTATION

WETLAND MITIGATION MONITORING REPORT:

YEAR 2003

Beaverhead Gateway Dillon, Montana

Prepared for:

MONTANA DEPARTMENT OF TRANSPORTATION 2701 Prospect Ave Helena, MT 59620-1001

Prepared by:

LAND & WATER CONSULTING, INC. P.O. Box 8254 Missoula, MT 59807

March 2004

Project No: 130091.011

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	METHODS	3
	2.1 Monitoring Dates and Activities	3
	2.2 Hydrology	3
	2.3 Vegetation	3
	2.4 Soils	4
	2.5 Wetland Delineation	4
	2.6 Mammals, Reptiles and Amphibians	4
	2.7 Birds	4
	2.8 Macroinvertebrates	5
	2.9 Functional Assessment	5
	2.10 Photographs	5
	2.11 GPS Data	5
	2.12 Maintenance Needs	5
3.0	RESULTS	5
	3.1 Hydrology	5
	3.1 Hydrology3.2 Vegetation	
		6
	3.2 Vegetation	6 1
	3.2 Vegetation 3.3 Soils	6 1 2
	3.2 Vegetation 3.3 Soils 3.4 Wetland Delineation	6 1 2 2
	3.2 Vegetation	6 1 2 2 3
	3.2 Vegetation	6 1 2 3 5
	3.2 Vegetation 3.3 Soils 1 3.4 Wetland Delineation 1 3.5 Wildlife 1 3.6 Macroinvertebrates 1 3.7 Functional Assessment	6 1 2 3 5 6
	3.2 Vegetation 3.3 Soils 1 3.4 Wetland Delineation 1 3.5 Wildlife 1 3.6 Macroinvertebrates 1 3.7 Functional Assessment 1 3.8 Photographs	6 1 2 3 5 6 6

TABLES

Table 1	2001-2003 Beaverhead Gateway Vegetation Species List
Table 2	Transect 1 Data Summary
Table 3	Transect 2 Data Summary
Table 4	Wildlife Species Observed on the Beaverhead Gateway Mitigation Site During
	2001-2003
Table 5	Summary of 2001-2003 Wetland Function/Value Ratings and Functional Points

FIGURES

Figure 1	Project Site Location Map
----------	---------------------------

CHARTS

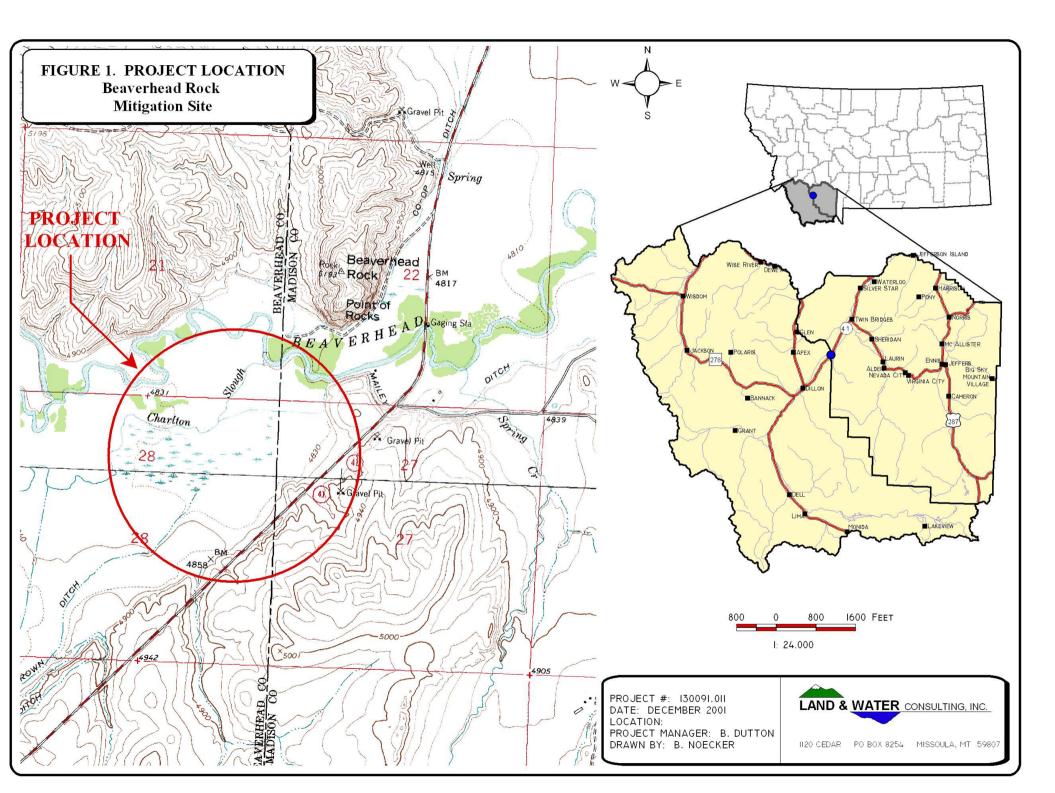
Chart 1	Length of Vegetation Communities along Transect 1
Chart 2	Length of Vegetation Communities along Transect 2
Chart 3	Bioassessment Scores for Beaverhead Gateway

APPENDICES

Appendix A:	Figures 2 and 3
Appendix B:	Completed 2003 Wetland Mitigation Site Monitoring Form
	Completed 2003 Wetland Delineation Forms
	Completed 2003 Bird Survey Forms
	Completed 2003 Functional Assessment Forms
Appendix C:	Representative Photographs
	2003 Aerial Photograph
Appendix D:	Original Site Plan
	Soil Survey Map and Description
Appendix E:	Bird Survey Protocol
	GPS Protocol
Appendix F:	Macroinvertebrate Sample Protocol and Data Analyses

1.0 INTRODUCTION

This report represents the third year of monitoring at the Beaverhead Gateway Ranch wetland mitigation site by Land & Water Consulting. The Beaverhead Gateway Ranch Wetland Mitigation Site was developed to mitigate wetland impacts associated with Montana Department of Transportation (MDT) roadway projects in Watershed 6 located in the Butte District. Some of these projects are completed and some have yet to be constructed. The mitigation site is located 13 miles northeast of Dillon and 14 miles southwest of Twin Bridges on Highway 41 (**Figure 1**). Elevations range from approximately 4825 to 4830 feet. The western portion of the site is in Beaverhead County and the eastern portion is in Madison County. MDT personnel monitored the site in 1998, 1999 and 2000.


The approximate site boundary is illustrated on **Figure 2** (**Appendix A**), and the original site plans are included in **Appendix D**. The project is located adjacent to the Beaverhead River and Highway 41. Upwelling groundwater and springs with surface retention behind a constructed dike provides wetland hydrology. Precipitation and surface runoff provides minor contributions to wetland hydrology at this site. The site is in private ownership and has a conservation easement in place. The wetland easement area is not fenced.

Construction was completed in 1997 with the goal of creating at least 52 acres of wetland. The site includes a dike constructed to retain storm water and groundwater collected in two prior-existing drainage ditch systems. A control structure was completed in the northwest portion of the impoundment located where the two former drainage ditches converged. This control structure can be used to adjust impoundment water levels. The impoundment was designed to inundate approximately 26 acres with water depths of 0 to 3 feet.

The site was designed to mitigate for specific wetland functions impacted by MDT roadway projects, including: storm water retention, roadway runoff filtration, sediment and nutrient retention, water quality, groundwater recharge, waterfowl and wildlife habitats and riparian restoration. In addition to creating 52 acres of new wetland, a primary goal is to use an ephemeral creek channel entering the southeastern quadrant of the site to capture storm water flows from nearby farmland and allow silts/suspended sediments to settle out within the wetland.

A pre-project construction wetland delineation documented 5.2 acres of wetlands at the site (Hackley 1997). The Beaverhead Gateway site will be monitored once per year over the 3-year contract period to document wetland and other biological attributes. The monitoring area is illustrated in **Figure 2** (**Appendix A**).

2.0 METHODS

2.1 Monitoring Dates and Activities

The site was visited on May 29 (spring season), August 5 (mid-season) and October 16, 2003 (fall season). The spring and fall visits were conducted to sample seasonal bird and other wildlife uses. Spring season monitoring is likely to detect migrant and early nesting activities for a variety of avian species (Carlson pers. comm.), as well as maximize the potential for amphibian detection. In Montana, most amphibian larval stages are present by early June (Werner pers. comm.).

The mid-season visit was conducted in August to document vegetation, soil, and hydrologic conditions used to map jurisdictional wetlands. All information contained on the Wetland Mitigation Site Monitoring Form (**Appendix B**) was collected at this time. Activities and information conducted/collected included: wetland delineation; wetland/open water aquatic habitat boundary mapping; vegetation community mapping; vegetation transect; soils data; hydrology data; bird and general wildlife use; photograph points; macroinvertebrate sampling; GPS data points; functional assessment; and (non-engineering) examination of dike structures.

2.2 Hydrology

Wetland hydrology indicators were recorded during the mid-season visit using procedures outlined in the COE 1987 Wetland Delineation Manual (Environmental Laboratory 1987). Hydrology data were recorded on COE Routine Wetland Delineation Data Forms (**Appendix B**).

Additional hydrologic data were recorded on the mitigation site monitoring form (**Appendix B**). No groundwater monitoring wells were installed at the site. If present within 18 inches of the ground surface (soil pit depth for purposes of delineation), groundwater depths were documented on the routine wetland delineation data form at each data point.

2.3 Vegetation

General dominant species-based vegetation community types (e.g., *Alopecurus/Juncus*) were delineated on an aerial photograph during the mid-season visit. Standardized community mapping was not employed as many of these systems are geared towards climax vegetation and do not reflect yearly changes. Estimated percent cover of the dominant species in each community type was listed on the site monitoring form (**Appendix B**).

Two 10-foot wide belt transects established in 2001 were sampled during the mid-season monitoring event to represent the range of current vegetation conditions. Percent cover was estimated for each vegetative species within each successive vegetative community encountered within the "belt" using the following values: T (few plants); P (1-5%), 1 (5-15%); 2 (15-25%); 3 (25-35%); 4 (35-45%); 5 (45-55%) and so on to 9 (85-95%). The transect locations are illustrated on **Figure 2** (**Appendix A**). The transects will be used to evaluate changes over time, especially the establishment and increase of hydrophytic vegetation. The transect locations were marked on the air photo and all data were recorded on the mitigation site monitoring form.

Transect endpoint locations were recorded with the GPS unit during 2001. A photo was taken from both ends of each transect looking along the transect path.

A comprehensive plant species list for the site was compiled and will be updated as new species are encountered. Ultimately, observations from past years will be compared with new data to document vegetation changes over time. Woody species were not planted at this mitigation site.

2.4 Soils

Soils were evaluated during the mid-season site visit using the hydric soils determination procedures outlined in the COE 1987 Wetland Delineation Manual. Soil data was recorded for each wetland determination point on the COE Routine Wetland Delineation Data Forms (**Appendix B**). The most current terminology used by NRCS was used to describe hydric soils (USDA 1998).

2.5 Wetland Delineation

Wetland delineation was conducted during the mid-season visit according to the 1987 COE Wetland Delineation Manual. Wetland and upland areas within the monitoring area were investigated for the presence of wetland hydrology, hydrophytic vegetation and hydric soils. The information was recorded on COE Routine Wetland Delineation Data Forms (**Appendix B**). The wetland/upland boundary was originally delineated on the air photo and recorded with a resource grade GPS unit in 2001 using procedures outlined in **Appendix E**. Modifications to these boundaries in 2003 were accomplished by hand-mapping onto the 2002 aerial photograph. The wetland/upland boundary in combination with the wetland/open water boundary was used to calculate the final wetland acreage. A pre-construction wetland delineation documented 5.2 acres of wetlands at the site (Hackley 1997).

2.6 Mammals, Reptiles and Amphibians

Mammal and herptile species observations and other positive indicators of use, such as vocalizations, were recorded on the wetland monitoring and bird forms during the 2003 monitoring events. Indirect use indicators, including tracks, scat, burrows, eggshells, skins, bones, etc. were also recorded. Observations were recorded as the observer traversed the site while conducting other required activities. Direct sampling methods, such as snap traps, live traps, and pitfall traps, were not used.

2.7 Birds

Bird observations were also recorded during all three-site visits. No formal census plots, spot mapping, point counts, or strip transects were conducted. Observations were recorded incidental to other monitoring activities and were categorized by species, activity code, and general habitat association. A comprehensive list of observed species was compiled including those observed by MDT personnel in recent years.

2.8 Macroinvertebrates

Macroinvertebrate samples were collected during the mid-season site visit at four separate locations (**Figure 2**). Macroinvertebrate sampling procedures are provided in **Appendix F**. Samples were preserved as outlined in the sampling procedure and sent to Rhithron Associates for analysis. In past years two additional samples were collected for a total of six, but in 2003 there were two sites with no water so no samples were collected.

2.9 Functional Assessment

A functional assessment form was completed using the 1999 MDT Montana Wetland Assessment Method (**Appendix B**). Field data necessary for this assessment was collected during the mid-season visit. No pre-project functional assessment was conducted at this site.

2.10 Photographs

Photographs were taken illustrating current land uses surrounding the site, the upland buffer, the monitored area and the vegetation transects. Each photograph point location was recorded with a resource grade GPS in 2001. The location of photo points is shown on **Figure 2**, **Appendix A**. All photographs were taken using a digital camera.

2.11 GPS Data

During the 2001 monitoring season, point data were collected with a resource grade GPS unit at the vegetation transect beginning and ending locations and at all photograph locations. Wetland boundaries were also recorded with a resource grade GPS unit in 2001, but were modified via hand-mapping onto aerial photograph in 2002 and 2003. The method used to collect these points is described in the GPS protocol in **Appendix E**.

2.12 Maintenance Needs

Observations were made of existing structures and of erosion/sediment problems to identify maintenance needs. This did not constitute an engineering-level structural inspection, but rather a cursory examination. Current or future potential problems were documented on the monitoring form.

3.0 RESULTS

3.1 Hydrology

The main source of hydrology seems to be upwelling groundwater and "springs" evident along the constructed channels (ditch/berms) leading south and west from the main open water area (**Figure 3**). Water was observed upwelling from the bottom of these channels. These waters are retained behind a constructed dike. Another source of hydrology comes from the SE corner of

the site from irrigation return flow. Precipitation and surface runoff provide minor contributions to wetland hydrology at this site except during rare and extreme events.

Open water occurred across approximately 6.3 acres or 5% of the 118-acre wetland area (**Figure 3**) during the mid-season visit. Water depth at the open water/rooted vegetation boundary was approximately 1.5 feet. Inundation was observed during the mid-season visit across approximately another 5% of the wetland area which is significantly less than in the past two years. Inundation was present throughout most of Community Type 2 (**Figure 3**), and portions of Type 8. Casual observations during the early season visit indicated complete inundation of Types 2 and 8 and more extensive inundation throughout Type 6. The reason for lower water levels is unclear but may be related to owner manipulation or rainfall patterns in 2003.

Only one of six wetland sites documented on the Routine Wetland Determination forms (**Appendix B**) had groundwater within 18 inches of the surface on August 6, 2002. Casual observations at other locations on this date revealed groundwater within 18 inches of the surface in small areas of Community Types 2 and 6 (**Figure 3**). These groundwater depths seem low compared with the soil and vegetation indicators present. It is important to note that drought conditions have dominated for many years in recent time. Hydrologic conditions must be considered within this climatic context.

3.2 Vegetation

Ninety-seven plant species were identified at the site and are listed in **Table 1**. No new species were identified in 2003. The majority of these species were herbaceous. Few woody species were found within the monitoring area. One plant species of concern, Lemmon's Alkali Grass (*Puccinellia lemmonii*), was identified and is ranked S1 by the Montana Natural Heritage Program. Four Wetland Community types (Type 2: *Scirpus*, Type 5: *Alopecurus/Juncus*, Type 6: *Alopecurus/Scirpus* and Type 8: *Potamogeton/Polygonum*) and three Upland Community Types (Type 3: *Hordeum/Kochia*, Type 4: *Muhlenbergia/Agropyron* and Type 7: *Sarcobatus/Elymus*) were identified and mapped at the mitigation area (**Figure 3**, **Appendix A**). Plant species observed within each of these communities are listed on the attached data form (**Appendix B**).

Type 8 is the wettest community type and occurred as an aquatic bed community in the shallower water areas (**Figure 3**). It was dominated by pondweed (*Potamogeton spp.*) and smartweed (*Polygonum spp.*). Type 2 is the next wettest and occurred mainly as a fringe around the border of shallow water areas dominated by bulrush (*Scirpus spp.*). Type 6 is the next wettest wetland vegetation type and occurred throughout the monitoring area on sites slightly higher than Type 2. The vegetation in Type 6 was highly variable from spot to spot due to small changes in soil properties, topography, and past disturbance. Vegetation in Type 6 was also highly variable since it was in transition from upland to wetland. Across much of this type, the vegetation was dominated meadow foxtail (*Alopecurus pratensis*) and bulrush. However, small areas were dominated by other species.

Adjacent upland vegetation community types were mainly dominated by rangeland species with cropland along the southern border. Type 3 was located along dikes, spoil pile and or other

Beaverhead Gateway Wetland Mitigation 2003 Monitoring Report

highly disturbed soil materials and was dominated by weedy species such as foxtail barley (*Hordeum jubatum*), summer-cypress (*Kochia scoparia*) and Canada thistle (*Cirsium arvense*). Type 4 was mostly dominated by alkali muhly (*Muhlenbergia asperifolia*), slender wheatgrass (*Agropyron trachycaulum*) and western wheatgrass (*Agropyron smithii*). Type 7 was dominated by greasewood (*Sarcobatus vermiculatus*), basin wild rye (*Elymus cinereus*) and western wheatgrass.

Vegetation transect results are detailed in the attached data form (**Appendix B**), and are summarized in the transect maps, **Table 2**, **Table 3**, **Chart 1** and **Chart 2** below. Vegetation transect results show no change between the different monitoring years.

Transect 1 Map for year 2001, 2002 and 2003:

- 5	2000000	**************				**********		0.02
	Start	Sarcobatus/Elymus	Alopecurus/Juncus	Alopecurus/Scirpus	Alopecurus/Juncus	Scirpus	Total:	End
1	Start	Upland (40')	Wetland (1030')	Wetland (150')	Wetland (400')	Wetland (30')	1650'	End
- 5					**************		1000000	

Transect 2 Map for year 2001, 2002 and 2003:

- 8	Start	Hordeum/Kochia	Alopecurus/Juncus	Alopecurus/Scirpus	Muhlenbergia/Agropyron	Total:	End	
	Start	Upland (30')	Wetland (40')	Wetland (80')	Upland (130')	280'	Ena	
			***************	**************	*****************	300000000		

Table 1: 2001-2003 Beaverhead Gateway Vegetation Species List

Scientific Name	Common Name	Region 9 (Northwest) Wetland Indicator		
Agropyron cristatum	Crested Wheatgrass			
Agropyron repens	Quack Grass	FACU		
Agropyron smithii	Western Wheatgrass	FACU		
Agropyron trachycaulum	Slender Wheatgrass	FAC		
Agrostis stolonifera	Redtop	FAC+		
Alopecurus pratensis	Meadow Foxtail	FACW		
Artemisia frigida	Fringed Sagewort			
Artemisia spp.	Sagebrush			
Aster falcatus	Leafy-Bracted Aster	FACU-		
Aster hesperius	Siskiyou Aster	OBL		
Astragalus spp.	Milkvetch			
Bromus inermis	Smooth Brome			
Bromus japonicus	Japanese Brome	FACU		
Bromus tectorum	Cheatgrass			
Calamagrostis neglecta	Slim Reedgrass	FACW		
Cardaria draba	White Top			
Carduus nutans*	Musk Thistle			
Carex capillaries	Hair-like Sedge	FACW		
Carex limnophila	Pond sedge	FACW		
Carex nebrascensis	Nebraska Sedge	OBL		
Carex praegracilis	Clustered Field sedge	FACW		
Carex torreyi*	Torrey's Sedge	FAC		
Centaurea maculosa*	Spotted Knapweed			
Chenopodium album	White Goosefoot	FAC		
Chenopodium rubrum	Coastal-Blite Pigweed	FACW+		
Chrysothamnus nauseosus	Rubber Rabbitbrush			
Cirsium arvense	Canada Thistle	FACU+		
Cirsium undulatum	Wavy-leaf Thistle	FACU+		
Cleome serrulata	Rocky Mountain Bee plant	FACU		
Cornus stolonifera*	Red-Osier Dogwood	FACW		
Cynoglossum officinalis	Hound's Tongue	FACU		
Dactylis glomerata	Orchard Grass	FACU		
Descurainia sophia	Tansy Mustard			
Distichlis spicata	Saltgrass	FAC+		
Elaeagnus angustifolia*	Russian Olive	FAC		
Eleocharis acicularis*	Least Spike Rush	OBL		

Scientific Name	Common Name	Region 9 (Northwest) Wetland Indicator
Eleocharis pauciflora	Few-flowered Spike Rush	OBL
Elymus cinereus	Big Basin Wild Rye	FACU
Epilobium palustris	Swamp Willow-herb	OBL
Equisetum laevigatum	Smooth Scouring-Rush	FACW
Festuca idahoensis	Idaho fescue	FACU
Festuca pratensis	Meadow Fescue	FACU+
Gentianella amarelle	Northern Gentian	FACW-
Glaux maritime	Sea-Milkwort	FACW+
Grindelia squarrosa	Curly-cup Gumweed	FACU
Habenaria dilatata	Bog orchid	
Haplopappus carthamoides	Columbia Goldenweed	
Helianthus nuttalli	Nuttall's Sunflower	FACW-
Helenium autumnale*	Sneezeweed	FACW
Hippuris vulgaris	Common Mare's-Tail	OBL
Hordeum jubatum	Foxtail barley	FAC+
Iris missouriensis	Rocky Mountain Iris	OBL
Iva axillaries	Small-Flower Sumpweed	FAC
Juncus balticus	Baltic Rush	FACW+
Juncus batticus Juncus bufonius	Toad Rush	FACW+ FACW+
,		
Juncus ensifolius	Three-stamen Rush	FACW
Kochia scoparia	Summer-Cypress	FAC
Lactuca serriola	Prickly Lettuce	FAC-
Lepidium perfoliatum	Clasping Pepper-Grass	FACU+
Lycopus asper	Rough Bugleweed	OBL
Medicago lupulina	Black Medic	FAC
Medicago sativa	Alfalfa	
Melilotus alba	White Sweetclover	FACU
Melilotus officinalis	Yellow Sweetclover	FACU
Mentha arvensis*	Mint	FAC
Mimulus spp.*	Monkey Flower	OBL
Muhlenbergia asperifolia	Alkali Muhly	FACW
Myosotis discolor*	Forget me not	FACW
Myriophyllum spicatum	Eurasian water milfoil	OBL
Phalaris arundinacea	Canary Reed Grass	FACW
Phleum pratense*	Timothy	FACU
Plantago eriopoda	Saline Plantain	FACW
Phlox longifolia	Long-leaf Phlox	
Phragmites australis*	Common Reed	FACW+
Poa pratensis	Kentucky Bluegrass	FACU+
Poa sandbergii	Sandberg's Bluegrass	
Polygonum amphibium*	Water smartweed	OBL
Polygonum aviculare	Prostrate Knotweed	FACW+
	Cottonwood	
Populus trichocarpa*	Pondweed	FAC OBL
Potamogeton spp.*		
Potentilla anserine	Silverweed	OBL
Potentilla fruticosa*	Shrubby Cinquefoil	FAC-
Puccinellia lemmonii	Lemmon's Alkali Grass	FAC
Ranunculus populago	Popular Buttercup	FACW
Rorippa spp.*	Watercress	OBL
Rumex crispus*	Curly Dock	FACW
Salicornia spp.*	Saltwort	
Salix bebbiana*	Bebbs Willow	FACW
Salix exigua	Sandbar Willow	OBL
Salsola kali	Russian Thistle	FACU
Sarcobatus vermiculatus	Greasewood	FACU+
Scirpus acutus*	Hard stem Bulrush	OBL
Scirpus americanus	American bulrush	OBL
Scirpus maritimus*	Salt marsh Bulrush	OBL
Scirpus pungens	Three-square Bulrush	OBL
Scirpus validus	Soft-Stem Bulrush	OBL
Schpus vallaus Shepherdia spp.*	Buffaloberry	
Snepherala spp.* Sisyrinchium angustifolium	Western Blue Eyed Grass	FACW-
Sonchus arvensis	Field Sowthistle	FAC-

 Table 1: 2001-2003 Beaverhead Gateway Vegetation Species List (continued)

Spartina gracilis	Alkali Cordgrass	FACW	
Sporobolus cryptandrus	Sand Dropseed	FACU	
Stipa comata	Needle & Thread Grass		
Suaeda intermedia	Alkali Seepweed	FAC	
Tragopogon dubius	Yellow Salsify		
Triglochin maritime	Seaside Arrowgrass	OBL	
Typha latifolia	Cattail	OBL	
Urtica dioica	Stinging Nettle	FAC+	
Zigadenus venenosus	Meadow Death camas	FAC	

 Table 1: 2001-2003 Beaverhead Gateway Vegetation Species List (continued)

* - Plant species observed by Montana Department of Transportation.

Table 2: Transect 1 Data Summary

Monitoring Year	2001	2002	2003
Transect Length	1650 feet	1650 feet	1650 feet
# Vegetation Community Transitions along Transect	5	5	5
# Vegetation Communities along Transect	4	4	4
# Hydrophytic Vegetation Communities along Transect	3	3	3
Total Vegetative Species	22	22	22
Total Hydrophytic Species	12	14	14
Total Upland Species	10	8	8
Estimated % Total Vegetative Cover	95%	95%	95%
% Transect Length Comprised of Hydrophytic Vegetation Communities	98%	98%	98%
% Transect Length Comprised of Upland Vegetation Communities	2%	2%	2%
% Transect Length Comprised of Unvegetated Open Water	0%	0%	0%
% Transect Length Comprised of Bare Substrate	0%	0%	0%

Table 3: Transect 2 Data Summary

Monitoring Year	2001	2002	2003
Transect Length	280 feet	280 feet	280 feet
# Vegetation Community Transitions along Transect	4	4	4
# Vegetation Communities along Transect	4	4	4
# Hydrophytic Vegetation Communities along Transect	2	2	2
Total Vegetative Species	18	21	21
Total Hydrophytic Species	11	10	10
Total Upland Species	7	11	11
Estimated % Total Vegetative Cover	80%	80%	80%
% Transect Length Comprised of Hydrophytic Vegetation	43%	43%	43%
Communities			
% Transect Length Comprised of Upland Vegetation	57%	57%	57%
Communities			
% Transect Length Comprised of Unvegetated Open Water	0%	0%	0%
% Transect Length Comprised of Bare Substrate	0%	0%	0%

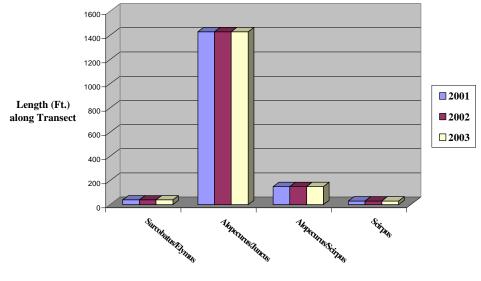
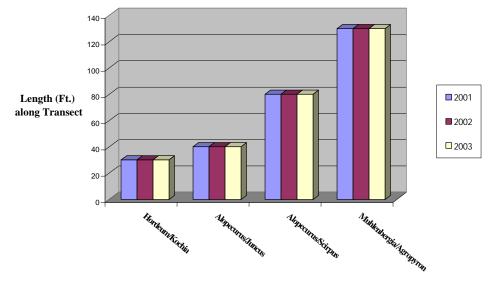



Chart 1: Length of Vegetation Community along Transect 1

Vegetation Communities

Chart 2: Length of Vegetation Communities along Transect 2

Vegetation Communities

Noxious weeds at the site included spotted knapweed (*Centaurea maculosa*) and Canada thistle. Other weedy species included summer-cypress, hound's-tongue (*Cynoglossum officinalis*), curly-cup gumweed (*Grindelia squarrosa*), lambsquarters (*Chenopodium album*), whitetop (*Cardaria draba*) and quackgrass (*Agropyron repens*). MDT has reported Eurasian water-milfoil (*Myriophyllum spicatum*) at this site. No common reed (*Phragmites australis*) was observed at the site although it was present nearby along Highway 41. This is an extremely aggressive invader of wetlands and a serious concern at this site. Weed control and revegetation is needed at this site to prevent further spread and protect soil from wind and water erosion. Additional effort should be made to determine if Eurasian water-milfoil, common reed or other important weeds are present. If Eurasian water-milfoil is present it will likely require significant effort to manage in the future. One weedy species (lambsquarters) showed a dramatic increase this year. Lambsquarters was most common along road, dikes and other disturbed areas but also in wetland vegetation types on drier and more disturbed microsites. This increase could be due to generally drier conditions, increased disturbance from grazing or other factors.

3.3 Soils

The western two-thirds of the site are within Beaverhead County where soil survey information is not currently available. The eastern one-third of the site was mapped as part of the Madison County Soil Survey (USDA 1989). The soil in the eastern one-third of the site is mapped as Neen silty clay loam with randomly distributed soils that have a layer of organic material 4 to 20 inches thick at the surface (USDA 1989). Neen soils are not listed on the Montana NRCS Hydric Soil list. **Appendix D** contains a copy of the soil survey map and description. Soil characteristics at each wetland determination point were compared with those of the Neen soil. The soils observed across most of the site did not generally match the Neen soil. The main portion of the site mapped during the Madison County soil survey is currently under water.

Wetland soils were similar to those observed in 2001. Wetland soils observed during monitoring and documented on the Routine Wetland Determination form were mostly loams, silt loams or silty clay loams with very low chromas (0 or 1) within 2 inches of the surface. Mottles (redoximorphic features) were present in most profiles observed. Only one of four soil profiles described on the Routine Wetland Determination forms was saturated within 18 inches of the surface reflecting the time of year and the recent history of drought discussed above. Small areas were observed with thin organic surface layers and with mucky mineral surface layers.

3.4 Wetland Delineation

Wetland boundaries were similar in 2003 to those mapped in 2001 and 2002. Delineated wetland boundaries are illustrated on **Figure 3 in Appendix A**. Completed wetland delineation forms are included in **Appendix B**. Soils, vegetation, and hydrology are discussed in preceding sections.

Monitoring in 2001 through 2003 identified the following conditions:

	Monitoring Area	Above Dike	Below Dike
Gross Wetland Area	118.2	97.9	20.3
Open Water Area	6.5	6.5	0.0
Net Wetland Area	111.7	91.4	20.3

Approximately 111.7 wetland acres and 6.5 open water acres occur within the 2003 monitoring area (**Figure 3**). The pre-construction wetland delineation reported 5.2 wetland and no open water acres. The net increase in wetland acres is 111.7 - 5.2 = 106.5 acres plus 6.5 acres of open water. Additional area may form with time and more normal precipitation around the low gradient portions of the current wetland area.

MDT has indicated that the monitoring area will likely be reduced in 2004, only including the area above the dike and eliminating the area below the dike (Urban pers. comm.).

3.5 Wildlife

Wildlife species, or evidence of wildlife, observed on the site during 2001, 2002 and 2003 monitoring efforts are listed in **Table 2**. The site receives substantial use by American white pelicans, trumpeter swans, black terns, sandhill cranes, and other species. American white pelicans, trumpeter swans, and black terns are all considered species of concern by the MNHP relative to breeding locations. Of these three species, black terns are likely breeders on the site.

In 2003 there were fewer birds observed and fewer bird species. The greatest number of birds observed at the site was about 200, compared with over 500 in 2001. Specific evidence observed, as well as activity codes pertaining to birds, is provided on the completed monitoring form in **Appendix B**.

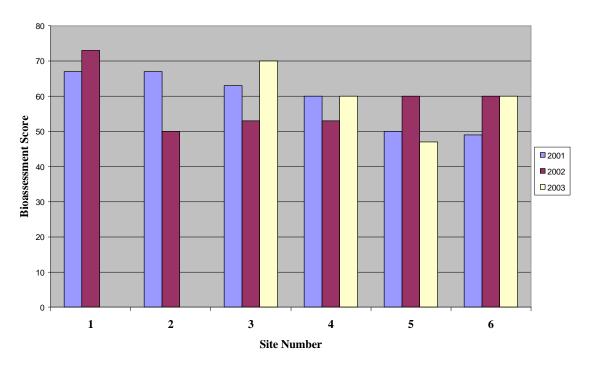
This site provides habitat for a variety of wildlife species. Two mammal and twenty-four bird species were noted at the mitigation site during the 2003 site visits. Many other wildlife species use the site but were not present during the monitoring visits. **Appendix D** includes a list of 81 bird species observed at the site by MDT biologists over the past five years.

FISH	
None	
AMPHIBIANS	
None	
REPTILES	
Garter Snake (Thamnophis spp.)	
BIRDS	
American White Pelican (Pelecanus erythrorhynchos)	Killdeer (Charadrius vociferous)
American Crow (Corvus brachyrhynchos)	Lesser Scaup (Aythya affinis)
American Coot (Fulica americana)	Long-billed dowitcher (Limnodromus scolopaceus)
American Dipper (Cinclus)	Mallard (Anas platyrhynchos)
Bank Swallow (Riparia riparia)	Marsh Hawk (Circus cyaneus)
Black-billed magpie (Pica pica)	Marsh wren (Cistothorus palustris)
Black-necked Stilt (Himantopus mexicanus)	Northern harrier (Circus cyaneus)
Black Tern (Chlidonias niger)	Northern pintail (Anas acuta)
Blue-winged teal (Anas discors)	Northern rough-winged swallow (Stelgidopteryx serripennis)
Bullock's oriole (Icterus bullockii)	Northern shoveler (Anas clypeata)
Canada Goose (Branta Canadensis)	Raven (Corvus corax)
Cinnamon Teal (Anas cyanoptera)	Plovers (Charadrius spp.)
Cliff Swallow (Petrochelidon pyrrhonota)	Red-head Duck (Aythya americana)
Common goldeneye (Bucephala clangula)	Red-tail Hawk (Buteo jamaicensis)
Common Snipe (Gallinago gallinago)	Red-winged Blackbird (Agelaius phoeniceus)
Common yellowthroat (Geothlypis trichas)	Sandhill Cranes (Grus canadensis)
Cowbird (Molothrus ater)	Sora (Porzana carolina)
Eared grebe (Podiceps nigricollis)	Tree swallow (Tachycineta bicolor)
Franklins Gull (Larus pipixcan)	Vesper Sparrow (Pooecetes gramineus)
Forster's tern (Sterna forsteri)	Western Bluebird (Sialia mexicana)
Gadwall (Anas strepera)	Western Meadowlark (Sturnella neglecta)
Great Blue Heron (Ardea herodias)	Wilson's phalarope (Phalaropus tricolor)
Hooded Merganser (Lophodytes cucullatus)	Yellow-headed Blackbird (Xanthocephalus xanthocephalus)
Horned lark (Eremophila alpestris)	
MAMMALS	
Coyote (Canis latrans)	
Mule Deer (Odocoileus hemionus)	
Muskrat (Ondatra zibethicus)	
	s were observed during one or more of the previous monitoring years,
but during 2003.	

 Table 4: Wildlife Species Observed at the Beaverhead Gateway Mitigation Site During 2001-2003

3.6 Macroinvertebrates

Complete results from the four macroinvertebrate sampling locations (**Figure 2**) are presented in **Appendix F.** Samples were not taken at locations 1 and 2 in 2003 due to a lack of water. The following analysis was provided by Rhithron Associates (Bollman 2003).


Beaverhead #3. Total bioassessment score fell slightly, and probably insignificantly, between 2002 and 2003; the evaluation suggested that overall biologic condition was sub-optimal in all 3 years. An increase in assemblage sensitivity was a positive change; the biotic index value of 6.63 was well below the median for sites in this study. This may indicate improvement in water quality since 2002. There was a shift in the functional composition of the fauna; whereas gatherers dominated the mix in previous years, scrapers were prevalent in 2003. A decrease in nutrient enrichment or temperature could account for the shift. The scud-and-snail dominated assemblage suggests abundant macrophytes.

Beaverhead #4. The biotic index value improved at this site between 2002 and 2003, and the relatively sensitive taxa (POET) which had apparently been absent from the site in 2002 were again collected in 2003. Cladoceran filter-feeders were the most prevalent animals, and gatherers rounded out what appears to be a fauna adapted to moderately deep water. Improvement in water quality is suggested by these findings. The low taxa richness may be correlated with depth as well, and the depauperate midge fauna suggests monotonous substrates. Sub-optimal biotic conditions were indicated by scores in all 3 years.

Beaverhead #5. The scud-and-snail pattern suggests abundant macrophytes at this site. As at all the other Beaverhead sites sampled in 2003, water quality appeared to be better than median conditions for wetland sites in this study; the biotic index value was relatively low, and the number of POET taxa was within expectations. Benthic habitat complexity is suggested by the midge fauna, and substrates were likely hypoxic since 3 of 4 taxa were hemoglobin-bearers. Although the total bioassessment score indicated worsening biotic conditions at this site since 2003, taxonomic and functional composition of the invertebrate assemblage appear to be appropriate for a shallow wetland site.

Beaverhead #6. Scores indicate stable sub-optimal biotic conditions at this site from 2002 to 2003. Ample large organic debris and resulting benthic habitat complexity is suggested by the dominance of shredders in the functional mix; a stable macrophyte crop could be the source of this material. Overall assemblage sensitivity improved between the 2 years, suggesting improved water quality in terms of nutrients and/or temperature.

3.7 Functional Assessment

The functional assessment numbers for 2003 are similar to those from 2001 and 2002. A completed functional assessment form is included in **Appendix B**. The Beaverhead Gateway mitigation site is currently rated as a Category II (high value) site, primarily due to exceptional wildlife habitat, TE habitat, MNHP species habitat, surface water storage, sediment/nutrient removal, food chain support and groundwater discharge ratings. The site received a moderate fish rating due to few fish and habitat deficiencies. The site received a moderate flood attenuation rating since only a small portion below the dike is subject to flooding by the Beaverhead River. The site received a low recreation/education rating since it has moderate disturbance and is in private ownership. The site received a low rating for sediment/shoreline stability due to a lack of plants with deep binding roots. The high turbidity along the shoreline suggests that wave action is eroding the shoreline especially along the dike.

Much of the wetland area, especially vegetation community Type 6 (**Figure 3**) would have higher functional capacity if the number of vegetation strata or layers were increased. This area has little cover or vertical diversity. Eliminating or reducing grazing and planting woody species are examples of methods for increasing functional capacity at the site, although the site does rate as a Category II wetland and rates "high" to "exceptional" for several assessed functions.

Based on functional assessment results (**Table 3**), approximately 993 functional units have been created thus far at the Beaverhead Gateway mitigation site.

Function and Value Parameters From the	2001/2002/2003
1999 MDT Montana Wetland Assessment Method	Ratings and Scores
Listed/Proposed T&E Species Habitat	Mod (0.7)
MNHP Species Habitat	High (1.0)
General Wildlife Habitat	Exceptional (1.0)
General Fish/Aquatic Habitat	Low (0.5)
Flood Attenuation	Mod (0.5)
Short and Long Term Surface Water Storage	High (1.0)
Sediment, Nutrient, Toxicant Removal	High (1.0)
Sediment/Shoreline Stabilization	Low (0.3)
Production Export/Food Chain Support	High (1.0)
Groundwater Discharge/Recharge	High (1.0)
Uniqueness	Mod (0.5)
Recreation/Education Potential	Low (0.3)
Actual Points/Possible Points	8.8 / 12
% of Possible Score Achieved	73%
Overall Category	II
Total Acreage of Assessed Wetlands and Other Aquatic Habitats	118.2 ac
Functional Units (acreage x actual points)	1040.16 fu
Net Acreage Gain	112.8 ac
Net Functional Unit Gain	992.64 fu

 Table 5: Summary of 2001-2003 Wetland Function/Value Ratings and Functional Points¹

3.8 Photographs

Representative photographs taken from photo-points and transect ends are presented in **Appendix C**. A copy of the 2003 aerial photograph is also provided in **Appendix C**.

3.9 Maintenance Needs/Recommendations

Weed control and revegetation of disturbed sites is still needed to prevent further weed spread, reduce the risk of new weeds invading, reduce wind and water erosion and reduce sediment input to surface waters. Several noxious weeds are present including Canada thistle, hound's-tongue and spotted knapweed which must be controlled under the Montana County Noxious Weed Control Act [7-22-2151].

Spoil piles left from ditch excavation will continue to create a weed problem, a wind and water erosion hazard and a sedimentation source. This same issue applies to the dike and other poorly vegetated sites. The most effective remedy is to grade the spoil piles and revegetate them along with other sites needing revegetation. It may be necessary to treat these sites with organic matter or other amendments and plant desired native species.

The lack of hiding cover throughout much of the wetland area has an impact on the site's value for many wildlife species. Methods to improve wildlife value and functional capacity include suspension of grazing and planting of taller herbaceous and woody species. No woody plant regeneration (shrubs/trees) was observed across the site.

Dike erosion and sediment production from the poorly vegetated shoreline should be monitored more closely by installing permanent markers or by periodic surveys. MDT was monitoring erosion on the dike using bank pins from 1998-2001, but the pins are no longer present indicating that erosion has occurred (Urban pers. comm.). Examples of potential solutions to erosion problems include shoreline reinforcement, off-shore wave protection, protected off-shore plantings and shoreline plantings.

3.10 Current Credit Summary

At this time approximately 106.5 acres of wetland and 6.5 acres of open water creation have been accomplished compared with a goal of 52 acres. This includes portions of the monitoring area both above (net of 86.2 wetland acres and 6.5 open water acres) and below (20.3 wetland acres) the dike. MDT has indicated that they might not purchase the credits that have developed below the dike, and that the monitoring area may be reduced to the area above the dike in 2004 (Urban pers. comm.). Consequently, available credit at the site ranges between 92.7 and 113 acres, depending on whether or not credits below the dike are purchased.

4.0 REFERENCES

- Bollman, W. Rhithron Associates. 2003. *MDT Wetland Mitigation Monitoring Project*. Missoula, MT.
- Carlson, J. Program Zoologist, Montana Natural Heritage Program. Helena, MT. April 2001 conversation.
- Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*. US Army Corps of Engineers. Washington, DC.
- Hackley, Pam. 1997. Pre-Project Wetland Delineation Beaverhead Gateway Wetland Mitigation Site. Helena, MT.
- Ralph, C.J., Geupel, G.R., Pyle, P., Martin, T.E., and D.F. DeSante. 1993. *Handbook of field methods for monitoring landbirds*. Gen. Tech. Rep. PSW-GTR-144. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. of Agriculture. 41 p.
- Urban, L. Wetland Mitigation Specialist, Montana Department of Transportation. Helena, MT. March 2001 meeting; January 2002 meeting; March 2004 meeting.
- USDA Natural Resource Conservation Service. 1989. Soil Survey of Madison County Area, Montana.
- USDA Natural Resources Conservation Service. 1998. *Field Indicators of Hydric Soils in the United States*, Version 4. G. Hurt, P. Whited and R. Pringle (eds.). USDA, NRCS Fort Worth, TX.

Appendix A

FIGURES 2 - 3

MDT Wetland Mitigation Monitoring Beaverhead Gateway Dillon, Montana

Appendix B

COMPLETED 2003 WETLAND MITIGATION SITE MONITORING FORM COMPLETED 2003 BIRD SURVEY FORM COMPLETED 2003 WETLAND DELINEATION FORMS COMPLETED 2003 FUNCTIONAL ASSESSMENT FORM

MDT Wetland Mitigation Monitoring Beaverhead Gateway Dillon, Montana

LWC / MDT WETLAND MITIGATION SITE MONITORING FORM

Monitoring area includes wetland & upland.

HYDROLOGY

Surface Water Source:_____

Inundation: Present X Absent Average depths: 0.25 ft Range of depths: 0 - 4 ft %

Depth at emergent vegetation-open water boundary: 1.5 ft

If assessment area is not inundated are the soils saturated w/in 12" of surface: Yes____No____ Other evidence of hydrology on site (drift lines, erosion, stained vegetation etc.): <u>Drift lines, stained</u> vegetation, drainage patterns, oxidized root channels.

Groundwater

Monitoring wells: Present_____ Absent_X Record depth of water below ground surface

Well #	Depth	Well #	Depth	Well #	Depth

Additional Activities Checklist:

X Map emergent vegetation-open water boundary on air photo

X Observe extent of surface water during each site visit and look for evidence of past surface water elevations (drift lines, erosion, vegetation staining etc.)

NA GPS survey groundwater monitoring wells locations if present

COMMENTS/PROBLEMS: Site is large and variable. It's difficult to group areas into vegetation types that are narrowly defined without having hundreds of small polygons. Vegetation types as mapped have varying coverage of the indicator species.

High turbidity in submerged/open water areas, perhaps wave action eroding dike which has insufficient vegetation cover, especially of the deep –rooted plants.

VEGETATION COMMUNITIES

Community No.: 2 Community Title (main species): Scirpus

Dominant Species	% Cover	Dominant Species	% Cover
Scirpus americanus	9		
Scirpus acutus	Р		

COMMENTS/PROBLEMS: Bullrush along shorelines- also occurs elsewhere than where shown on map but areas are too small to delineate.

NOTE: #1 is open water on map.

Community No.: <u>3</u> Community Title (main species): <u>Hordeum / Kochia</u>

Dominant Species	% Cover	Dominant Species	% Cover
Hordeum jubatum	2	Agropyron trachycaulum	Р
Kochia scoparia	2	Distichlis spicata	Р
Cirsium arvense	1	Suaeda intermedia	Р
Cardaria draba	Р	Descurainia sophia	Р
Chenopodium album	Т		

COMMENTS/PROBLEMS: Weedy community on dikes. Species composition varies.

Community No.: 4 Community Title (main species): Muhlenbergia / Agropyron

Dominant Species	% Cover	Dominant Species	% Cover
Muhlenbergia asperifolia	5	Suaeda intermedia	Т
Agropyron smithii	2	Sarcobatus vermiculatus	Т
Hordeum jubatum	Т	Juncus balticus	Т
Elymus cinereus	Р	Agropyron trachycaulum	Р
Poa pratensis	Т		

COMMENTS/PROBLEMS: <u>Slightly higher mound above wetland area.</u>

Additional Activities Checklist:

X Record and map vegetative communities on air photo

VEGETATION COMMUNITIES (continued)

Community No.: <u>5</u> Community Title (main species): <u>Alopecurus / Juncus</u>

Dominant Species	% Cover	Dominant Species	% Cover
Alopecurus pratensis	7	Rumex crispus	Р
Triglochin maritima	Р	Agropyron trachycaulum	Р
Agrostis alba	1	Carex limnophila	Т
Carex nebrascensis	1	Muhlenbergia asperifolia	Р
Juncus balticus	1		

COMMENTS/PROBLEMS: This area is highly variable. It is dominated by these species but their coverage varies across this community type. Variation is in part due to the transition to wetland character.

Community No.: <u>6</u> Community Title (main species): <u>Alopecurus / Scirpus</u>

Dominant Species	% Cover	Dominant Species	% Cover
Alopecurus pratensis	5	Carex limnophila	Т
Scirpus americanus	1	Agropyron trachycaulum	Т
Scirpus acutus	Р	Scirpus pungens	Т
Juncus balticus	2	Hordeum jubatum	Т
Triglochin maritima	1	Chenopodium album	Т

COMMENTS/PROBLEMS: This community is also highly variable on a micro-site basis due to small topographic changes and due to increasing wetlands influence.

Community No.: 7 Community Title (main species): Sarcobatus / Elymus

Dominant Species	% Cover	Dominant Species	% Cover
Sarcobatus vermiculatus	3	Juncus balticus	Т
Elymus cinereus	1	Poa pratensis	Т
Hordeum jubatum	1		
Agropyron smithii	Р		
Agropyron trachycaulum	1		

COMMENTS/PROBLEMS: Upland areas adjacent to wetland. Similar to 2001.

COMPREHENSIVE VEGETATION LIST

Species	Vegetation Community Number(s)	Species	Vegetation Community Number(s)
Agropyron cristatum		Epilobium palustris	
Agropyron repens		Equisetum laevigatum	
Agropyron smithii		Festuca idahoensis	
Agropyron trachycaulum		Festuca pratensis	
Agrostis stolonifera		Gentianella amarelle	
Alopecurus pratensis		Glaux maritime	
Artemisia frigida		Grindelia squarrosa	
Artemisia spp.		Habenaria dilatata	
Aster falcatus		Haplopappus carthamoides	
Aster hesperius		Helianthus nuttalli	
Astragalus spp.		Hippuris vulgaris	
Bromus inermis		Hordeum jubatum	
Bromus japonicus		Iris missouriensis	
Bromus tectorum		Iva axillaries	
Calamagrostis neglecta		Juncus balticus	
Cardaria draba		Juncus bufonius	
Carex capillaries		Juncus ensifolius	
Carex limnophila		Kochia scoparia	
Carex nebrascensis		Lactuca serriola	
Carex praegracilis		Lepidium perfoliatum	
Carex spp.		Lycopus asper	
Centaurea maculosa		Medicago lupulina	
Chenopodium album		Medicago sativa	
Chenopodium rubrum		Melilotus alba	
Chrysothamnus nauseosus		Melilotus officinalis	
Cirsium arvense		Mentha arvensis	
Cirsium undulatum		Mimulus spp.	
Cleome serrulata		Muhlenbergia asperifolia	
Cynoglossum officinale		Myriophyllum spicatum	
Dactylis glomerata		Phalaris arundinacea	
Descurainia sophia		Phleum pratense	
Distichlis spicata		Phlox longifolia	
Eleocharis acicularis		Phragmites australis	
Eleocharis pauciflora		Plantago eriopoda	
Elymus cinereus		Poa pratensis	

COMMENTS/PROBLEMS: No new species in 2003. Species list continued on the next page.

Species	Vegetation Community Number(s)	Species	Vegetation Community Number(s)
Poa sandbergii			
Polygonum aviculare			
Polygonum spp.			
Potentilla anserina			
Puccinellia lemmonii			
Ranunculus populago			
Rumex crispus			
Salicornia spp.			
Salix exigua			
Salsola kali			
Sarcobatus vermiculatus			
Scirpus acutus			
Scirpus americanus			
Scirpus maritimus			
Scirpus pungens			
Scirpus validus			
Sisyrinchium angustifolium			
Sonchus arvensis			
Spartina gracilis			
Sporobolus cryptandrus			
Stipa comata			
Suaeda intermedia			
Tragopogon dubius			
Triglochin maritima			
Typha latifolia			
Urtica dioica			
Zigadenus venenosus			

WILDLIFE

BIRDS

(Attach Bird Survey Field Forms)

Were man made nesting structures installed? Yes \underline{X} No____Type:____ How many?_____ Are the nesting structures being utilized? Yes \underline{X} No____ Do the nesting structures need repairs? Yes____ No__X

MAMMALS AND HERPTILES

Species	Number	Indirect indication of use			
	Observed	Tracks	Scat	Burrows	Other
8	6	Х	Х		
Coyote	1	Х	х		

Additional Activities Checklist:

X Macroinvertebrate sampling (if required)

COMMENTS/PROBLEMS:

PHOTOGRAPHS

Using a camera with a 50 mm lenses and color film take photographs of the following permanent reference points listed in the checklist below. Record the direction of the photograph using a compass. (The first time at each site establish a permanent reference point by setting a ½ inch rebar or fencepost extending 2-3' above ground, survey the location with a resource grade GPS and mark the location on the air photo.) Checklist:

- X One photo for each of the 4 cardinal directions surrounding wetland
- X At least one photo showing upland use surrounding wetland if more than one upland use exists, take additional photos
- X At least one photo showing buffer surrounding wetland
- X One photo from each end of vegetation transect showing transect

Location	Photo	Photograph Description	Compass
	Frame #		Reading
1		Looking NE along fence and W. across mitigation site.	120 & 300
2		Panoramic looking from SW to NE.	270-45
3		Looking NE, emergent vegetation / open water and SW along transect.	45 & 225
4		Looking NE, upland vegetation.	45
5		Looking NE across site.	45
7		Looking E. along pond bank and N. along Transect # 2.	90 & 35
8		Looking S. along Transect # 2.	180
9		Looking SE along pond bank & W. along other bank.	150 & 270
10		Looking NE along spoil pile, weedy community.	45

COMMENTS/PROBLEMS: _____

GPS SURVEYING

Using a resource grade GPS survey the items on the checklist below. Collect at least 3 location points with the GPS unit set at 5 second recording rate. Record file numbers fore site in designated GPS field notebook

Checklist:

- <u>X</u> Jurisdictional wetland boundary
- X 4-6 landmarks recognizable on the air photo
- X Start and end points of vegetation transect(s)
- <u>X</u> Photo reference points
- ____ Groundwater monitoring well locations

COMMENTS/PROBLEMS: _____

WETLAND DELINEATION

(Attach Corps of Engineers delineation forms)

At each site conduct the items on the checklist below:

X Delineate wetlands according to the 1987 Army Corps manual.

X Delineate wetland-upland boundary on the air photo

X Survey wetland-upland boundary with a resource grade GPS survey

COMMENTS/PROBLEMS: Similar to 2002.

FUNCTIONAL ASSESSMENT

(Complete and attach full MDT Montana Wetland Assessment Method field forms; also attach abbreviated field forms, if used)

COMMENTS/PROBLEMS:

MAINTENANCE

Were man-made nesting structures installed at this site? YES___ NO____ If yes, do they need to be repaired? YES___ NO____

If yes, describe problems below and indicate if any actions were taken to remedy the problems.

Were man-made structures build or installed to impound water or control water flow into or out of the wetland? YES X NO_____

If yes, are the structures working properly and in good working order? YES \underline{X} NO_____ If no, describe the problems below.

COMMENTS/PROBLEMS: <u>Erosion/sedimentation along dike, wind and water erosion in bare areas and still</u> lots of weeds along excavation piles. Lots of lambsquarters (Chenopodium) this year – conspicuous.

MDT WE	TLAND MONIT	CORING – VEGETATION TRANSECT	
Site: Beaverhead Rock Date:	8/06/03	Examiner: B. Dutton Transect #	1
Approx. transect length: 1650 ft.	Compass Direc	tion from Start (Upland): <u>35⁰</u>	
Vegetation type A: Sarcobatus/Elymus		Vegetation type B: Alopecurus /Juncus	
Length of transect in this type: 40	feet	Length of transect in this type: 1030	feet
Species:	Cover:	Species:	Cover:
Sarcobatus vermiculatus	4	Alopecurus pratensis	3
Elymus cinereus	3	Juncus balticus	3
Agropyron trachycaulum	2	Hordeum jubatum	P
Poa pratensis	P	Chenopodium album	1
Juncus balticus	P	Festuca pratensis	T
Hordeum jubatum	P	Aster falcatus	Т
Phleum pratense	T	Muhlenbergia asperifolia	2
1		Plantago spp.	Т
		Agropyron smithii	Т
		Spartina gracilis	Р
		Agropyron trachycaulum	Р
		Carex limnophila	Р
Total Vegetative Cover	: 90%	Total Vegetative Cover:	95%
Vegetation type C: Alopecurus/Scirpus		Vegetation type D: Alopecurus /Juncus	
Length of transect in this type: 150	feet	Length of transect in this type: 400	feet
Species:	Cover:	Species:	Cover:
Alopecurus pratensis	3	Juncus balticus	3
Juncus balticus	2	Triglochin maritima	3
Scirpus pungens	1	Alopecurus pratensis	1
Muhlenbergia asperifolia	1	Hordeum jubatum	P
Carex limnophila	P	Agropyron trachycaulum	
Hordeum jubatum	P	Carex limnophila	2 P
Spartina gracilis	P	Scirpus pungens	P
Agropyron trachycaulum	P	Equisetum laevigatum	T
Chenopodium album	3	Agropyron smithii	T
1	-	Plantago spp.	T
		Helenium autumnale	T
Total Vegetative Cover	: 100%	Total Vegetative Cover:	_

\

MDT WETLAND MONITORING – VEGETATION TRANSECT (continued)					
Site: Beaverhead Rock Date:	8/06/03	Examiner: B. Dutton Transect # 1			
		tion from Start (Upland): 35 ⁰			
Vegetation type E: Scirpus		Vegetation type F:			
Length of transect in this type: 30	feet	Length of transect in this type:	feet		
Species:	Cover:	Species:	Cover:		
Scirpus americanus	9				
Scirpus acutus	Р				
	0.004				
Total Vegetative Cover:	90%	Total Vegetative Cover:			
Vegetation type G:		Vegetation type H:			
Length of transect in this type:	feet	Length of transect in this type:	feet		
Species:	Cover:	Species:	Cover:		
			↓ Ⅰ		
Total Vasatating Course		Total Vacatation Comm			
Total Vegetative Cover:		Total Vegetative Cover:			

MDT WETLAND MONITORING – VEGETATION TRANSECT (continued)				
Site: Beaverhead Rock Date:	8/06/03	Examiner: B. Dutton Transect # 2		
Approx. transect length: 280 ft.		ion from Start (Upland): 350°		
Vegetation type A: Hordeum/Kochia – dike upland		Vegetation type B: Alopecurus /Juncus		
Length of transect in this type: 30	feet	Length of transect in this type: 40	feet	
Species:	Cover:	Species:	Cover:	
Hordeum jubatum	2	Alopecurus pratensis	3	
Kochia scoparia	2	Juncus balticus	3	
Cirsium arvense	Р	Hordeum jubatum	Р	
Cardaria draba	Т	Chenopodium album	1	
Chenopodium album	2	Festuca pratensis	Т	
Agropyron trachycaulum	Р	Muhlenbergia asperifolia	2	
Distichlis spicata	Т	Plantago spp.	Т	
Suaeda intermedia	Т	Agropyron smithii	Т	
		Spartina gracilis	Р	
		Agropyron trachycaulum	Р	
Total Vegetative Cover:	60%	Total Vegetative Cover:	95%	
Vegetation type C: Alopecurus/Scirpus – wetland		Vegetation type D: Muhlenbergia/Agropyron – upland		
Length of transect in this type: 80	feet	Length of transect in this type: 130	feet	
Species:	Cover:	Species:	Cover:	
Alopecurus pratensis	8	Muhlenbergia asperifolia	6	
Agropyron trachycaulum	1	Agropyron trachycaulum		
Juncus balticus	2	Festuca idahoensis	Р	
Carex nebrascensis	1	Rumex crispus	Р	
Rumex crispus	Р	Agropyron smithii		
Habenaria dilatata	Т	Hordeum jubatum		
		Juncus balticus	Р	
		Poa pratensis	Р	
		Elymus cinereus	Т	
Total Vegetative Cover:	90%	Total Vegetative Cover:	90%	

MDT WETLAND MONITORING – VEGETATION TRANSECT (back of form)

Cover Estimate

 $\begin{array}{ll} + = <1\% & 3 = 11-20\% \\ 1 = 1-5\% & 4 = 21-50\% \\ 2 = 6-10\% & 5 = >50\% \end{array}$

Indicator Class: + = Obligate - = Facultative/Wet 0 = Facultative

Source: P = PlantedV = Volunteer

Percent of perimeter ______% developing wetland vegetation – excluding dam/berm structures.

Establish transects perpendicular to the shoreline (or saturated perimeter). The transect should begin in the upland area. Permanently mark this location with a standard metal fencepost. Extend the imaginary transect line towards the center of the wetland, ending at the 3 food depth (in open water), or at a point where water depths or saturation are maximized. Mark this location with another metal fencepost.

Estimate cover within a 10 ft wide "belt" along the transect length. At a minimum, establish a transect at the windward and leeward sides of the wetland. Remember that the purpose of this sampling is to monitor, not inventory, representative portions of the wetland site.

Notes:

Similar to 2001 field season.

BIRD SURVEY – FIELD DATA SHEET

SITE: Beaverhead Ranch (Spring)

Page_1_of__1_ Date: 5/29/03 Survey Time: 1300-1500

Bird Species	#	Behavior	Habitat	Bird Species	#	Behavior	Habitat
American coot	2	F	OW				
blue-winged teal	20	F	OW, MA				
Bullock's oriole	1	F	UP				
Canada goose	20	F, N	OW, MA				
cinnamon teal	20	F	OW, MA				
cliff swallow	200	F	OW, MA				
common yellowthroat	2	F	MA				
Forster's tern	4	F, L	MF, OW				
gadwall	6	F	OW, MA				
killdeer	50	F, N	MF, US				
lesser scaup	2	F	OW				
mallard	12	F	OW, MA				
marsh wren	2	F	MA				
northern harrier	1	F	MA				
northern pintail	2	F	OW, MA				
northern rough-winged	10	F	OW				
swallow							
northern shoveler	6	F	OW, MA				
raven	2	F	MA				
red-winged blackbird	20	F, N	MA				
sandhill crane	35	F	MA				
sora	1	F	MA				
tree swallow	100	F	OW, MA				
western meadowlark	2	F	UP				
Wilson's phalarope	120	F	OW, MA				
yellow-headed	40	F, N	MA				
blackbird							
NT 4							

Notes:
Hot, light breeze, sunny
7 pairs of Canada geese with broods; tree swallows are using bluebird nest boxes
Coyote scat, tracks; deer tracks; muskrat trails
No herps observed
Site inundated

Behavior: BP - one of a breeding pair; BD - breeding display; F - foraging; FO - flyover; L - loafing; N - nesting

 $\label{eq:habitat: AB - aquatic bed; FO - forested; I - island; MA - marsh; MF - mud flat; OW - open water; SS - scrub/shrub; UP - upland buffer; WM - wet meadow, US - unconsolidated shoreline$

BIRD SURVEY – FIELD DATA SHEET

SITE: Beaverhead Ranch (Mid-season)

Bird Species	#	Behavior	Habitat	Bird Species	#	Behavior	Habitat
marsh hawk	2	F	UP, WM				
Canada goose	40	F	MA, MF, OW				
pelican	20	F	MF, OW				
American coot	6	F	OW				
Sandhill crane	32	F	UP, WM				
killdeer	6	F	MF				
Redwing blackbird	4	F	UP				
Mallard	8	F	OW				
Cinnamon teal	12	F	OW, MF				
meadowlark	4	F	UP				
						T	
						T	
						T	
	•			ш		•	
Notes:							
Deer - 8 + tracks & sc	at						

Notes.
Deer $-8 + \text{tracks \& scat}$
Coyote - 1 + scat
No herps

Behavior: BP - one of a breeding pair; BD - breeding display; F - foraging; FO - flyover; L - loafing; N - nesting

Habitat: AB – aquatic bed; FO – forested; I – island; MA – marsh; MF – mud flat; OW – open water; SS – scrub/shrub; UP – upland buffer; WM – wet meadow, US – unconsolidated shoreline

BIRD SURVEY – FIELD DATA SHEET

SITE: Beaverhead Ranch (Fall)

Page_1_of_1_
Date: 10/16/03
Survey Time: 1300-1500

Bird Species	#	Behavior	Habitat	Bird Species	#	Behavior	Habitat
American coot	15	F,L	OW				
mallard	35	F,L	OW				
eared grebe	1	L	OW				
Canada goose	65	F	OW				
long-billed dowitcher	30	F	MA				
common goldeneye	53	F,L	OW				
raven	3	FO	MA				
horned lark	3	FO	UP				
killdeer	4	F	MF				
black-billed magpie	4	F	WM				
·							
Notes:							
cloudy, breezy, dry							
				-			
Covote scat tracks: dee	r tracks	raccoon tra	ocks, skunk tra	cks			

2 whitetail deer observed

Site inundated

Behavior: BP - one of a breeding pair; BD - breeding display; F - foraging; FO - flyover; L - loafing; N - nesting

Habitat: AB - aquatic bed; FO - forested; I - island; MA - marsh; MF - mud flat; OW - open water; SS - scrub/shrub; UP - upland buffer; WM - wet meadow, US - unconsolidated shoreline

DATA FORM ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Delineation Manual)

		5 2 • III			<i>a.</i> a.)			
Project/Site: Beaverhead Rock					Date:	8/06/0	3	
Applicant/Owner: MDT					County:	Beaver	rhead	
Investigator: B. Dutton					State:	MT		
Do Normal Circumstances exist on the site:	Х	Yes		No	Community	/ ID:		
Is the site significantly disturbed (Atypical Situation)?		Yes	Х	No	Transect II) :	T2	
Is the area a potential Problem Area?:		Yes	Х	No	Plot ID:		1	
(If needed, explain on reverse.)								

VEGETATION

	Dominant Plant Species	Stratum	Indicator		Dominant Plant Species	Stratum	Indicator
1	Alopecurus pratensis	Н	FACW	9			
2	Agropyron trachycaulum	Н	FAC	10			
3	Juncus balticus	Н	FACW+	11			
4	Carex nebrascensis	Н	OBL	12			
5	Rumex crispus*	Н	FACW	13			
6	Habenaria dilatata	Н		14			
7				15			
8				16			
Per	cent of Dominant Species that an	re OBL, FAC	CW, or FAC (exclu	ding I	FAC-). $6/6 = 100\%$		
Hy	drophytic vegetation present, we	tland plants.					
_		_					

HYDROLOGY

\mathbf{D}_{1}	Wether difference in directory				
Recorded Data (Describe in Remarks):	Wetland Hydrology Indicators:				
Stream, Lake, or Tide Gauge	Primary Indicators:				
Aerial Photographs	Inundated				
Other	Saturated in Upper 12 Inches				
X No Recorded Data Available	Water Marks				
	Drift Lines				
Field Observations:	Sediment Deposits				
	Drainage Patterns in Wetlands				
Depth of Surface Water: (in.)	Secondary Indicators (2 or more required):				
	X Oxidized Root Channels in Upper 12 Inches				
Depth to Free Water in Pit: >18 (in.)	Water-Stained Leaves				
	Local Soil Survey Data				
Depth to Saturated Soil: >18 (in.)	X FAC-Neutral Test				
	Other (Explain in Remarks)				
Remarks:	·				
Dry year.					

Map Unit	Name	Neen silty clay le	bam	Drainage Class:	Somewhat poorly				
(Series and Phase):			Field Observations						
Taxonomy	(Subgroup):	Aquic calciorthic	ds	Confirm Mapped Ty	pe? Yes X N				
Profile De	scription:								
Depth		Matrix Color Mottle Colors		Mottle	Texture, Concretions,				
inches	Horizon	(Munsell Moist)	(Munsell Moist)	Abundance/Contrast	Structure, etc.				
0 - 2	0	10YR 4/2	-	-	Silt loam				
2-12	A1	10 YR 2/0	-	-	Silt loam				
12 - 18+	2 – 18+ B2 10 YR 1/1		10 YR 6/6	Few/Faint	Very fine sandy loam				
Hydric Soi	il Indicators:								
	X Hist			Concretions	urfage Leven in Sandy Soile				
		ic Epipedon ïdic Odor		High Organic Content in su Organic Streaking in Sandy					
		ic Moisture Regime		Listed on Local Hydric Soi					
		ucing Conditions		Listed on National Hydric S					
		yed or Low-Chroma C	Colors	Other (Explain in Remarks)					
	<u></u> 00,				, ,				
Mucky mi	neral surface s	soil.							
•									

WETLAND DETERMINATION

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	X X X	Yes Yes Yes	 No No No	Is this Sampling Point Within a Wetland?	X	Yes	No)
Remarks:								
Same conditions in 2003 as 2001 &	2002 ¢							
					Approv	ed by HQ	USACE 2/9)2

DATA FORM ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Delineation Manual)

					, , ,			
Project/Site: Beaverhead Rock					Date:	8/06/03	3	
Applicant/Owner: MDT					County:	Beaver	head	
Investigator: B. Dutton					State:	MT		
Do Normal Circumstances exist on the site:	Х	Yes		No	Community	y ID:		
Is the site significantly disturbed (Atypical Situation)?		Yes	Х	No	Transect II):	T2	
Is the area a potential Problem Area?:		Yes	Х	No	Plot ID:		2	
(If needed, explain on reverse.)						_		

VEGETATION

	Dominant Plant Species	Stratum	Indicator		Dominant Plant Species	Stratum	Indicator		
1	Agropyron trachycaulum	Н	FAC	9	Elymus cinereus	Н	FACU		
2	Muhlenbergia asperifolia	Н	FACW	10					
3	Festuca idahoensis	Н	FACU	11					
4	Rumex crispus*	Н	FACW	12					
5	Agropyron smithii	Н	FACU	13					
6	Hordeum jubatum	Н	FAC+	14					
7	Juncus balticus	Н	FACW+	15					
8	Poa pratensis	Н	FACU+	16					
Per	Percent of Dominant Species that are OBL, FACW, or FAC (excluding FAC-). $5/9 = 55\%$								

HYDROLOGY

Recorded Data (Describe in Remarks):	Wetland Hydrology Indicators:				
Stream, Lake, or Tide Gauge	Primary Indicators:				
Aerial Photographs	Inundated				
Other	Saturated in Upper 12 Inches				
x No Recorded Data Available	Water Marks				
	Drift Lines				
Field Observations:	Sediment Deposits				
	Drainage Patterns in Wetlands				
Depth of Surface Water: (in.)	Secondary Indicators (2 or more required):				
	Oxidized Root Channels in Upper 12 Inches				
Depth to Free Water in Pit: >20 (in.)	Water-Stained Leaves				
	Local Soil Survey Data				
Depth to Saturated Soil: >20 (in.)	FAC-Neutral Test				
	Other (Explain in Remarks)				
Remarks:					

Dry year, no obvious hydrologic indicators.

SOILS

Map Unit Name Neen silty clay loam				Drainage Class:	somewhat poorly			
(Series and Phase):				Field Observations				
Taxonom	y (Subgroup): Aquic calciorthi	ds	Confirm Mapped Typ	e? Yes X No			
	• .•							
	escription:	Matrix Calar	Martha Calana	D.4. (1)	Tratan Committee			
Depth	Hariman	Matrix Color	Mottle Colors	Mottle	Texture, Concretions,			
inches	Horizon	(Munsell Moist)	(Munsell Moist)	Abundance/Contrast	Structure, etc.			
0-4	A	10 YR 3/2	-	-	Silt loam			
4 - 8	B1	10 YR 4/3	-	-	Silt loam			
8 - 20	B2	10 YR 5/3	-	-	Silt loam			
II 1 C	·1 T 1'							
Hydric So	oil Indicators			G				
		listosol		Concretions				
		listic Epipedon ulfidic Odor		High Organic Content in surface Layer in Sandy Soils				
				Organic Streaking in Sandy Soils				
		quic Moisture Regime			Listed on Local Hydric Soils List			
		educing Conditions	7	Listed on National Hydric S				
	0	eleyed or Low-Chroma (Other (Explain in Remarks)				
Upland so	oil colors and	d features.						
1								

WETLAND DETERMINATION

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	X Yes Yes Yes	NoXNoXNo	Is this Sampling Point Within a Wetland?	Yes	X	No
Remarks:						
Upland site, same conditions in 20	03 as 2001 an	ıd 2002.				

Approved by HQUSACE 2/92

DATA FORM ROUTINE WETLAND DETERMINATION

(1987 COE Wetlands Delineation Ma	anual))
-----------------------------------	--------	---

					,		
Project/Site: Beaverhead Rock					Date:	8/06/02	3
Applicant/Owner: MDT					County:	Beaver	rhead
Investigator: B. Dutton				State:	MT		
					-		
Do Normal Circumstances exist on the site:	Х	Yes		No	Community	ID:	
Is the site significantly disturbed (Atypical Situation)?		Yes	х	No	Transect ID	:	T1
Is the area a potential Problem Area?:		Yes	X	No	Plot ID:	-	3
(If needed, explain on reverse.)						-	

VEGETATION

	Dominant Plant Species	Stratum	Indicator		Dominant Plant Species	Stratum	Indicator
1	Sarcobatus vermiculatus	S	FACU+	9			
2	Elymus cinereus	Н	FACU	10			
3	Poa pratensis	Н	FACU+	11			
4	Agropyron trachycaulum	Н	FAC	12			
5	Juncus balticus	Н	FACW+	13			
6				14			
7				15			
8				16			
Per	cent of Dominant Species that a	re OBL, FAC	CW, or FAC (exclu	ding F	FAC-). $2/5 = 40\%$		
Up	land vegetation.						
_							

HYDROLOGY

Recorded Data (Describe in Remarks):	Wetland Hydrology Indicators:
Stream, Lake, or Tide Gauge	Primary Indicators:
Aerial Photographs	Inundated
Other	Saturated in Upper 12 Inches
x No Recorded Data Available	Water Marks
	Drift Lines
Field Observations:	Sediment Deposits
	Drainage Patterns in Wetlands
Depth of Surface Water: (in.)	Secondary Indicators (2 or more required):
	Oxidized Root Channels in Upper 12 Inches
Depth to Free Water in Pit: >18 (in.)	Water-Stained Leaves
	Local Soil Survey Data
Depth to Saturated Soil: >18 (in.)	FAC-Neutral Test
	Other (Explain in Remarks)
Remarks:	
No hydrologic indicators present.	

SOILS

Map Unit Name Neen silty clay loam			Drainage Class:	somewhat poorly			
(Series and Phase):			Field Observations				
Taxonomy (Subgroup): Aquic calciorthids			Confirm Mapped Type	e? Yes X No			
Profile De	escription:	i					
Depth		Matrix Color	Mottle Colors	Mottle	Texture, Concretions,		
inches	Horizon	(Munsell Moist)	(Munsell Moist)	Abundance/Contrast	Structure, etc.		
0 – 7	A1	10 YR 3/2	-	-	Loam		
7 - 18	B1	10 YR 4/3	-	-	Loam		
Hydric S	oil Indicato	rs:					
	H	istosol		Concretions			
	H	istic Epipedon		High Organic Content in surf	face Layer in Sandy Soils		
		ulfidic Odor		Organic Streaking in Sandy Soils			
	A	quic Moisture Regime		Listed on Local Hydric Soils			
		educing Conditions		Listed on National Hydric Sc			
		leyed or Low-Chroma Co	lors	Other (Explain in Remarks)			
	0						
Upland so	ils.						

WETLAND DETERMINATION

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	Yes Yes Yes	X No X No X No	Is this Sampling Point Within a Wetland?	Yes	X	No
Remarks:			1			
Upland site on small mound above	wetland. Sar	ne conditions	s in 2003 as 2001 and 2002.			

Approved by HQUSACE 2/92

DATA FORM ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Delineation Manual)

			,	
Project/Site: Beaverhead Rock			Date:	8/06/03
Applicant/Owner: MDT			County:	Beaverhead
Investigator: B. Dutton		State:	MT	
			_	
Do Normal Circumstances exist on the site:	x Yes	No	Community	/ ID:
Is the site significantly disturbed (Atypical Situation)?	Yes	x No	Transect ID	D: T1
Is the area a potential Problem Area?:	Yes	x No	Plot ID:	4
(If needed, explain on reverse.)				

VEGETATION

	Dominant Plant Species	Stratum	Indicator		Dominant Plant Species	Stratum	Indicator		
1	Alopecurus pratensis	Н	FACW	9					
2	Hordeum jubatum	Н	FAC+	10					
3	Equisetum laevigatum	Н	FACW	11					
4	Muhlenbergia asperifolia	Н	FACW	12					
5	Juncus balticus	Н	FACW+	13					
6	Carex limnophila	Н	FACW	14					
7				15					
8				16					
Per	Percent of Dominant Species that are OBL, FACW, or FAC (excluding FAC-). $6/6 = 100\%$								
We	Wetland vegetation present.								

HYDROLOGY

Recorded Data (Describe in Remarks):	Wetland Hydrology Indicators:
Stream, Lake, or Tide Gauge	Primary Indicators:
Aerial Photographs Other X No Recorded Data Available	Inundated Saturated in Upper 12 Inches Water Marks Drift Lines
Field Observations: Depth of Surface Water: (in.)	Sediment Deposits Drainage Patterns in Wetlands Secondary Indicators (2 or more required):
Depth of Surface Water.(iii.)Depth to Free Water in Pit: >18 (in.)	Oxidized Root Channels in Upper 12 Inches Water-Stained Leaves Local Soil Survey Data
Depth to Saturated Soil: >18 (in.)	x FAC-Neutral Test x Other (Explain in Remarks)
Remarks.	

Remarks:

Secondary hydrologic indicators present. No water in pit, probably due to time of year and multi- year drought.

SOILS						
Map Unit		Neen silty clay	loam	Drainage Class:		
`	nd Phase):	<u> </u>		Field Observations	• • • • •	
Taxonom	y (Subgroup): Aquic calciorthi	ids	Confirm Mapped Ty	pe? Yes X No	
Drafile D						
Depth	escription:	Matrix Color	Mottle Colors	Mottle	Texture, Concretions,	
inches	Horizon	(Munsell Moist)	(Munsell Moist)	Abundance/Contrast	Structure, etc.	
0 - 14	A1	10 YR 2/0	-	-	Loam	
14 - 20	B1	10YR 2/1	10 YR 6/6	Few/Faint	Loam	
Hydric So	oil Indicators	3:				
		listosol		Concretions		
	— н	listic Epipedon		High Organic Content in su	urface Layer in Sandy Soils	
		ulfidic Odor		Organic Streaking in Sandy		
	A	quic Moisture Regime		Listed on Local Hydric Soi	ils List	
		educing Conditions		Listed on National Hydric		
	X C	leyed or Low-Chroma	Colors	Other (Explain in Remarks	3)	
Hydric so	il indicators	present.				
WETLAND DETERMINATION						

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	X X x	Yes Yes Yes	 No No No	Is this Sampling Point Within a Wetland?	X	Yes	No
Remarks:							

Wetland probably will see indicators improve over time as it develops and more natural precipitation levels returns. Same conditions in 2003 as 2001 and 2002.

Approved by HQUSACE 2/92

DATA FORM ROUTINE WETLAND DETERMINATION (1987 COF Wetlands Delineation Manual)

(1)87 COE We	Juanu	s Dun	ncan		iliual)	
Project/Site: Beaverhead Rock					Date: 8	8/06/03
Applicant/Owner: MDT		County: H	Beaverhead			
Investigator: B. Dutton					State: N	ЛТ
Do Normal Circumstances exist on the site:	Х	Yes		No	Community I	D:
Is the site significantly disturbed (Atypical Situation)?		Yes	Х	No	Transect ID:	T1
Is the area a potential Problem Area?:		Yes	Х	No	Plot ID:	5
(If needed, explain on reverse.)						

VEGETATION

	Dominant Plant Species	Stratum	Indicator		Dominant Plant Species	Stratum	Indicator	
1	Juncus balticus	Н	FACW+	9				
2	Spartina gracilis	Н	FACW	10				
3	Alopecurus pratensis	Н	FACW	11				
4	Chenopodium album	Н	FAC	12				
5	Plantago eriopoda	Н	FACW	13				
6	Carex limnophila	Н	FACW	14				
7	Muhlenbergia asperifolia	Н	FACW	15				
8	Agropyron trachycaulum	Н	FAC	16				
Per	Percent of Dominant Species that are OBL, FACW, or FAC (excluding FAC-). 8/8 = 100%							
Hy	drophytic vegetation present.							

HYDROLOGY

Recorded Data (Describe in Remarks):	Wetland Hydrology Indicators:
Stream, Lake, or Tide Gauge	Primary Indicators:
Aerial Photographs	Inundated
Other	Saturated in Upper 12 Inches
X No Recorded Data Available	Water Marks
	Drift Lines
Field Observations:	Sediment Deposits
	Drainage Patterns in Wetlands
Depth of Surface Water: (in.)	Secondary Indicators (2 or more required):
	x Oxidized Root Channels in Upper 12 Inches
Depth to Free Water in Pit: >18 (in.)	Water-Stained Leaves
	Local Soil Survey Data
Depth to Saturated Soil: >18 (in.)	x FAC-Neutral Test
	Other (Explain in Remarks)

Remarks:

Dry part of year during multi-year drought cycle. Secondary hydrologic indicators present.

SOILS						
Map Unit	Name	Neen silty clay	loam	Drainage Class:		
(Series an	d Phase):			Field Observations		
Taxonom	y (Subgroup)): Aquic calciorthi	ds	Confirm Mapped Ty	pe? Yes X No	
	escription:					
Depth		Matrix Color	Mottle Colors	Mottle	Texture, Concretions,	
inches	Horizon	(Munsell Moist)	(Munsell Moist)	Abundance/Contrast	Structure, etc.	
0 - 2	A1	10 YR 5/4	-		Loam	
2 - 18	B1	10 YR 7/1	10 YR 6/6	Few/Faint	Silty clay loam	
Hydric So	il Indicators	:				
	H	istosol		Concretions		
		istic Epipedon		High Organic Content in su		
	Si	ulfidic Odor		Organic Streaking in Sandy		
		quic Moisture Regime		Listed on Local Hydric Soi		
		educing Conditions	Listed on National Hydric S			
X Gleyed or Low-Chroma Colors Other (Explain in Remarks)						
Soil is developing hydric features, will likely get stronger with more normal rainfall.						
Soil is dev	veloping hyd	lric features, will likely	get stronger with more no	ormal rainfall.		

WETLAND DETERMINATION

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	X X X	Yes Yes Yes	No No No	0	Is this Sampling Point Within a Wetland?	X	Yes	No
Remarks:								

Soil and hydrology indicators are not very strong, but there, and are likely to improve with normal precipitation. Same conditions in 2003 as 2001 and 2002.

Approved by HQUSACE 2/92

DATA FORM ROUTINE WETLAND DETERMINATION I)

(1987 COE Wetl	ands Delineation	Manual
----------------	------------------	--------

Project/Site: Beaverhead Rock				Date:	8/06/03	
Applicant/Owner: MDT				County:	Beaverhead	
Investigator: B. Dutton				State:	MT	
				_		
Do Normal Circumstances exist on the site:	x Yes	N	lo	Community	/ ID:	
Is the site significantly disturbed (Atypical Situation)?	Yes	X N	lo	Transect ID	D: T1	
Is the area a potential Problem Area?:	Yes	X N	lo	Plot ID:	6	
(If needed, explain on reverse.)						

VEGETATION

	Dominant Plant Species	Stratum	Indicator		Dominant Plant Species	Stratum	Indicator	
1	Scirpus acutus*	Н	OBL	9				
2	Hordeum jubatum	Н	FAC+	10				
3	Scirpus americanus	Н	OBL	11				
4		h		12				
5				13				
6				14				
7				15				
8				16				
Per	Percent of Dominant Species that are OBL, FACW, or FAC (excluding FAC-). $3/3 = 100\%$							
We	tland vegetation present.							

HYDROLOGY

Recorded Data (Describe in	n Remarks):	Wetland Hydrology Indicators:
Stream, Lak	e, or Tide Gauge	Primary Indicators:
Aerial Photo	ographs	Inundated
Other		x Saturated in Upper 12 Inches
x No Recorded Data Availab	le	x Water Marks
		x Drift Lines
Field Observations:		Sediment Deposits
		Drainage Patterns in Wetlands
Depth of Surface Water:	(in.)	Secondary Indicators (2 or more required):
		Oxidized Root Channels in Upper 12 Inches
Depth to Free Water in Pit:	24 (in.)	Water-Stained Leaves
		Local Soil Survey Data
Depth to Saturated Soil:	8 (in.)	FAC-Neutral Test
		Other (Explain in Remarks)
D 1		1

Remarks:

Wetland hydrology.

Map Unit		Neen silty clay	loam	Drainage Class:						
	nd Phase): 19 (Subgroup): Aquic calciort	hida	Field Observations Confirm Mapped Type? Yes X						
Тахонош	iy (Subgroup	Aquic calcion	mus		pe? Yes X No					
Profile I	Description:									
Depth inches	Horizon	Matrix Color (Munsell Moist)	Mottle Colors (Munsell Moist)	Mottle Abundance/Contrast	Texture, Concretions, Structure, etc.					
0 - 2	A1	10 YR 6/3	-	-	Silt loam					
2-18	B1	10 YR 7/1	10 YR 7/4	-	Loam					
Hydric S	Soil Indicato									
		listosol		Concretions						
		listic Epipedon		High Organic Content in su						
		ulfidic Odor		Organic Streaking in Sandy						
		quic Moisture Regime		Listed on Local Hydric Soi						
		educing Conditions	~ .	Listed on National Hydric						
	<u>X</u> G	leyed or Low-Chroma	Colors	Other (Explain in Remarks)					

WETLAND DETERMINATION

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	Yes Yes	No No No	Is this Sampling Point Within a Wetland?	Yes	No
Remarks:				 	
Good wetland, same conditions in 2	2003 as 2001 and 2	2002.			
				11 1101101	

Approved by HQUSACE 2/92

MDT MONTANA WETLAND ASSESSMENT FORM (revised May 25, 1999)

1. Project Name: <u>Beaverhead Gateway</u>	2. Project	#: <u>130091.012</u> Control #:	
3. Evaluation Date: <u>8/6/2003</u>	4. Evaluator(s): <u>Barry Dutton</u>	5. Wetland / Site #(s): Emergent wetlan	nds & openwater
6. Wetland Location(s) i. T: <u>5</u> <u>S</u>	R : <u>7 W</u> S : <u>27, 28 & 21</u>	T: <u>N</u> R: <u>E</u> S:	
ii. Approx. Stationing / Mileposts:			
iii. Watershed: <u>10020004</u>	GPS Reference No. (if a	oplies):	
Other Location Information:	_		
7. A. Evaluating Agency	8. Wetland Size	(total acres): (visually estimated) 118 (measured, e.g. GPS)	
B. Purpose of Evaluation:		<u></u>	
Wetlands potentially affected	by MDT project 9. Assessment A	rea (total acres): (visually estimated)	
Mitigation wetlands; pre-con	struction	<u>118</u> (measured, e.g. GPS)	
Mitigation wetlands; post-con	nstruction Comments:		

10. CLASSIFICATION OF WETLAND AND AQUATIC HABITATS IN AA

HGM CLASS ¹	SYSTEM ²	SUBSYSTEM ²	CLASS ²	WATER REGIME ²	MODIFIER ²	% OF AA
Riverine	Riverine	Lower Perennial	Emergent Wetland	Temporarily Flooded	Diked	70
Riverine	Riverine	Lower Perennial	Aquatic Bed	Permanently Flooded	Diked	20
Riverine	Riverine	Lower Perennial	Unconsolidated Bottom	Permanently Flooded	Diked	10

 1 = Smith et al. 1995. 2 = Cowardin et al. 1979.

Comments:

Other

11. ESTIMATED RELATIVE ABUNDANCE (of similarly classified sites within the same Major Montana Watershed Basin)

Common Comments:

12. GENERAL CONDITION OF AA

i. Regarding Disturbance: (Use matrix below to select appropriate response.)

	Predominant Conditions Adjacent (within 500 Feet) To AA								
	Land managed in predominantly natural	Land not cultivated, but moderately grazed	Land cultivated or heavily grazed or logged;						
	state; is not grazed, hayed, logged, or	or hayed or selectively logged or has been	subject to substantial fill placement, grading,						
	otherwise converted; does not contain roads	subject to minor clearing; contains few roads	clearing, or hydrological alteration; high						
Conditions Within AA	or buildings.	or buildings.	road or building density.						
AA occurs and is managed in predominantly									
a natural state; is not grazed, hayed, logged,									
or otherwise converted; does not contain									
roads or occupied buildings.									
AA not cultivated, but moderately grazed or									
hayed or selectively logged or has been									
subject to relatively minor clearing, or fill		moderate disturbance							
placement, or hydrological alteration;									
contains few roads or buildings.									
AA cultivated or heavily grazed or logged;									
subject to relatively substantial fill									
placement, grading, clearing, or hydrological									
alteration; high road or building density.									

Comments: (types of disturbance, intensity, season, etc.) Moderate grazing & hay production

ii. Prominent weedy, alien, & introduced species: Whitetop, spotted knapweed, Euraian milfoil, hound's tongue, Canada thistle, curly cup gumweed, guackgrass, kochia and lambsquater

iii. Briefly describe AA and surrounding land use / habitat: <u>Constructed wetlands where portions were formerly wetland</u>. Includes open water and wetland vegetation dominated by herbaceous species. Surrounding land use is crops and grazing.

13. STRUCTURAL DIVERSITY (Based on 'Class' column of #10 above.)

Number of 'Cowardin' Vegetated	\geq 3 Vegetated Classes or	2 Vegetated Classes or	= 1 Vegetated Class
Classes Present in AA	\geq 2 if one class is forested	1 if forested	
Select Rating		Moderate	

Comments:

14A. HABITAT FOR FEDERALLY LISTED OR PROPOSED THREATENED OR ENDANGERED PLANTS AND ANIMALS

i. AA is Documented (D) or Suspected (S) to contain (check box):

Primary or Critical habitat (list species)	🗆 D 🗌 S	
Secondary habitat (list species)	🗆 D 🖾 S	Bald Eagle
Incidental habitat (list species)	🗆 D 🖾 S	Bald Eagle
No usable habitat	🗆 D 🗌 S	

ii. Rating (Based on the strongest habitat chosen in 14A(i) above, find the corresponding rating of High (H), Moderate (M), or Low (L) for this function.

Highest Habitat Level	doc/primary	sus/primary	doc/secondary	sus/secondary	doc/incidental	sus/incidental	none
Functional Point and Rating				.7 (M)			

If documented, list the source (e.g., observations, records, etc.):

14B. HABITAT FOR PLANTS AND ANIMALS RATED AS S1, S2, OR S3 BY THE MONTANA NATURAL HERITAGE PROGRAM. Do not include species listed in 14A(i).

i. AA is Documented (D) or Suspected (S) to contain (check box):

Primary or Critical habitat (list species	s) 🛛 D 🗌 S	Blacktern, Lemmons alkaligrass, pelican & trumpeter swan
Secondary habitat (list species)	🗌 D 🗌 S	
Incidental habitat (list species)	🗌 D 🗌 S	
No usable habitat	🗆 D 🗌 S	

iii. Rating (Based on the strongest habitat chosen in 14B(i) above, find the corresponding rating of High (H), Moderate (M), or Low (L) for this function.

Highest Habitat Level:	doc/primary	sus/primary	doc/secondary	sus/secondary	doc/incidental	sus/incidental	none
Functional Point and Rating	1 (H)						

If documented, list the source (e.g., observations, records, etc.):

14C. General Wildlife Habitat Rating

i. Evidence of overall wildlife use in the AA: (Check either substantial, moderate, or low)

Substantial (based on any of the following)

Sobservations of abundant wildlife #s or high species diversity (during any period)

- abundant wildlife sign such as scat, tracks, nest structures, game trails, etc.
- presence of extremely limiting habitat features not available in the surrounding area
- interviews with local biologists with knowledge of the AA
- **Low** (based on any of the following)
 - few or no wildlife observations during peak use periods
 - little to no wildlife sign
 sparse adjacent upland food sources
 - interviews with local biologists with knowledge of AA

Moderate (based on any of the following)

observations of scattered wildlife groups or individuals or relatively few species during peak periods

- common occurrence of wildlife sign such as scat, tracks, nest structures, game trails, etc.
- adequate adjacent upland food sources
- interviews with local biologists with knowledge of the AA

ii. Wildlife Habitat Features (Working from top to bottom, select appropriate AA attributes to determine the exceptional (E), high (H), moderate (M), or low (L)

rating. Structural diversity is from #13. For class cover to be considered evenly distributed, vegetated classes must be within 20% of each other in terms of

their percent composition in the AA (see #10). Duration of Surface Water: P/P = permanent/perennial; S/I = seasonal/intermittent;

T/E = temporary/ephemeral; A = absent.

Structural Diversity (from #13)		High					Moderate						Low							
Class Cover Distribution (all vegetated classes)		⊠E	Even			U	neven			ΠE	Even			UU	neven			ΠE	Even	
Duration of Surface Water in = 10% of AA	P/P	S/I	T/E	А	P/P	S/I	T/E	А	P/P	S/I	T/E	А	P/P	S/I	T/E	А	P/P	S/I	T/E	Α
Low disturbance at AA (see #12)		1							-					-		-		1		
Moderate disturbance at AA (see #12)	Н								1						-		-			
High disturbance at AA (see #12)																				

iii. Rating (Using 14C(i) and 14C(ii) above and the matrix below to arrive at the functional point and rating of exceptional (E), high (H), moderate (M), or low (L) for this function.)

Evidence of Wildlife Use	Wildlife Habitat Features Rating from 14C(ii)								
from 14C(i)	Exceptional	🗌 High	Moderate	Low					
Substantial	1 (E)								
Moderate									
Low									

Comments:

14D. GENERAL FISH/AQUATIC HABITAT RATING IN NA (proceed to 14E)

If the AA is not or was not historically used by fish due to lack of habitat, excessive gradient, then check the NA box above.

Assess if the AA is used by fish or the existing situation is "correctable" such that the AA could be used by fish [*e.g.* fish use is precluded by perched culvert or other barrier, etc.]. If fish use occurs in the AA but is not desired from a resource management perspective (*e.g.* fish use within an irrigation canal], then Habitat Quality [14D(i)] below should be marked as "Low", applied accordingly in 14D(ii) below, and noted in the comments.

i. Habitat Quality (Pick the appropriate AA attributes in matrix to pick the exceptional (E), high (H), moderate (M), or low (L) quality rating.

Duration of Surface Water in AA	Permanent/Perennial				asonal / Inte	rmittent	Temporary / Ephemeral		
Cover - % of waterbody in AA containing cover objects (<i>e.g.</i> submerged logs, large rocks & boulders, overhanging banks, floating-leaved vegetation)	>25%	10-25%	<10%	>25%	10-25%	<10%	>25%	10-25%	<10%
Shading - >75% of streambank or shoreline of AA contains riparian or wetland scrub-shrub or forested communities									
Shading – 50 to 75% of streambank or shoreline of AA contains riparian or wetland scrub-shrub or forested communities.									
Shading - < 50% of streambank or shoreline of AA contains riparian or wetland scrub-shrub or forested communities.			М						

ii. Modified Habitat Quality: Is fish use of the AA precluded or significantly reduced by a culvert, dike, other man-made structure or activity or is the waterbody included on the 'MDEQ list of waterbodies in need of TMDL development' with 'Probable Impaired Uses' listed as cold or warm water fishery or aquatic life support? X N If yes, reduce the rating from 14D(i) by one level and check the modified habitat quality rating: D E H M X L

iii. Rating (Use the conclusions from 14D(i) and 14D(ii) above and the matrix below to pick the functional point and rating of exceptional (E), high (H), moderate (M), or low (L).)

Types of Fish Known or	Modified Habitat Quality from 14D(ii)									
Suspected Within AA	Exceptional	🗖 High	Moderate	🛛 Low						
Native game fish				.5 (M)						
Introduced game fish										
Non-game fish										
No fish										
~	1.1.1	<i>4</i> 1								

Comments: Unidentified minnows assumed to be native game fish.

14E. FLOOD ATTENUATION IN NA (proceed to 14G)

Applies only to wetlands subject to flooding via in-channel or overbank flow. If wetlands in AA do not flooded from in-channel or overbank flow, check NA above.

i. **Rating** (Working from top to bottom, mark the appropriate attributes to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function.)

Estimated wetland area in AA subject to periodic flooding		$\boxtimes \ge 10$ acres		□ <10, >2 acres			□ ≤2 acres		
% of flooded wetland classified as forested, scrub/shrub, or both	75% 25-75% <25%		75%	25-75%	<25%	75%	25-75%	<25%	
AA contains no outlet or restricted outlet									
AA contains unrestricted outlet			.5 (M)						

ii. Are residences, businesses, or other features which may be significantly damaged by floods located within 0.5 miles downstream of the AA? (check)

 Y
 N
 Comments:
 Potentially flooded area is NE of dike along river.

14F. SHORT AND LONG TERM SURFACE WATER STORAGE IN A (proceed to 14G)

Applies to wetlands that flood or pond from overbank or in-channel flow, precipitation, upland surface flow, or groundwater flow. If no wetlands in the AA are subject to flooding or ponding, check NA above.

i. Rating (Working from top to bottom, use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function.) Abbreviations: P/P = permanent/perennial; S/I = seasonal/intermittent; T/E = temporary/ephemeral.

Estimated maximum acre feet of water contained in wetlands within the AA that are subject to periodic flooding or ponding.	$\square >5$ acre feet			<5, >1 acre 1	feet	□ ≤1 acre foot			
Duration of surface water at wetlands within the AA	P/P	S/I	T/E	P/P	S/I	T/E	P/P	S/I	T/E
Wetlands in AA flood or pond ³ 5 out of 10 years	1 (H)								
Wetlands in AA flood or pond < 5 out of 10 years							-		

Comments:

14G. SEDIMENT/NUTRIENT/TOXICANT RETENTION AND REMOVAL IN A (proceed to 14H)

Applies to wetlands with potential to receive excess sediments, nutrients, or toxicants through influx of surface or ground water or direct input. If no wetlands in the AA are subject to such input, check NA above.

i. Rating (Working from top to bottom, use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function.)

Sediment, Nutrient, and Toxicant Input Levels Within AA	to moderate le other function	s are not substanti	, nutrients, or co ally impaired.	ompounds such that Minor	Waterbody on MDEQ list of waterbodies in need of TMDL development for "probable causes" related to sediment, nutrients, or toxicants or AA receives or surrounding land use has potential to deliver high levels of sediments, nutrients, or compounds such that other functions are substantially impaired. Major sedimentation, sources of nutrients or toxicants, or signs of eutrophication present.					
% cover of wetland vegetation in AA		≥ 70%		< 70%	□ ≥ 70%		□ < 70%			
Evidence of flooding or ponding in AA	🛛 Yes	🗆 No	☐ Yes	🗆 No	☐ Yes	🗆 No	☐ Yes	🗆 No		
AA contains no or restricted outlet	1 (H)	1 (H)								
AA contains unrestricted outlet										
Commentar Mest of the AA has a rea	twisted outlet	and is subject to		moff from anonlan	d to the most	*	7 I.			

Comments: Most of the AA has a restricted outlet and is subject to agriculture runoff from cropland to the west.

14H. SEDIMENT/SHORELINE STABILIZATION

NA (proceed to 14I)

Applies only if AA occurs on or within the banks or a river, stream, or other natural or man-made drainage, or on the shoreline of a standing water body that is subject to wave action. If this does not apply, check NA above.

i. Rating (Working from top to bottom, use the matrix below to arrive at the functional point and rating exceptional (E), high (H), moderate (M), or low (L) for this function.

% Cover of wetland streambank or	Duration of Surface Water Adjacent to Rooted Vegetation						
shoreline by species with deep, binding rootmasses.	Permanent / Perennial	Seasonal / Intermittent	Temporary / Ephemeral				
³ 65 %							
35-64 %							
< 35 %	.3 (L)						

Comments:

14I. PRODUCTION EXPORT / FOOD CHAIN SUPPORT

i. Rating (Working from top to bottom, use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function. A = acreage of vegetated component in the AA. B = structural diversity rating from #13. C = Yes (Y) or No (N) as to whether or not the AA contains a surface or subsurface outlet; P/P = permanent/perennial; S/I = seasonal/intermittent; T/E/A= temporary/ephemeral/absent.

A			etated con	mponent	>5 acres		□ Vegetated component 1-5 acres					□ Vegetated component <1 acre						
В		High	🗌 Mo	oderate		Low		High		oderate		Low	L 🗌 1	High	Mo Mo	oderate		Low
С	×Υ	ΠN	ΠY	ΠN	ΩY	□N	ΓY	□N	ΠY	ΠN	ΠY	ΠN	ΠY	ΠN	ΠY	□N	ΠY	□N
P/P	1H				-													
S/I					-													
T/E/A																		

Comments:

14J. GROUNDWATER DISCHARGE/RECHARGE (D/R) (Check the indicators in i & ii below that apply to the AA)

i. 🛛 Discharge Indicators

- Springs are known or observed.
- Vegetation growing during dormant season/drought.
- Wetland occurs at the toe of a natural slope.
- Seeps are present at the wetland edge.
- AA permanently flooded during drought periods.
- Wetland contains an outlet, but no inlet.
- Other _____

ii. Recharge Indicators

Permeable substrate presents without underlying impeding layer.

- Wetland contains inlet but not outlet.
- Other

iii. Rating: Use the information from 14J(i) and 14j(ii) above and the table below to arrive at the functional point and rating of high (H) or low (L) for this function.

Criteria	Functional Point and Rating			
AA has known Discharge/Recharge area or one or more indicators of D/R present	1 (H)			
No Discharge/Recharge indicators present				
Available Discharge/Recharge information inadequate to rate AA D/R potential				

Comments:

14K. UNIQUENESS

i. Rating (Working from top to bottom, use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function.

Replacement Potential	AA contains fen, b (>80 yr-old) forest association listed a	ed wetland or pl	ant	types and st	t contain previou ructural diversity plant association NHP.	(#13) is high	AA does not contain previously cited rare types or associations and structural diversity (#13) is low-moderate.			
Estimated Relative Abundance from #11	rare	Common	abundant	□ rare	Common	abundant	rare	common	abundant	
Low disturbance at AA (#12i)										
Moderate disturbance at AA (#12i)				.5M						
High disturbance at AA (#12i)										

Comments:

14L. RECREATION / EDUCATION POTENTIAL

- i. Is the AA a known recreational or educational site? 🗌 Yes (Rate 🗌 High (1.0), then proceed to 14L(ii) only] 🖾 No [Proceed to 14L(iii)]
- ii. Check categories that apply to the AA: 🛛 Educational / scientific study 🖾 Consumptive rec. 🗌 Non-consumptive rec.
- iii. Based on the location, diversity, size, and other site attributes, is there a strong potential for recreational or educational use?

 \boxtimes Yes [Proceed to 14L (ii) and then 14L(iv).] \square No [Rate as low in 14L(iv)]

iv. Rating (Use the matrix below to arrive at the functional point and rating of high (H), moderate (M), or low (L) for this function.

	Disturbance at AA from #12(i)								
Ownership	Low	Moderate	🗌 High						
Public ownership									
Private ownership		.3(L)							

Comments:

Function and Value Variables	Rating	Actual Functional Points	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage)
A. Listed/Proposed T&E Species Habitat	Moderate	0.70	1	
B. MT Natural Heritage Program Species Habitat	High	1.00	1	
C. General Wildlife Habitat	Excep.	1.00	1	
D. General Fish/Aquatic Habitat	Moderate	0.50	1	
E. Flood Attenuation	Moderate	0.5	1	
F. Short and Long Term Surface Water Storage	High	1.00	1	
G. Sediment/Nutrient/Toxicant Removal	High	1.00	1	
H. Sediment/Shoreline Stabilization	Low	0.30	1	
I. Production Export/Food Chain Support	High	1.00	1	
J. Groundwater Discharge/Recharge	High	1.00	1	
K. Uniqueness	Moderate	0.50	1	
L. Recreation/Education Potential	Low	0.30	1	
	Totals:	<u>8.60</u>	<u>12.00</u>	
	Percent of	Total Possible Points:	<u>73</u> % (Actual / Possible)) x 100 [rd to nearest whole #]

FUNCTION, VALUE SUMMARY, AND OVERALL RATING

Category I Wetland: (Must satisfy one of the following criteria. If not proceed to Category II.)

Score of 1 functional point for Listed/Proposed Threatened or Endangered Species; or

Score of 1 functional point for Uniqueness; or

Score of 1 functional point for Flood Attenuation and answer to Question 14E(ii) is "yes"; or

Percent of total Possible Points is > 80%.

Category II Wetland: (Criteria for Category I not satisfied and meets any one of the following Category II criteria. If not satisfied, proceed to Category IV.)

Score of .9 or 1 functional point for General Wildlife Habitat; or

Score of .9 or 1 functional point for General Fish/Aquatic Habitat; or

🔲 "High" to "Exceptional" ratings for both General Wildlife Habitat and General Fish / Aquatic Habitat; or

Score of .9 functional point for Uniqueness; or

Percent of total possible points is > 65%.

Category III Wetland: (Criteria for Categories I, II, or IV not satisfied.)

Category IV Wetland: (Criteria for Categories I or II are not satisfied and <u>all</u> of the following criteria are met; If not satisfied, proceed to Category III.)

U "Low" rating for Uniqueness; and

Low" rating for Production Export / Food Chain Support; and

Percent of total possible points is < 30%.

OVERALL ANALYSIS AREA (AA) RATING: (Check appropriate category based on the criteria outlined above.)

I

Appendix C

REPRESENTATIVE PHOTOGRAPHS 2003 AERIAL PHOTOGRAPH

MDT Wetland Mitigation Monitoring Beaverhead Gateway Dillon, Montana

Photo Point No. 1: View looking northeast along fence-line (60°) .

Photo Point No. 1: View looking northwest across mitigation site. Upland to wetland vegetation transition (300°).

Photo Point No. 3: View looking southwest along the end of Transect 1, emergent wetland vegetation dominated by bulrush (225°) .

Photo Point No. 3: View looking northeast, open water and emergent wetland vegetation dominated by bulrush (45°).

Photo Point No. 4: View looking northeast along the beginning of Transect 1 (40°).

Photo Point No. 5: View looking northeast across mitigation site (45°) .

Beaverhead Rock: 2003 C-1

Photo Point No. 7: View looking north along the start of Transect 2 (350°).

Photo Point No. 9: View looking west along dike shore and open water (270°) .

Photo Point No. 8: View looking south from the end of Transect 2 (170°) .

Photo Point No. 9: View looking southeast along dike shore (150°) .

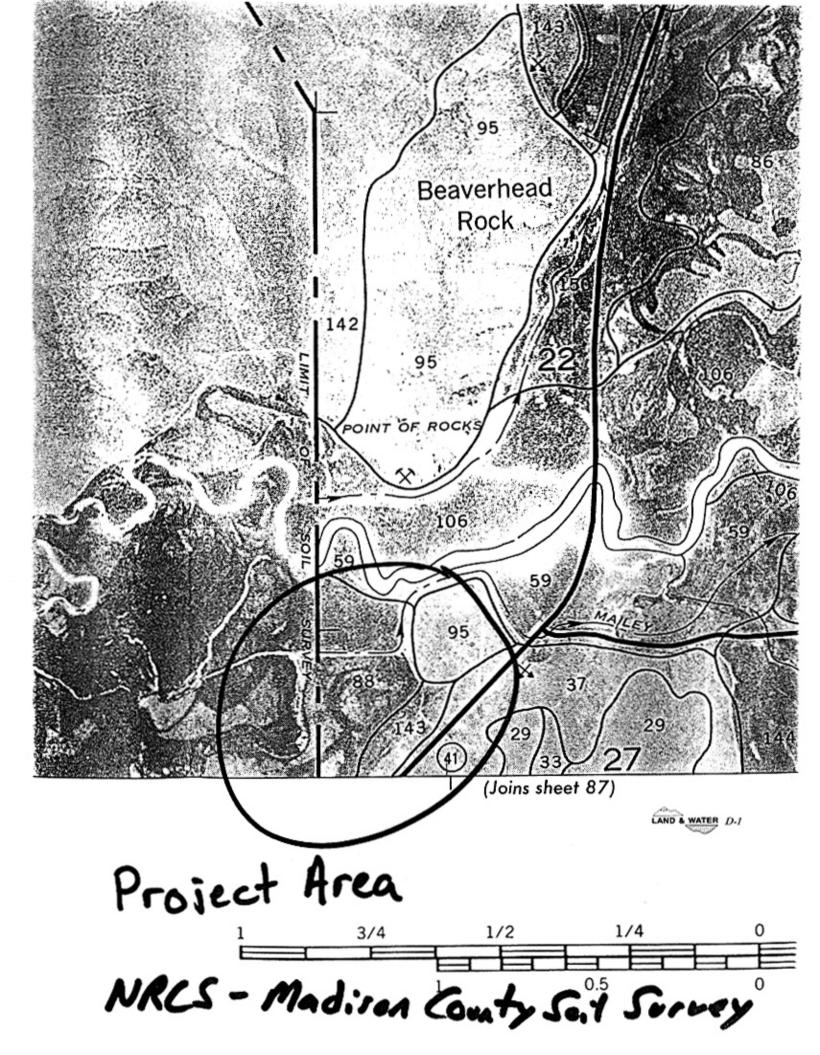
Photo Point No. 10: View looking northeast along spoil pile dominated by a weedy plant community (45°) .

Beaverhead Rock: 2003

Photo Point No. 2: Panoramic view of mitigation site, southern half, 300° to 220°. Photo taken looking north to south.

Photo Point No. 2: Panoramic view of mitigation site, northern half, 40° to 300°. Photo taken looking north to south.

Beaverhead Rock: 2003



Appendix D

ORIGINAL SITE PLAN SOIL SURVEY MAP AND DESCRIPTION MDT BIRD OBSERVATIONS

MDT Wetland Mitigation Monitoring Beaverhead Gateway Dillon, Montana

Soil Survey

This unit is used as irrigated cropland. The main crops are small grain, alfalfa, and clover for hay, and grass for pasture.

Cropland management. This unit is limited for irrigated crops by the hazard of soil blowing, the seasonal high water table, salinity, and soil tilth. Excess salts generally can be leached from the soil with irrigation. Good irrigation water management is necessary to avoid application of too much water and to keep the root zone free of salts. Sprinkler irrigation is suitable for the controlled application of water. Salttolerant crops should be grown in the initial stages of reclamation. The surface layer of the soil in this unit is high in content of lime and low in content of organic matter. Crops respond well to phosphorus and nitrogen. Using green manure crops, barnyard manure, and crop residue increases organic matter content and fertility. Growing grasses and legumes for hay and pasture reduces soil blowing. Maintaining crop residue on or near the surface reduces soil blowing and helps to maintain soil tilth and organic matter content.

Windbreak management. This unit is suited to windbreaks. The seasonal high water table limits the choice of trees and shrubs to those that are water tolerant. Suitable trees for planting are cottonwood, golden willow, white willow, Russian olive, Siberian elm, Siberian crabapple, blue spruce, and Rocky Mountain juniper. Suitable shrubs are purpleosier willow, common chokecherry, lilac, and silver buffaloberry.

Homesite development. This unit is poorly suited to homesite development because of the rare periods of flooding and the seasonal high water table.

This map unit is in capability subclass IVe, irrigated.

/ 88-Neen silty clay loam wet 0 to 2 percent

slopes. This deep, somewhat poorly drained, saltaffected soil is in swales on stream terraces in the western part of the survey area. It has a wetness problem associated with excess irrigation. It formed in loamy alluvium. Elevation is 4,200 to 6,000 feet. The average annual precipitation is about 12 inches, the average annual air temperature is about 40 degrees F, and the average frost-free period is about 100 days.

Included in this unit are small, randomly distributed areas of Villy soils and soils that have a layer of organic material 4 to 20 inches thick on the surface. Included areas make up about 10 percent of the total acreage.

Typically, the surface layer of this Neen soil is light gray silty clay loam about 9 inches thick. The underlying material to a depth of 60 inches or more is light gray silty clay loam.

Permeability is moderately slow. Available water

.

capacity is about 7 inches. Effective rooting depth is 60 inches or more. Where this soil is under native vegetation, the average annual wetting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight. The hazard of soil blowing is slight. A seasonal high water table is at a depth of 6 to 12 inches from April through August. This soil is subject to occasional, brief periods of flooding from January through June. The soil is calcareous throughout. It is moderately salt-affected throughout the soil profile.

This unit is used as rangeland. It is very poorly suited to cultivated crops because of the seasonal high water table and the problem of salts in the surface layer.

Rangeland management. The potential native plant community is mainly alkali sacaton, sedges, alkali cordgrass, tufted hairgrass, inland saltgrass, alkali bluegrass. American sloughgrass, and northern reedgrass. If the rangeland is overgrazed, the proportion of alkali sacaton, alkali cordgrass, tufted hairgrass, alkali bluegrass, American sloughgrass, and northern reedgrass decreases and the proportion of inland saltgrass, slough sedge, and beaked sedges increases. If overgrazing continues, plants such as foxtail barley, Baltic rush, and annual forbs may invade. The potential native plant community produces about 4,500 pounds of air-dry vegetation per acre in years of above-normal precipitation and 3,800 pounds in years of below-normal precipitation.

Grazing should be delayed until the soil is firm and the more desirable forage plants have achieved sufficient growth to withstand grazing pressure. Use of mechanical treatment is not practical because of wetness and the high content of salts in the soil.

Windbreak management. This unit is very poorly suited to windbreaks. It is limited by the seasonal high water table and the high content of salts.

Homesite development. This unit is very poorly suited to homesite development because of the occasional periods of flooding and the seasonal high water table.

This map unit is in capability subclass VIw, nonirrigated. It is in Wet Meadow range site, 10- to 14inch precipitation zone.

89—Nuley sandy loam, 2 to 12 percent slopes. This deep, well drained soil is on hills and broad ridgetops in the northwestern and central parts of the survey area. It formed in gneiss. Elevation is 4,500 to 6,500 feet. The average annual precipitation is about 12 inches, the average annual air temperature is about 40 degrees F, and the average frost-free period is about 100 days.

Included in this unit are small, randomly distributed areas of Rock outcrop and soils that have bedrock at a

bils on fans and terraces. These soils formed in luvial and eolian material derived mainly from nestone. Slope is 0 to 25 percent. Elevation is 4,500 6.500 feet. The average annual precipitation is 10 to 1 inches, the average annual air temperature is 38 to 2 degrees F, and the frost-free period is 90 to 105 ays.

These soils are coarse-loamy, carbonatic Borollic alciorthids.

Typical pedon of Musselshell loam, cool, 2 to 8 ercent slopes, in an area of rangeland, 700 feet north and 300 feet east of the southwest corner of sec. 36, T. S., R. 6 W.

- 11—0 to 4 inches; light brownish gray (10YR 6/2) loam, dark brown (10YR 3/3) moist; moderate fine granular structure; soft, very friable, slightly sticky and plastic; many very fine, fine, and medium roots; common very fine and fine pores; 5 percent pebbles; strongly effervescent; moderately alkaline; abrupt wavy boundary.
- 12—4 to 8 inches; pale brown (10YR 6/3) loam, dark yellowish brown (10YR 4/4) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and plastic; many very fine, fine, and medium roots; common very fine and fine pores; 10 percent pebbles; strongly effervescent; moderately alkaline; abrupt wavy boundary.
- 1ca-8 to 15 inches; white (10YR 8/2) loam, pale brown (10YR 6/3) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and plastic; many very fine and fine roots; few fine pores; 10 percent pebbles; common fine soft masses of lime and lime coatings on pebbles; violently effervescent; moderately alkaline; clear wavy boundary.
- 2ca—15 to 25 inches; very pale brown (10YR 7/3) gravelly loam, yellowish brown (10YR 5/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine roots; common fine pores; 30 percent pebbles; common fine soft masses of lime, lime coatings on pebbles, and lime pendants on underside of pebbles; violently effervescent; moderately alkaline; clear smooth boundary.
- 3ca—25 to 41 inches; white (10YR 8/2) very gravelly loam, pale brown (10YR 6/3) moist; moderate fine granular structure; slightly hard, very friable, slightly sticky and slightly plastic; 40 percent pebbles; common fine soft masses of lime, lime coatings on pebbles, and lime pendants on underside of

pebbles; violently effervescent; moderately alkaline; gradual wavy boundary.

IIC4—41 to 60 inches; light gray (10YR 7/2) very gravelly sandy loam, grayish brown (10YR 5/2) moist; massive; soft, very friable, slightly sticky and slightly plastic; 60 percent pebbles; strongly effervescent; moderately alkaline.

The A horizon is loam or gravelly loam and is 5 to 25 percent pebbles. The C horizon is loam or gravelly loam in the upper part and very gravelly loam or very gravelly sandy loam in the lower part. There is a very gravelly loamy sand layer below a depth of about 40 inches in some pedons. The Cca horizon is 40 to 80 percent calcium carbonate. Reaction is moderately alkaline or strongly alkaline.

Neen Series

The Neen series consists of deep, somewhat poorly drained soils on stream terraces and in upland swales. These soils formed in alluvium. Slope is 0 to 2 percent. Elevation is 4,200 to 6,000 feet. The average annual precipitation is 10 to 14 inches, the average annual air temperature is 38 to 42 degrees F, and the frost-free period is 90 to 105 days.

These soils are fine-silty, mixed, frigid Aquic Calciorthids.

Typical pedon of Neen silty clay loam, 0 to 2 percent slopes, in an area of rangeland, 2,140 feet west and 1,940 feet north of the southeast corner of sec. 25, T. 4 S., R. 7 W.

- A11sa-O to 2 inches; grayish brown (10YR 5/2) silty clay loam, dark grayish brown (10YR 4/2) moist; weak to moderate fine and medium granular structure; slightly hard, friable, sticky and plastic; few very fine and fine roots; many very fine interstitial pores; many very fine salt crystals; violently effervescent; moderately alkaline; abrupt smooth boundary.
- A12sa—2 to 9 inches; light gray (10YR 6/1) silty clay loam, dark gray (10YR 4/1) moist; weak very fine and fine granular structure; slightly hard, friable, sticky and plastic; many very fine roots; many very fine interstitial pores; many very fine salt crystals; strongly effervescent; moderately alkaline; abrupt wavy boundary.
- C1casa—9 to 32 inches; light gray (10YR 7/2) silty clay loam, grayish brown (10YR 5/2) moist; moderate fine granular structure; slightly hard, friable, sticky

and plastic; common very fine roots; common very fine continuous tubular pores; violently effervescent; many very fine salt crystals; moderately alkaline; clear smooth boundary.

- C2casa—32 to 50 inches; light gray (10YR 7/2) silty clay loam, grayish brown (10YR 5/2) moist; weak to moderate fine and medium subangular blocky structure; slightly hard, friable, sticky and plastic; few very fine roots; common very fine continuous tubular pores; few very fine salt crystals; violently effervescent; moderately alkaline; clear smooth boundary.
- C3cag—50 to 60 inches; light gray (5Y 7/2) silty clay loam, olive gray (5Y 5/2) moist; common fine distinct yellowish red (5YR 4/6) mottles; massive; hard, firm, sticky and plastic; many very fine roots; many very fine interstitial pores; few very fine salt crystals; strongly effervescent; moderately alkaline.

The water table fluctuates between depths of 24 and 42 inches during the growing season. The electrical conductivity is 8 to 16 millimhos per centimeter. Where the profile is drained and irrigated, the conductivity is 2 to 4 millimhos per centimeter in the upper part and 2 to 8 millimhos per centimeter in the lower part. Depth to the Cca horizon is 6 to 30 inches. The C3 horizon is clay loam or silty clay loam.

Nuley Series

The Nuley series consists of deep, well drained soils on uplands. These soils formed in material derived from metamorphic and igneous rock. Slope is 2 to 35 percent. Elevation is 4,500 to 6,500 feet. The average annual precipitation is 10 to 14 inches, the average annual air temperature is 38 to 42 degrees F, and the frost-free period is 90 to 105 days.

These soils are fine-loamy, mixed Aridic Argiborolls. Typical pedon of Nuley clay loam, 2 to 8 percent

slopes, in an area of cropland, 2,000 feet west and 25 feet north of the southeast corner of sec. 16, T. 1 S., R. 1 W.

- Ap—0 to 7 inches; grayish brown (10YR 5/2) clay loam, dark brown (10YR 3/3) moist; weak to moderate fine granular structure; soft, friable, slightly sticky and slightly plastic; many fine roots; many fine tubular pores and few fine interstitial pores; 5 percent pebbles; mildly alkaline; abrupt smooth boundary.
- B2t—7 to 11 inches; brown (10YR 4/3) clay loam, dark yellowish brown (10YR 3/4) moist; moderate

medium subangular blocky structure; slightly hard, friable, sticky and plastic; many fine roots; common fine tubular pores; common to many distinct clay films on faces of peds; 5 percent pebbles; mildly alkaline; clear wavy boundary.

- B3ca—11 to 15 inches; light gray (10YR 7/2) sandy clay loam, yellowish brown (10YR 5/4) moist; weak medium subangular blocky structure; soft, friable, slightly sticky and slightly plastic; common fine roots; few fine tubular pores and common fine interstitial pores; 5 percent pebbles; disseminated lime; violently effervescent; moderately alkaline; abrupt smooth boundary.
- C1ca-15 to 24 inches; white (10YR 8/1) sandy loam, light gray (10YR 7/2) moist; massive; slightly hard, friable, nonsticky and nonplastic; common fine roots; common fine tubular pores; 5 percent pebbles; disseminated lime; violently effervescent; moderately alkaline; abrupt smooth boundary.
- IIC2—24 to 50 inches; grayish brown (2.5Y 5/2) gravelly coarse sand, dark grayish brown (2.5Y 4/2) moist; single grain; loose, nonsticky and nonplastic; very few very fine roots; common fine and medium interstitial pores; 25 percent pebbles; moderately effervescent; moderately alkaline; gradual irregular boundary.

R-50 inches; granitic gneiss.

Depth to calcareous material is 10 to 15 inches. Depth to granitic bedrock is 40 to 60 inches. The A and B horizons are 5 to 15 percent rock fragments, mainly pebbles. The A and B2t horizons are neutral or mildly alkaline. The Ap horizon is clay loam or sandy loam. The B2t horizon is mainly clay loam or sandy clay loam and is 20 to 35 percent clay. The IIC horizon is gravelly coarse sand or gravelly loamy coarse sand. It is 25 to 35 percent rock fragments.

Oro Fino Series

The Oro Fino series consists of deep, well drained soils on uplands. These soils formed in colluvium and material derived from gneiss and schist. Slope is 2 to 45 percent. Elevation is 6,000 to 7,500 feet. The average annual precipitation is 15 to 19 inches, the average annual air temperature is 36 to 40 degrees F, and the frost-free period is 60 to 90 days.

These soils are fine-loamy, mixed Argic Cryoborolls. Typical pedon of an Oro Fino gravelly loam in an area of Oro Fino-Poin complex, 4 to 15 percent slopes, in an area of rangeland, 2,400 feet north and 1,000 feet west of the southeast corner of sec. 13, T. 8 S., R. 7 W.

BEAVERHEAD GATEWAY RANCH WETLAND MITIGATION SITE ACTIVE BIRD LIST 1997 to Present

(b) breeding

Waterfowl:

Tundra Swan Trumpeter Swan Blue-winged Teal (b) Green-winged Teal Cinnamon Teal (b) Mallard Duck (b) Pintail Duck (b) Ruddy Duck (b?) Greater Canada Geese (b) Snow Geese Northern Shoveller (b) American Wigeon (b) Redhead Duck (b) Gadwall (b) Bufflehead (b) Common Goldeney e Barrow's Goldeneye Lesser Scaup American Coot (b) Western Grebe Eared Grebe (b) Double Crested Cormorants Red-breasted Merganser Common Merganser

Herons / Cranes:

Great Blue Heron Black Crowned Night Heron Sandhill Cranes (b)

Eagles / Hawks:

Golden Eagle Red-Tailed Hawk Merlin American Kestrel Northern Harrier Rough-legged Hawk Peregrine Falcon Shorebirds: American Avocet Willet Marbled Godwit Wilson's Phalarope Red Phalarope (b) Common Snipe (b) Solitary Sandpiper Spotted Sandpiper (b) Killdeer (b) Greater Yellowleg s Sanderlings Lesser Yellowleg s Long-billed Dowitcher

Gulls / Terns:

Franklin' s Gull Bonaparte' s Gull Common Tern Black Tern (b?)

Swallows / Swifts:

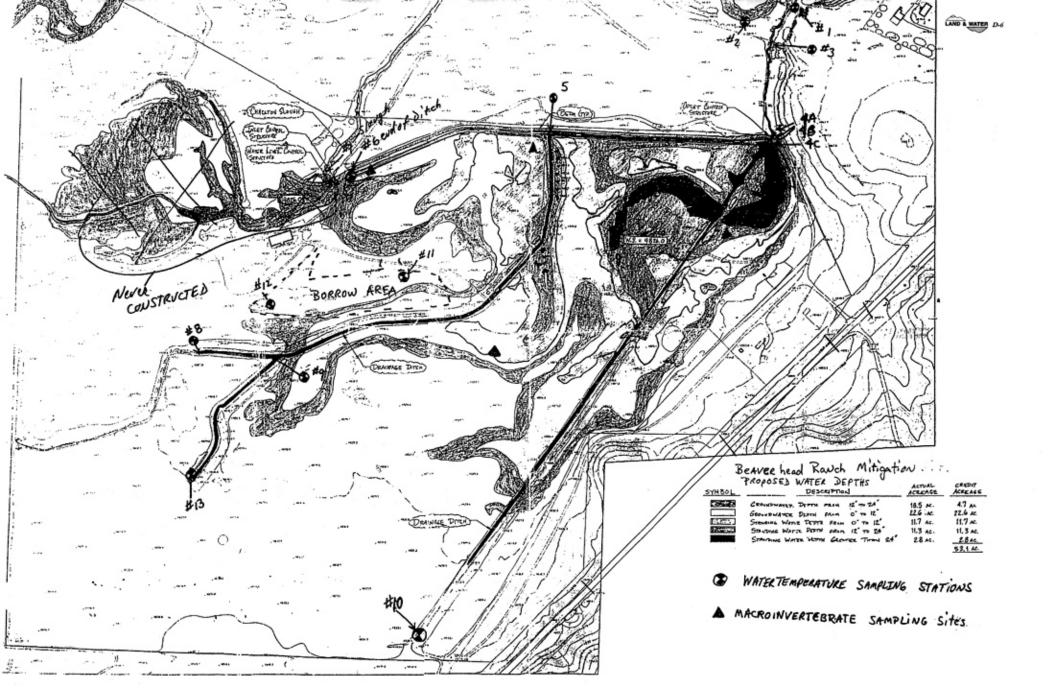
Bank Swallows (b) Cliff Swallows (b) Violet-green Swallows (b) Barn Swallows (b)

Upland Gamebirds:

Ring-necked Pheasant Sage Grouse Chukar Hungarian Partridge (b)

Dippers: American Dipper

Owls: Short-eared owl


Crows / Ravens:

American Crow Common Raven Black-billed Mag pie

Songbirds:

Red-winged Blackbird (b) Yellow-headed blackbird (b) Brewer's Blackbird Vesper Sparrow (b) Song Sparrow Savannah Sparrow(b) Western Bluebirds(b) American Robin American Goldfinch (b) Brown-headed Cowbird Western Meadowlark (b) European Starling Mourning Dove Rock Dove Spotted Towhee

Pelicans: American White Pelican

Appendix E

BIRD SURVEY PROTOCOL GPS PROTOCOL

MDT Wetland Mitigation Monitoring Beaverhead Gateway Dillon, Montana

BIRD SURVEY PROTOCOL

The following is an outline of the MDT Wetland Mitigation Site Monitoring Bird Survey Protocol. Though each site is vastly different, the bird survey data collection methods must be standardized to a certain degree to increase repeatability. An Area Search within a restricted time frame will be used to collect the following data: a bird species list, density, behavior, and habitat-type use. There will be some decisions that team members must make to fit the protocol to their particular site. Each of the following sections and the desired result describes the protocol established to reflect bird species use over time.

Species Use within the Mitigation Wetland: Survey Method

Result: To conduct a bird survey of the wetland mitigation site within a restricted period of time and the budget allotment.

Sites that can be circumambulated or walked throughout.

These types of sites will include ponds, enhanced historic river channels, wet meadows, and any area that can be surveyed from the entirety of its perimeter or walked throughout. If the wetland is not uncomfortably inundated, conduct several "meandering" transects through the site in an orderly fashion (record the number and approximate location/direction of the transects in the field notebook; they do not have to be formalized or staked). If a very small portion of the site cannot be crossed due to inundation, this method will also apply. Though the sizes of the site vary, each site will require surveying to the fullest extent possible within a set time limit. The optimum times to conduct the survey are in the morning hours. Conduct the survey from sunrise to no later than 11:00 AM. (Note: some sites may have to be surveyed in the late afternoon or evening due to time constraints or weather; if this is the case, record the time of day and include this information in your report discussion.) If the survey is completed before 11:00 AM and no additions are being made to the list, then the task is complete. The overall limiting factor regarding the number of hours that are spent conducting this survey is the number of budgeted hours; this determination must be made by site by each individual.

In many cases, binoculars will be the only instrument that is needed to identify and count the birds using the wetland. If the wetland includes deep water habitat that can not be assessed with binoculars, then a scope and tripod are necessary. If this is the case, establish as many lookout posts as necessary from key vantage points to collect the data. Depending on the size of the open water, more time may be spent viewing the mitigation area from these vantage points than is spent walking the peripheries of more shallow-water wetlands.

Sites that cannot be circumambulated.

These types of sites will include large-bodied waters, such as reservoirs, particularly those with deep water habitat (>6 ft) close to the shore and no wetland development in that area of the shoreline. If one area of the reservoir was graded in such a way to create or enhance the development of a wetland, then that will be the area in which the ambulatory bird survey is conducted. The team member must then determine the length of the shoreline that will be surveyed during each visit.

As stated above in the ambulatory site section, these large sites most likely will have to be surveyed from established vantage points.

Species Use within the Mitigation Wetland: Data Recording

Result: A complete list of bird species using the site, an estimate of bird densities and associated behaviors, and identification of habitat use.

1. Bird Species List

Record the bird species on the Bird Survey - Field Data Sheet using the appropriate 4-letter code of the common name. The coding uses the first two letters of the first two words of the birds' common name or if one name, the first four (4) letters. For example, mourning dove is coded MODO and mallard is MALL. If an unknown individual is observed, use the following protocol and define your abbreviation at the bottom of the field data sheet: unknown shorebird: UNSB; unknown brown bird (UNBR); unknown warbler (UNWA); unknown waterfowl (UNWF). For a flyover of a flock of unknown species, use a term that describes the birds' general characteristics and include the approximate flock size in parentheses; do not fill in the habitat column. For example, a flock of black, medium-sized birds could be coded: UNBB / FO (25). You may also note on the data sheet if that particular individual is using a constructed nest box.

2. Bird Density

In the office, sum the Bird Survey – Field Data Sheet data by species and by behavior. Record this data in the Bird Summary Table.

3. Bird Behavior

Bird behavior must be identified by what is known. When a species is simply observed, the behavior that it is immediately exhibiting is what is recorded. Only behaviors that have discreet descriptive terms should be used. The following terms are recommended: breeding pair individual (BP); foraging (F); flyover (FO); loafing (L; e.g. sleeping, roosting, floating with head tucked under wing are loafing behaviors); and, nesting (N). If more behaviors are observed that do have a specific descriptive word, use them and we will add it to the protocol; descriptive words or phrases such as "migrating" or "living on site" are unknown behaviors.

4. Bird Species Habitat Use

We are interested in what bird species are using which particular habitat within the mitigation wetlands. This data is easily collected by simply recording what habitat the species was initially observed. Use the following broad category habitat classifications: aquatic bed (AB - rooted floating, floating-leaved, or submergent vegetation); forested (FO); marsh (MA – cattail, bulrush, emergent vegetation, etc. with surface water); open water (OW – primarily unvegetated); scrub-shrub (SS); and upland buffer (UP); wet meadow (WM – sedges, rushes, grasses with little to no surface water). If other categories are observed onsite that are not suggested here, we will make a new category next year.

GPS Mapping and Aerial Photo Referencing Procedure

The wetland boundaries, photograph location points and sampling locations were field located with mapping grade Trimble Geo III GPS units. The data was collected with a minimum of three positions per feature using Course/Acquisition code. The collected data was then transferred to a PC and differentially corrected to the nearest operating Community Base Station. The corrected data was then exported to ACAD drawings in Montana State Plain Coordinates NAD 83 international feet.

The GPS positions collected and processed had a 68% accuracy of 7 feet except in isolated areas of Tasks .008 and .011, where it went to 12 feet. This is within the 1 to 5 meter range listed as the expected accuracy of the mapping grade Trimble GPS.

Aerial reference points were used to position the aerial photographs. This positioning did not remove the distortion inherent in all photos; this imagery is to be used as a visual aide only. The located wetland boundaries were given a final review by the wetland biologist and adjustments were made if necessary.

Any relationship of features located to easement or property lines are not to be construed from these figures. These relationships can only be determined with a survey by a licensed surveyor.

Appendix F

MACROINVERTEBRATE SAMPLE PROTOCOL AND DATA ANALYSES

MDT Wetland Mitigation Monitoring Beaverhead Gateway Dillon, Montana

AQUATIC INVERTEBRATE SAMPLING PROTOCOL

Equipment List

- D-frame sampling net with 1 mm mesh. Wildco is a good source of these.
- Spare net.
- 1-liter plastic sample jars, wide-mouth. VWR has these: catalog #36319-707.
- 95% ethanol: Northwest Scientific in Billings carries this.

All these other things are generally available at hardware or sporting goods stores. Make the labels on an ink jet printer preferably.

- hip waders.
- pre-printed sample labels (printed on Rite-in-the-Rain or other coated paper, two labels per sample).
- pencil.
- plastic pail (3 or 5 gallon).
- large tea strainer or framed screen.
- towel.
- tape for affixing label to jar.
- cooler with ice for sample storage.

Site Selection

Select the sampling site with these considerations in mind:

- Select a site accessible with hip waders. If substrates are too soft, lay a wide board down to walk on.
- Determine a location that is representative of the overall condition of the wetland.

Sampling

Wetland invertebrates inhabit the substrate, the water column, the stems and leaves of aquatic vegetation, and the water surface. Your goal is to sweep the collecting net through each of these habitat types, and then to combine the resulting samples into the 1-liter sample jar.

Dip out about a gallon of water into the pail. Pour about a cup of ethanol into the sample jar. Fill out the top half of the sample labels, using pencil, since ink will dissolve in the ethanol.

Ideally, you can sample a swath of water column from near-shore outward to a depth of approximately 3 feet with a long sweep of the net, keeping the net at about half the depth of the water throughout the sweep. Sweep the water surface as well. Pull the net through a vegetated area, beneath the water surface, for at least a meter of distance.

Sample the substrate by pulling the net along the bottom, bumping it against the substrate several times as you pull.

This step is optional, but it gives you a chance to <u>see</u> that you've collected some invertebrates. Rinse the net out into the bucket, and look for insects, crustaceans, etc. If necessary, repeat the sampling process in a nearby location, and add the net contents to the bucket. Remember to sample all four environments.

Sieve the contents of the bucket through the straining device and pour or carefully scrape the contents of the strainer into the sample jar.

If you skip the bucket-and-sieve steps, simply lift handfuls of material out of the sampling net into the jars. In either case, please include some muck or mud and some vegetation in the jar. Often, you will have collected a large amount of vegetable material. If this is the case, lift out handfuls of material from the sieve into the jar, until the jar is about half full. Please limit material you include in the sample, so that there is only a single jar for each sample.

Top off the sample jar with enough ethanol to cover all the material in the jar. Leave as little headroom as possible.

It is not necessary to sample habitats in any specified order. Keep in mind that disturbing the habitats prior to sampling will chase off the animals you are trying to capture.

Complete the sample labels. Place one label inside the sample jar and tape the other label securely to the outside of the jar. Dry the jar before attaching the outer label if necessary. In some situations, it may be necessary to collect more than one sample at a site. If you take multiple samples from the same site, clearly indicate this by using individual sample numbers, along with the total number of samples collected at the site (e.g. Sample #3 of 5 total samples).

Photograph the sampled site.

Sample Handling/Shipping

- In the field, keep collected samples cool by storing them in a cooler. Only a small amount of ice is necessary.
- Inventory all samples, preparing a list of all sites and enumerating all samples, before shipping or delivering to the laboratory.
- Deliver samples to Rhithron.

MDT WETLAND MITIGATION MONITORING PROJECT Aquatic Invertebrate Monitoring Summary 2001, 2002, 2003

METHODS

Among other monitoring activities, aquatic invertebrate assemblages were collected at a number of mitigation wetlands throughout Montana. This report summarizes data generated from three years of collection.

The method employed to assess these wetlands is based on constructing an index using a battery of 12 bioassessment metrics or attributes (**Table 1**) tested and recommended by Stribling et al. (1995) in a report to the Montana Department of Health and Environmental Science. In that study, it was determined that some of the metrics were of limited use in some geographic regions, and for some wetland types. Despite that finding, all 12 metrics are used in this evaluation of mitigated wetlands, since detailed geographic information and wetland classifications were unavailable.

Scoring criteria for metrics were developed by generally following the tactic used by Stribling et al. Boxplots were generated and distributions, ranges, and quartiles for each metric were examined. All sites were used except Camp Creek, which was sampled in 2002 and 2003. The fauna at that site was different from that of the other sites, and suggested montane stream conditions rather than wetland conditions. The Camp Creek site was assessed using the tested metric battery developed for montane streams of Western Montana (Bollman 1998). For the wetlands, "optimal" scores were generally those that fell above the 75th percentile (for those metrics that decrease in value in response to stress) or below the 25th percentile (for metrics that respond to stress by an increase in value) of all scores. Additional scoring ranges were established by bisecting the range below the 75th percentile for decreasing scores (or above the 25th percentile for increasing scores) into "sub-optimal" and "poor" assessment categories. A score of 5, 3, or 1 was assigned to optimal, sub-optimal, and poor metric performance, respectively. In this way, metric values were translated into normalized metric scores, and scores for all metrics were summed to produce a total bioassessment score. Total bioassessment scores were classified according to a similar process, using the ranges and distributions of total scores for all sites studied.

The purpose of constructing an index from biological attributes or metrics is to provide a means of integrating information to facilitate the determination of whether management action is needed. The nature of the action needed is not determined solely by the index score, however, but by consideration of an analysis of the component metrics, the taxonomic composition of the assemblages and other issues. The diagnostic functions of the metrics and taxonomic data need more study; our understanding of the interrelationships of natural environmental factors and anthropogenic disturbances are tentative. Thus, the further interpretive remarks accompanying the raw taxonomic and metric data are offered cautiously.

Sample Processing

Aquatic invertebrate samples were collected at mitigation wetland sites in the summer months of 2001, 2002, and 2003 by personnel of Wetlands West, Inc. and/or Land & Water Consulting, Inc. Sampling procedures utilized were based on the protocols developed by the Montana Department of Environmental Quality (MDEQ).

Sampling consisted of D-frame net sweeps through emergent vegetation (when present), the water column, over the water surface, and included disturbing and scraping substrates at each sampled sites. Samples were preserved in ethanol at each wetland site and subsequently delivered to Rhithron Associates, Inc. for processing, taxonomic determinations, and data analysis.

At Rhithron's laboratory, Caton subsamplers and stereomicroscopes with 10X magnification were used to randomly select a minimum of 200 organisms, when possible, from each sample. In some cases, the entire sample contained fewer than 200 organisms; in these cases, all organisms from the sample were taken. Taxa were identified in general accordance with the taxonomic resolution standards set out in the MDEQ Standard Operating Procedures for Sampling and Sample Analysis (Bukantis 1998). Ten percent of samples were re-identified by a second taxonomist

for quality assurance purposes. The identified samples have been archived at Rhithron's laboratory. Taxonomic data and organism counts were entered into an Excel 2000 spreadsheet, and metrics were calculated and scored using spreadsheet formulae.

Bioassessment Metrics

An index based on the performance of 12 metrics was constructed, as described above. **Table 1** lists those metrics, describes their calculation and the expected response of each to increased degradation or impairment of the wetland.

In addition to the summed scores of each metric and the associated impairment classification described above, each individual metric informs the bioassessment to some degree. The four richness metrics (Total taxa, POET, Chironomidae taxa, and Crustacea taxa + Mollusca taxa) can be interpreted to express habitat complexity as well as water quality. Complex, diverse habitats consist of variable substrates, emergent vegetation, variable water depths and other factors, and are potential features of long-established stable wetlands with minimal human disturbance. In the study conducted by Stribling et al. (1995), all four richness metrics were found to be significantly associated with water quality parameters including conductance, salinity, and total dissolved solids.

Four composition metrics (%Chironomidae, %Orthocladiinae of Chironomidae, %Crustacea + %Mollusca, and Amphipoda) measure the relative contributions of certain taxonomic groups that may have significant responses to habitat and/or water quality impacts. For example, amphipods have been demonstrated to increase in abundance in alkaline conditions. Short-lived, relatively mobile taxa such as chironomids dominate ephemeral environments; any are hemoglobin-bearers capable of tolerating de-oxygenated conditions.

Two tolerance metrics (the Hilsenhoff Biotic Index and %Dominant taxon) were included in the bioassessment battery. The HBI indicates the overall invertebrate assemblage tolerance to nutrient enrichment, warm water, and/or low dissolved oxygen conditions. The percent abundance of the dominant taxon has been demonstrated to be strongly associated with pH, conductance, salinity, total organic carbon, and total dissolved solids.

Two trophic measures (% Collector-gatherers and % Filterers) may be helpful in expressing functional integrity of the invertebrate assemblage, which can be impacted by poor water quality or habitat degradation. High proportions of filtering organisms suggest nutrient and/or organic enrichment, while abundant collectors suggest more positive functional conditions and well-developed wetland morphology. These organisms graze periphyton growing on stable surfaces such as macrophytes.

RESULTS

In 2001, 29 sites were sampled statewide. Nineteen of these sites were revisited in 2002, and 13 new sites were sampled. In 2003, 17 sites that had been visited in both 2001 and 2002 were re-sampled, and 11 sites sampled for the first time in 2001 were re-visited. In addition, 2 new sites were sampled. Thus, the 2003 database contains records for 90 sampling events at 44 unique sites. **Table 2** summarizes sites and sampling dates.

Metric scoring criteria were re-developed each year as new data was added. For 2003, 88 records were utilized. Because of the addition of data, scoring criteria changed for several metrics in 2003; thus, biotic condition classifications assigned in 2002 for some sites also changed. However, ranges of individual metrics, as well as median metric values remained remarkably consistent in each of the three years.

Metric	Metric Calculation	Expected Response to Degradation or Impairment
Total taxa	Count of unique taxa identified to lowest recommended taxonomic level	Decrease
POET	Count unique Plecoptera, Trichoptera, Ephemeroptera, and Odonata taxa identified to lowest recommended taxonomic level	Decrease
Chironomidae taxa	Count unique midge taxa identified to lowest recommended taxonomic level	Decrease
Crustacea taxa + Mollusca taxa	Count unique Crustacea taxa and Mollusca taxa identified to lowest recommended taxonomic level	Decrease
% Chironomidae	Percent abundance of midges in the subsample	Increase
Orthocladiinae/Chironomidae	Number of individual midges in the sub-family Orthocladiinae / total number of midges in the subsample.	Decrease
%Amphipoda	Percent abundance of amphipods in the subsample	Increase
%Crustacea + %Mollusca	Percent abundance of crustaceans in the subsample plus percent abundance of molluscs in the subsample	Increase
HBI	Relative abundance of each taxon multiplied times that taxon's modified Hilsenhoff Biotic Index value. These numbers are summed over all taxa in the subsample.	Increase
%Dominant taxon	Percent abundance of the most abundant taxon in the subsample	Increase
%Collector-Gatherers	Percent abundance of organisms in the collector-gatherer functional group	Decrease
%Filterers	Percent abundance of organisms in the filterer functional group	Increase

 Table 1. Aquatic invertebrate metrics employed in the MTDT mitigation wetland monitoring study, 2001- 2003.

LITERATURE CITED

- Bollman, W. 1998. Montana Valleys and Foothill Prairies Ecoregion. Master's Thesis. (M.S.) University of Montana. Missoula, Montana.
- Bukantis, R. 1998. Rapid bioassessment macroinvertebrate protocols: Sampling and sample analysis SOP's. Working draft. Montana Department of Environmental Quality. Planning Prevention and Assistance Division. Helena, Montana.
- Stribling, J.B., J. Lathrop-Davis, M.T. Barbour, J.S. White, and E.W. Leppo. 1995. Evaluation of environmental indicators for the wetlands of Montana: the multimetric approach using benthic macroinvertebrates. Report to the Montana Department of Health and Environmental Science. Helena, Montana.

2001	2002	2003
Beaverhead 1	Beaverhead 1	Beaverhead 1
Beaverhead 2	Beaverhead 2	Deavenneau 1
Beaverhead 3	Beaverhead 3	
Beaverhead 4	Beaverhead 4	Beaverhead 4
Beaverhead 5	Beaverhead 5	Beaverhead 5
Beaverhead 6	Beaverhead 6	Beaverhead 6
Big Sandy 1	Deaverneau o	Deavenneau o
Big Sandy 2		
Big Sandy 2 Big Sandy 3		
Big Sandy 4		
Johnson-Valier		
VIDA		
Cow Coulee	Cow Coulee	Cow Coulee
Fourchette - Puffin	Fourchette - Puffin	Fourchette - Puffin
Fourchette – Flashlight	Fourchette – Flashlight	Fourchette – Flashlight
Fourchette – Penguin	Fourchette – Penguin	Fourchette – Penguin
Fourchette – Albatross	Fourchette – Albatross	Fourchette – Albatross
Big Spring	Big Spring	Big Spring
Vince Ames	Dig opring	Dig Spring
Ryegate		
Lavinia		
Stillwater	Stillwater	Stillwater
Roundup	Roundup	Roundup
Wigeon	Wigeon	Wigeon
Ridgeway	Ridgeway	Ridgeway
Musgrave – Rest. 1	Musgrave – Rest. 1	Musgrave – Rest. 1
Musgrave – Rest. 2	Musgrave – Rest. 2	Musgrave – Rest. 2
Musgrave – Enh. 1	Musgrave – Enh. 1	Musgrave – Enh. 1
Musgrave – Enh. 2	auagrave – Eint. 1	musgrave - Enn. 1
Musgrave - Bill. 2	Hoskins Landing	Hoskins Landing
	Peterson - 1	Peterson – 1
	Peterson – 2	reterson - 1
	Peterson – 4	Patarson 4
	Peterson – 4 Peterson – 5	Peterson – 4 Peterson – 5
	Jack Johnson - main	Jack Johnson - main
	Jack Johnson - Main Jack Johnson - SW	Jack Johnson - Main
	Creston	Creston
	Lawrence Park	Creston
	Perry Ranch	
	SF Smith River	SF Smith River
	Camp Creek	Camp Creek
	Kleinschmidt	
	Kieinschmidt	Kleinschmidt - pond
		Kleinschmidt – stream
		Ringling - Galt

 Table 2. Sampled MDT Mitigation Sites by Year

Aquatic Invertebrate Taxonomic Data Site Name BEAVERHEAD #1

Date Collected	8/7/2003
	0, ., = 0000

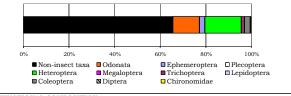
						0, .	/ = 000
Order Acarina	Family	Taxon	Count	Percent	Unique	BI	FFG
Amphipoda	Acari	Acari	1	0.49%	Yes	5	PR
Ашршроца	Gammaridae	Gammarus	2	0.97%	Yes	4	SH
Basommatophor	Talitridae	Hyalella	24	11.65%	Yes	8	CG
Dasoninatophor	Lymnaeidae	Stagnicola	2	0.97%	Yes	6	SC
	Physidae Planorbidae	Physidae	30	14.56%	Yes	8	SC
	T lanoi blaac	Gyraulus Helisoma	75 1	36.41% 0.49%	Yes Yes	8 6	SC SC
Coleoptera	Haliplidae	Haliplus	4	1.94%	Yes	5	PH
Diptera	Hydrophilidae	Enochrus	1	0.49%	Yes	5	CG
-	Chironomidae	Cricotopus (Cricotopus)	1	0.49%	Yes	7	SH
Ephemeroptera	Baetidae	Callibaetis	3	1.46%	Yes	9	CG
Heteroptera	Caenidae	Caenis	2	0.97%	Yes	7	CG
	Corixidae	Corixidae Hesperocorixa	12 16	5.83% 7.77%	No Yes	10 10	PH PH
Odonata	Notonectidae	Notonecta	5	2.43%	Yes	5	PR
Trichoptera	Coenagrionidae	Enallagma	24	11.65%	Yes	7	PR
Grand Total	Leptoceridae	Triaenodes	3 206	1.46%	Yes	6	SH

Aquatic Invertebrate Taxonomic DataSite NameBEAVERHEAD #4Date Collected8/ 7/2003						/2003	
Order	Family	Taxon	Count	Percent	Unique	ві	FFG
		Ostracoda	9	5.96%	Yes	8	CG
Amphipoda		Copepoda	18	11.92%	Yes	8	CG
	Gammaridae Talitridae	Gammarus	3	1.99%	Yes	4	SH
Basommatophor	a Physidae	Hyalella	37	24.50%	Yes	8	CG
	Planorbidae	Physidae <i>Gyraulus</i>	2 1	1.32% 0.66%	Yes Yes	8 8	SC SC
Coleoptera	Dytiscidae	Helisoma	1	0.66%	Yes	6	SC
	Haliplidae	Hygrotus Haliplus	1 1	0.66% 0.66%	Yes Yes	5 5	PR PH
Diplostraca		Cladocera	64	42.38%	Yes	8	CF
Ephemeroptera	Caenidae	Caenis	2	1.32%	Yes	7	CG
Heteroptera	Corixidae		2	1.32%	Yes	10	РН
Odonata	Notonectidae	Hesperocorixa Notonecta	8	5.30%	Yes	5	PR
Guonata	Coenagrionidae Libellulidae	Coenagrionidae	1	0.66%	Yes	7	PR
Grand Total	monunuat	Libellulidae	1 151	0.66%	Yes	9	PR

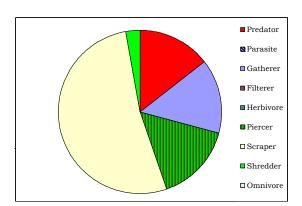
Aquatic Invertebrate Taxonomic Data Site Name BEAVERHEAD #5

Site Name BEAVERHEAD #5					lected	8/7	/2003
Order	Family	Taxon	Count	Percent	Unique	BI	FFG
Amphipoda	Talitridae						
Arhynchobdellid		Hyalella	37	26.81%	Yes	8	CG
	Erpobdellidae	Erpobdella	1	0.72%	Yes	8	PR
Basommatophor	a Physidae	-					
	Planorbidae	Physidae	15	10.87%	Yes	8	SC
Coleoptera		Gyraulus	33	23.91%	Yes	8	SC
conceptora	Dytiscidae	Orregulation	4	2.90%	Yes	5	PR
	Haliplidae	Oreodytes					
		Haliplidae <i>Haliplus</i>	$\frac{1}{2}$	$0.72\% \\ 1.45\%$	No Yes	7 5	SH PH
Diptera	Ceratopogonidae						
	Chironomidae	Ceratopogoninae	9	6.52%	Yes	6	PR
		Cladotanytarsus Cryptochironomus	12 1	8.70% 0.72%	Yes Yes	7 8	CG PR
		Orthocladius annectens Polypedilum	1 5	0.72% 3.62%	Yes Yes	6 6	CG SH
Ephemeroptera	Baetidae	- <u>31</u>					
	Caenidae	Callibaetis	4	2.90%	Yes	9	CG
Heteroptera	Cacilluat	Caenis	1	0.72%	Yes	7	CG
Heteroptera	Corixidae	Corisella	2	2.17%	Yes	11	PR
Olanata		Corisella Corixidae	3 7	2.17% 5.07%	No	10	PR PH
Odonata	Coenagrionidae		2	1 4 50 (_	22
Grand Total		Enallagma	2 138	1.45%	Yes	7	PR

Aquatic Invertebrate Taxonomic DataSite Name BEAVERHEAD #6Date Collected8/ 7/2003							/2003
Order	Family	Taxon	Count	Percent	Unique	que BI FFG	
		Ostracoda	14	10.94%	Yes	8	CG
A		Copepoda	1	0.78%	Yes	8	CG
Amphipoda	Gammaridae Talitridae	Gammarus	7	5.47%	Yes	4	SH
Basommatophor		Hyalella	1	0.78%	Yes	8	CG
Coleoptera	Physidae	Physidae	14	10.94%	Yes	8	SC
Diplostraca	Dytiscidae	Agabus Laccornis	3 1	2.34% 0.78%	Yes Yes	5 5	PR PR
Diptera	Chironomidae	Cladocera	2	1.56%	Yes	8	CF
	Chironomidae	Cricotopus (Cricotopus) Dicrotendipes Endochironomus Paratanytarsus Phaenopsectra	64 7 1 1 11	50.00% 5.47% 0.78% 0.78% 8.59%	Yes Yes Yes Yes Yes	7 8 10 6 7	SH CG SH CG SC
Trichoptera Grand Total	Limnephilidae	Limnephilus	1 128	0.78%	Yes	3	SH


Aquatic Invertebrate Data Summary Project ID: MDT03LW STORET Station ID: MDT03LW

Station Name:	BEAVERHEAD #1
Sample type	

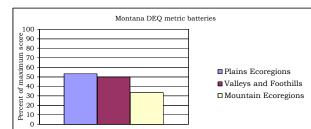

SUBSAMPLE TOTAL ORGANISMS	206
Portion of sample used	8.33%
Estimated number in total sample	2172
Sampling effort	
Time	
Distance	
Jabs	
Habitat type	
EPT abundance	9
Taxa richness	16
Number EPT taxa	3
Percent EPT	4.42%

TAXONOMIC COMPOSITION

GROUP	PERCENT	#TAXA	
Non-insect taxa	65.53%	7	
Odonata	11.65%	1	
Ephemeroptera	2.43%	2	
Plecoptera	0.00%	0	
Heteroptera	16.02%	3	
Megaloptera	0.00%	0	
Trichoptera	1.46%	1	
Lepidoptera	0.00%	0	
Coleoptera	2.43%	2	
Diptera	0.00%	0	
Chironomidae	0.49%	1	

FUNCTIONAL COMPOSITION GROUP PERCENT Predator 14.56% Parasite 0.00% Gatherer 14.56% Filterer 0.00% Herbivore 0.00% Scraper 52.43% Shredder 2.91% Omnivore 0.00% Unknown 0.00% #TAXA 3 0 4 0 0 3 4 3 0 0 0

COMMUNITY TOLERANCES


COMMUNITY TOLERANCES	
Sediment tolerant taxa	2
Percent sediment tolerant	42.54%
Sediment sensitive taxa	0
Metals tolerance index (McGuire)	3.67
Cold stenotherm taxa	0
Percent cold stenotherms	0.00%

HABITUS MEASURES

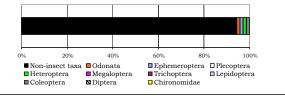
Hemoglobin bearer richness	3
Percent hemoglobin bearers	39.32%
Air-breather richness	1
Percent air-breathers	0.49%
Burrower richness	1
Percent burrowers	0.49%
Swimmer richness	0
Percent swimmers	0.00%

Activity ID:

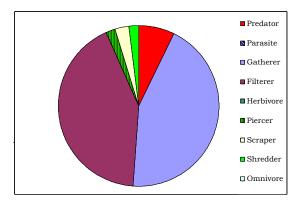
Sample Date:	8/7/200	3		
DOMINANCE				
TAXON		ABUNDANCE 7		-
Gyraulus Physidae		3		
Hyalella		2		
Enallagma		2		
Hesperocorixa		1		
SUBTOTAL 5 DOMINAN	TS	16		
Corixidae		1		
Notonecta			5 2.43%	
Haliplus			4 1.94%	
Callibaetis Triaenodes			3 1.46% 3 1.46%	
TOTAL DOMINANTS		19		•
101111110		17	0 90.1070	-
SAPROBITY Hilsenhoff Biotic Index			6.63	
DIVERSITY			0.64	
Shannon H (loge)			2.64 1.83	
Shannon H (log2) Margalef D			3.07	
Simpson D			0.22	
Evenness			0.11	
VOLTINISM				
TYPE		# TAXA	PERCENT	
Multivoltine		3	2.76%	
Univoltine		11	94.48%	
Semivoltine		2	2.76%	
TAXA CHARACTERS	#TAXA		PERCENT	
Tolerant	#1AAA 8		58.74%	
Intolerant	0		0.00%	
Clinger	1		0.55%	
-				
BIOASSESSMENT INDI B-IBI (Karr et al.)	CES			
METRIC	VALUE		SCORE	
Taxa richness	16		1	
E richness	2		1	
P richness	0		1	
T richness Long-lived	2		1	
Sensitive richness	0		1	
%tolerant	58.74%		1	
%predators	14.56%		3	
Clinger richness	1		1	
%dominance (3)	67.96%		3	
		TOTAL SCOR	E 14	28%
MONTANA DEQ METRI	ICS (Buka	Plains	Valleys and	Mountain
METRIC	VALUE	Ecoregions	Foothills	Ecoregions
Taxa richness	16	1	1	0
EPT richness	3	1	0	õ
Biotic Index	6.63	1	0	õ
%Dominant taxon	36.41%	2	2	1
%Collectors	14.56%	3	3	3
%EPT	4.42%	0	0	0
Shannon Diversity	1.83	1	0	0
%Scrapers +Shredders	55.34%	3 1	3	3
Predator taxa %Multivoltine	3 2.76%	1		
%Multivoithe %H of T	2.76%	3	3	
TOTAL SCORES	0.0070	16	12	7
PERCENT OF MAXIMUN	Л	53.33	50.00	33.33
IMPAIRMENT CLASS		SLIGHT	MODERATE	MODERATE
-				

Montana Plains ecoregions metrics (Bramblett and Johnson)

Riffle	Pool	
EPT richness	3 E richness	2
Percent EPT	4.42% Trichness	1
Percent Oligochaetes and Leeches	0.00% Percent EPT 4.4	2%
Percent 2 dominants	50.97% Percent non-insect 65.5	3%
Filterer richness	0 Filterer richness	0
Percent intolerant	0.00% Univoltine richness	11
Univoltine richness	11 Percent supertolerant 77.6	7%
Percent clingers	0.55%	
Swimmer richness	0	


Aquatic Invertebrate Data Summary Project ID: MDT03LW STORET Station ID:

Station Name:	BEAVERHEAD #4
Sample type	


SUBSAMPLE TOTAL ORGANISMS Portion of sample used	151 0.83%
Estimated number in total sample	18120
Sampling effort	
Time	
Distance	
Jabs	
Habitat type	
EPT abundance	2
Taxa richness	15
Number EPT taxa	1
Percent EPT	1.32%

TAXONOMIC COMPOSITION

GROUP	PERCENT	#TAXA	
Non-insect taxa	89.40%	8	
Odonata	1.32%	2	
Ephemeroptera	1.32%	1	
Plecoptera	0.00%	0	
Heteroptera	1.32%	2	
Megaloptera	0.00%	0	
Trichoptera	0.00%	0	
Lepidoptera	0.00%	0	
Coleoptera	1.32%	2	
Diptera	0.00%	0	
Chinomomidoo	0.00%	0	

FUNCTIONAL COMPOSITION GROUP PERCENT Predator 7.28% Parasite 0.00% Gatherer 43.71% Filterer 42.38% Herbivore 0.00% Scraper 2.65% Shredder 1.99% Omnivore 0.00% Unknown 0.00% #TAXA 4 0 4 1 0 2 3 1 0 0 0

COMMUNITY TOLERANCES

COMMUNITY TOLERANCES	
Sediment tolerant taxa	1
Percent sediment tolerant	0.66%
Sediment sensitive taxa	0
Metals tolerance index (McGuire)	7.36
Cold stenotherm taxa	0
Percent cold stenotherms	0.00%

HABITUS MEASURES

Hemoglobin bearer richness	3
Percent hemoglobin bearers	6.62%
Air-breather richness	1
Percent air-breathers	0.66%
Burrower richness	0
Percent burrowers	0.00%
Swimmer richness	5
Percent swimmers	20.53%

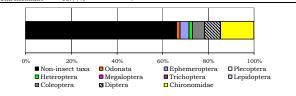
Activity ID:

Sample Date:	8/7/200	3		
DOMINANCE	-11	-		
TAXON Cladocera		ABUNDANCE	<u>PERCENT</u> 4 42.38%	
Hvalella			7 24.50%	
Copepoda			8 11.92%	
Ostracoda			9 5.96%	
Notonecta			8 5.30%	
SUBTOTAL 5 DOMINAN	TS	13		
Gammarus Physidae			3 1.99% 2 1.32%	
Caenis			2 1.32%	
Hesperocorixa			2 1.32%	
Gyraulus			1 0.66%	
TOTAL DOMINANTS		14	6 96.69%	
SAPROBITY Hilsenhoff Biotic Index			7.07	
DIVERSITY				
Shannon H (loge)			2.12	
Shannon H (log2)			1.47	
Margalef D Simpson D			2.79 0.26	
Evenness			0.20	
VOLTINISM				
TYPE		# TAXA	PERCENT	
Multivoltine		3	60.26%	
Univoltine Semivoltine		9 3	37.75% 1.99%	
TAXA CHARACTERS		3	1.99%	
Then children Eks	#TAXA		PERCENT	
Tolerant	7		7.28%	
Intolerant	0		0.00%	
Clinger	0		0.00%	
BIOASSESSMENT INDI	CES			
B-IBI (Karr et al.)	MALTIE		SCOPE	
METRIC Taxa richness	VALUE 15		SCORE 1	
E richness	10		1	
P richness	0		1	
T richness	0		1	
Long-lived	3		3	
Sensitive richness %tolerant	0 7.28%		1 5	
%predators	7.28%		1	
Clinger richness	0		1	
%dominance (3)	78.81%		1	2007
MONTANA DEQ METRI	CS (Bule	TOTAL SCOR	E 16	32%
	(Duka	Plains	Valleys and	Mountain
METRIC	VALUE	Ecoregions	Foothills	Ecoregions
Taxa richness	15	1	1	0
EPT richness	1	0	0	0
Biotic Index	7.07	0	0	0
%Dominant taxon	42.38%	2	1	1
%Collectors %EPT	86.09% 1.32%	1	1	0
Shannon Diversity	1.47	0	0	0
%Scrapers +Shredders	4.64%	1	0	0
Predator taxa	4	2		
%Multivoltine	60.26%	1		
%H of T TOTAL SCORES	#DIV/0!	8	#DIV/0!	1
PERCENT OF MAXIMUN	л	8 26.67	#DIV/0! #DIV/0!	4.76
IMPAIRMENT CLASS	••	MODERATE		SEVERE
			,	

Montana DEQ metric batteries 100 Percent of maximum score 90 80 70 60 Plains Ecoregions 50 ■ Valleys and Foothills 40 30 Mountain Ecoregions 20 10 0

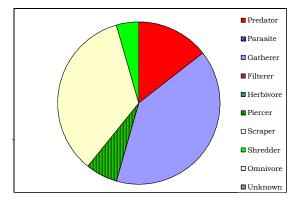
Riffle		Pool	
EPT richness	1	E richness	1
Percent EPT	1.32%	T richness	C
Percent Oligochaetes and Leeches	0.00%	Percent EPT	1.32%
Percent 2 dominants	66.89%	Percent non-insect	89.40%
Filterer richness	1	Filterer richness	1
Percent intolerant	0.00%	Univoltine richness	9
Univoltine richness	9	Percent supertolerant	88.74%
Percent clingers	0.00%	-	
Swimmer richness	5		

 Aquatic Invertebrate Data Summary


 Project ID:
 MDT03LW

 STORET Station ID:
 MDT03LW

STORET Station ID:			
Station Name: BEAVERHEAD #5			
Sample type			
SUBSAMPLE TOTAL OR	GANISMS	138	
Portion of sample used		10.00%	
Estimated number in to	tal sample	1380	
Sampling effort			
Time			
Distance			
Jabs			
Habitat type			
EPT abundance		5	
Taxa richness		15	
Number EPT taxa		2	
Percent EPT		3.62%	


TAXONOMIC COMPOSITION

GROUP	PERCENT	#TAXA	
Non-insect taxa	62.32%	4	
Odonata	1.45%	1	
Ephemeroptera	3.62%	2	
Plecoptera	0.00%	0	
Heteroptera	1.45%	2	
Megaloptera	0.00%	0	
Trichoptera	0.00%	0	
Lepidoptera	0.00%	0	
Coleoptera	5.07%	3	
Diptera	6.52%	1	
Chironomidae	13.77%	4	

FUNCTIONAL COMPOSITION

GROUP	PERCENT	#TAXA
Predator	14.49%	6
Parasite	0.00%	0
Gatherer	39.86%	5
Filterer	0.00%	0
Herbivore	0.00%	0
Piercer	6.52%	2
Scraper	34.78%	2
Shredder	4.35%	2
Omnivore	0.00%	0
Unknown	0.00%	0

COMMUNITY TOLERANCES

COMMUNITY TOLERANCES	
Sediment tolerant taxa	1
Percent sediment tolerant	23.91%
Sediment sensitive taxa	0
Metals tolerance index (McGuire)	2.83
Cold stenotherm taxa	0
Percent cold stenotherms	0.00%

HABITUS MEASURES

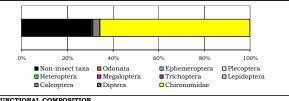
Hemoglobin bearer richness	2
Percent hemoglobin bearers	27.54%
Air-breather richness	1
Percent air-breathers	2.90%
Burrower richness	1
Percent burrowers	6.52%
Swimmer richness	4
Percent swimmers	8.70%

Activity ID:

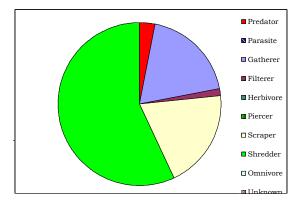
Sample Date:	8/7/2003				
DOMINANCE					
TAXON		ABUNDANCE		PERCENT	
Hyalella			37	26.81%	
Gyraulus			33	23.91%	
Physidae			15 12	10.87% 8.70%	
Cladotanytarsus Ceratopogoninae			9	6.52%	
SUBTOTAL 5 DOMINANT	9	1	.06	76.81%	
Corixidae	0	1	7	5.07%	
Polypedilum			5	3.62%	
Callibaetis			4	2.90%	
Oreodytes			4	2.90%	
Corisella			3	2.17%	
TOTAL DOMINANTS		1	29	93.48%	
SAPROBITY					
Hilsenhoff Biotic Index				7.00	
DIVERSITY					
Shannon H (loge)				2.95	
Shannon H (log2)				2.05	
Margalef D				3.24	
Simpson D				0.15	
Evenness				0.12	
VOLTINISM TYPE		# (T) A 3/ A		EDGENT	
		# TAXA	P	PERCENT	
Multivoltine Univoltine		5 8		16.67% 78.26%	
Semivoltine		8		78.26% 5.07%	
TAXA CHARACTERS		2		5.07%	
TAXA CHARACTERS	#TAXA		P	PERCENT	
Tolerant	8		1	50.00%	
Intolerant	ő			0.00%	
Clinger	1			3.62%	
BIOASSESSMENT INDIC	ES				
B-IBI (Karr et al.)					
METRIC	VALUE		S	SCORE	
Taxa richness	15			1	
E richness	2			1	
P richness	0			1	
T richness	0			1	
Long-lived	2			1	
Sensitive richness %tolerant	50.00%			1	
%predators	14.49%			3	
Clinger richness	14.4970			1	
%dominance (3)	61.59%			3	
	0210710	TOTAL SCOR	ΈE	16	32%
MONTANA DEQ METRIC	S (Bukanti				
-		Plains		Valleys and	Mountain
METRIC	VALUE	Ecoregions	;	Foothills	Ecoregions
Taxa richness	15	1		1	0
EPT richness	2	ō		0	õ
Biotic Index	7.00	1		Ō	0
%Dominant taxon	26.81%	3		3	2
%Collectors	39.86%	3		3	3
%EPT	3.62%	0		0	0
Shannon Diversity	2.05	1			
%Scrapers +Shredders	39.13%	3		3	1
Predator taxa	6	3			
%Multivoltine	16.67%	3			
%H of T	#DIV/0!			#DIV/0!	
TOTAL SCORES		18		#DIV/0!	6
PERCENT OF MAXIMUM		60.00		#DIV/0!	28.57
IMPAIRMENT CLASS		SLIGHT		#DIV/0!	MODERATE

Montana DEQ metric batteries 100 Percent of maximum score 90 80 70 60 50 40 30 20 10 Plains Ecoregions
 Valleys and Foothills
 Mountain Ecoregions 0

Montana Plains ecoregions metrics (Bramblett and Johnson) Riffle Pool


Rijjie	Pool	
EPT richness	2 E richness	2
Percent EPT	3.62% T richness	0
Percent Oligochaetes and Leeches	0.72% Percent EPT	3.62%
Percent 2 dominants	50.72% Percent non-insect	62.32%
Filterer richness	0 Filterer richness	0
Percent intolerant	0.00% Univoltine richness	8
Univoltine richness	8 Percent supertolerant	73.19%
Percent clingers	3.62%	
Swimmer richness	4	

Aquatic Invertebrate Data Summary Project ID: MDT03LW STOPET Station ID:

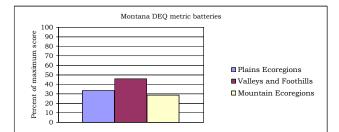

STORET Station ID:		
Station Name:	BEAVERHEAD #6	
Sample type		
SUBSAMPLE TOTAL ORG	ANISMS	128
Portion of sample used		10.00%
Estimated number in tota	l sample	1280
Sampling effort		
Time		
Distance		
Jabs		
Habitat type		
EPT abundance		1
Taxa richness		14
Number EPT taxa		1
Percent EPT		0.78%

TAXONOMIC COMPOSITION

GROUP	PERCENT	#TAXA	
Non-insect taxa	30.47%	6	
Odonata	0.00%	0	
Ephemeroptera	0.00%	0	
Plecoptera	0.00%	0	
Heteroptera	0.00%	0	
Megaloptera	0.00%	0	
Trichoptera	0.78%	1	
Lepidoptera	0.00%	0	
Coleoptera	3.13%	2	
Diptera	0.00%	0	
Chironomidae	65.63%	5	

FUNCTIONAL	COMPOSITION		
GROUP	PERCENT	#TAXA	
Predator	3.13%	2	
Parasite	0.00%	0	
Gatherer	18.75%	5	
Filterer	1.56%	1	
Herbivore	0.00%	0	
Piercer	0.00%	0	
Scraper	19.53%	2	
Shredder	57.03%	4	
Omnivore	0.00%	0	
Unknown	0.00%	0	

COMMUNITY TOLERANCES


Sediment tolerant taxa	0
Percent sediment tolerant	0.00%
Sediment sensitive taxa	0
Metals tolerance index (McGuire)	8.29
Cold stenotherm taxa	0
Percent cold stenotherms	0.00%

HABITUS MEASURES

Hemoglobin bearer richness	3
Percent hemoglobin bearers	14.84%
Air-breather richness	2
Percent air-breathers	3.13%
Burrower richness	1
Percent burrowers	5.47%
Swimmer richness	3
Percent swimmers	7.81%

Activity ID:

Sample Date:	8/7/2003			
DOMINANCE				
			DDD0D1/2	
TAXON Cricotopus (Cricotopus)		ABUNDANCE 64	PERCENT 50.00%	
Physidae		14		
Ostracoda		14	10.94%	
Phaenopsectra		11		
Gammarus	_	7		
SUBTOTAL 5 DOMINANT	S	110		
Dicrotendipes Agabus		3		
Cladocera		2		
Copepoda		1		
Hyalella		1	0.78%	
TOTAL DOMINANTS		124	96.88%	
SAPROBITY Hilsenhoff Biotic Index			6.79	
DIVERSITY				
Shannon H (loge)			2.26	
Shannon H (log2)			1.57	
Margalef D			2.67	
Simpson D			0.28	
Evenness			0.11	
VOLTINISM			DDDODM	
TYPE Multivoltine		# TAXA 8	PERCENT 78.91%	
Univoltine		° 4	17.97%	
Semivoltine		2	3.13%	
TAXA CHARACTERS				
	#TAXA		PERCENT	
Tolerant	5		23.44%	
Intolerant	0		0.00% 58.59%	
Clinger	2		58.59%	
BIOASSESSMENT INDIC	ES			
B-IBI (Karr et al.)				
METRIC Taxa richness	VALUE 14		SCORE 1	
E richness	0		1	
P richness	0		1	
T richness	1		1	
Long-lived	2		1	
Sensitive richness	0		1	
%tolerant	23.44%		3	
%predators Clinger richness	3.13%		1	
%dominance (3)	71.88%		3	
/submittance (b)	11.0070	TOTAL SCORE	14	28%
MONTANA DEQ METRIC	CS (Bukantis			
METRIC	VALUE	Plains Ecoregions	Valleys and Foothills	Mountain Ecoregions
Taxa richness	VALUE 14	1	1	0
EPT richness	14	0	0	0
Biotic Index	6.79	1	õ	0
%Dominant taxon	50.00%	1	1	õ
%Collectors	20.31%	3	3	3
%EPT	0.78%	0	0	0
Shannon Diversity	1.57	0	_	
%Scrapers +Shredders	76.56%	3	3	3
Predator taxa %Multivoltine	2 78.91%	0		
%Multivolume %H of T	0.00%	1	3	
TOTAL SCORES	2.0070	10	11	6
PERCENT OF MAXIMUM		33.33	45.83	28.57
IMPAIRMENT CLASS		MODERATE	MODERATE	MODERATE

Montana Plains ecoregions metrics (B		
Riffle	Pool	
EPT richness	1 E richness	(
Percent EPT	0.78% T richness	1
Percent Oligochaetes and Leeches	0.00% Percent EPT	0.78%
Percent 2 dominants	60.94% Percent non-insect	30.47%
Filterer richness	1 Filterer richness	1
Percent intolerant	0.00% Univoltine richness	4
Univoltine richness	4 Percent supertolerant	31.25%
Percent clingers	58.59%	
Swimmer richness	3	